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Abstract

Medical imaging plays a crucial role in hemophilia research and clini-
cal practice, particularly in assessing joint health and bleeding events.
Ultrasound (US) imaging is a fundamental tool in the diagnostic pro-
cess and is currently used to identify when the joint recess is filled
with synovial fluid or blood, a condition known as “recess distention”
that, if filled with blood, can potentially lead to pathologies and per-
manent joint damage. In this context, deep learning (DL) techniques
can support image acquisition (possibly at the point-of-care) and en-
hance the capabilities of computer-aided diagnosis (CAD) systems.

However, the lack of labeled training data makes the effective uti-
lization of DL techniques in the medical domain impractical, leading
to suboptimal performance in various imaging tasks, such as clas-
sification, detection, and segmentation. This thesis investigates the
application of advanced DL methods to overcome this challenge and
enhance the analysis of medical images in the context of data scarcity,
with a particular focus on ultrasound images in hemophilia research.
Specifically, this thesis addresses three main challenges: a limited
number of total samples, class imbalance, and the adaptation of
trained models to different domains (such as knee to elbow trans-
fer).

To address the problem of the limited number of total samples,
this research investigates the adoption of transfer learning and pro-
poses a new multi-task model to effectively utilize limited labeled
data and improve model generalization. Concerning the issue of im-
balanced data, the thesis explores anomaly detection techniques that
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can be trained on normal samples only. However, as demonstrated
experimentally, classic unsupervised anomaly detection methods fail
in this domain due to the intrinsic variability of musculoskeletal ul-
trasound images. Therefore, the thesis introduces a new weakly su-
pervised anomaly detection framework that enhances classification
and segmentation performance, requiring only the recess location as
a weak annotation. To address the third issue, we investigate two
domain adaptation frameworks to adapt a model trained on knee im-
ages to also identify the distension on elbow images. We first explore
test-time adaptation techniques and then introduce a new contrastive
feature test-time training approach.

By developing and integrating these DL techniques into an exist-
ing CAD system, this thesis aims to provide insights into effectively
leveraging limited labeled data in medical imaging research, thereby
advancing the understanding and management of rare and complex
medical conditions.
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1
Introduction

1.1 Context

Hemophilia 1 is a hereditary blood coagulation disorder that results
in an increased risk of spontaneous bleeding or due to trauma, which
worsens with the severity of the disease. Bleedings can also frequently
occur inside joints (mostly ankles, knees, and elbows) and muscles,
which together account for around 80% of the bleeding events in pa-
tients with hemophilia [8, 9]. Joint bleeding causes the distension
of the affected joint recess and, if not promptly treated with coag-
ulation factor (Factor VIII or IX), can result in permanent damage
such as synovial hyperplasia, osteochondral damage, and hemophilic
arthropathy [10]. Thus, it is essential to promptly recognize joint
recess distension.

Physical examination may not be sufficient to diagnose joint re-
cess distention, as in the early stage it can be asymptomatic [11].

1A glossary of all medical terms used is provided in the Appendix E.
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Magnetic Resonance Imagining (MRI) is generally considered the
gold standard tool for precise evaluation of joints, but is not prac-
tical for regular follow-up of patients with hemophilia due to high
costs, limited availability, and long examination times [11]. An al-
ternative solution is ultrasound (US) imaging [12] that, contrary to
MRI, is low cost, has a short examination time, and is widely acces-
sible [13]. An example of a standardized protocol for US imaging in
hemophilia is the Hemophilia Early Arthropathy Detection with Ultra-
Sound (HEAD-US), designed to guide the practitioner in acquiring
relevant US images and interpreting them for the diagnosis of joint
recess distension in the joints 6 most commonly affected [14].

A joint recess can be Distended for three main reasons: if it is filled
with synovial liquid, if it is filled with blood (a condition known as
blood effusion), and if its membrane is thicker due to an inflamma-
tion known as synovitis. Figure 1.1 shows three examples of the knee
longitudinal subquadricipital recess (SQR) scan, one of the possible
US views acquired using the HEAD-US protocol (a list is available in
Appendix D). In Figure 1.1a the SQR is the dark area shown in the
green box. In this case, the SQR is thin and hence it is Non-distended .
Vice versa, in Figure 1.1b the SQR is much thicker, indicating that
it is Distended . While Figure 1.1a and 1.1b show two characteris-
tic examples with stark differences, there are borderline cases where
the SQR appears slightly enlarged but it is Non-distended (see Fig-
ure 1.1c) or it is very slightly Distended . The SQR in knee ultrasound
is not always clearly visible. Therefore, its approximate position can
be inferred from the location of the three characterizing elements
(i.e., patella, femur, and tendons): the recess is positioned below the
tendons, above the rightmost end of the femur, and on the patella
bottom left. To determine the exact position of the recess, the prac-
titioner observes the anechogenic area present in the region. The
recess appears as a dark area surrounded by a lighter membrane. A
more detailed description is provided in Section 2.1

To determine whether the SQR is Distended , practitioners qual-
itatively establish whether it is swollen, a sign that it is filled with
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liquid, or that its membrane is thickened. Instead, a Non-distended
recess commonly appears as a thin line. We highlight that the use of
subjective assessment of imaging data as ground truth is a common
practice in clinical evaluation [15].

(a) Non-distended
SQR

(b) Distended SQR (c) Borderline Non-
distended SQR

Figure 1.1: Examples of longitudinal SQR scans

1.2 Motivation
One unmet need in the hemophilia management is that patients are
required to visit a medical facility in case of suspect blood effusion.
However, many patients are not always able to make these visits, and
in some cases they may take the coagulant factor solely on the basis
of pain level, which can lead to overtreatment or undertreatment.

A possible solution to address this problem is to provide a tool
to support patients in self-acquiring images at their point-of-care
(POC).

Although such a solution would address an unmet need, it would
also generate large amounts of images that would need to be analyzed
by skilled practitioners to perform a diagnosis. However, the avail-
ability of such figures is limited. To address this issue, a Computer-
Aided Diagnosis (CAD) system can be adopted to support the med-
ical practitioner in the diagnosis process by distinguishing between

3



Distended or Non-distended recesses and speeding up the process
hence ensuring timely interventions.

By addressing these objectives, we plan to significantly enhance
the management of hemophilic patients, leading to better outcomes
and more efficient use of healthcare resources. However, these goals
are constrained by the limited amount of data available for training
deep learning models. Addressing this challenge is the central focus
of the thesis, which explores methods to overcome data scarcity and
improve the performance of automated diagnostic systems.

1.3 Challenges
Despite the significant success of computer vision research in various
medical imaging tasks, most approaches rely heavily on large curated
datasets. These datasets are required to correctly train deep learn-
ing models to accurately perform vision tasks such as classification,
detection, and segmentation. However, in the medical context, the
acquisition of these data sets presents significant challenges. Shar-
ing personal medical data raises privacy concerns, which complicates
the collection of diverse datasets from multiple centers. Further-
more, issues related to data usage rights, such as the requirement for
informed consent specifying the purpose and duration of data use,
as well as licensing restrictions set by data custodians, add to the
complexity. Furthermore, the acquisition of medical images is often
restricted due to limited patient data, the rarity of the pathology,
and the availability of high-quality imaging equipment.

The difficulty of obtaining detailed annotations, such as image
class annotations, bounding boxes, and segmentation masks, poses an
even more challenging scenario. These types of annotations require
skilled practitioners to analyze each individual image and possibly
to identify complex anatomical boundaries. This is a labor-intensive
and time-consuming process due to the inherent complexity of the
domain. Furthermore, some features of anatomical images may not
be clearly visible or consistent across images of different patients,
which, together with the high noise and variability of the images,
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adds more complexity to the annotation process. Consequently, the
lack of largely annotated data poses a significant barrier to developing
robust and generalizable models in these settings.

This thesis addresses three different challenges related to the prob-
lems described above: the limited number of total samples, the im-
balance between classes, and the adaptation of trained models to
different unlabeled domains.

Limited number of total sample. The novelty of certain medical
conditions, such as the early stages of COVID-19 and MPOX, as
well as the rarity of pathologies such as hemophilia, makes it difficult
to collect large amounts of labeled data. This limitation restricts
the ability of deep learning models to generalize effectively. This
thesis addresses various challenges that arise when available data is
extremely limited. First, transfer learning is employed to leverage
knowledge from larger datasets. Then, multi-task learning is used to
extract and apply knowledge across different tasks, further enhancing
the model’s performance.

Class imbalance. Beyond the rarity of the pathology, the collec-
tion of images with blood effusion requires patients to have active
swelling, which is often not the case for two reasons. First, recent
advancements in hemophilia treatment have reduced the frequency
and intensity of swelling. Second, as mentioned before, patients may
not always be able to reach a medical facility, making it difficult to
capture images of this condition. This results in class imbalance,
with Non-distended images dominating the dataset, leading to mod-
els that have low sensitivity, an issue of particular importance in the
medical field. To solve this issue, we explored the anomaly detection
framework, where the training of the model is performed using only
Non-distended images and adopting the bounding box of the recess
as weak supervision.

Adaptation to different domains. As described in detail in Sec-
tion 2.1, hemophilia primarily affects the knee, which is more prone
to impact and injury. However, it is also crucial to identify swelling
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in other similar joints, such as the elbow. Training a model to classify
images of the elbow recess would typically require collecting and an-
notating a large set of images, since deep learning models are known
to struggle in generalizing on new unseen domains. However, due to
the similarity between the elbow and knee joints, we employed do-
main adaptation techniques to avoid retraining the model in a fully
supervised manner and instead addressed the domain shift between
knee and elbow recesses.

1.4 Contributions
This thesis describes the contributions of the work conducted dur-
ing my three years at Everyware Lab, in collaboration with the
Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, and
during the period spent at the LIVIA Lab of ETS Montreal. The
work addresses four main challenges: data scarcity, data imbalance,
domain-shift, and system integration.

1.4.1 Data scarcity

To tackle the previously described problem of having limited amounts
of data available, we initially investigated the adoption of transfer
learning (TL) to detect mpox from skin lesion images. In this re-
cently spread pathology, publicly available datasets in the literature
are limited and corrupted due to a web-scraping dataset generation
approach. We initially collected and curated a small dataset of skin
lesions, named Mpox Close Skin Images (MCSI). We applied TL to
leverage the strengths of pre-trained networks, enhancing model per-
formances. To do so, we fine-tuned and compared five state-of-the-art
deep learning models. This was achieved with a comprehensive evalu-
ation using a 10-fold cross-validation technique to ensure the robust-
ness and generalizability of our models. Furthermore, we optimized
the best-performing model for mobile device use, taking into account
the typical memory limitations of mobile devices. This optimization
enables all data processing and classification to be performed directly
on the device without the need of a connection, not always available
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in rural areas where this pathology is more prevalent.
TL showed promising results on the MPOX dataset, but not satis-

factory in the US musculoskeletal domain, prompting us to reformu-
late the problem to specifically focus on detecting and classifying the
SQR and its distension. In this context, we collected and annotated
an SQR knee US dataset with the collaboration of the Policlinico
of Milano. To tackle this new problem, we proposed two different
solutions: one based on a single-stage detection task, and the other
utilizing a multi-task learning approach. We then evaluated and com-
pared these proposed solutions using the newly collected dataset, pro-
viding a comprehensive analysis of their performance. This showed
promising results in terms of pathology detection and accurate recess
detection ability, outperforming the simpler TL approach in both
tasks.

These contributions are reported in Chapter 3 and Chapter 4 and
are based on the following pubblications:

• Campana, M. G., Colussi, M., Delmastro, F., Mascetti, S., &
Pagani, E. (2024). A Transfer Learning and Explainable Solu-
tion to Detect mpox from Smartphones images. Pervasive and
Mobile Computing, 98, 101874.

My contributions

• Collaboration in concept and methodology design.

• Collaboration in data collection and cleaning.

• Collaboration in method implementation.

• Collaboration in the design of the evaluation methods.

• Collaboration in experiments execution.

• Collaboration in results analysis and interpretation.
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• Colussi, M., Civitarese, G., Ahmetovic, D., Bettini, C., Gualtierotti,
R., Peyvandi, F., & Mascetti, S. (2023). Ultrasound detection
of subquadricipital recess distension. Intelligent Systems with
Applications, 17, 200183.

My contributions

• Collaboration in concept and methodology design.

• Collaboration in the design of data collection protocol and
annotation tool.

• Method implementation.

• Collaboration in the design of the evaluation methods.

• Experiments execution.

• Collaboration in results analysis and interpretation.

1.4.2 Data imbalance

The approach proposed in Chapter 4, while demonstrating promis-
ing results, has limitations in accurately identifying Distended cases.
This is likely due to the imbalance of the training data. Additionally,
it only provides the bounding box of the recess, while its segmenta-
tion offers more insight and assists practitioners in better utilizing
the suggestions provided.

To address these limitations, we propose LoRIS, the first weakly
supervised anomaly detection and segmentation technique specifi-
cally designed for US knee images. LoRIS addresses the critical issue
of class imbalance in medical imaging by leveraging Non-distended
recess data during training to detect anomalies effectively. Unlike
traditional fully supervised methods that require extensive labeled
datasets, LoRIS can be trained using only images from a single class,
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making it a more feasible option for medical applications where anno-
tated data is scarce. Additionally, LoRIS not only detects anomalies
but also provides Distended recess segmentations requiring only the
weak supervision of the bounding boxes.

Through comprehensive evaluation and ablation studies, we demon-
strate that current state-of-the-art unsupervised anomaly detection
methods are not effective in this domain. In contrast, LoRIS shows
comparable performance to supervised solutions, thus validating its
effectiveness. Its primary advantage over supervised techniques lies
in its ability to operate without the need for exhaustive labeled data.
Lastly, we present an automated method for computing the location
prior, enabling a fully automated detection pipeline during inference.
This advancement further improves the practicality of LoRIS, reduc-
ing the need for manual intervention.

This contribution is described in Chapter 5 and it’s based on the
following publication:

• Colussi, M., Mascetti, S., Ahmetovic, D., Civitarese, G., Cac-
ciatori, M., Peyvandi, F., ... & Bettini, C. (2024, October).
LoRIS: Weakly-supervised Anomaly Detection for Ultrasound
Images. In International Workshop on Advances in Simplify-
ing Medical Ultrasound. Cham: Springer Nature Switzerland.

My contributions

• Concept and methodology design.

• Method implementation.

• Collaboration in the design of the evaluation methods.

• Experiments execution.

• Collaboration in results analysis and interpretation.
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1.4.3 Domain-shift

Since blood effusion can affect various joints, we employed a domain
adaptation approach to address the domain shift between knee SQR
images and elbow OLR images. Despite the anatomical differences
between these joints, the recess and its potential distention exhibit
significant similarities, making domain adaptation a suitable method
to improve model performance across these different joint types.

To tackle this problem, we first propose ReC-TTT, the first test-
time training (TTT) approach that leverages contrastive feature re-
construction as a self-supervised task. By incorporating contrastive
learning, our method enables the model to effectively distinguish sub-
tle differences in feature representations, correctly adapt the encoders
to the new domain, and enhance its robustness to shifts. Further-
more, we added an ensemble learning strategy in which two classi-
fiers are trained using different image augmentations to ensure con-
sistent predictions. Comprehensive experiments on different types of
datasets with different types of distribution shifts, supported by ex-
tensive ablation studies, demonstrate that our method outperforms
recent test-time adaptation (TTA) and TTT techniques, achieving
state-of-the-art performance with fewer parameters to tune and its
more robust on smaller batches.

An evaluation conducted on a Dataset demonstrates the poten-
tial to adapt to new datasets without requiring re-annotation also
in the US context. In particular, it shows that by using test-time
training (TTT), we can successfully adapt from the SQR dataset to
the OLR dataset, achieving good adaptation performances without
the need to manually re-label a new dataset. Although this is a pre-
liminary evaluation, this shows how TTT can significantly reduce
the time and effort required for preparing new annotated datasets in
medical imaging applications.

This contribution is the base of Chapter 6, and its based on the
following publication:

• Colussi, M., Mascetti, S., Dolz, J. and Desrosiers, C. (2024).
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ReC-TTT: Contrastive Feature Reconstruction for Test-Time
Training. (Accepted for publication @ WACV2025).

My contributions

• Collabotation in concept and methodology design.

• Method implementation.

• Design of the evaluation methods.

• Experiments execution.

• Collaboration in results analysis and interpretation.

1.4.4 System integration

As a more applicative result, we provided a supportive tool for the
management of hemophilia, both for patients and practitioners, and
combined the contribution described above in a unified system: PRAC-
TICE.

PRACTICE is composed of three main elements:

• GAJA (Guided self-Acquisition of Joint ultrAsound images),
an application that provides an automated guiding system to
support the patient in the acquisition of joint ultrasound im-
ages.

• CADET (Computer-Aided Diagnosis for hEmarThrosis), an
application leveraging AI methods to support clinicians in for-
mulating a diagnosis.

• ATOM (Annotation Task Orchestrator Module), a system for
the annotation of ultrasound images targeted to clinicians.

In chapter 7 we report on our experience in designing and im-
plementing the system and its components. We also report on the
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lessons learned in this ongoing project. This contribution is based on
the following pubblications:

• Colussi, M., Mascetti, S., Ahmetovic, D., Civitarese, G., Cac-
ciatori, M., Peyvandi, F., ... & Bettini, C. (2023, October).
GAJA-Guided self-Acquisition of Joint ultrAsound images. In
International Workshop on Advances in Simplifying Medical
Ultrasound (pp. 132-141). Cham: Springer Nature Switzer-
land.

• Ahmetovic D., Angileri A., Arcudi S., Bettini C., Civitarese
G.,Colussi M., ... & Truma A. (2024, June). Insights on the
development of PRACTICE,a research-oriented healthcare plat-
form. In 2024 IEEE International Conference on Smart Com-
puting (SMARTCOMP).

My contributions

• Collaboration in concept and methodology design.

• Collaboration in the architecture design.

• Collaboration in the design of the guiding system.

• Collaboration in GAJA implementation.

• Implementation and training of DL models.

• Collaboration in results analysis and interpretation.

1.5 Thesis outline
The remainder of this thesis is organized as follows.

Chapter 2 introduces the medical problem and the relevant state
of the art, presenting an in-depth review of current advances in vari-
ous aspects of data scarcity scenarios for medical imaging. Chapter 3
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focuses on the adoption of transfer learning approaches with limited
data. We then explore multi-task learning approach in Chapter 4, fac-
ing the task of detection and classification of subquadricipital recess
distension using US images. In the subsequent Chapter 5, we pro-
pose a novel weakly supervised anomaly detection technique specifi-
cally designed for US images. Chapter 6 introduces a novel test-time
training method that employs contrastive feature reconstruction that
is evaluated in various domains, including US images. Finally, Chap-
ter 7 introduces PRACTICE, an intelligent healthcare platform that
integrates the methods described above and enables remote monitor-
ing and self-collection of US images by patients, Chapter 8 provides
some insight into the experience and impact of the research conducted
during the three Ph.D. years and concludes with a summary of con-
tributions, future work, and the general conclusions of this thesis.
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2
Background

This chapter describes the problem from the medical point of view
and existing CAD solutions for the treatment and care of hemofilia
(Sec. 2.1), which will be the base motivation for Chapters 4, 5, 6, 7.
Furthermore, we present state-of-the-art techniques addressing the
challenges introduced in Chapter 1. Specifically, we explore trans-
fer learning (Sec. 2.3) and multi-task learning (Sec. 2.4) as key ap-
proaches to overcoming the issue of data scarcity, anomaly detection,
and weak supervision (Sec. 2.5) as a framework for addressing data
imbalance, and test-time-training (Sec. 2.6) to deal with domain-
shift. Finally, we will present the datasets used for the training and
evaluation of the deep learning models described in the various chap-
ters of the thesis (Sec. 2.7). A brief description of all medical terms
can be found in Appendix E.
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2.1 Hemofilia and joint blood effusion
Hemophilia A and B are rare bleeding disorders caused by a com-
plete or partial deficiency of coagulation factors VIII (FVIII) or IX
(FIX). Individuals with severe hemophilia are characterized by low
levels of FVIII or FIX, if not treated with adequate prophylaxis,
may experience spontaneous musculoskeletal bleeding, which repre-
sents approximately 80% of total bleeding events. Recurrent joint
bleeding, more frequent in the ankles, elbows, and knees, can lead
to hemophilic arthropathy and irreversible joint damage [16]. The
improvement in quality of health care and the increased availability
of replacement drugs (drugs that replace missing or deficient clotting
factor in the patient’s blood) and non-replacement drugs (drugs that
improve the body’s natural ability to clot) have facilitated a change
in the objectives of prophylactic treatment. Rather than focusing
solely on preventing life-threatening bleeding, the aim of prophylaxis
has now shifted towards preserving joint health and improving over-
all quality of life [17]. Nowadays, in the era of modern hemophilia
treatment, including nonreplacement and gene therapy [18], used to
preserve long-term joint health, the findings show that efforts should
be directed toward early detection of subclinical bleeding, which oc-
curs without visible symptoms, as there is evidence that even a single
bleeding episode can lead to cartilage damage and synovitis [19].

Since physical examination is not sufficient to identify joint bleed-
ing by self-report or physician visit [20] ultrasound imaging is emerg-
ing as a simple and reliable tool to evaluate joint health in patients
with hemophilia. US imaging can identify joint bleeding even in the
absence of obvious signs or symptoms, facilitating early intervention
and prevention of joint damage. In fact, subclinical joint bleeding
is not uncommon due to the availability of both replacement and
non-replacement treatments, which mitigate clinical manifestations
in patients with hemophilia. Compared to magnetic resonance imag-
ing (MRI), musculoskeletal ultrasound is much more sensitive in de-
tecting bloody (complex) effusion and distinguishing it from synovial
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effusion and does not involve ionizing radiation. However, its diagnos-
tic sensitivity in differentiating blood clots and synovial hyperplasia
can vary depending on factors such as the expertise of the operator
and the quality of the equipment used, which could lead to a not
completely satisfactory outcome [21, 22, 23, 24, 25, 26]. Recurrent
and spontaneous joint bleeding is the most common manifestation
of hemophilia, with ankles, knees, and elbows, typically affected and
termed index joints [16]. Recurrence of intraarticular bleeding fosters
the development of synovitis, rendering these joints more susceptible
to further bleeds and progressive joint damage.

Ultrasound, performed by a qualified physician, is valuable in as-
sessing distension, blood effusion (indicative of joint bleeding), or
synovial hyperplasia, manifested as isoechoic thickening of the cap-
sule [26, 27]. Among the different proposed US scores, early de-
tection of hemophilia arthropathy with ultrasound (HEAD-US) [14]
and Joint tissue Activity and Damage Examination (JADE) [28] are
applied worldwide. Both aim to assess and score the presence and
degree of synovitis and osteochondral damage, although with differ-
ent definitions of the US image features. None of them defines the
characteristics of joint bleeding.

Our research group has recently identified unmet needs in the de-
scription of ultrasound features of hemophilic arthropathy and joint
bleeding and has proposed a set of definitions as a starting point for
their standardization and validation. This process has been proposed
and planned as a project in the context of the Factor VIII/IX Stan-
dardization Subcommittee of the International Society on Thrombo-
sis and Haemostasis Scientific and Standardization Committee [26].

Ultrasound images. Ultrasound probes uses high-frequency sound
waves generated by a transducer that converts electrical energy into
sound waves. These waves travel through the body and are reflected
by the internal structures. The transducer also detects the returning
echoes, analyzing their strength, direction, and arrival timing. These
reflected sound waves are then processed to form a grayscale image,
with intensity based on the echo’s strength. This technique can pro-
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duce images with high spatial resolution of internal structures of the
body, such as tendons, bones, blood, and muscles [12].

The amount of reflected waves depends on the tissue density.
Waves that are not reflected propagate to the underlined tissues.
Dense structures, such as tendons and bones, produce strong echoes,
appearing brighter (echogenic) in the image. In contrast, areas that
reflect fewer sound waves, such as fluids, appear darker (anechoic).
When ultrasound waves encounter tissues that cannot propagate sound,
such as bones, they create a white border and cast an acoustic shadow,
making it impossible to detect anything beneath them [29]. An ex-
ample is shown in Figure 2.1: the patella is clearly distinguishable
in light color (see the red box) while the area below it is almost
completely black.

Knee subquadricipital longitudinal scan. In the following of
this thesis, we focus primarily on one knee joint, more specifically
on one of the three scans specified in the HEAD-US protocol for the
collection and diagnosis of joint recess distension in patients with
hemophilia [14]: the SQR longitudinal scan1. This scan is used to
assess SQR distension and contains different characterizing elements
(see Figure 2.1):

• The femur (blue box) usually appears as a light thick line, ap-
proximately horizontal, starting from the left side of the image
and extending towards the right, often in the lower half of the
image.

• The patella (red box) usually appears as a curved light line,
positioned at the right border of the image, often in the top
half and not entirely captured.

• The quadriceps tendon (brown box) appears as a fascicular
structure composed of echogenic parallel lines (i.e., they ap-
pear as thin horizontal stripes) that originate from the patella.

1A list of all the available scans is reported in Appendix D
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The SQR (green box) is positioned between the femur and the patella
and often contains at least a small quantity of liquid, hence it is
dark. In some cases, the joint recess membrane can be visible in gray.
The SQR size and shape vary depending on many factors, including
whether it is Distended or Non-distended , as explained below.

Figure 2.1b shows how the probe must be positioned during the
acquisition of the SQR longitudinal scan. In the figure, the yellow
box is the area captured by the US image shown in Figure 2.1a, while
the green box is the SQR. To correctly acquire this type of image, the
knee has to be bent at about 30◦. The probe must be positioned right
at the beginning of the patella and moved horizontally to identify the
correct key features previously described.

Several parameters of the ultrasound probe need to be specified
in order to properly acquire SQR longitudinal scans. Some of these
parameters need to be personalized for each patient (such as gain,
focus and dynamic range), while the value for other parameters can
be pre-determined, such as frequency and depth, which in our study
were set to 12Mhz and 40− 50mm, respectively.

(a) Example of SQR longitu-
dinal scan

(b) Probe positioning

Figure 2.1: SQR image acquisition

Elbow olecranic longitudinal scan.

18



In Chapter 6, we will use the olecranic (OLR) view of the el-
bow, which is the clearest view of the elbow recess of the HEAD-US
protocol. This scan is used to assess OLR distension and contains
different characterizing elements similar to the ones of the knee (see
Figure 2.2):

• The olecranon fossa (blue box) usually resembles a small, shal-
low depression or darker area near the distal end of the humerus.
It appears towards the lower center of the image.

• The humerus (purple box) usually presents as a thick, solid line,
roughly vertical or slightly diagonal, starting from the upper left
and extending downwards toward the right. It is commonly
seen in the upper half of the image, occupying a prominent
central position.

• The tricep tendon (brown box) appears as a thin, faintly visible
line, running diagonally across the upper part of the image. It
originates near the upper right and extends towards the left.

• The ulna (red box) typically appears as a light, thin line, usually
oriented horizontally. It begins near the top-right side of the
image.

To find the OLR, we first identify the attachment of the tricep
tendon and the final part of the humerus bone. Between these two,
the recess is positioned inside the olecranic fossa, between two fat
pads.

Figure 2.2b shows how the probe must be positioned during the
acquisition of the OLR scan. In the figure, the yellow box is the area
captured by the US image shown in Figure 2.2a, while the green box
is the OLR. To correctly acquire this type of image, the elbow has
to be bent at about 90◦. The probe must be positioned right at the
beginning of the humerus and moved horizontally to identify the cor-
rect key features previously described. The same probe parameters
described for the knee, need to be adjusted.
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(a) Example of OLR longitu-
dinal scan

(b) Probe positioning

Figure 2.2: OLR image acquisition

2.2 Technological Solutions for Hemophilia
Based on the evidence of the importance of promptly identifying and
treating joint bleeding to prevent irreversible damage, tools that allow
a very early diagnosis of intra-articular bleeding are receiving growing
interest. Telemedicine is defined as the distant supply of healthcare
services and clinical assistance using information and communica-
tion technologies, such as the Internet, wireless systems, and mobile
phones. Telemedicine offers several advantages, such as the possibil-
ity of treating patients at the point-of-care (POC, e.g., scene of an
accident, patient’s home) instead of at the hospital, as well as an im-
proved quality of life [30]. However, telemedicine comprises several
technologies that need to be addressed, validated, and deployed prior
to offering services to patients. Thanks to technological development
and the introduction of telemedicine, patients can now use electronic
diaries (e-diaries) to record bleeds and treatments (Table 2.1). E-
diaries, commonly available as smartphone apps, enable patients to
input information about their treatment and bleeding events more
quickly and easily than paper diaries. With varying degrees of detail,
patients can document bleeds, treatments, and patterns of physical
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activity.

App Developer Platforms Main Features Addressability

MicroHealth Hemophilia Microhealth Inc. Android, iOS

Logging infusion and bleeding,
Set reminders for infusion,
Share data via e-mail, manage multiple users,
Communicate with hemophilia treatment
center via chat, educational resources.

Patients, Caregivers, Doctor

myWAPPS McMaster University Android, iOS
Logging infusion and bleeding,
Set reminders for infusion,
Share data via e-mail.

Patients, Doctors

HemMobile Pfizer Inc. Android, iOS

Logging infusion and bleeding,
Set reminders for infusion,
Share data with physician,
Integration with Google Fit and Apple Health.

Patients, Doctors

Florio HAEMO Florio HAEMO Android, iOS

Logging infusion, Logging bleeding,
Set reminders for infusion,
Share data with physicians,
Integration with Google Fit and Apple Health.

Patients, Doctors

Table 2.1: Comparison of Hemophilia Management Apps

Teleguidance. The use of portable US imaging systems has been
extensively investigated in the literature [31, 32, 33]. Such devices
were initially conceived to allow clinicians to make diagnoses at POC.
Three approaches have been proposed in the literature. The first ap-
proach is to train the patients so that they can independently acquire
US images [34, 35, 36]. A different approach is to rely on teleguid-
ance, which means that a medical practitioner remotely supports the
patient in real-time during US image acquisition. Teleguidance can
be provided by the medical practitioner who observes the US feed (as
in [37, 38]), possibly combined with video from other cameras [38].
In [39], the authors suggest that 5G technologies will play a major
role in making teleguidance practical in real-world scenarios, and in-
deed several research groups are exploring it in the general medical
domain [37, 38]. One limitation of teleguidance is that it requires the
availability of human experts to remotely support the patients or the
operator who can perform the ultrasound (US) scans in cases where
the patient is unable.

Two recent and closely related study compares these two ap-
proaches considering the problem of hemophilic patients using portable
probes for self-collection of US images of their joints, with the objec-
tive of reducing hospital visits [40, 41]. One of the results of these
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works is that even if patients follow a dedicated training session (last-
ing 4-5 hours), the quality of the self-collected images (without any
type of real-time assistance) significantly degrades with the passing of
weeks, due to forgetting. This suggests that simply training patients
is not sufficient for high-quality self-imaging. Interestingly, this work
also shows that high-quality images can be self-collected when pa-
tients are assisted with teleguidance. However, the problem analysis
conducted in our study uncovered that this solution is impractical in
our scenario because it is considered to be too time consuming for
medical practitioners.

The third approach is based on automated guidance, which means
that the patient is guided to correctly position the probe by an AI sys-
tem. Existing work adopts a camera mounted on the probe to locate
and guide the position of the probe [42, 43], and require custom-made
hardware devices specifically designed for the problem.

CAD for joint distension with US. Ultrasound [44] is also of-
ten used as a data source for Computer-Aided Diagnosis (CAD) sys-
tems [45, 46]. In fact, despite its high dependence on the level of oper-
ator expertise and possible noise of acquired images [11], US imaging
is easily accessible, safe and affordable, and therefore is commonly
used in healthcare [46].

In the literature, different solutions have been proposed to au-
tomatically detect and classify joint recess distension. For example,
a CNN-based method has been proposed to perform segmentation
and classification of bicipital peritendinous effusions on the shoulder
joint [47]. Specifically, a VGG-16 [48] network is used to extract
features and a second CNN is used to classify distension into three
classes (i.e., mild, moderate, and severe). The authors evaluated
their method on a dataset of 3801 images, including healthy individ-
uals and individuals with BPE with various severity levels, reaching
an accuracy of 75%.

Another work considers the knee joints [15] and uses segmenta-
tion techniques to classify different types of pathology within US
images, including joint recess distension due to synovial thickening.
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The authors evaluated the method using 600 US images with 6 differ-
ent classes (i.e., normal knee joint, non-synovial thickening, synovial
thickening, cyst, tumor, rheumatoid arthritis). The results showed
an accuracy of ≈ 76%.

A closely related work is ARB U-Net which, similarly to our work,
extracts Sub-Quadricipital Recess (SQR) of the knee joint from US
images [49]. Specifically, ARB U-Net is based on deep segmentation,
using an encoder-decoder method that identifies the exact boundaries
of the SQR. The results show a segmentation accuracy of 97.1% on
a dataset of 450 US images.

There are two main differences between our paper and the three
works mentioned above. First, while these studies primarily focus on
segmentation-based approaches that require an expert practitioner
to precisely annotate the target area, which is both time-consuming
and expensive, our work only requires the practitioner to annotate the
SQR bounding box, which is much simpler and faster. Additionally,
these works do not directly address the issue of recess distension in
hemophilic patients, as their focus lies elsewhere.

A recent abstract paper [50] considers US images of patients with
hemophilia and addresses the problem of classifying Distended and
Non-distended knee recesses. The authors considered 179 US images
collected from pediatric patients, using a CNN to perform binary
classification, reaching an accuracy of 82%. Finally, in a study by
Ai et al., the authors studied the possibility of predicting the risk of
bleeding in a series of children (N = 98) with hemophilia A, using
three machine-learning models to evaluate the risk of bleeding during
physical activities [51].

A direct quantitative comparison between previous work and our
contributions is not possible for two reasons. First, the datasets used
for the evaluation of previous work are not public, and hence we
cannot evaluate our techniques with the data used in previous work.
The second reason is that running existing solutions on our dataset
is not possible either, because the first three papers mentioned above
require the recess segmentation mask, which we do not have, while the
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Figure 2.3: Standard convolutional neural network architecture.

last one does not report sufficient details to reproduce the proposed
solution.

2.3 State of the art on transfer learning
One commonly used ML approach in US CAD systems is the direct
classification of images collected by medical experts [52, 53]. Indeed,
different studies adopted deep learning classification approaches to
identify various pathologies such as tumors in breast ultrasound [54,
55, 56], liver pathologies [57, 53], thyroid nodules [58, 59], and oth-
ers [60].

In this problem domain, Convolutional Neural Networks (CNNs)
are the most widely used ML architectures, due to their ability to ex-
tract discriminative features from image data [61, 48, 60, 62]. CNNs
are a specific type of deep learning model designed for the image
analysis task. They are inspired by the structures of the human pri-
mary visual cortex and can automatically learn and detect spatially
invariant features within images, such as edges, textures, and com-
plex patterns. An example of a basic CNN architecture is shown in
Figure 2.3

The most common components, that will be referred in the fol-
lowing chapters are2:

2More specific components, related to only some part of the work will be
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• Convolutional layers are the main component of CNNs, they
are composed of a set of filters, that are trained to capture
relations among the input data extracting relevant features.
This is achieved by computing the sliding dot product between
the input and the filters. The stride parameter controls the
amount of slide of the kernel. Padding can also be used to
extend the input features in order to control the size of the
feature maps. Convolutional layers are staked to extract more
general features with the increase of depth.

• Pooling layers are used to reduce the dimensionality of the
intermediate features of CNNSs. They use a filter that slides
along the input features according to their stride. For each
iteration, pooling layers applies a function as computing the
maximum (maxpooling) or the average (avgpooling) of the in-
put feature map and returns a single value.

• Fully-connected are the simplest type of layers, they are com-
posed of a set of neurons, each of which takes the output of the
previous layer as input. FC layers are trained to learn the
weights to associate with each input.

• Activation functions are essential for capturing the non-linear
relationships between input data and output, as the preceding
layers perform only linear operations. Specifically, they are
used to divide whether or not to activate a neuron and, if so,
with what intensity. Different activation functions map the
input in different ways, for example, the sigmoid activation is
monotonically increasing, and it is bounded between one and
zero. To overcome problems such as the vanishing gradient,
more complex activation functions were introduced, such as the
rectified linear (ReLU), which will output zero if the input is
negative, while it does not affect positive values.

described in detail in the corresponding sections
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The development of deep learning models is often limited by the
scarcity of available labeled data for the training of ML models, lead-
ing to poor performance [63]. To mitigate this issue, in the literature,
transfer learning approaches [64, 58] and generative data augmenta-
tion [65, 66] have been proposed.

TL on generic images. Transfer learning is one of the most widely
adopted approaches when working with small datasets, primarily due
to its ability to leverage pre-trained neural networks that have already
learned to extract relevant features from large and diverse datasets.
These pre-trained models capture patterns and representations that
are broadly applicable across different tasks and domains [67]. After
pretraining the network, only a fine-tuning process is typically re-
quired to adapt the model to the specific characteristics of the new,
less-represented, domain. The fine-tuning step only requires slight
adjustment of the weights of the pre-trained model to align them
with the new data, rather than training a model from scratch [68].
This is achieved by freezing the feature extraction part of the net-
work, meaning that the weights of these layers are kept constant
during training. Figure 2.4 shows the overall framework for transfer
learning.

TL has been applied to many different vision tasks, such as image
classification [69], object detection [70], segmentation [71], and so
on [72].

Transfer learning in medical imaging. As shown in [73] there
was a constant growth in the use of TL in the medical imaging
field. Its range of applications varies from brain tumor identifica-
tion [74], lung diseases [75], breast cancer [76], and skin lesion [77],
both for classification and segmentation tasks [78, 79], and many in
the US imaging domain [77] showing the importance of having large
datasets like ImageNet [80] or COCO [81] available for pretraining,
even though they represent a different domain.
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Figure 2.4: Transfer learning approach, the model is firstly trained
on a large source domain, and successively updated using the smaller
target domain.

2.4 State of the art on multi-task learn-

ing
Multi-task learning was introduced to take benefit from the knowl-
edge that a model can learn from one task to enhance the robustness
of the other task [82], specifically where the data available for the
different tasks are limited. In this framework, the model learns mul-
tiple tasks jointly, enabling it to prioritize the tasks it focuses on. In
the imaging field, there are two primary types of parameter sharing:
hard and soft sharing. In hard parameter sharing, a common feature
extractor is shared across different tasks, and the extracted repre-
sentations are passed to task-specific sub-networks. A combined loss
function is used to compute the error for each task, and these errors
are summed to optimize all training objectives simultaneously. In
contrast, soft parameter sharing involves separate networks for each
task, but regularization techniques are applied to keep the parame-
ters of the different networks close, allowing for some degree of shared
learning across tasks.
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Figure 2.5: Multi-task learning Y-shaped architecture

Multi-task learning in generic images. The more common ap-
proach is hard parameter sharing, typically utilizing a Y-shaped ar-
chitecture, where the shared parameters reside in the lower layers
and task-specific layers follow. This method is commonly used in
various tasks such as face classification and segmentation [83], seg-
mentation and distance detection [84], iris boundary detection and
segmentation [85], fruit cluster and maturity level detection [86], and
car color classification, license plate detection, and OCR character
recognition [87] and many others [82].

Figure 2.5 shows an example architecture of a Y-shaped network
with a shared feature extractor and multiple heads for different tasks.

Multi-task learning in medical imaging. Previous works have
explored the multi-task combination of classification and detection
for non-US medical images [88, 89, 90, 91, 92], that will be the focus
of Chapter 4. A few contributions exploring multi-task learning on
US images have also been proposed. Gong et al. propose an approach
for multi-task localization of the thyroid gland and the detection of
nodules within that region, using a shared backbone network divided
into two different decoders for the two tasks [93]. Zhang et al. adopt a
multi-task learning algorithm to segment and classify cancer in Breast
US images. They propose using DenseNet121 as the backbone, fol-
lowed by a decoder branch with layers connected by attention-gated
(AG) units to segment the images [94]. The second branch performs
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a classification task that takes in input the features extracted by the
encoder.

2.5 State of the art on unsupervised anomaly

detection

Unsupervised anomaly detection (UAD) in computer vision is a tech-
nique designed for the specific problem of highly imbalanced datasets,
where one of the classes (called anomalous) is rare and has few oc-
currences, such that a standard classification or segmentation algo-
rithm does not correctly understand its characteristics [95]. Its main
concept is to learn the distribution of normal data and, therefore,
identify when a sample deviates from such distribution, detecting
the anomaly. It has been used in many different domains to identify
unexpected data, defects [96], fraud [97] or unexpected events [98],
leading to prompt identification of potential issues. In the UAD set-
ting, it is assumed that only normal data is contained in the training
set, while both normal and anomalous data are present in the testing
set [99].

UAD in generic images. The most intuitive approach is using
clustering, which leverages the distance within the feature space to
differentiate between normal and anomalous data. In this framework,
similar images should have close representations in the feature space,
while anomalous samples are expected to be more distant from this
normal cluster [100, 101].

Other approaches rely on generative adversarial networks (GANs)
that can model complex data distributions. Usually, a generator is
used to produce synthetic images that are then classified by a dis-
criminator as real or fake. Learning this, the discriminator becomes
capable of distinguishing images that do not fall into the learned nor-
mality [102]. In addition, conditional GANs have been explored for
the anomaly detection task [103].

The main approach for UAD in imaging is the use of autoen-
coders, a particular type of encoder-decoder architecture designed
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Figure 2.6: Anomaly detection framework, the model is trained on
the normal data, then it is used to extract a statistic from the test
data, where the anomalies fall outside the distribution.

to first extract a representation of the data (encoding) and subse-
quently reconstruct the image from that representation (decoding).
In such tasks, it is common to define and measure the reconstruction
error, usually the difference between the input image and the recon-
structed one, which should be higher on anomalous samples, since
during the training phase the network is only trained with normal
samples [104]. Some methods use inpainting to define more complex
reconstruction tasks [104], or use the synthesis of anomalies within
normal images [105] or in their feature space [106]. Other approaches
use patch-based memory banks [107], and normalizing flows [108].

These techniques make it possible us to obtain, in an unsupervised
manner, both an overall anomaly score and a pixel-level anomaly map
that can be used for anomaly segmentation. Figure 2.6 shows the
standard UAD approach, which consists of training a network and a
specific task on normal data, extracting a statistic from the data (blue
dots), such as reconstruction error, and finally determining whether
a certain statistic falls outside the normal distribution (red dots).

UAD in medical imaging. The rarity of some pathologies and the
lack of annotated data highlight the importance of using the anomaly
detection framework to learn from normal data, which is easier to
annotate and collect. Different works propose specific solutions tack-
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ling the problems of medical imaging: normalizing the reconstruc-
tion error with uncertainty to detect abnormalities in chest X-ray
images [109] or by patch interpolation for brain MRI and abdominal
CT images [110], GANs were adopted to detect brain anomalies [111],
while more recently the use of denoising diffusion probabilistic models
was used for brain anomaly detection [112].

Weak supervision. To address the limited availability of certain
labels, a solution known as “weak supervision” emerged, focusing
on extracting meaningful information from incomplete or imperfect
data. Weak supervision can refer to three different categories: i)
incomplete annotations, ii) inaccurate annotations, and iii) inexact
annotations [113]. The first refers to the setting in which a small
set of clean labels is available and labeling every instance is time-
consuming or expensive. This is the usual case of semi-supervised
learning approaches [114]. The second refers to the case where an-
notations are noisy and/or corrupted and therefore cannot be con-
sidered gold-standard ground truths. In this scenario, the learning
approach exploits labels that might be generated from simpler and
less accurate machines [115]. In this thesis, we will focus on the last
scenario, the inexact label one. In this scenario, the available data
might be labeled, but the labeling is only partial and the given in-
formation is not as exact as the desired model output, for example,
the coarse region-of-interest of an area to segment [116]. This specific
idea has been investigated in multiple works. GrabCut [117] proposed
to use the user-provided bounding box to iteratively refine the area
to segment inside the rectangles, encouraging neighboring pixels of
similar color distribution to have the same label, and more modern
techniques such as BoxSup [118] and DeepCut [119] extended this
iterative refinement approach using deep learning and CNNs. Some
research focuses on the use of weak supervision in anomaly detection,
but it is mainly concerned with incomplete annotations [120].

Weakly-supervised anomaly detection in medical imaging.
In medical imaging, the significant variability in image characteris-
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tics, the presence of noise, and the challenges associated with ob-
taining large, accurately labeled datasets have led to the adoption of
weak supervision in recent approaches to anomaly detection. Some
approaches used CAM activation maps of a classification network to
refine anomaly maps generated by an unsupervised anomaly detec-
tion network on OCT images [121, 122]. Wolled et. al [123] introduce
an image-level class annotation to guide a Denoising Diffusion Im-
plicit Model to identify anomalous lung X-ray scans and brain tumor
magnetic resonances. Class conditioning is also used to guide a fast
non-Markovian diffusion model [124].

2.6 State of the art on domain adapta-

tion

One of the key challenges in deep learning (DL) research is improving
the models’ ability to generalize effectively to new data. In the most
common scenario, models are trained to learn patterns and relations
on a source dataset and performance is evaluated on a set of images
not seen during training but extracted from the same distribution.
Despite the impressive performance achieved by advanced models in
various datasets, maintaining the assumption of domain invariance
between source and target data proves to be impractical in many
real-world scenarios. As a result, the limited robustness of DL models
to distribution shifts remains a key obstacle to their use [125, 126].

As a solution to this challenge, two broad research branches have
emerged: domain generalization (DG) and unsupervised domain adap-
tation (UDA). DG approaches aim at training more robust models
with a native ability to generalize in various domains. The main
limitation of these techniques is that they rely on the availability at
train time of large amounts of data from different sources, which is
often impractical [127, 128]. Moreover, these techniques may also
underperform in domains very different from those considered during
training.

On the other hand, UDA tries to achieve higher generalizabil-
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ity without anticipating potential distribution shifts but instead by
adapting the model accordingly, either with test-time adaptation
(TTA) [129, 130] or test-time training (TTT) [131, 132].

Test-Time Adaptation (TTA). In visual recognition tasks, distri-
bution shifts between training and test data can greatly degrade per-
formance [133]. To overcome this issue, recent approaches were pro-
posed to dynamically adapt the models at test time to the new data.
Unlike domain generalization [128, 134], where the source model is
robustly trained but fixed at test time, TTA allows updating the
model for the target domain. TTA techniques do not have access to
the source data or training (i.e., only the trained model is provided),
and the adaptation occurs only at the test time. In recent years,
a variety of TTA methods have been proposed. Among others, in
PTBN [135], the adaptation is carried out by updating the Batch-
Norm layer statistics using the test batch. Instead, TENT [136] tries
to minimize the entropy of the predictions for the test set. Finally,
TIPI [137] proposes to identify transformations that can approximate
the domain shift and trains the model to be invariant to such trans-
formations.

Test-Time Training (TTT). In contrast to TTA, TTT techniques
have access to the source data during initial training (but not at test
time), and a secondary self-supervised task is trained jointly with
the main learning objective. This learning paradigm was first intro-
duced in TTT [131], where the auxiliary task consists of recovering
a random rotation of multiples of 90◦. At test time, the adaptation
is performed by updating only the parameters related to the sec-
ondary task. TTT-MAE [138] uses transformers as the backbone of
supervised training, with a masked-autoencoder architecture trained
as a self-supervised reconstruction task; at test time, the network is
trained only to reconstruct the masked images, adapting the shared
feature extractor. TTTFlow [139] adopts normalizing flows on top of
a pre-trained network to map the features into a simple multivariate
Gaussian distribution. At test time, the log-likelihood of this distri-
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bution is employed to adapt the model. ClusT3 [132] proposed an
unsupervised clustering task that maximizes mutual information be-
tween the features and the clustering assignment that should remain
constant across different domains.

Figure 2.7 shows an example TTT framework. At train time
( 2.7a) both tasks are jointly trained. At test time ( 2.7b) only the
unsupervised auxiliary task is used to update the network, while since
there is no supervision, the supervised task is not used in this phase.
At inference time ( 2.7c) the main task is used to obtain the final
prediction, while the auxiliary task can be discarded.

(a) Train time (b) Test time (c) Inference time

Figure 2.7: TTT framework. (a) During training, the shared network
is trained on the source data for both the supervised task and the
auxiliary task. (b) At test time, only the auxiliary task is used to
update the shared feature extractor. (c) During inference, the model
focuses on the supervised task while freezing or disabling the auxiliary
task.

Contrastive learning as auxiliary task. Contrastive learning as
self-supervised task is gaining remarkable attention in domain adap-
tation research, due to its ability to learn robust representations.
Among the various approaches based on this technique, AdaCon-
trast [140] takes advantage of both momentum contrastive learning
and weak-strong consistency regularization for pseudo-label super-
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vision. In DaC [141], the test set is divided into source-like and
domain-specific, applying two different strategies to the sub-sets us-
ing adaptive contrastive learning. TTT++ [142] adopts a contrastive
approach on top of a TTT framework, using two augmented versions
of the same image as positive pairs and, as negative pairs, augmented
versions of other images. This technique also leverages batch-queue
decoupling to regularize adaptation with smaller batch sizes. More
recently, NC-TTT [143] introduces a contrastive approach based on
the synthetic generation of noisy feature maps.

In Chapter 6 we propose a TTT methods based on contrastive
feature reconstruction, differing from other works, our solution com-
pares the features produced at different network layers, capturing
more robust features and allowing for a better alignment in the new
domain.

Test time adaptation in medical imaging. The adoption of do-
main adapation techniques in medical imaging classification usually
tackles the change in label distribution, as disease prevalence can
vary with location and time. Fang et al. proposed a system for early
detection of CT scans of COVID-19 patients, using domain adapta-
tion in the multi-center scenario using a metric-based method fine-
tuning a pre-trained model on the target data using few labels [144].
TTADC [145] proposes to use a set of distribution-calibrated clas-
sifiers trained on the source data and, at test-time, aggregate the
output of all classifiers using dynamic weights for the different labels.

Most of the research focuses on the segmentation task. Bateson
et al. propose a shape-guided entropy minimization loss to adapt a
trained model to segment images of a single new patient [146] evalu-
ating the domain shift between the imaging modality change (MRI to
CT) and cross-site adaptation. The authors of Adaptive UNet pro-
pose a solution for on-the-fly test-time adaptation of a single image by
adding an adaptive batch normalization layer to each convolutional
block of the network. It is evaluated on different datasets where the
shift occurs in sensor acquisition properties, patient age, and resolu-
tion [147]. Finally, DLTTA [148] proposes dynamically modulating
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the amount of weights updated for each test image using memory
banks to compute the discrepancy between the source data and the
target images. This was evaluated on various classification and seg-
mentation tasks.

2.7 Datasets description
In this section, we provide a comprehensive description of the datasets
used throughout this thesis, that are summarized in Table 2.2. This
includes both the datasets that were collected, annotated, and pre-
processed specifically for the purpose of this research, as well as those
that were sourced from established benchmarks for comparative ex-
periments.

Table 2.2: List of datasets used, along with the chapters in which
they are referenced and their availability.

Dataset Chapter Availability

Knee SQR 4 & 5 Ours, private
Knee and elbow distension 6 Ours, private

CIFAR-10C Publicy available at [149]
CIFAR10.1 Publicy available at [150]
CIFAR-100C 6 Publicy available at [149]
TinyImagenet-C Publicy available at [149]
VisDA Publicy available at [151]

MCSI 3 Ours, available at [152]

2.7.1 Subquadricipital knee recess distension

Despite the fact that there are prior works that analyze US images
of the relevant area (SQR scan of the knee) [50, 49, 15], none of
these works provides a publicly available dataset. For this reason, we
collected a new dataset of 483 SQR longitudinal scan images of 208
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adults with hemophilia, aged 44.7± 18.6, between January 2021 and
May 2022. The dataset was collected thanks to the collaboration
with “Centro Emofilia e Trombosi Angelo Bianchi Bonomi” of the
Policlinico di Milano, a medical institution specialized in hemophilia.
The images were annotated by one expert specifically trained in the
diagnosis of SQR distention in hemophilic patients. The study was
approved by the institution’s ethics committee.

Before acquiring the dataset we first defined a standardized data
acquisition protocol that includes: a) examination procedure based
on the HEAD-US [14] protocol; b) guidelines on how to use the ultra-
sound device during the visit, for example defining that the joint side
(left or right) should be annotated while acquiring the image itself;
c) a procedure for transfering data from the ultrasound device to the
hospital server; d) a data pseudo-anonymization procedure.

For each patient, the physician collected several US images from
various scans in different joints. For this study, we selected images
of the SQR longitudinal scan. Two images of the SQR longitudinal
scan are typically collected during each visit, one for each knee (left
/ right), but for some patients we only have one image while other
patients were visited twice (often at a distance of several months),
and hence having up to four images each.

Data Acquisition and annotation

Images were acquired using the Philips Affiniti 50 US device3 by
a single specialized practitioner during routine visits of hemophilic
patients. When collecting the images, the probe was positioned as
shown in Figure 2.1b and the knee was flexed by 30◦. Each image has
a resolution of 1024 × 780 and, as shown in Figure 2.1a, it contains
acquisition parameters (saved as text in the image) and the actual
US scan (i.e., the yellow rectangle in Figure 2.1a), the size of which
can vary.

The annotation procedure is organized into three phases. The first

3www.usa.philips.com/healthcare/product/HC795208/

affiniti-50-ultrasound-system
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phase is image selection: among all images acquired from the US
scanner, those representing the SQR longitudinal scan of the knee
are selected. The practitioner discards unsuitable images, such as
those of underage patients, of patients with a prosthesis, or images
with a wrong knee bending angle. After this phase, a total of 483
images were selected. The second phase is the recess bounding-box
annotation. Using an annotation tool [153], the practitioner identifies
the position of the SQR and draws the bounding box (a rectangle with
edges parallel to the axes).

The third phase is class labeling: the practitioner evaluates whether
the recess is Distended and enters this information in the annotation
tool. Based on this procedure, out of 483 SQR longitudinal scans,
360 were labeled as Non-distended and 123 as Distended .

Pre-processing

We pre-process the collected images to extract the actual US image
(e.g., the yellow box in Figure 2.1a). Indeed, as previously observed
[47, 15] using the entire image as returned by the US device can reduce
classification accuracy as this part of the image does not contain
information needed for the required tasks.

As suggested by Tingelhoff et al. [154], we initially cropped the
images manually. However, this process is time-consuming. We
therefore developed an algorithm to automatically extract the US
scan from the collected image. Figure 2.8 shows the steps of the
pre-processing algorithm. In the first step, we measure and binarize
the gradient of the image; we then remove connected pixel groups
composed of less than 1000 non-zero pixels; afterward, we dilate the
image to fill small groups of black pixels, and we perform an opening
operation to remove groups of pixels not belonging to the US scan
that was merged with it in the previous steps. We cropped the orig-
inal image with the bounding box of the white area resulting from
the previous step. Finally, the images are resized to 256× 256 pixels.

All images have been double-checked as part of the annotation
process and no cropping error was found, showing that the proposed
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automatic pre-processing is reliable.

Figure 2.8: Intermediate steps of frame extraction procedure

2.7.2 Knee and elbow recess distenssion

A new recently collected dataset was used to perform a first evalua-
tion of the domain adaptation task on US images. It is composed of
two main sets: a source dataset, composed of knee SQR US images,
and a target set composed of elbow OLR images. For this dataset,
the only available annotation at the time of writing the thesis is the
distension annotation, we acquired the annotations of three practi-
tioners and used majority voting to assign the final label to each
image.

The knee dataset is composed of a total of 1161, 869 of which are
classified as Non-distended and 292 as Distended .

The elbow dataset is composed of 227 OLR scans, annotated as
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the knee dataset, resulting in 143 Non-distended cases, and 84 Dis-
tended .

Both datasets were annotated by the same practitioners using the
ATOM tool described in Chapter 7.

2.7.3 Corruption datasets

Here, we describe the six datasets used to evaluate our domain adap-
tation algorithm.

CIFAR-10C, CIFAR-100C and TinyImageNet-C[149]. These
three datasets are composed of 15 different types of corruptions, from
various types of noise and blur to weather and digital corruptions.
The images present five levels of severity for each perturbation and all
the experiments were conducted using only the most severe category
(level 5). The datasets consist of 10, 000 test images labeled into 10
classes for CIFAR-10C, 100 classes for CIFAR-100C, and 200 classes
for TinyImageNet-C.

CIFAR-10.1[150]. We also use the CIFAR-10.1 dataset to evaluate
our model’s ability to generalize to natural domain shift that takes
place when images are re-collected after a certain time. The CIFAR-
10.1 dataset is composed of 2, 000 images collected several years after
the original CIFAR-10 dataset, with the same 10 classes.

VisDA[151]. The Visual Domain Adaptation (VisDA) dataset was
designed to pose a new challenge in domain adaptation: from syn-
thetic images to real-world images. This dataset is composed of
152, 397 train images consisting of 2D renderings, 55, 388 validation
images extracted from the COCO dataset, and 72, 372 YouTube video
frames that compose the test set. All images are labeled into 12 dif-
ferent classes. We evaluated the model’s ability to generalize from the
training set to the validation set (train→val) and from the training
set to the test set (train→ test).
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(a) No skin sample (b) Cropped (c) Whole body parts

Figure 2.9: Examples of the criteria applied during the dataset cre-
ation.

2.7.4 The Mpox Close Skin Images dataset

The creation of a skin image dataset was essential to begin evaluat-
ing deep learning techniques in the context of limited medical images.
Skin conditions often provide a more accessible and varied set of im-
ages compared to other medical fields, allowing a preliminary study
for training models with scarce data. We therefore introduce Mpox
Close Skin Images (MCSI ), a dataset that has been created accord-
ing to three design principles. First, the dataset only includes close
skin images with or without skin lesions, as these are representative
of the pictures that users can collect in the use case considered. Sec-
ond, MCSI contains images of skin lesions caused by diseases that,
according to the WHO, should be considered in the clinical differen-
tial diagnosis of mpox [155]. In particular, we consider one class for
chickenpox rash and one for acne, which is a common skin condition
caused by bacterial skin infections. Third, the number of samples is
balanced among the different classes to avoid bias.

Specifically, MCSI includes: (1) images of Mpox cases collected
by Ali et al. [156] by web scraping news portals, publicly available case
reports, and websites; (2) pictures of Chickenpox lesions available
on the Hardin Library for the Health Sciences of the University of

41



Iowa4, (3) samples of Acne at different severity levels, collected by
Wu et al. [157] and freely available on Github5, and (4) samples of
skin without evident lesions, named as Healthy, available in the
dataset collected by Muñoz-Saavedra et al. [158].

In order to create the MCSI dataset we followed a two-step pro-
cedure: first, we excluded images where no skin is visible (as in Fig-
ure 2.9a). Then, for the remaining images, we selected the larger
square area that contains the skin and no background (see example
in Figure 2.9b). The area is discarded if its sides are less than 224
pixels long. This is due to the fact that some original images con-
tain whole body parts (as in the examples shown in Figure 2.9c) and
hence the selected area can result in low resolution.

Currently, MCSI dataset labels are derived from those available
online, and no verification has been conducted by expert medical
practitioners. However, we intend to verify the validity of the anno-
tations in MCSI with the collaboration of medical experts as part of
our future work.

The resulting dataset comprises a total of 100 images for each
of the 4 designated categories. Figure 2.10 provides a representative
selection of images from our dataset, showcasing examples from each
category. The dataset has been made publicly available [152].

4http://hardinmd.lib.uiowa.edu/chickenpox.html
5https://github.com/xpwu95/LDL
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Figure 2.10: Sample images from the collected dataset for each of the
4 considered classes: Mpox, Chickenpox, Acne, and Healthy.
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3
Adoption of Transfer

Learning Approaches to
Detect Mpox using
Smartphone images

While the whole world is still dealing with the coronavirus disease
(COVID-19) and its mutations [159], the recent outbreaks of mpox1

virus (formerly known as Monkeypox) in different western countries
have raised serious concern among public health authorities [160].
The mpox is a zoonotic disease caused by an orthopoxvirus, and it
is closely related with variola (i.e., the smallpox virus), cowpox, and
vaccinia viruses [161]. Although it was first isolated in 1958 from
laboratory monkeys, its original hosts also included squirrels, rats,

1In the rest of the chapter we will use Mpox with capital letter when referring
to the detection class, while mpox when referring to the virus.
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Figure 3.1: Geographical distribution of the recent mpox outbreak [7].

and dormice [162].
Since the first human case reported in 1970 in the Democratic Re-

public of Congo, the spread of mpox has been always limited to Cen-
tral and West Africa, infecting new hosts through close body contact,
respiratory droplets, or animal bites, becoming an endemic disease in
those regions. The incubation period ranges from 5 to 21 days, and
the actual disease is characterized by generic symptoms such as fever,
intense headache and muscle pain, while the most characteristic sign
of mpox is related to the appearance of skin rashes and eruptions that
usually begin within 1–3 days of the appearance of fever and tend to
be more concentrated on the face and extremities rather than on the
trunk [163].

Since the middle of 2022, a continuously increasing number of
cases and sustained chains of transmissions have been reported in
regions without direct or immediate epidemiological links to endemic
areas, including countries in Europe, North America, and Australia.
On 19 September 2023, the World Health Organisation (WHO) re-
ported a total of 90,465 laboratory confirmed cases and 663 probable
cases across 115 countries [7], as shown in Figure 3.1. Even though
mpox is usually not fatal, according to the Centers for Disease Con-
trol and Prevention (CDC), people with severely weakened immune
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systems, children under 1 year old, subjects with a history of eczema,
and pregnant or breastfeeding women may more likely get seriously
ill or even die [164].

Such rapid and widespread dissemination of the virus has raised
several worries in the medical community, highlighting the need for
proactive countermeasures in order to prevent another global pan-
demic [163]. In this regard, recent studies have emphasized how
mobile-health systems (m-health), along with Artificial Intelligence
(AI), can represent a game changer in containing the spread of a
virus [165, 166]. In fact, using the plethora of sensors embedded
in modern mobile devices and their increasingly advanced computa-
tional capabilities, smartphones and wearables can be used as low-
cost, pervasive, and non-invasive tools to support the early diagnosis
of new cases. For example, Rong et al. developed a smartphone-
based fluorescent lateral flow immunoassay for the detection of Zika
virus [167], Brangel et al. proposed the use of a mobile application
to read immunochromatographic strips to detect antibodies against
Ebola [168], while more recent works used Deep Learning (DL) mod-
els to detect COVID-19 digital biomarkers in respiratory sounds col-
lected by smartphone microphones [169, 170]

In this chapter, we propose a DL-based m-health solution to de-
tect mpox from skin lesion images captured by personal smartphones.
The considered use case is the following: the user takes a close pic-
ture of a skin region that the application uses to automatically detect
mpox. Technically, we use Transfer Learning [171] to adapt state-of-
the-art Convolutional Neural Networks (CNNs) models [172] to auto-
matically identify visual features of mpox skin rashes, distinguishing
the typical symptoms of the virus from skin lesions produced by other
pathologies that can be easily confused also by expert eyes, including
Chickenpox and Acne, at different severity levels.

Compared with previous works, this work addresses three issues.
First, the elaboration of available skin lesion images to make them
homogeneous with respect to skin section focus and measure, to gen-
erate a new homogeneous dataset. In fact, existing datasets include

46



highly heterogeneous images (e.g., images of a group of people or of
entire parts of body) that are unsuitable for the considered problem.

Second, the design of a mpox detection system able to run au-
tonomously on personal mobile devices at least to provide a prelimi-
nary warning to common users, and that relies on cloud components
only for model training and interaction support with a medical ex-
pert. To this end, we optimize the final DL model to reduce by 4×
the memory footprint of our system, without negatively affecting its
classification performance.

Third, the integration of eXplainable AI (XAI ) methods [173]
to validate the system performance in recognizing the disease from
skin lesion pictures and further define a clinical validation process
involving medical experts. According to the literature, XAI tech-
niques greatly improve the general understanding of deep neural net-
works [174], increasing the trust in the overall system by both medical
personnel and final users, thus fostering widespread adoption of such
digital solutions. In fact, the target of our proposal is twofold: on the
one hand, medical experts can take advantage of such a tool to speed
up the diagnosis of new cases, while, on the other hand, final users
can autonomously perform a preliminary screening of suspicious skin
lesions that must be further investigated by their personal physicians
or dermatologists.

3.1 Mpox detection system for mobile

devices
Figure 3.2 shows the high-level architecture of the proposed frame-
work to detect mpox from skin lesion images collected from mobile
devices. The whole process can be summarized in two main stages.
In the first stage, we rely on the Transfer Learning approach to adapt
a set of pre-trained CNNs to our application scenario, using MCSI to
fine-tune their parameters. The rationale for using existing CNNs is
that they have been proven to be effective in addressing classification
problems in the medical imaging domain [175]. However, one limita-
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Figure 3.2: Scheme of the mpox diagnosis infrastructure considered
in this work.

tion of the CNNs is that they need to be trained on a large amount of
data (e.g., Imagenet[80]) and this is extremely expensive in terms of
computational time and resources. We address this limitation by us-
ing existing CNNs for which pre-trained weights are available.After
the experimental comparison of the models’ performance, we iden-
tify the best model for our mpox detection system, which is then
optimized for mobile devices. Since the fine-tuning process includes
complex and time-consuming operations, it is executed on a remote
server.

The second stage involves the use of the optimized best-performing
model to identify new mpox cases, performing the whole data pro-
cessing on user devices: a new picture is firstly acquired from the
device camera and then cropped in order to contain the target skin
lesion. The resulting image is then used as input to the deep learning
model that generates the classification. Moreover, a XAI module is
used to both explain and, to some extent, validate the model’s pre-
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diction, highlighting the most important sections of the input image
that led to the model output.

In the following, we describe in detail the main building blocks of
the proposed solution.

3.1.1 Model selection and fine-tuning

The framework relies on transfer learning to adapt a set of pre-trained
CNNs to our application scenario, thus reducing the dependence on
a large number of training data to build up the target learners [171].

We consider the following 5 CNNs that represent the state-of-the-
art on image classification:

• VGG-16 [48], composed by 5 consecutive blocks of convolu-
tional layers for features extraction, followed by 3 fully-connected
layers for classification. Convolutional layers use 3 × 3 kernels
with a stride of 1 and padding of 1 to ensure that each activa-
tion map retains the same spatial dimensions as the previous
layer. A Rectified Linear Unit (ReLU) activation is performed
right after each convolution, and a max pooling operation is
used at the end of each block to reduce the spatial dimension.
Max pooling layers use 2 × 2 kernels with a stride of 2 and
no padding to ensure that each spatial dimension of the ac-
tivation map from the previous layer is halved. Finally, two
fully-connected layers with 4096 ReLU activated units are used
before a final 1000 fully-connected softmax layer.

• Inception-Resnet-V2 [176] represents a combination of two
popular architectures: GoogleNet [177] and ResNet [178]. While
the former is based on the concept of “Network in Network” [179],
where a large number of convolutional kernels constitute a very
deep architecture to increase the network’s generalization, the
latter introduced the idea of directly bypassing the input infor-
mation to the output, thus changing the direct learning target
value into learning the residual value between the input and the
output. Inception-Resnet-v2 combines the two concepts, using
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residual connections instead of filter concatenation, to both ac-
celerate the training and improve the performance.

• NASNetMobile [180], a simplified version of Neural Archi-
tecture Search Network (NASNet) proposed by GoogleBrain,
which is a scalable CNN architecture consisting of basic build-
ing blocks, called cells, that are optimized using reinforcement
learning. A cell consists of only a few operations, including both
convolutions and pooling, which are repeated multiple times
according to the required capacity of the network. The mobile
version consists of 12 cells, with a total of 5.3 million parame-
ters.

• MobileNetV3 [181], a CNN-based architecture especially tuned
to best performing on smartphone CPUs through a hardware-
aware Network Architecture Search (NAS), combining a series
of building-blocks developed by previous models: the depth-
wise separable convolutions as an efficient replacement for tra-
ditional convolution layers from MobileNetV1 [182], the linear
bottleneck and inverted residual structure introduced by Mo-
bileNetV2 [183], and the lightweight attention modules used in
MnasNet [184]. The model comes in two flavors - which both
are tested in this work - that are MobileNetV3-Large and
MobileNetV3-Small, which are targeted for high and low re-
source use cases, respectively.

For all the aforementioned architectures, we take into account
their instances pre-trained with ImageNet [80], a large-scale dataset
of 3.2 million images and 1000 different labels, which is commonly
used to train CNNs in the image classification domain [185]. Note
that ImageNet does not contain labels related to the specific problem
domain considered in this chapter. To mitigate this domain shift, we
employ Transfer Learning replacing the last fully-connected layers of
the network with a novel set of classification layers fine-tuned with
MCSI dataset.
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Figure 3.3: Example of data augmentations used in our experiments.

We then validate the considered models through the use of a 10-
fold cross-validation procedure and Hyperband, a broadly used hyper-
parameter selection algorithm for deep neural networks, which is able
to speed up the random search over the parameter spaces through
adaptive resource allocation and early-stopping [186]. In other words,
Hyperband uses a combination of small random searches aimed at
partitioning the original search space into smaller sub-spaces. Once
a search iteration is completed, the most promising sub-spaces (i.e.,
those that allowed the network to obtain the best results) are fur-
ther explored until a performance plateau is reached or the iterations
budget (i.e., the maximum number of iterations) has been exhausted.
In this process, we exclusively fine-tune the final classification layers,
which drastically decreases the number of parameters to be trained
and, consequently, the amount of data required for the training. Fur-
thermore, to mitigate the risk of model overfitting during the training
phase, we employ standard techniques, including Early Stopping and
Dropout.

Furthermore, during the evaluation process, we investigate the
feasibility of using data augmentation in our application scenario to
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possibly improve the performance of the fine-tuned models. Specifi-
cally, we employ the 6 standard image augmentation techniques [187]
shown in Figure 3.3: (i) Rotation, which changes the image angle,
simulating different orientations; (ii) Translation, simulating differ-
ent positions of the skin rash inside a specific picture; (iii) Flip,
which mirrors the image, thus simulating different type of pimples;
(iv-v)Contrast and Brightness, simulating different settings in the
amount and intensity of light; and, finally, (vi) Zoom, scaling the
image to simulate variations in the distance between the skin lesion
and the smartphone camera.

Data augmentation is not applied to the test and validation sets
to avoid introducing bias in the models’ evaluation. We include the
parameters that affect the augmentation factors (e.g., rotation angle
or zoom level) into the tuning phase to identify the set of values
that lead to the best classification performance for our application
scenario.

3.1.2 CNN optimization for mobile devices

Our main goal is the definition of a mpox detection system that can
be entirely executed on mobile devices. However, neural networks are
both computationally and memory intensive. While modern smart-
phones are equipped with increasingly powerful hardware (e.g., mul-
ticore CPUs and, in some cases, dedicated GPUs) that allows per-
forming the inference phase in just a few milliseconds, neural models’
size still represents a challenge, making it difficult to deploy them on
embedded systems with limited memory resources.

To cope with this issue, several techniques have been recently
proposed to reduce the memory footprint of deep learning models,
including pruning, where redundant connections among hidden units
are removed, or weight clustering, which consists in replacing similar
weights in a layer with a representative value found by clustering
algorithms [188, 189]. Quantization is another practical and broadly
used technique to optimize deep learning models by simply lowering
the operations’ precision from 32-bit floats to 16-bit floats or even 8-

52



bit integers. Despite its simplicity, it is generally effective in reducing
the overall model’s size by 4× at least, with little or no degradation in
terms of accuracy [190]. Furthermore, while other approaches must
be used during the training phase, quantization can be applied to the
final fine-tuned model yield by transfer learning.

3.1.3 Explaining the model’s predictions

Deep learning models including CNNs are weak in explaining their
inference process and final predictions, thus being typically consid-
ered as a black-box. This characteristic is not suitable for many
real-world applications, and especially for the health sector, in which
explainability and transparency are essential not just for researchers
and developers to validate their models, but also for the users who
can be directly affected by AI decisions.

For this reason, increasing attention has recently been paid to
eXplainable AI (XAI) techniques with the aim of making AI models
more transparent, understandable, and interpretable, so as to in-
crease trust in their predictions. Different XAI approaches have been
recently proposed for deep learning models, based on the characteris-
tics of specific architectures [173]. According to Ibrahim et al. [191],
XAI techniques for CNNs can be categorized as decision models and
architecture models. While the former solutions aim at identifying the
parts of an image that mostly contributed to the network decision,
the latter explore the network internals, analyzing the mechanism of
both hidden layers and neurons.

Given its simplicity in both implementation and interpretability,
for our mpox detection system, we decided to use Grad-CAM [192]
as XAI approach, one of the most popular decision models used in
medical imaging [193, 194]. Grad-CAM is defined as an importance
attribution feature algorithm that generates a visual explanation for
class-discriminative prediction. Specifically, it captures the features
that positively influence the prediction of a given class, by computing
its gradient and then propagating it back to the last convolutional
layer to finally generate a heatmap that visually represents the most
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relevant part of the input image that has led the model to that pre-
diction. As a preliminary stage, this approach represents a useful
tool to validate the ability of the considered fine-tuned deep models
in correctly detecting mpox. Then, after a thorough clinical valida-
tion performed by experts with a larger amount of data, such a XAI
technique might be also implemented on the mobile device of the final
user to support the pre-screening of suspicious skin lesions.

3.2 Experimental evaluation
In this section, we present the experimental evaluation performed
to identify the best DL model. We first describe in detail the eval-
uation protocol and metrics adopted to measure the classification
performances of the fine-tuned CNN models. Finally, we discuss the
obtained results.

3.2.1 Evaluation protocol and metrics

The evaluation protocol is based on the following: we decided to rely
on 10-fold stratified cross-validation to avoid biasing the results based
on specific train/validation/test splits of the dataset. The procedure
can be summarized as follows. Firstly, we partition the dataset into
10 folds, ensuring that all the considered classes of images are equally
represented in each fold. For each of the 10 cross-validation iterations,
one fold is selected as the test set, while the remaining 9 represent the
development set that is further divided into stratified non-overlapping
train (75%) and validation (25%). We apply data augmentation at
run-time, only on the training sets. Then, a hyperparameters tuning
process (Section 3.2.2) is used by training models on the train set
and testing them on the validation set. The model yielding the best
performance is then tested on the test set, providing the performance
for that iteration.

We measure the average performance of the fine-tuned models
obtained during the 10-fold cross-validation by using the different
base models as backbone for features extraction, and a set of fully-
connected layers are trained from scratch for classification. We con-
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sider the following standard classification metrics: Accuracy, which
is the percentage of correct predictions; Sensitivity, which represents
the true positive rate; Specificity, that indicates the true negative
rate; and F-1 Score, which is the harmonic mean of Precision and
Sensitivity.

We perform the whole process for two different classification set-
tings: binary and multiclass. In the former, we evaluate the mod-
els’ ability to identify mpox cases without distinguishing the other
classes, which are merged into a single “other” class. Since in this
setting the training data are unbalanced, we replace the standard F-
1 Score with its micro average in order to avoid biasing the results
towards the majority class (i.e., “other”). By contrast, in the latter
setting, the models learn to distinguish all the four classes available
in MCSI.

Furthermore, we conduct a statistical analysis to determine the
level of significance in the obtained classification results in terms of
accuracy, thereby identifying the most effective model(s) for our spe-
cific application scenario. Initially, we examine the outcomes of the
two classification tasks without employing data augmentation. We
conduct this analysis by using Repeated Measures Analysis of Vari-
ance (ANOVA-RM), a statistical method used to assess significant
differences among the means of three or more dependent groups. We
chose this method because our models were evaluated on the same
data folds, making the results dependent on each other. Moreover,
even though ANOVA is generally robust to slight deviations from
normality assumptions (especially with small sample sizes), we use
the Shapiro-Wilk test to assess the distribution characteristics of the
results. This evaluation aimed to confirm that the models’ results can
be approximated by a normal distribution. Since ANOVA-RM only
indicates the presence or absence of a significant difference, without
specifying the specific groups that differ from each other, we sub-
sequently employ the Tukey’s Honest Significant Difference (HSD)
test, which allows us to determine the significance of performance
differences between each pair of models, providing a more detailed
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understanding of the disparities.
Next, we perform a statistical assessment to evaluate the impact

of data augmentation on each model, by employing the following pro-
cedure. The initial step involves using the Shapiro-Wilk test to deter-
mine whether the performance of the model, both with and without
augmentation, follows a normal distribution. If both distributions
pass the test (i.e., p > 0.05), we proceed to assess their homoscedas-
ticity using Bartlett’s test, which determines if the distributions have
equal variances. However, if either distribution failed the Shapiro-
Wilk test, indicating non-normality, we utilize the non-parametric
Wilcoxon’s rank-sum test as an alternative to the two-sample t-test.
Finally, if the distributions exhibited homoscedasticity, we employ the
standard Independent t-test to evaluate their statistical significance;
otherwise, we use the Corrected Independent t-test (also known as
Welch’s test) instead.

3.2.2 Hyperparameters tuning

Actual performances of deep neural networks depend on several hy-
perparameters that must be tuned in order to find the best config-
uration for every application scenarios. We adopted Hyperband for
fine-tuning the model and data augmentation parameters. Consider-
ing the model’s parameters, we tune the learning rate (LR in the range
[1e− 6, 0.001]) and the number of classification layers (N layers

among values {1, 2, 3}). Then, for each classification layer, we tune
the number of hidden neurons (Dense among the values
{256, 512, 1024, 2048, 4096}) and the dropout rate (Dropout in the
range [0, 0.5]).

Regarding the data augmentation, we explore two different types
of parameters’ spaces: continuous and discrete. The former is de-
fined within [0, 0.5] and governs the application of Rotation, Zoom,
Contrast, Brightness, Translation (both horizontally, Tr-width,
and vertically, Tr-height), indicating the percentage in which each
operation is applied on the original image. For example, the value
0.2 for Rotation, represents a random rotation of the image between
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Figure 3.4: Explored parameters for MobileNetV3Large with aug-
mentation (on fold 0)

[−20%,+20%]). The latter controls the application of Flip type,
which may be applied in three different modalities: Vertical (0), Hor-
izontal (1), and the combination of the two (2).

Figure 3.4 shows an example of the parameters space explored by
Hyperband during the fine-tuning of MobileNetV3Large with data
augmentation. The X-axis indicates the exploration space for a given
parameter and can include a finite set of values (e.g., the N layers)
or can be continuous in a given interval (e.g., Dropout). Instead, Y-
axis indicates the accuracy levels. In order to ease the visualization,
the density of points is shown with colors (with the viridis color
map): a single point is shown in purple while multiple overlapping
points are shown in yellow. Finally, the cross symbol (+) highlights
the combination of parameters that produced the best results, which
is also reported on the sub-plot titles. Note that the parameters
Dense and Dropout refer to the corresponding classification layer.
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Table 3.1: Binary classification performance of the considered base
models, with and without data augmentation in the training phase.
The performance is reported as mean and standard deviation over
the 10-folds of the cross-validation.

Base model Augmentation Accuracy Sensitivity Specificity F-1 Score

VGG16
✗ .898 (±.059) .833 (±.106) .710 (±.223) .897 (±.057)
✓ .890 (±.028) .835 (±.027) .730 (±.067) .890 (±.028)

InceptionResNetV2
✗ .732 (±.051) .568 (±.063) .240 (±.196) .734 (±.052)
✓ .728 (±.068) .544 (±.109) .180 (±.244) .728 (±.068)

NASNetMobile
✗ .811 (±.038) .726 (±.061) .550 (±.151) .812 (±.037)
✓ .835 (±.044) .727 (±.080) .510 (±.173) .835 (±.044)

MobileNetV3Small
✗ .930(±.041) .877 (±.067) .780(±.123) .929(±.040)
✓ .921 (±.043) .872 (±.062) .780(±.114) .919 (±.040)

MobileNetV3Large
✗ .930 (±.042) .861 (±.086) .730 (±.177) .928 (±.040)
✓ .930(±.039) .878(±.071) .780(±.140) .928 (±.037)

So, for example, Dense 1 represents the number of hidden neurons
in classification layer 1. Hence, if a classification layer does not exist
(as in the case of layer 2 when N layers is 2) the corresponding Dense
and Dropout parameters have a value of zero.

3.2.3 Mpox detection performances

In this section, we present in detail the results obtained by fine-tuning
the considered CNN architectures in both binary and multiclass clas-
sification settings, with and without data augmentation. We also
present an analysis of their ability to correctly represent image data
samples in the latent features space, thus providing additional sup-
port to the standard evaluation metrics.

Binary classification task

Table 3.1 summarizes the binary classification results of the fine-
tuned models, both with and without data augmentation; the results
are expressed in terms of mean and standard deviations of the con-
sidered evaluation metrics, calculated over the 10-folds of the cross-
validation.
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Figure 3.5: Confusion matrices related to the binary classification
task with original training data (a) and by employing data augmen-
tation (b). Label 0 refers to Mpox samples, while label 1 indicates the
generic class Others.

Most of the considered base models are able to reach an accuracy
level above 80%. InceptionResNetV2 performs worst, thus clearly in-
dicating that such an architecture is not able to detect mpox skin
rashes from lesions produced by other pathologies. This is even
clearer by observing the confusion matrix in Figure 3.5, noting that
the model incorrectly classifies 76% of the overall Mpox samples with
the original training data and 82% with data augmentation.

NASNetMobile obtains better results than InceptionResNetV2,
but its specificity score is still too low, and its misclassification rate
is particularly high to be considered a valid candidate for our system.
On the other hand, VGG16 performs better than the previous mod-
els. In this case, we can also note a small improvement introduced
by using data augmentation, reducing the percentage of incorrectly
classified mpox samples from 29% to 27%.
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The two variants of MobileNetV3 obtain the best results, reaching
in both cases an average accuracy level of 0.93 and with comparable
results for all the considered metrics. MobileNetV3Small is able to
reach the maximum value also in terms of F-1 score, overcoming by
approximately 10% the performance of the larger model. In terms of
misclassification rate without data augmentation, MobileNetV3Small
improves MobileNetV3Large by 5%, while the larger model performs
slightly better in classifying data samples labeled Others. On the
other hand, in this case, data augmentation seems to introduce more
confusion in the model predictions. In fact, while it allows Mo-
bileNetV3Large to improve its Mpox detection rate, at the same time,
it increases the misclassification of Others samples for both mod-
els, reaching an error rate of 4% and 2% for MobileNetV3Small and
MobileNetV3Large, respectively.

Despite MobileNetV3 achieving the highest classification score,
the statistical analysis does not reveal significant differences in ac-
curacy compared to VGG16, with a probability of p = 0.609. On
the contrary, the analysis confirms that InceptionResNetV2 is the
least performing model, exhibiting lower performance compared to
the other architectures. It shows a decrease of −16.5% compared
to VGG16 (p = 0.0), a decrease of −8% compared to NASNetMo-
bile (p = 0.004), and a decrease of −19.5% compared to the two
MobileNetV3 alternatives (p = 0.0).

Finally, regarding the utilization of data augmentation, the sta-
tistical analysis verifies that employing this technique does not sig-
nificantly impact the average performance of the models, obtaining
probabilities considerably higher than the significance threshold of
0.05 for all the architectures. Specifically, we observe a probability of
p = 0.625 for VGG16, p = 0.857 for InceptionResNetV2, p = 0.226
for NASNetMobile, p = 0.602 for MobileNetV3Small, and no differ-
ence at all for MobileNetV3Large, obtaining a probability of p = 1.0.

We also conducted leave-one-out cross-validation on the best-
performing model, namely MobileNetV3Large, for the binary task
with and without augmentation. For this experiment, we used the
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Table 3.2: Multiclass classification performance of the considered
base models, with and without data augmentation in the training
phase. The performance is reported as mean and standard deviation
over the 10-folds of the cross-validation.

Base model Augmentation Accuracy Sensitivity Specificity F-1 Score

VGG16
✗ .779 (±.052) .779 (±.054) .927 (±.018) .777 (±.057)
✓ .745 (±.059) .744 (±.059) .915 (±.020) .738 (±.062)

InceptionResNetV2
✗ .396 (±.087) .398 (±.088) .780 (±.023) .388 (±.084)
✓ .301 (±.057) .301 (±.067) .767 (±.023) .252 (±.078)

NASNetMobile
✗ .464 (±.073) .464 (±.073) .822 (±.025) .461 (±.076)
✓ .504 (±.103) .505 (±.104) .835 (±.034) .499 (±.106)

MobileNetV3Small
✗ .846 (±.062) .847 (±.061) .948 (±.020) .843 (±.065)
✓ .859 (±.054) .860 (±.052) .954 (±.017) .860 (±.049)

MobileNetV3Large
✗ .882(±.057) .881(±.055) .960(±.019) .879(±.058)
✓ .866 (±.088) .866 (±.080) .956 (±.029) .863 (±.086)

same hyperparameters as in the best-performing folder after hyper-
parameter tuning. The results show slightly improved performance
(i.e., micro F-1 Score of 0.94 and 0.93 without and with augmenta-
tion, respectively) that are due to the larger training set used in this
specific evaluation approach.

Multiclass classification task

Table 3.2 summarizes the multiclass classification results of the fine-
tuned models, again with and without data augmentation, over the
10-fold cross-validation. It is worth knowing that the specificity in
the multiclass setting is the average of the specificity for each class.
More specifically, for a given class C, we calculate the specificity of the
model based on the one-vs-all approach, thus as the binary problem
of distinguishing between samples belonging to C (positive samples)
and samples in all other classes (negative samples). Specificity is
calculated as true negative, the number of negative cases that are
correctly identified as negative, divided by true negatives plus false
positives, which is the number of negative cases that are incorrectly
identified as positive.
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Figure 3.6: Confusion matrices related to the multiclass classification
setting with original training data (a) and with data augmentation
(b). Label 0 refers to Acne samples, label 1 indicates Chickenpox,
label 2 indicates Mpox, while label 3 indicates the normal class.

Similarly to the binary results, InceptionResNetV2 and NASNet-
Mobile show the worst performances, clearly indicating their inability
to recognize the different pathologies in the images. Moreover, data
augmentation further reduces the performance of InceptionResnetV2,
reducing its F-1 score to 0.252, while it boosts the F-1 score of NAS-
NetMobile to 0.499. In Figure 3.6 we can note in detail how these
two models wrongly classify each class and, in particular, how In-
ceptionResNetV2 tends to classify every sample as Acne (i.e., class
0). In contrast, VGG16 yields better results, although, similarly to
InceptionResnetV2, data augmentation slightly decreases its perfor-
mance.

The MobileNetV3 variants achieve the best results also in the
multiclass setting. MobileNetV3Small yields slightly lower perfor-
mance: −3.6% in accuracy, −3.4% and −1.2% for sensitivity and
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specificity, and −3.6% in terms of F-1 score. On the other hand, it
benefits more from data augmentation, improving its F-1 score from
0.843 to 0.860. Quite the opposite happens for MobileNetV3Large;
in fact, with data augmentation, all its indexes drop. Nevertheless,
the confusion matrices clearly show how both of the MobileNetV3
variants are able to successfully identify samples in the Mpox, Acne,
and Healthy classes (almost 98% of accuracy, both for augmented
and non-augmented models), while Chickenpox represents the hard-
est class, where MobileNetV3Small scores an accuracy of 79% by
augmenting the training data, and the larger variant reaches 80%
and 81%, respectively with and without data augmentation.

Statistical analysis generally confirms the classification results ob-
tained in our study. Indeed, there were no significant differences
found between InceptionResNetV2 and NASNetMobile (p = 0.188),
which both perform worse than the other considered models. Fur-
thermore, the two variations of MobileNetV3 exhibited a very high
probability of p = 0.776, suggesting that there were no significant
differences between them.

In contrast to the binary classification problem, in the multi-
class setting, a noticeable difference can be observed between Mo-
bileNetV3Large and VGG16 (p = 0.0154), while MobileNetV3Small
and VGG16 are similar with a probability of 0.2189. This difference
can be attributed to the fact that in the two-sample tests among the
three models, the performance of MobileNetV3Small fell between the
other two. Indeed, on average, it showed a slight decrease of 3.6%
in accuracy compared to its larger variant, while performing better
than VGG16 by 6.5%.

Finally, in the case of data augmentation, most of the mod-
els did not show statistically significant differences. The probabil-
ities observed were p = 0.190 for VGG16, p = 0.330 for NASNet-
Mobile, p = 0.551 for MobileNetV3Small, and p = 0.734 for Mo-
bileNetV3Large. Only InceptionResNetV2 showed a probability be-
low the threshold at p = 0.012, confirming the largest drop in perfor-
mance of 6.5% in terms of accuracy.
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To sum up, we can consider both the MobileNetV3 variants as
the best choice to detect mpox from skin lesion images, while the
larger model is preferable to accurately distinguish mpox from similar
diseases. Moreover, based on the statistical analysis, we can also
note that data augmentation does not lead to significant performance
improvements, highlighting the need for a larger amount of original
training data, as well as a further investigation of more sophisticated
approaches of image data augmentation.

Similarly to the binary setting, we conducted a leave-one-out
cross-validation for the multiclass classification task. In this case,
the results show similar or slightly improved performance (i.e., F-1
Score of 0.90 and 0.85 without and with augmentation, respectively).

Deep embeddings analysis

The obtained results are also supported by the analysis of the deep
features (i.e., embeddings) extracted by the different CNNs. Fig-
ure 3.7 shows how each model represents the different classes of data
samples in the deep latent space, by using Principal Component Anal-
ysis (PCA) as data dimensionality algorithm to project the embed-
dings onto a 3-dimensional plane.

As we can note, for both InceptionResNetV2 and NASNetMobile,
it is particularly difficult to distinguish the 4 data clusters: while
in the data space modeled by the former CNN, the data points are
mainly concentrated in a single blob, in the latter they are distributed
on a V-shaped hyperplane, where data of different classes are over-
lapped to each other. By contrast, the data space modeled by VGG16
makes it easier to distinguish the different classes, even though data
points belonging to Healthy are still considerably mixed with both
Acne and Mpox samples. The best deep representations are given
by the two MobileNetV3 variants, where the considered classes are
well-separated. In addition, it is worth noting a lower data disper-
sion in the MobileNetV3Small embeddings space, thus facilitating
the separation of the 4 clusters and, consequently, better classifica-
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(b) InceptionRes-
NetV2
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(d) Mo-
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Figure 3.7: 3-D representation of the dataset based on the deep em-
beddings learned by each model.

tion performances.

Skin Tone-Based Classification Fairness

It is reasonable to posit that diversity in skin tones may influence
the predictive performance of DL models. Consequently, we under-
took an additional investigation to assess the models’ accuracy in the
context of varying skin types.

Since MCSI dataset does not include information regarding the
skin tone, we relied on the well-known Fitzpatrick scale [195] to clas-
sify the available data samples based on the skin pigment. This scale,
originally devised within the dermatology field, classifies human skin
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color into six distinct categories, predicated on the skin’s response to
ultraviolet (UV) light exposure. The categories range from Type I,
representing the palest skin that is prone to sunburning and resistant
to tanning, to Type VI, characterizing deeply pigmented, dark brown
skin that does not sunburn easily.

For the purpose of our analysis, we opted to adopt a methodology
akin to that employed by Tadesse et al. [196] for categorizing the im-
ages into two distinct groups: light and dark skin tones. Specifically,
researchers grouped the first four levels of the Fitzpatrick scale under
the designation of Light skin. Conversely, the fifth and sixth levels
were categorized as Dark skin tones.

A common approach to annotating images with Fitzpatrick labels
is estimating skin tone via Individual Typology Angle (ITA), which
is calculated based on statistical features of image pixels and is neg-
atively correlated with the melanin index [197]. Following the same
approach used in [198], we firstly calculated the ITA value of each
data sample by using the open-source Derm-ITA software2, and then
we mapped values greater than 10 as Light skin, while the others
as Dark skin. At the end of this process, the resulting labels are
distributed as follows: Mpox 57 Light and 43 Dark; Chickenpox, 78
Light and 22 Dark; Acne, 73 Light and 27 Dark; and finally, Healthy
69 Light and 31 Dark.

Based on this distinction between light and dark skin, we evalu-
ated the models’ performance (without retraining the models) in both
binary and multiclass scenarios, accounting for the two distinct skin
types. The summarized results are presented in Table 3.3, showing
the average accuracy values and their corresponding standard devia-
tions.

The statistical analysis (i.e., standard t-test) highlights some sig-
nificant differences only in the binary classification task, showing bet-
ter performance in classifying the under-represented class, that is,
dark skin samples. Specifically, in the binary classification setting,
MobileNetV3Large without data augmentation obtains significance

2https://github.com/AdamCorbinFAUPhD/derm_ita/tree/master
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Table 3.3: Average classification accuracy (and standard deviation)
for the two types of skin tones in binary and multiclass settings.

Binary Multiclass
Base model Augmentation Light Dark Light Dark

VGG16
✗ .793 (±.118) .886 (±.100) .774 (±.058) .766 (±.158)
✓ .774 (±.052) .899 (±.054) .733 (±.062) .757 (±.163)

InceptionResNetV2
✗ .586 (±.071) .551 (±.096) .413 (±.081) .321 (±.149)
✓ .556 (±.114) .521 (±.106) .307 (±.071) .276 (±.118)

NASNetMobile
✗ .673 (±.088) .785 (±.096) .474 (±.081) .428 (±.147)
✓ .676 (±.105) .786 (±.086) .496 (±.085) .481 (±.159)

MobileNetV3Small
✗ .839 (±.093) .921 (±.077) .854 (±.093) .820 (±.131)
✓ .851 (±.089) .883 (±.072) .850 (±.063) .857 (±.111)

MobileNetV3Large
✗ .773 (±.106) .965 (±.059) .876 (±.061) .868 (±.086)
✓ .835 (±.101) .919 (±.077) .850 (±.113) .862 (±.143)

of p = 0.000881, while VGG16 and NASNetMobile with data aug-
mentation show significance values of p = 0.000092 and p = 0.025547,
respectively. One plausible explanation for this phenomenon could
be the higher contrast between skin tone and skin lesion colors in
the case of dark skin samples. This contrast likely aids the DL mod-
els in accurately identifying conditions such as mpox and the other
considered pathologies from skin images.

3.3 Analysis of Grad-CAM indications
Gaining a more profound comprehension of deep learning models,
often perceived as “black-boxes”, is important in the context of med-
ical applications. Specifically, the field of Explainable Artificial In-
telligence (XAI) has emerged with dual objectives: enhancing model
interpretation and allowing additional validations of the model re-
sults.

One notable XAI technique, Grad-CAM, assumes significance in
this pursuit by enabling the identification of salient features that
drive the model’s predictions. Consequently, it serves as a valuable
adjunct tool for delving into the rationale underpinning the decisions
made by the model.
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Acne Pred: Acne Acne Pred: Chickenpox

Chickenpox Pred: Chickenpox Chickenpox Pred: Acne

Monkeypox Pred: Monkeypox Monkeypox Pred: Chickenpox

Normal Pred: Normal Normal Pred: Acne

Figure 3.8: Examples of Grad-CAM results for each class with
MobileNetV3Large, first and third columns show the input image,
(Correctly and wrongly predicted respectively). Second and fourth
columns show Grad-CAM explanations (for correctly and misclassi-
fied examples)

We decided to apply Grad-CAM to the predictions provided by
MobileNetV3Large as one of the best-performing models in both clas-
sification tasks. Specifically, in order to understand what features
of the input images are considered relevant by the model, in Fig-
ure. 3.8 we reported 8 different examples of explanations, four cor-
rectly predicted, along with their class activation maps (first and
second columns), and four misclassified samples, with their corre-
sponding maps (third and fourth columns). The ground-truth label
and the predicted one are indicated at the top of each image, while
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the heatmaps have been generated by superimposing the class acti-
vation map to the original image. While bluish areas identify less
relevant features for the given class, warmer colors (e.g., orange and
red) represent the most relevant ones that have led the models to
provide the specified prediction.

For example, the first row represents a case of Acne. When the
model correctly classifies the image, the relevant features are dis-
tributed across all scars and pustules, which are typical of a strong
presence of acne. However, when the model misclassifies the image,
the main focus of the network is on the pimples, neglecting the skin
scars, causing the model to classify the image as Chickenpox.

Regarding the Chickenpox sample, when the model provides a
correct prediction, its focus is only on the largest pimples, whereas
when the model makes an incorrect prediction, its attention is dis-
tributed to minor skin defects in addition to the pimples, classifying
the image as Acne.

For Mpox, the model is capable of correctly identifying the pathol-
ogy when vesicles and crusts are formed, but it clearly fails in the
early stages of the pathology, when pimples have not yet fully devel-
oped, providing a wrong prediction (i.e., Chickenpox in this case).

Finally, when the model correctly classifies a Healthy image, as
we can expect, the importance of the feature is evenly distributed
throughout the image without focusing on specific elements. On the
contrary, when the model misclassifies a healthy sample, it is because
it gives great relevance to hair and skin damage, classifying the image
as Acne.

The model’s visual attention analysis shows that MobileNetV3Large
effectively identifies reasonable features for each class. The model’s
misclassifications are justifiable due to the similarity of the different
classes, and, despite these errors, the model’s overall ability to iden-
tify relevant features highlights its potential in our specific use-case
scenario, providing more reliability on the model’s predictions.
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Table 3.4: Model sizes and classification performance with mobile
optimization.

Task Base model Quant. Size (MB) Accuracy Sensitivity Specificity F-1 Score

b
in
ar
y

VGG16
✗ 268.44 .894 (±.049) .841 (±.075) .740 (±.143) .851 (±.070)
✓ 67.22 .894 (±.053) .841 (±.077) .740 (±.143) .851 (±.072)

InceptionResNetV2
✗ 350.53 .735 (±.056) .562 (±.110) .220 (±.266) .533 (±.130)
✓ 89.42 .702 (±.113) .585 (±.105) .350 (±.310) .548 (±.127)

NASNetMobile
✗ 336.37 .830 (±.036) .765 (±.032) .640 (±.070) .769 (±.036)
✓ 85.03 .738 (±.060) .750 (±.065) .780 (±.123) .702 (±.058)

MobileNetV3Small
✗ 211.05 .932 (±.043) .883 (±.070) .790 (±.129) .902 (±.064)
✓ 53.01 .915 (±.046) .851 (±.067) .730 (±.116) .875 (±.068)

MobileNetV3Large
✗ 382.93 .928 (±.042) .884 (±.090) .800 (±.200) .891 (±.074)
✓ 96.17 .923 (±.051) .875 (±.106) .780 (±.225) .884 (±.089)

m
u
lt
ic
la
ss

VGG16
✗ 318.21 .779 (±.053) .779 (±.054) .927 (±.018) .777 (±.057)
✓ 79.63 .782 (±.044) .782 (±.044) .927 (±.015) .779 (±.050)

InceptionResNetV2
✗ 485.12 .398 (±.088) .398 (±.088) .799 (±.027) .388 (±.084)
✓ 122.48 .308 (±.064) .306 (±.065) .769 (±.022) .243 (±.075)

NASNetMobile
✗ 259.23 .470 (±.074) .470 (±.074) .822 (±.026) .467 (±.076)
✓ 65.51 .471 (±.095) .471 (±.095) .823 (±.034) .449 (±.102)

MobileNetV3Small
✗ 225.77 .847 (±.061) .847 (±.055) .949 (±.014) .843 (±.065)
✓ 55.62 .833 (±.066) .833 (±.066) .944 (±.020) .831 (±.066)

MobileNetV3Large
✗ 278.73 .881 (±.055) .881 (±.055) .962 (±.018) .879 (±.058)
✓ 69.98 .880 (±.046) .879 (±.046) .961 (±.014) .875 (±.052)

3.4 Mobile optimization
Table 3.4 shows the great advantage of using quantization to reduce
the memory footprint of the models without requiring their retrain-
ing. As we can note, the original size of the DL models trained for
mpox detection considerably varies for the different base architec-
tures, ranging between 200 MB and almost 500 MB, which can limit
their implementation on several personal mobile devices. On the
other hand, by using quantization to lower the operations’ precision
from 32-bit floats to 16-bit floats, all the models’ sizes are reduced
by approximately 4 times. For example, the size of VGG16 tuned for
binary classification dropped from 268.44 MB to just 67.22 MB, while
the size of InceptionResNetV2 for multiple classes (i.e., the most de-
manding model in terms of memory) has been reduced by 74.75%,
limiting its memory footprint from 485.12 MB to 122.48 MB.
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Furthermore, it is important to highlight that the impact of quan-
tization on the classification performance of the majority of the exam-
ined architectures remains relatively modest, resulting in an average
reduction of no more than 1% in accuracy.

However, it is noteworthy that InceptionResNetV2 and NASNet-
Mobile exhibit more pronounced performance penalties due to quan-
tization. Specifically, InceptionResNetV2 experiences a decline of ap-
proximately 3% and 9% in accuracy in the binary and multiclass set-
tings, respectively. Meanwhile, NASNetMobile’s accuracy registers
a noteworthy 10% reduction, albeit exclusively in the binary task.
Remarkably, in the multiclass experiments, it performs nearly on par
with its non-quantized counterpart. We suspect that this can be at-
tributed to the inherent effect of quantization, which compromises
the precision of both weight parameters and activation functions.
Consequently, this effect is more pronounced in larger networks, such
as InceptionResNetV2 and NASNetMobile. Additionally, it is worth
noting that these models already exhibit relatively lower accuracy
levels prior to quantization, and when this factor is coupled with
quantization, it results in more substantial performance losses com-
pared to the other models.

Besides the memory size and classification performance, we also
conduct an empirical evaluation of the models’ time complexity. Even
though our application scenario does not require real-time predic-
tions, fast computation represents a key requirement when dealing
with mobile personal devices like smartphones. Therefore, to perform
this type of experiment, we rely on the benchmark tool provided by
TensorFlow Lite (TFLite) 3, the Google-released mobile library for
deploying models on mobile devices, microcontrollers, and other edge
devices. Specifically, we first convert our CNN models to the TFLite
format; then, we deploy such models on the TFLite Android bench-
mark app4 that executes each model 50 times with synthetic input to
collect reliable statistics related to the inference times on a real An-

3https://www.tensorflow.org/lite
4https://www.tensorflow.org/lite/performance/measurement
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Table 3.5: Average inference times (in seconds) on different mobile
devices, by using both CPU (4 threads) and GPU for the computa-
tion.

Google Pixel 6a Xiaomi Mi 9T
Task Base model Quant. CPU GPU CPU GPU

b
in
ar
y

VGG16
✗ .429 (±.051) .031 (±.002) .606 (±.013) .245 (±.011)
✓ .104 (±.013) .031 (±.002) .430 (±.021) .245 (±.011)

InceptionResNetV2
✗ .134 (±.012) .057 (±.007) .515 (±.050) .188 (±.016)
✓ .064 (±.005) .057 (±.007) .441 (±.039) .188 (±.016)

NASNetMobile
✗ .041 (±.014) .023 (±.003) .206 (±.051) .062 (±.029)
✓ .033 (±.005) .023 (±.003) .421 (±.037) .060 (±.027)

MobileNetV3Small
✗ .018 (±.004) .011 (±.002) .056 (±.014) .033 (±.010)
✓ .011 (±.002) .011 (±.002) .104 (±.023) .032 (±.010)

MobileNetV3Large
✗ .018 (±.010) .013 (±.004) .067 (±.028) .032 (±.019)
✓ .014 (±.004) .013 (±.003) .140 (±.040) .032 (±.020)

m
u
lt
ic
la
ss

VGG16
✗ .423 (±.067) .031 (±.002) .612 (±.012) .249 (±.012)
✓ .117 (±.084) .031 (±.002) .196 (±.007) .249 (±.012)

InceptionResNetV2
✗ .139 (±.008) .059 (±.008) .243 (±.007) .192 (±.020)
✓ .065 (±.004) .059 (±.008) .141 (±.016) .192 (±.020)

NASNetMobile
✗ .036 (±.009) .021 (±.002) .084 (±.022) .051 (±.021)
✓ .031 (±.003) .021 (±.003) .127 (±.015) .052 (±.021)

MobileNetV3Small
✗ .011 (±.007) .009 (±.003) .028 (±.016) .024 (±.015)
✓ .008 (±.003) .009 (±.003) .040 (±.009) .040 (±.009)

MobileNetV3Large
✗ .016 (±.005) .012 (±.001) .047 (±.014) .029 (±.007)
✓ .014 (±.002) .012 (±.001) .062 (±.004) .029 (±.007)

droid smartphone. Moreover, in order to get insights on the models’
performance on different hardware settings, we perform our evalu-
ation on 2 smartphones, by using both CPU (with multithreading)
and GPU for the computation: (i) a recent Google Pixel 6a released
in 2022, with the latest Android 13 operating system, an Octa-Core
CPU (2x2.80 GHz Cortex-X1, 2x2.25 GHz Cortex-A76, and 4x1.80
GHz Cortex-A55), and the Mali-G78 MP20 GPU; and (ii) an older
Xiaomi Mi 9T, released in 2019, with Android 10, an Octa-core CPU
(2x2.2 GHz Kryo 470 Gold and 6x1.8 GHz Kryo 470 Silver), and an
Adreno 618 GPU.

Table 3.5 summarizes the average inference times (in seconds) of
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the considered models in the different hardware settings, both for
the binary and multiclass classification tasks, highlighting in bold
face the best results for each device and task. It is clear that even
the largest models such as VGG16 and InceptionResNetV2 can pro-
vide a prediction in less than 0.612 seconds when deployed on modern
smartphones. The benefit of using quantization can be mainly ob-
served when the computation is based on CPU, reducing the inference
time by 50% at least in some cases (e.g., VGG16 and InceptionRes-
NetV2 with Google Pixel 6a). On the other hand, all models can be
executed by the GPU in less than 0.059 seconds on Google Pixel 6a
and 0.245 seconds on Xiaomi Mi 9T, thanks to its ability to parallelize
all operations that are involved in a deep neural network [199].

Finally, we can also note that the CNN that performs best in
terms of classification accuracy, i.e., MobileNetV3 (both Small and
Large variants), is also the one with the lowest inference time. In
fact, while the larger variant provides a prediction for binary and
multiclass classification, respectively, in not more than 0.018 and
0.016 seconds on Google Pixel 6a and not more than 0.140 and 0.062
seconds with Xiaomi Mi 9T, MobileNetV3Small requires only not
more than 0.018 and 0.011 seconds on the Google phone and not
more than 0.104 and 0.040 seconds on the Xiaomi, thus proving the
feasibility of efficiently performing the whole data processing and
prediction tasks directly on mobile devices.

3.5 Conclusion
The Chapter introduces a novel m-health system for the prelimi-
nary screening of mpox infections through pictures of skin rashes
and eruptions taken with common smartphone cameras. The system
is designed to be entirely executed on mobile devices and is char-
acterized by the use of Transfer Learning to adapt state-of-the-art
Convolutional Neural Network (CNN) models for image classifica-
tion, mobile-oriented optimization of the models through quantiza-
tion, and the use of Grad-CAM as eXplainable AI (XAI) technique
for technical validation.
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While the proposed solution cannot replace the expertise of a
medical professional, it serves as a preliminary alert system for self-
examination in at-home settings, particularly in areas with limited
medical assistance and where continuous Internet connectivity is not
assured. In addition, such a system can play a pivotal role for sup-
porting the preliminary screening of large populations, alleviating
the burden on medical facilities, and limiting the dissemination of
the virus, aiding in the prompt identification of emerging outbreaks
by detecting new cases as soon as they arise.

The models have also been evaluated for their complexity in terms
of execution time on commercial smartphones, and they all obtained
performances under 1 second to provide the prediction, with quanti-
zation further reducing the inference time on CPUs.

Despite achieving promising results, our study has four main lim-
itations. First, the limited number of training data. Second, the lack
of other metadata information, that can help evaluate the data het-
erogeneity with respect to various factors like gender, race, age, and
physical conditions. This is clearly relevant for ethical data collec-
tion and fair model training. Third, MCSI contains images derived
from online resources that were manually selected and cropped by
a skilled operator, while in the intended application the images will
be self-acquired and possibly cropped by the end-user or a caregiver
by following the application instructions. We cannot exclude that
self-acquired images will have different properties that can impact
the performance of the detection models. The fourth limitation is
related to annotations’ reliability, in terms of skin lesion type: MCSI
derives the annotations from the existing datasets and the source of
the annotations is not specified.

A possible solution to address the first three problems above is
to release a prototype application implementing the proposed de-
tection system. The application could help remotely collect new
images, hence creating a larger dataset to improve the current de-
tection model. Also, the application could easily collect additional
user information, like gender and age. Another advantage of this
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solution is that the images would be collected by the end-users or
their caregiver. In order to address the fourth limitation, but also to
effectively design the proposed application and clinically validate the
related results, it is essential to establish a strict collaboration with
medical experts, especially dermatologists and virologists. The col-
laboration could also provide additional data to further investigate
the algorithms performances.
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4
Multi-Task Learning for
Ultrasound Detection of
Subquadricipital Recess

Distension

The previous chapter described a complete framework to detect MPOX
from mobile phone images adopting Transfer Learning to deal with
the scarce available data. This showed promising results, but, as
we will discuss in the following, Transfer Learning alone might not
be a sufficient solution to achieve acceptable performance on a more
complicated task. Despite its limitations, Transfer Learning serves
as a critical foundation for this thesis, providing the essential start-
ing point upon which more advanced methods are built and refined.
Here, we formulate the research problem of supporting physicians in
diagnosing joint recess distension in patients with hemophilia using
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a CAD system. The problem consists of detecting the joint recess
within US images and classifying it as Distended or Non-distended .
Specifically, we focus on the main joint recess of the knee, also called
SubQuadricipital Recess (SQR). We consider the SQR longitudinal
scan, which is one of the three scans specified in the HEAD-US pro-
tocol for this joint [14].

In this chapter, we propose two approaches to address the dis-
tension detection problem formulated in Section 1.2. The first one,
called the Detection approach, adopts state-of-the-art object detec-
tion to find Distended or Non-distended SQR inside the US image
and returns the detection having the highest confidence. The second
solution, called the Multi-task approach uses a multi-task learning
process, with the aim of simultaneously detecting the SQR inside the
US image and classifying it as Distended or Non-distended .

The experiments were conducted on the SQR knee dataset de-
scribed in Section 2.7. The experiments, we compared the two pro-
posed solutions among themselves and with two baselines based on
transfer learning, one Classification baseline and one Detection base-
line. The results reveal that both the Multi-task approach and the
Detection approach improve over the Classification baseline in terms
of balanced accuracy. Furthermore, the Multi-task approach outper-
forms both the Classification baseline and the Detection approach in
terms of balanced accuracy and sensitivity, which, as we motivate in
the following, is particularly relevant for the given problem. Concern-
ing detection accuracy, the Detection approach has a slightly better
performance than the Multi-task approach, and remains in line with
the Detection baseline.

4.1 Problem modeling
An interview, conducted with physicians from the Angelo Bianchi
Bonomi Hemophilia and Thrombosis Center (two of which are also
authors of this work), revealed the need for a computer aided tool
(CAD) supporting the physician in diagnosing SQR distension. The
tool can be used as a part of a protocol for the early diagnosis of
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hemarthrosis, which is particularly relevant for hemophilic patients
[16, 11]. Indeed, directly identifying hemarthrosis in US images is
particularly challenging as it requires to distinguish blood from syn-
ovial fluid and blood clots from synovial hyperplasia, which appears
very similar.

To support the physician during the diagnosis, the CAD tool
should identify the position of the SQR inside the specified US scan
and classify it as Distended or Non-distended .

In terms of machine learning, the CAD tool needs to implement
a combination of classification and detection techniques. For what
concerns the classification, existing models can be directly applied to
the given problem, defining two classes, one for the Distended and
the other for the Non-distended recess.

For what concerns the detection problem, we model the recess as
the target object to detect. Two possible solutions can be adopted:
to model two distinct classes of objects (i.e., one for Distended and
another for Non-distended recesses) or to model a single class (i.e.,
representing both Distended and Non-distended recesses). In both
cases, the direct application of existing object detection algorithms
would not correctly model the given problem. Indeed, most of the
existing object detection techniques assume that multiple objects can
be detected in a single image, from the same or different classes.
This is appropriate, for example, in the problem of tumor detection,
since multiple malign and benign tumors can be visible in the same
image [200]. Instead, in the given problem, we can infer from domain
knowledge that a single object (i.e., a recess) is visible in each image.

As we show in the following, with the Detection approach we
model two distinct classes, while with the Multi-task approach we
model a single class. Also, both solutions extend existing object
detection techniques by returning a single object for each input image.

4.2 Methodology
We propose two solutions for the problem defined in Section 1.2.
The first solution, which we name Detection approach, is described
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in Section 4.2.1. It is based on a state-of-the-art detection tech-
nique, adapted to solve both the detection and the classification
problems. The second solution, which we call Multi-task approach
(see Section 4.2.2), is a multi-task network with a branch that solves
the detection problem and another one that solves the classification
problem.

4.2.1 Detection approach

Figure 4.1 depicts the network architecture of the Detection approach.
Each input US image is processed by the YoloV5 [201] object detec-
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Feature 
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sub-network

Detection 
sub-network

YOLO v5

Detection 
post-processing

OUTPUT

0.87

0.87

0.05

0.25

Not-distended SQR
Distented SQR

Figure 4.1: Overall architecture of the Detection approach

tor that returns a set of candidate SQRs, each characterized by a
confidence value, a bounding box and the label (Distended or Non-
distended). Since in the considered domain, the input image actu-
ally contains exactly one SQR, the Detection Post-processing module
selects the prediction with the highest confidence and outputs its
bounding box and its label.
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We train the network to recognize two classes of objects: Dis-
tended SQRs and Non-distended SQRs. Since the amount of labeled
images in this domain is generally scarce, it is difficult to collect a
sufficiently large dataset to fully train a robust detection network.
Therefore, we adopt a transfer learning approach [64] to initialize
the network’s weights. Specifically, we use the pre-trained weights
publicly available for the YoloV5 network, trained on the MS COCO
dataset [81]. Finaly, the network is fine-tuned on the US images by
freezing the encoder, and keeping the sub-network trainable.

YoloV5 is a single-stage detector designed to detect different ob-
jects in an image and directly assign them the corresponding class.
YoloV5 is an optimized version of the YoloV4 framework [202], that
has been widely used in the literature for object detection tasks.
Specifically, among the five models available in YoloV5, we use the
large model, which was empirically selected as it achieved the best re-
sults in preliminary tests. YoloV5 is internally divided into a feature
extraction sub-network and a detection sub-network. It also adopts a
specific loss function and an early stop criterion. These four concepts
are briefly described in the following.

Feature Extraction sub-network The Feature Extraction sub-
network is a Convolutional Neural Network (CNN). Specifically, it is
a CSPDarknet53 network, that was originally proposed in [203] and
that was shown to be particularly effective for object detection [202]
and US image classification [204].

Detection sub-network TheDetection sub-network is divided into
a neck and a head parts.

The overall goal of the neck part is to divide the image into multi-
ple small fragments with the objective of simplifying further analysis
by performing semantic segmentation (by associating categories to
pixels) as well as instance segmentation (classifying and locating ob-
jects at pixel level). The head part is a one-stage detector [205] that
processes the features returned by the neck part and outputs the
bounding boxes of the detected elements along with their predicted
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class.

Loss function We use the default YOLOV5 loss function that is
shown in Equation 4.1 and that is computed as the weighted sum
of three values: a) the localization loss (Lbox) is computed with the
Complete IoU loss function (CIoU) [206], and represents the error
in the position of the predicted bounding box; b) the class loss (Lc)
is computed with Binary Cross-Entropy (BCE) and represents the
error in classifying the predicted class; c) the objectness loss (Lobj)
is computed with BCE and represents to which extent the predicted
bounding box actually encloses an object of interest. The weights of
these values are hyper-parameters that need to be empirically tuned
(see Section 4.3.4).

L = αLbox + βLobj + γLc (4.1)

Early stopping criterion We use the default YOLOV5 early
stopping criterion to terminate the training if there are no improve-
ments in the results for a given number of training epochs. This
default criterion considers the mean Average Precision (mAP) of the
detection, i.e., the ratio of correctly classified bounding boxes con-
sidering a given threshold of the IoU with the corresponding ground
truth. Note that, in a multi-class scenario, this criterion factors for
both the correct classification and the correct detection of the objects.
Specifically, it is computed as the weighted sum of the mAP@0.5 and
the mAP@0.5:0.95 where a weight of 0.1 is given for mAP@0.5, and
a weight of 0.9 is given for mAP@0.5:0.95 in order to prioritize more
accurate bounding boxes detection.

4.2.2 Multi-task approach

The Detection approach addresses the problem of classifying the SQR
as Distended or not, by selecting the label of the detection with the
highest confidence. An alternative (and possibly more natural) solu-
tion would be to classify the entire image. However, this would not
provide the needed SQR bounding box. For this reason, we propose
the Multi-task approach that pairs image classification and detection.
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Figure 4.2: Overall architecture of the Multi-task approach

The proposed network is a modified version of the network used
for the Detection approach. The key modification consists of a Clas-
sification sub-network that performs the SQR binary classification.
The input image is first processed by the Feature Extraction sub-
network, that is shared for both classification and detection tasks.
Then the extracted features are simultaneously processed by the De-
tection sub-network and the Classification sub-network. The Classi-
fication sub-network processes the features and returns the predicted
SQR class (i.e., distended or not) considering the whole image.

Differently from the Detection approach solution, the goal of the
Detection sub-network in the Multi-task solution is simply to detect
the SQR, without providing information about the distension. Hence,
the Detection sub-network network is trained with a single class and it
returns a set of bounding boxes, all belonging to the same class, each
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with an associated confidence value. The Detection Post-processing
module selects the bounding box with the highest confidence. During
the training phase, the multi-task loss jointly considers the errors on
classification and detection to update the network weights.

Classification sub-network

Figure 4.3 shows the Classification sub-network of the Multi-task Ap-
proach. The first layer of the sub-network is an Adaptive Average

Pooling layer

Fully Connected

Dropout

Flatten

512x1x1 1024 512 2

Figure 4.3: Classification sub-network architecture

Pooling Layer in charge of reducing the feature dimensions to a fixed
2-dimensional output size. Then, the output is provided to a Flat-
ten Layer, that converts 2-dimensional data to a 1-dimensional array.
This array is then processed by a fully connected network composed
of two hidden layers of 1024 and 512 units, respectively. These layers
use a ReLu activation function. A dropout layer is applied between
the two hidden layers with the objective of reducing overfitting. Fi-
nally, a Softmax layer is in charge of providing the most likely class
(i.e., Distended/Non-distended). The architecture of this network
has been determined empirically, during the tuning phase the net-
work is kept trainable and the layers of the classification head are
initialized with a normal distribution centered on 0.
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Multi-task loss

Training the multi-task network requires a custom loss function that
simultaneously takes into account the classification and detection er-
rors. For this reason, we adapt the loss function used for theDetection
approach by adding a new loss term that represents the errors of the
Classification sub-network. Specifically, we adopt a typical solution in
binary classification that consists in computing the classification error
Lcls with a BCE function. Another difference with respect to the loss
function used in the Detection approach, is that, in the Multi-Task
approach, the Detection sub-network is trained with a single class,
hence there are no possible errors with class prediction. Thus, the Lc

parameter, considered in Equation 4.1, is always zero. So, the overall
multi-task loss is computed as the weighted sum of Lbox, Lobj, and
Lcls, as shown in Equation 4.2. These weights are hyper-parameters
that need to be empirically tuned (see Section 4.3.4).

L = αLbox + βLobj + δLcls (4.2)

Since the datasets in this domain are usually highly unbalanced
(e.g., in our dataset≈ 75% of the images are labeled asNon-distended),
there is the risk that the network favors Non-distended classifications,
which in turn may increase the number of false negatives. In order
to mitigate this problem, we adjust the classification loss Lcls to give
higher error values to false negatives (i.e., Distended SQR classified
as Non-distended). This is achieved by adding an additional weight
to Lcls when the ground truth is Distended . Specifically, to achieve a
balanced classification, the weight is computed as the ratio between
the Non-distended and Distended samples in the training set. Thanks
to this approach, the errors on the Distended samples have a more
significant impact on the overall loss.

Multi-task early stopping criterion

As specified above, for the Detection approach, the default YOLOV5
early stopping criterion, based on mAP, is used to stop the training
if no improvements are detected for a specified number of epochs.
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Instead, for the Multi-task approach, since the detection is computed
for a single class, the mAP does not account for the classification
accuracy but only considers the detection accuracy. Thus, for the
Multi-task approach, we consider a weighted sum of mAP@0.5 for
the detection and balanced Accuracy for the classification on the
validation set. In particular, we provide a higher weight (0.7) to the
balanced accuracy and a lower one to mAP@0.5 (0.3). This is due
to the fact that we prefer to be more accurate on the classification,
at the cost of identifying slightly less accurate (but still informative)
bounding boxes. We consider a patience value of 100 epochs, which
means that the training is stopped if the early stopping criterion does
not improve for the number of epochs specified by the patience value.

4.3 Evaluation
In this section, we describe the experimental evaluation conducted on
the dataset introduced above. First, we present the baselines used in
the study. Then, we describe the adopted evaluation methodology,
the metrics and we describe how we selected the hyper-parameters.
Finally, we show the results of the two proposed solutions and com-
pare them among themselves and with the two baselines. We con-
clude the section by showing examples of the application of the pro-
posed solutions and by discussing the results.

4.3.1 Baselines

To evaluate the effectiveness of the two proposed solutions, we com-
pared them with two baselines, one for each of the two tasks that we
address: classification and detection.

The Classification baseline is a binary classifier that uses Dark-
net53 [205] as feature extractor (i.e., the same one as in the Multi-
Task and Detection approaches). The feature vector is then passed
to a fully connected layer that performs the classification. As in our
proposed solutions, the feature extractor was pre-trained and frozen
during training. We consider this approach as a baseline for the classi-
fication recognition rate since it represents a widely adopted solution
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for medical image classification [207].
The Detection baseline is a object detector with the same architec-

ture as the Detection approach. The main difference with respect to
the Detection approach is that the Detection baseline detects a single
class, the SQR, without considering whether it is distended or not.
The Detection baseline outputs the object detected with the highest
confidence. We selected this solution as a baseline for the detection
task because the technique is widely adopted in the literature [207]
and, differently from the Detection approach, it only focuses on the
SQR detection task without considering the classification task. Since
the Detection baseline addresses a simpler problem than our solu-
tions, it represents an upper bound for the detection performance of
our solutions.

In order to fairly compare the four techniques (two baselines and
the two proposed solutions), the data follows the same pre-processing
and training pipelines described in Section 4.3.3. For the same reason,
all four techniques are evaluated using the same cross-validations
splits.

4.3.2 Metrics

We define two sets of metrics: one for the detection and the other for
the classification. For what concerns the detection, we measure the
average Intersection over Union (IoU). The IoU between two plane
figures is defined as the ratio between the area of their intersection
and the area of their union. When measuring the performance of
a given technique, for each test image we measure the IoU between
the predicted bounding box and the ground truth bounding box.
Then, we compute the average of this metric among all test images.
Prior literature commonly considers as correct the detections with an
IoU ≥ than 0.5 [208]. Thus, we consider this as a threshold for an
acceptable IoU result.

Considering classification, for each image we compare the ground
truth class with the predicted class hence computing if the result is
a True Positive (TP), a True Negative (TN), a False Positive (FP),
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or a False Negative (FN). Note that the positive class is Distended
and the negative class is Non-distended . Then, we used the following
classification metrics:

• Specificity: measures the ability of the model to identify true
negatives. Specificity is defined as TN

TN+FP

• Sensitivity: measures the ability of the model to identify true
positives. Sensitivity is defined as TP

TP+FN

• Balanced accuracy: mean between specificity and sensitivity.
It is considered a sounder metric compared to accuracy when
the class imbalance is high [209]. Balanced accuracy is defined
as sens+spec

2

• Confidence interval (CI): the 95% confidence interval for the
classification and detection results. The CI provides a reliability
measure of the results by indicating the range in which the
results of the repetitions of the same experiment should fall 95%
of the time, thus showing the consistency level of the reported
results [210].

4.3.3 Evaluation methodology

The evaluation of the recognition rate of the proposed solutions is
based on a 5-fold cross-validation. In order to avoid high correlation
bias, the training and the test splits do not have images from the
same patients in common. The consequence is that we could not
exactly divide the dataset in 80% and 20% splits and therefore the
splits have a slightly different number of images.

An example fold subdivision can be found in Table 4.1. Each
training fold was further split: 80% as training set and 20% as val-
idation set. During training we used SGD with momentum [211] as
optimizer.
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Fold 0 Train Test Total

Non-distended 289 71 360
Distended 97 26 123
Total 386 97 483

Total patients 166 42 208

Table 4.1: Example data distribution in Fold 0 of the 5-fold cross-
validation

4.3.4 Hyper-parameters selection

In order to properly tune the many hyper-parameters of our network,
we adopt an evolutionary approach [212]. Given a fitness function,
an evolutionary algorithm evaluates the best fitting set of hyper-
parameters thanks to mutation and cross-over operations. For the
sake of this work, we considered the evolutionary method proposed
in YOLOV5, that only considers the mutation operation with 90%
of probability and 0.04 of variance. Each mutation step generates a
new set of hyper-parameters given a combination of the best parents
from all the previous generations. The fitness functions used for the
hyper-parameters selection for the Detection approach and the Multi-
task approach correspond to the early stopping criteria introduced in
Sections 4.2.1 and 4.2.2, respectively.

In order to balance the need for a high number of evolution epochs
with limited computational resources, we run the evolutionary algo-
rithm only on one fold. We executed our evolutionary algorithm for
300 epochs on each solution. Considering the Multi-task approach,
the best results have been obtained at the 193th epoch, while for the
Detection approach the best set of hyper-parameters was found at
the 4th epoch. The set of hyper-parameters resulting from evolution
has been used to evaluate our approaches on the complete cross val-
idation procedure. The most relevant discovered hyper-parameters
are presented in Table 4.2

Note that γ is a weight associated to the Lc loss that is only
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Learning rate Dropout SGD momentum α β γ δ

Detection 0.00369 - 0.77628 0.06868 0.49062 0.2343 -
Multi-task 0.0018 0.11008 0.62403 0.05427 0.67598 - 0.41855

Table 4.2: Selected hyper-parameters

considered in the Detection approach, while δ is a weight associated
to the Lcls loss that is only considered inMulti-task approach. Finally,
the Dropout rate is only included in the Classification sub-network
of the Multi-task approach.

4.3.5 Results

Table 4.3 shows the performance of the two baselines and of the
two proposed solutions. Note that, in order to fairly compare the
Detection approach with the Detection baseline and the Multi-task
approach, the average IoU for the Detection approach (marked with
*) is computed ignoring the predicted class. This means that, for the
detection approach, we consider the bounding-box of the detection
with the highest confidence, without considering if the class of the
detected box is actually correct.

Balanced accuracy Specificity Sensitivity IoU

Classification baseline 0.73 ± 0.03 [0.72 - 0.74] 0.85 ±0.09 0.61 ± 0.13 -
Detection baseline - - - 0.66 ± 0.02
Detection Approach 0.74 ± 0.07 [0.73 - 0.75] 0.97 ±0.03 0.52 ± 0.12 0.66 ± 0.01* [0.65 - 0.66]
Multi-task Approach 0.78 ± 0.05 [0.77 - 0.79] 0.92 ± 0.04 0.64 ± 0.09 0.63 ± 0.02 [0.62 - 0.63]

Table 4.3: Evaluation results (reported as mean among the folds ±
standard deviation), 95% CI are reported between []

Since both the early stopping criterion and the hyper-parameters
selection methods for the Multi-task approach are designed to pri-
oritize the classification accuracy at the expense of the detection
accuracy, its balanced accuracy is confirmed to be higher than for
the Detection approach. Specifically, the Detection approach has a
balanced accuracy of 0.74 (95% CI [0.73− 0.75]), slightly improving
over the Classification baseline which reaches a balanced accuracy of
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0.73 (95% CI [0.72− 0.74]). The Multi-task approach has a balanced
accuracy of 0.78 (95% CI [0.77−0.79]) outperforming both the Clas-
sification baseline and the Detection approach. The IoU metric is
0.66 (95% CI [0.65 − 0.66]) for both the Detection baseline and the
Detection approach and decreases to 0.63 (95% CI [0.62 − 0.63]) for
the Multi-task approach.

These results show that the Multi-task approach is the most suit-
able solution for the considered problem since it has an acceptable
level of balanced accuracy and IoU according to prior literature [213,
208]. This conclusion is also supported by taking into account the
confidence intervals: theMulti-task approach confidence interval range
is entirely above the thresholds for both classification and detection,
and the balanced accuracy CI does not intersect with the Detection
approach interval, suggesting that its performances are consistently
better [214]. The increase in balanced accuracy value of the Multi-
task approach is largely influenced by the increase in sensitivity. The
reason for this increase is likely due to the adjusted classification loss
in the Multi-task approach introduced to mitigate the unbalanced
data problem (see Section 4.2.2). Indeed, considering the confusion
matrices in Figure 4.4, we can observe that the Detection approach
has 59 false negatives (48%), out of a total of 123 images labeled
as Distended , compared to the 44 false negatives in the Multi-task
approach (38%). This improvement comes at a cost of a lower speci-
ficity value that, however, is less relevant than sensitivity in the given
domain.

4.3.6 Examples

In order to better illustrate how our approaches work, in the following
we show some examples of correct and incorrect output.

Figure 4.5 shows two US images that have been correctly classified
by both approaches and that are relatively easy to classify by medical
experts. Figure 4.5a shows an US image where the femur, the patella
and the SQR are clearly visible, and the SQR is thin (i.e., Non-
distended). On the other hand, Figure 4.5b shows an example of
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(b) Detection approach

Figure 4.4: Confusion matrices

a Distended SQR. In this case, the SQR is clearly thick and hence
Distended .

Figure 4.6 shows four examples of images that are more chal-
lenging to classify even by medical experts. This usually happens
when there is noise in the US scan (as in Figure 4.6c) or when the
SQR is borderline between Distended and Non-distended (as in Fig-
ure 4.6d). Figure 4.6a is correctly classified by both approaches as
Non-distended . Figure 4.6b is correctly classified by the Multi-task
approach but not by the Detection approach. Vice versa, Figure 4.6c
is correctly classified by the Detection approach and not by theMulti-
task approach. Finally, both solutions wrongly classify Figure 4.6d.

Considering the detection problem, Figure 4.7 shows US images
where the two approaches detected the SQR with the lowest and
the highest IoU. In Figure 4.7a, the Multi-task approach wrongly
detects as SQR an image region that is similar to an actual SQR
in terms of position and shape, resulting in a very low value of IoU
(0.33). In this case, also the Detection approach can not reliably
detect the right target precisely, and indeed it detects only a small
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(a) Non-distended SQR (b) Distended SQR

Figure 4.5: Examples of images correctly classified by both solutions.
The purple arrow points to the femur, the orange arrow points to the
patella, and the green box indicates the SQR.

portion of the actual SQR (IoU=0.05). Instead, in the example shown
in Figure 4.7b the Multi-task approach accurately detects the SQR
(IoU=0.95), while the Detection approach identifies the same area
with a lower IoU (0.68).

Figure 4.7c shows the US image for which the Detection approach
provided the lowest IoU value. The problem is similar to that of
Figure 4.7a: a region is erroneously recognized as a SQR because it
is similar to a SQR. In this case, the detected bounding box does not
overlap with the ground truth, hence the IoU is zero. Instead, the
Multi-Task approach basically detects the right target (IOU=0.58).

Figure 4.7d shows instead the US image for which the Detection
approach provided the highest IoU value (0.96). In this case, the
Multi-task approach identifies the right target less precisely, resulting
in an IoU of 0.55.
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(a) Non-distended SQR (b) Distended SQR

(c) Non-distended SQR (d) Distended SQR

Figure 4.6: Examples of images that are intuitively hard to classify.

4.4 Conclusions
In this Chapter we investigate the requirements of a CAD tool that
detects joint recess distension from US images can support practition-
ers in diagnosing hemarthrosis and we frame the problem in terms
of a combination of two typical machine learning tasks: classification
and detection. Addressing this problem is particularly challenging
for a number of reasons, including that the position and the shape of
the joint recess may change considerably across different US images,
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(a) Worst detection by Multi-
Task approach

(b) Best detection by Multi-
Task approach

(c) Worst detection by Detec-
tion approach

(d) Best detection by Detec-
tion approach

Figure 4.7: Detection examples. Green represents the ground truth,
red and blue the results of the Multi-Task approach and Detection
approach, respectively.

and there can even be borderline cases in which the recess is only
partially Distended .

We initially proposed a Multi-task learning algorithm which is
particularly relevant for two reasons. First, as opposed to baseline
solutions based on transfer learning, the balanced accuracy confidence
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interval of the Multi-task approach is completely above the threshold
of 0.75 which is reported to be a requirement for a medical test to
be “useful” [213]. Hence, the Multi-task approach is suitable for our
application domain.

Another important property of the Multi-task approach is that
it yields a substantially higher sensitivity value relative to baselines
based on transfer learning. This is particularly important because, in
the domain considered, sensitivity should be favored over specificity.
Indeed, false negatives (captured by sensitivity) have a worse impact
on the patient than false positives (captured by specificity). This is
due to the fact that a false positive prediction can lead to raising the
practitioner’s attention when not needed and, in the worst scenario,
can lead to over-treatment (e.g., provide factor VIII when not needed)
which generally results in limited negative effects on the patient. In-
stead, a false negative prediction can lead to under-treatment, which
in turn can lead to permanent articular damage [10].

In the proposed solution, the IoU is above 0.5 in more than 82%
of the cases. In these cases (and also in many cases in which the IoU
is below 0.5) the target SQR is correctly detected, but the detected
bounding box is imprecise. There are only a few cases in which the
techniques detect the wrong target.

One general limitation of multi-task learning is the difficulty in
finding the optimal trade-off among the different tasks. This is par-
ticularly relevant in our study, because, due to time and computa-
tional power limitations, we were unable to extensively explore the
hyperparameter space. This incomplete search limited our ability to
identify the best configuration to effectively balance the contributions
of each task, resulting in a possible bias towards one of the learned
objectives. Another limitation is related to the possibility to use the
model prediction to support explainability. Indeed, bounding box,
which results from the detection branch and which can be shown
to the practitioner, does provide a reliable indication of the model
reasoning for the classification.

Although we have achieved some promising results, to effectively
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implement this system in practice, we need to improve the accuracy
of predictions. Currently, there is still a margin of error that could
lead to undertreatment in certain cases. As a result, at this stage, the
model cannot be relied upon for a comprehensive screening. Instead,
it can be used to prioritize cases with more certain indications of joint
distension, ensuring that the highest-risk cases are addressed first.
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5
Weakly-supervised Anomaly

Detection for Ultrasound
Images

In the work proposed in Chapter 4, the task of distinguishing between
Distended and Non-distended recesses is addressed with supervised
classification. In addition to classification, segmentation is also of
utmost importance in medical imaging, as it facilitates the identi-
fication of structures or regions of interest, thereby enabling visual
guidance for professionals [215]. A major problem of these solutions
is the reliance on labeled images, which are scarce, imbalanced be-
tween the two classes (Distended cases are rarer than Non-distended
ones) and have a high annotation cost.

In the literature, a common approach to tackle these types of
problem is unsupervised anomaly detection [95], in which the model
is trained only using normal data samples and is used to identify
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anomalous samples deviating from the learned distribution. However,
as we show in this chapter, these techniques are ineffective in the
specific domain considered in our work.

To address the ineffectiveness of unsupervised anomaly detection
techniques, we propose a solution inspired by weakly supervised seg-
mentation approaches that have been extensively researched in the
segmentation domain, where acquiring the segmentation masks is
not always feasible [216]. These approaches rely on weak labels that
contain partial information compared to the labels used in the super-
vised approach. In particular, previous work suggests that the use of
a location prior, in the form of the bounding box of the element of
interest, can effectively mitigate the cost of annotation while still pro-
viding high accuracy in semantic segmentation [217], referring image
segmentation [218], and in medical image segmentation [116, 219].
However, to the best of our knowledge, these approaches have never
been applied in the field of anomaly detection.

In this chapter, we present LoRIS (Localized Reconstruction-by-
Inpainting with a Single mask), a weakly supervised anomaly de-
tection approach that uses the joint recess bounding box as prior
knowledge during the inpainting. We also propose Directional Dis-
tance (DD), a new image similarity deviation metric that yields better
anomaly segmentation results than existing metrics, such as Multi-
Scale Gradient Magnitude Similarity Deviation (MSGMSD) [220].
Experimental results, conducted on a dataset of 483 images, show
that LoRIS is more accurate in detecting recess distention when
using MSGMSD (image-level AUROC 0.78), outperforming state-of-
the-art unsupervised techniques and providing similar results as a
previous approach specifically designed for this problem [1]. Instead,
considering the segmentation problem, LoRIS provides better re-
sults when adopting DD (Dice score of 0.35), outperforming existing
unsupervised techniques.
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5.1 Methodology

After defining the problem (Section 5.1.1), we describe the two main
steps of LoRIS: localized reconstruction (Section 5.1.2) and anomaly
detection (Section 5.1.3). Finally, Section 5.1.4 describes how to au-
tomatically compute the location prior.

5.1.1 Problem Formulation

Hemophilia is a rare disease and its management has improved dra-
matically in the last decade for two reasons. First, the use of US
imaging emerged as a practical solution for the detection of recess
joint distention, caused by joint bleeding [14]. A second factor is the
increased availability of replacement treatments (coagulation factor
VIII and factor IX) and non-replacement treatments [221]. This has
led to a reduction in the number of acute bleeding episodes, includ-
ing intra-articular bleeding [16], which is otherwise a common cause
of recess distention. Since in this work, we consider a cohort of pa-
tients treated with these drugs, images of Distended recesses are rarer
than Non-distended ones. For this reason, we propose to frame the
problem as an anomaly detection task in which a Distended recess
represents the anomalous case.

Specifically, we address the problem of detecting the distension
of the subquadricipital recess (SQR), which is the main recess of the
knee joint. Our approach uses images of the longitudinal US scan of
the knee joint, which are commonly used to diagnose SQR distention
by medical practitioners [14].

5.1.2 Localized reconstruction

The localized reconstruction module takes in input an image of the
longitudinal US scan of the knee joint and the recess bounding box
location prior (see Figure 5.1). The module first inpaints the area in
the image defined by the location prior with a black rectangle. Then,
it reconstructs the inpainted area using a specifically trained net-
work. One advantage of reconstructing the detected recess area only
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Figure 5.1: LoRIS procedure schema

is that this solution avoids reconstructing areas that are of no interest
for the given problem and that, due to noise and high inter-patient
variability, can be reconstructed imprecisely also for physiological
(non-pathological) images.

The network used is a U-Net [222], trained on a single class (im-
ages with Non-distended recess) to reconstruct the inpainted image
while focusing solely on the masked region. This is achieved through
skip connections, directly propagating the information from low-level
layers to the higher ones, facilitating the reconstruction process by
preserving fine details, and maintaining contextual information from
the original input. Consistently with previous works [104], we trained
the network with the sum of three different losses:

Ltot = LMSGMS(I, Ir) + LSSIM(I, Ir) + L2(I, Ir)

where LMSGMS is the Multi-Scale Gradient Magnitude Similarity loss,
LSSIM indicates the structural similarity index loss and the pixel-wise
loss L2 between the original image I and the reconstructed one Ir

At inference time, image reconstruction is achieved in a single
iteration that reconstructs the entire masked area. This is in con-
trast with the approach of using multiple masks, adopted by existing
reconstruction-by-inpainting techniques, that iteratively mask and
reconstruct portions of the image, finally joining all the reconstructed
areas to obtain the entire reconstructed image [104]. The problem
with the multiple-masks approach is that, during its iterations, only
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a portion of the recess could be masked at a time, hence resulting in
the image being precisely reconstructed even when the recess is Dis-
tended . Instead, by using a single mask, the entire recess is inpainted,
so it is more likely that it will be reconstructed as Non-distended also
in Distended images, hence revealing the anomaly.

5.1.3 Anomaly detection

At inference time, LoRIS runs the localized reconstruction mod-
ule to obtain the reconstructed image. Then, an anomaly map is
computed, indicating an anomaly score for each pixel of the original
image, using an image similarity deviation metric (see Fig 5.1). An
overall anomaly score is computed at image level by average pooling
the pixel-wise anomaly scores of the anomaly map. The anomaly
is segmented by first selecting the set of pixels in the anomaly map
whose value is above a threshold that maximizes the dice score (as
in [106]) and then by applying a post-processing step using morpho-
logical closing, followed by opening with kernel 3x3.

In this chapter, we propose a novel image similarity deviation met-
ric called directional difference (DD) that is based on the following
observation: a Distended recess appears in a US image as a thick dark
area, whereas a Non-distended recess appears as a thin dark line on
a lighter background. If an image containing a Distended recess is
provided in input, we expect the reconstruction to produce an image
that resembles a Non-distended recess, with the recess bounding box
containing lighter pixels, on average, than the original image. The
DD metric measures the increase of light intensity for the pixels in
the reconstructed image with respect to the original one, ignoring the
pixels where the light intensity actually decreases. Formally:

DD(p, pr) = max((pr − p), 0)

where pr is the intensity of a pixel in the reconstructed image and p
is the intensity of the corresponding pixel in the original image.

We experimented LoRIS also considering alternative image sim-
ilarity deviation metrics. Some of them are derived from the existing
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literature on similarity deviation between images, including Gradient
Magnitude Similarity Deviation (GMSD), and Multi-Scale Gradient
Magnitude Similarity Deviation (MSGMSD) [223]. We also exper-
imented with similarity scoring functions between images by com-
puting their dual, such as the Structural Similarity Index (SSIM).
Among all these image similarity deviation metrics, LoRIS obtained
the best results with MSGMSD in terms of image-wise and pixel-wise
accuracy, while best Dice score was obtained using DD.

5.1.4 Automatic detection of the recess bound-
ing box

LoRIS requires the recess bounding box as location prior both at
training and inference time. The use of (manually annotated) bound-
ing box priors limits the real-world applicability of the proposed ap-
proach. To address this issue, we further propose the use of object
detection for automatically annotating the bounding box location
priors, thus achieving a fully automated pipeline (from image acqui-
sition to anomaly prediction). Note that, also in this case, the object
detection has to be trained on Non-distended images only to maintain
the applicability of the approach in the anomaly detection setting.

5.2 Experimental evaluation

This section describes the experimental methodology (Section 5.2.1),
the experimental results in terms of anomaly detection and segmen-
tation performance (Section 5.2.2), and the impact of automatic lo-
cation prior detection (Section 5.2.3).

5.2.1 Experimental methodology

We used the same dataset used in Chapter 4, containing 483 US im-
ages of the knee recess, 123 of which are Distended , according to the
annotation of a physician who is an expert US reader in this specific
field. The same physician also annotated the images with the recess
bounding box (the location prior) and the recess segmentation, which
is used to compute pixel-wise segmentation accuracy. The images are
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divided into 5 folds using patient-based splits, thus ensuring that no
images of the same patient are simultaneously in the training and
test folds. Due to this, the exact number of images in each fold can
vary. Approximately, each fold contains 308, 78, and 97 images for
the training, validation, and test sets, respectively. Note that the
images of Distended recesses in the training and validation sets are
ignored for the training of the proposed anomaly detection technique.
Therefore, for each fold, we use approximately 226, 63, and 97 images
in the training, validation, and test sets, respectively.

For what concerns the model training, for each fold, the U-net
model was trained for 1000 epochs with an early-stopping criterion of
50 epochs on the validation loss, a learning rate of 0.0001 with Adam
optimizer [224], and a batch size of 4. Parameters were selected
empirically. We ran the experiments on a Ubuntu Server with a
partitioned NVIDIA A100 GPU, 42Gb of RAM, and an AMD EPYC
8-core CPU. The code is publicly available1.

To assess the accuracy of the anomaly detection, we consider
metrics commonly used in the state-of-the-art: Image-level AUROC
(I-AUROC) and Pixel-level AUROC (P-AUROC). Additionally, we
employ the Dice score as it more accurately evaluates the anomaly
segmentation accuracy [225].

5.2.2 Anomaly detection and segmentation re-
sults

Table 5.1 compares LoRIS with state-of-the-art unsupervised anomaly
detection approaches and a previously proposed supervised technique [1].
Considering the unsupervised techniques, recent ones (PatchCore[107],
Simplenet [106] and Cflow [108]) yield the best results, with Patch-
Core having an I-AUROC of 0.701 and a P-AUROC of 0.871. How-
ever, unsupervised techniques have a Dice score lower than 0.2, show-
ing that they do not obtain a relevant segmentation of the anomalous
region. This is also exemplified in Figure5.2 that shows, for three

1https://github.com/warpcut/LoRIS

103

https://github.com/warpcut/LoRIS


sample images, the segmentation results of various techniques. As
shown in the figure, the unsupervised techniques fail in most of the
cases to detect the recess area, and, even when they do, they do not
approximate the recess accurately. The multi-task supervised tech-
nique [1] achieves a higher I-AUROC value of 0.780 but it cannot
compute the recess segmentation.

Table 5.1: Anomaly detection and segmentation results

Model Setting I-AUROC P-AUROC DICE

RIAD [104] Unsupervised 0.583± 0.083 0.682± 0.016 0.051± 0.017
InTrans [226] Unsupervised 0.581± 0.053 0.574± 0.033 0.028± 0.009
Ganomaly [103] Unsupervised 0.573± 0.035 - -
FAIR [227] Unsupervised 0.544± 0.035 0.668± 0.021 0.102± 0.012
Cflow [108] Unsupervised 0.645± 0.125 0.864± 0.011 0.124± 0.049
Draem [105] Unsupervised 0.547± 0.066 0.626± 0.041 0.033± 0.007
UAE [109] Unsupervised 0.621± 0.068 0.699± 0.014 0.061± 0.018
Simplenet [106] Unsupervised 0.68± 0.104 0.818± 0.01 0.144± 0.047
PatchCore [107] Unsupervised 0.701± 0.090 0.871± 0.009 0.193± 0.066
Multi-task [1] Supervised 0.780± 0.050 - -

LoRIS+MSGMSD Weakly-supervised 0.783± 0.050 0.932± 0.018 0.263± 0.042
LoRIS+DD Weakly-supervised 0.750± 0.100 0.746± 0.047 0.353± 0.034

Table 5.1 also shows the results of two variants of LoRIS, when
using MSGMSD (LoRIS+MSGMSD) and DD (LoRIS+DD) as
image similarity deviation metrics. The former achieves the best
performance in terms of image-level AUROC (0.783) when compared
with all other techniques, includingmulti-task. It also outperforms all
other unsupervised techniques in terms of pixel-level AUROC (0.932).
Taking into account the segmentation ability, LoRIS+DD achieves
the best results, with a Dice score of 0.353. However, we note that
the Dice score is still relatively low, indicating that accurate anomaly
segmentation in this domain is particularly challenging. This obser-
vation is also supported by the results obtained using UAE [109]
which, despite being designed for medical imaging, yields poor re-
sults (AUROC of 0.699 and dice of 0.061). Nevertheless, as shown in
Figure5.2, while segmentation is not extremely accurate, it approxi-
mates the actual recess shape well. More examples of recontructions
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and anomaly segmentations can be found in Appendix A.

Original Ground Truth FAIR Cflow Dream PatchCore
LoRIS

+ MSGMSD
LoRIS
+DDUAE

Figure 5.2: Comparison of the anomaly segmentations generated by
different techniques

5.2.3 Automated detection of the recess bound-
ing box

For the automated detection of the bounding box location prior, we
examine two object detection approaches, Yolo (V5) [201] and Co-
DETR [228]. We trained the two models on the Non-distended images
in the training set and measured the performance of LoRIS+MSGMSD
with the location prior automatically computed by the trained object
detection model at test time.

As shown in Table 5.2, YOLO fails to achieve results comparable
to the upper baseline represented by the Ground Truth (GT) anno-
tations. Indeed, there is a significant drop in performance: −4.4%
in I-AUROC, −5.4% in P-AUROC and −6.2 in Dice score. Instead,
using CoDETR, shown to perform better in several domains [228],
the results remain comparable with those obtained with GT: −0.7%
in I-AUROC, −2.2% in P-AUROC and −2.3% in Dice score.

5.3 Conclusions
The approach proposed in this Chapter is the first anomaly detection
technique to use a location prior and to adopt the reconstruction-by-
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Table 5.2: Performances of the object detection algorithms and their
impact.

precision map@50 mAP@75 I-AUROC P-AUROC DICE

GT - - - 0.783± 0.050 0.932± 0.018 0.263± 0.042

Yolo-V5 0.954± 0.044 0.796± 0.052 0.254± 0.063 0.773± 0.038 0.872± 0.033 0.223± 0.030
CoDETR 1.0± 0.0 0.9± 0.035 0.41± 0.066 0.776± 0.029 0.910± 0.038 0.240± 0.031

inpainting approach on US images, which are noisy and have high
variability. Experimental results show that the technique can sepa-
rate normal images from anomalous images better than state-of-the-
art unsupervised approaches, achieving results comparable to a fully
supervised approach proposed in Chapter 4, when LoRIS+MSGMSD
is used. Instead, LoRIS+DD yields the best results for the purpose
of anomaly segmentation.

Furthermore, LoRIS has two additional benefits with respect to
the supervised approach. First, it is trained using non-anomalous
data only, and therefore it is more suitable to the target problem
domain in which anomalous data is scarce. Second, it provides more
anatomically reasonable anomaly segmentations, only requiring the
recess bounding box as a location prior. This property will be partic-
ularly useful for the continuation of the project and will be discussed
in more detail in Section 8.3. We also show that this information
can be obtained using a state-of-the-art object detection technique,
achieving results comparable to the use of the manually annotated
data, and thus achieving a fully automated SQR distension detection
pipeline.

One possible limitation of LoRIS is that it would require provid-
ing the bounding-box annotations prior to inference. However, by
incorporating a detection module, we demonstrated that the weak
supervision obtained by the bounding box is no longer necessary
once trained. Techniques such as CoDETR [228] can substitute for
traditional ground truth annotations, further reducing the work of
practitioners. Another limitation is that the quality of the generated
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recess segmentations results in low overall accuracy as measured by
the DICE score. Nevertheless, a qualitative observation of the results
indicates that the model’s segmentation in the targeted recess areas
is often conceptually precise. This intuition is supported by the high
value of pixel AUROC. The reason for a low DICE score lies in the
recess borders, particularly along anatomical boundaries, which tend
to be noisy and difficult to delineate even with manual inspection.
This is a known challenge in medical imaging, as subtle and intricate
structures often cause difficulty in visual interpretation, leading to
inconsistencies in both manual and automated annotations [229].

Finally, the use of the bounding-box supervision could be better
integrated in an end-to-end model that is simultaneously trained to
detect and inpaint the recess and then perform the reconstruction.
Furthermore, the framework was evaluated on RIAD, which is the
least performing model among the baselines. An end-to-end model
would enable one to directly add the supervision were required by
other approaches, and this might lead to significantly better results.
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6
Test-time training with

contrastive feature
reconstruction on
ultrasound images

In recent years, test-time training has emerged as an innovative ap-
proach in the unsupervised domain adaptation task, with promising
applications in various fields. However, its adoption in the medical
imaging field remains limited, largely confined to test-time adapta-
tion techniques [230]. Adoption is critical for different reasons: im-
ages may have variations in conditions, scanner types, patient demo-
graphics, or anatomical structures that affect both the classification
and segmentation performance of deep learning models.

Our work leverages the concept of contrastive learning [231] for
improving test-time training. The idea of this technique is to learn,
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from unlabeled data, general-purpose features that are similar in re-
lated samples and different in unrelated ones. Previous work has
shown the usefulness of contrastive learning in a variety of unsuper-
vised and semi-supervised image tasks [231, 232, 233]. Among oth-
ers, ReContrast [234], which inspired our approach, adopts feature
reconstruction contrastive learning in unsupervised anomaly detec-
tion, demonstrating a good transfer ability to various image domains
compared to other unsupervised techniques. However, this recent
approach has not been investigated for adapting models at test time.

This paper presents ReC-TTT (Contrastive Feature Reconstruc-
tion for Test-Time Training), a test-time training approach designed
for image classification that leverages techniques from the field of
contrastive representation learning in a novel way. The core idea of
ReC-TTT is to use a pre-trained frozen encoder to generate a discrim-
inative feature representation of the input image. This representation
is then used as a positive pair in the learning of the auxiliary task.
In particular, during the training phase, two encoders are trained in
a supervised manner to classify the images, and, at the same time, a
decoder is trained to minimize the differences between the features ex-
tracted from the trainable encoders and the ones reconstructed from
the frozen pre-trained encoder. The intuition is that during test-time
training, the now frozen decoder works as a guide to extract more
meaningful information by the trainable encoders.

6.1 Methodology
Our ReC-TTT method addresses the problem of domain shift be-
tween a given training set, representing the source domain S =
(XS, YS), and a test set from a target domain T = (XT , YT ), where
XS, XT are spaces containing images and YS, YT the spaces of cor-
responding labels. In this setting, we suppose that both domains
have the same labels, i.e., YS = YT , but that images have a different
conditional distribution, i.e., pS(x|y) ̸= pT (x|y) where x ∈ X and
y ∈ Y .

Figure 6.1 shows the overall framework of our method. The archi-
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tecture employed in ReC-TTT consists of two trainable encoders fθ1
and fθ2, a pre-trained frozen encoder fθF , and a decoder gθ that takes
in input the concatenated features extracted from the three encoders.
As other TTT approaches, ReC-TTT requires two steps. In the first
step, our method has access to the source domain and the model is
trained to learn a function mapping XS → YS using a classification
loss (LCE ) and an auxiliary loss (Laux ). The second step occurs at
test time, where our method has only access to the unlabeled target
set. In our case, fθ1 and fθ2 are updated using only the auxiliary
function to learn the new mapping XT → YT . This partial update
enables the model to learn the association in T while maintaining
the knowledge acquired during training on S.

In the following sections, we detail the different components of
our method.

6.1.1 Contrastive feature reconstruction

Contrastive learning extracts meaningful representations by maxi-
mizing the agreement between the features of different views of the
input data during training. In our framework, illustrated in Figure
6.1, this is achieved using two separate encoders. The first one (fθ1)
is updated during training, and hence generates a domain-specific do-
main representation, while the other (fθF ) is instead frozen and thus
generates a domain representation based on a pre-trained network.

The extracted features are then combined into a bottleneck that
resembles the last ResNet layer, and subsequently fed into a shared
decoder (gθ) which has the opposite architecture of the encoders.
For a fair comparison with previous TTA and TTT works [132, 142],
our method uses a ResNet50 backbone for the convolutional feature
extractors.

Learning objective. The network is trained using global cosine-
similarity [234] between the features at different layers of the encoders
and the features at the opposite level of the decoder. Specifically, the
model is trained in a cross-reconstruction fashion where the decoder
learns to reconstruct the features of the frozen encoder starting with
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(a) Train time (b) Test time (c) Inference time

Figure 6.1: Overview of our ReC-TTT framework. The di-
rectional flow of gradients is denoted by the symbol →. Laux is our
cross reconstruction loss, which computes the global similarity be-
tween the features of the encoders and the features reconstructed by
the decoder, LCE is the cross-entropy between the predicted classes
and the true labels, and LKL is the Kullback–Leibler divergence be-
tween the two predicted distributions. The trainable components
of our architecture are depicted in green, whereas the frozen com-
ponents are represented in blue. (a) illustrates the training phase,
where both the encoders and the decoder are trainable. At test-time
training (b), the decoder is frozen. Finally, (c) shows the inference
time when the entire network is frozen; modules represented in gray
are not needed in this phase.

the ones obtained by the trainable encoder, and vice versa, using the
following loss:

Laux =
L∑

ℓ=1

1−
〈
sg(f ℓ

E), f
ℓ
D

〉
sg(∥f ℓ

E∥2) ∥f ℓ
D∥2

(6.1)

where sg is the stop gradient operation [235] used to avoid propagat-
ing the gradient directly into the encoder, f ℓ

E and f ℓ
D represent the

flattened features of the encoder and decoder respectively at the ℓth

layer, and ⟨·, ·⟩ is the dot product operation.
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In the TTT framework, during training, the network is jointly
trained on the two tasks: supervised classification and contrastive
feature reconstruction combining the cross-entropy with the auxiliary
loss described in Eq. (6.1), as follows:

Ltrain = LCE + Laux (6.2)

6.1.2 Encoder ensemble

As shown in Figure 6.1a, our ReC-TTT method also leverages an
ensemble learning strategy that integrates a secondary trainable en-
coder (fθ2) and classification predictor. This encoder takes as input
an augmented version of the original image to learn diversified repre-
sentations of the data and add robustness to the contrastive learning
process. The same image is fed to the frozen encoder (fθF ) to generate
two contrastive pairs, such that the representations extracted by the
decoder should be invariant to the augmentation applied. To avoid
introducing information that could artificially facilitate the adapta-
tion to specific domain shifts (as noise), we selected a weak, domain-
agnostic augmentation: horizontal flip.

Learning objective. The model is trained with the loss of Eq. (6.2)
applied to both encoders. Furthermore, we added a consistency loss
between the two predictors, measuring their Kullback–Leibler (KL)
divergence, to align the distributions predicted by the two encoders:

Ltrain = LCE + Laux + LKL (6.3)

Let P and Q be two discrete probability distributions over k classes.
The KL divergence is computed as

DKL(P ∥Q) =
∑
k

pk log

(
pk
qk

)
. (6.4)

Adaptation. Algorithm 1 describes how our method is used at test
time for adapting the model to data from unseen domains. At this
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stage, we freeze the shared decoder and, for each test batch, reini-
tialize the weights of encoders. Afterward, since we have no access to
labels for the supervised loss, the layers of the trainable encoders are
updated using only Eq. (6.1) for a total of T iterations. For the final
inference, the whole model is frozen, and we obtain the final classifi-
cation by averaging the predictions of two independent encoders. As
illustrated in Figure 6.1c to reduce computational complexity during
inference, the architecture can be optimized by removing the frozen
encoder and decoder, which are no longer necessary for generating
predictions.

Data: Trained model parameters θ0, test set XT

Result: Predicted labels Ŷ

for param ∈ θg do
param.trainable ← False

end
for batch ∈ X do

θ ← θ0 ; // Initialize weights

for iter t = 1..T do
Get layers features of batch samples x using model with
parameters θ;
Laux ← Auxiliary loss between encoders and decoder;
∇θL ← Compute gradient of Laux with respect to θt−1;
θt ← θt−1 − α∇θL ; // Update model parameters

end
ŷ ← Make prediction using θT on examples x;

end

return Ŷ
Algorithm 1: Test-Time Training Algorithm

6.2 Experiments

6.2.1 Experimental setup

Six publicly available datasets were selected for the evaluation. These
datasets simulate various types of domain shift: image corruption,

113



natural domain shift, and synthetic to real images.
The Visual Domain Adaptation (VisDA) dataset was designed to

pose a new challenge in domain adaptation: from synthetic images to
real-world images. This dataset is composed of 152, 397 train images
consisting of 2D renderings, 55, 388 validation images extracted from
the COCO dataset, and 72, 372 YouTube video frames that compose
the test set. All images are labeled into 12 different classes. We
evaluated the model’s ability to generalize from the training set to
the validation set (train→val) and from the training set to the test
set (train→ test).

Training protocol. Following previous work, our method employs
Resnet50 as the backbone, using 32×32 images for the CIFAR datasets,
64×64 images for the TinyImageNet and 224×224 for the VisDA
dataset. The backbone is pre-trained using ImageNet32 [236] for the
first one and ImageNet [80] for the latter. Following existing liter-
ature, all CIFAR models were trained for 300 epochs with SGD as
optimizer, a batch size of 128, and an initial learning rate of 0.1 with
a multi-step scheduler, decreasing the learning rate by a factor of 0.1
every 25 epochs. In contrast, for VisDA, the model was trained for
100 epochs, a batch size of 64, and a learning rate of 0.001 without
a scheduler.

Inference. At test time, the shared decoder is frozen, while the
rest of the network is trained with SGD and a learning rate of 0.005
for CIFAR datasets and 0.0001 for VisDA, using only the auxiliary
loss. Similarly to previous approaches, we reset the weights after each
batch, hence enabling the consequential processing of batches with
different domain shifts.

The experiments were run on a Ubuntu server with an NVIDIA

A100 GPU, 42Gb of RAM, and an AMD EPYC 8-core CPU. The code
is implemented in python3 with PyTorch 1.12.0.
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6.2.2 Empirical results

Comparison with state of the art

Our model was compared with seven recent approaches: ResNet50 [178]
as the baseline, trained with the same strategy as our method, but
only on the supervised task, PTBN [135], TENT [136], TTT++ [142]1,
TIPI [137], ClusT3 [132] and NC-TTT [143]. For a fair comparison,
all TTA methods were evaluated on the same pre-trained ResNet50,
while TTT approaches were trained using the same ResNet50 base
architecture and the same training strategy.

CIFAR-10 corruptions. Table 6.1 shows the comparison on the
CIFAR-10C dataset of the different state-of-the-art methods, the
baseline, and our approach. It is noticeable that ReC-TTT out-
performs on average all previous methods, with a gain of 1.46% on
TTT++ and 36.2% on the baseline. Also, our method is the only one
able to outperform the baseline for the natural domain shift (CIFAR
10.1, see last line in Table 6.1). As discussed in previous papers [132],
other techniques perform worse than the baseline possibly due to the
small domain shift between CIFAR-10 and CIFAR-10.1. Instead,
ReC-TTT can capture this small domain shift thanks to more ro-
bust training, thus achieving better performances, 5.5% higher than
ClusT3 and around 3% better than NC-TTT . To be consistent with
the other experiments, we report the performance with 20 adaptation
iterations obtaining a gain of 0.27% of AUROC score, while without
adaptation our model achieves an even better AUROC of 90.18 (see
Section 6.2.2). A common limitation of TTT methods is that they
are subject to high variability. To investigate this aspect, we repeated
the experiments three times with different random seeds (Table 6.1
reports the average among three runs). The results show that the
performance of TTT++ can vary by ±5.05, and those of ClusT3 by
±2.62, whereas ReC-TTT yields more consistent results with smaller
variations (i.e., ±1.18).

1Due to reproducibility issue, TTT++ results were extracted from the latest
reported results [132].
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CIFAR-100 and TinyImageNet-C corruptions. For the sake of
the generability, the hyper-parameters used in the training of ReC-
TTT for CIFAR-100C and TinyImageNet-C are the same as those
used for CIFAR-10C with the only difference that, for CIFAR-100C,
the best results are obtained when all the layers are trainable. Fig-
ure 6.2 shows that ReC-TTT again outperforms the other techniques
on both datasets, with a gain of 29.47% when compared to the base-
line for CIFAR-100C and a gain of 14.46% for TinyImageNet-C. This
demonstrates the robustness of our method to adaptation settings
involving a large number of classes.

VisDA. When training on VisDA, ReC-TTT achieves the best per-
formance when all the layers of the encoders are trainable, and with
20 iterations of adaptation. Figure 6.2 also reports the results for
train→val and train→ test for VisDA. ReC-TTT performs better
than all other approaches in train→val except NC-TTT while TIPI
and NC-TTT show the best results for train→ test . It is worth men-
tioning that train→val and train→ test model the same synthetic-to-
real domain shift, but using two sources of real images with different
characteristics. For instance, the ratio of images for each class varies
greatly, and images from the test set are obtained from video frame
crops and may thus be blurry, etc.

Visualization of the adaptation

To better understand the effect of adaptation, we consider Figure 6.3
showing the t-SNE plots of the test features before adaptation and af-
ter different numbers of iterations for two corruptions types: Bright-
ness and Contrast. In the top row (Brightness), we can observe that
ReC-TTT obtains a good separation of the features for the differ-
ent classes also without iterations (AUROC of 92.31). Successive
iterations further separate the clusters but have a marginal impact
on performance (AUROC of 94.03 at iteration 20). The results are
different in the bottom row (Contrast). In this case, without adapta-
tion, most features overlap, without a clear separation, and, indeed,
ReC-TTT reaches an AUROC of 48.14. With successive iterations,
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Corruption Type ResNet50 PTBN
TENT

(ICLR2020)
TTT++

(NEURIPS2021)
TIPI

(CVPR2023)
ClusT3

(ICCV2023)
NC-TTT
(CVPR2024)

ReC-TTT

Gaussian Noise 23.65 57.49 57.67 75.87±5.05 71.90 75.81±2.62 75.24 ±0.12 71.97±1.18

Shot Noise 27.68 61.07 60.82 77.18±1.36 78.24 77.32±2.14 77.84 ±0.15 75.44±1.02

Impulse Noise 32.00 54.92 54.95 70.47±2.18 59.64 67.97±2.78 68.77±0.15 69.28±0.27

Defocus Blur 38.73 82.23 81.39 86.02±1.35 84.67 88.10±0.20 88.22±0.04 89.56 ±0.18

Glass Blur 36.49 53.91 53.45 69.98±1.62 67.62 60.47±1.72 70.19±0.18 69.38±0.73

Motion Blur 49.85 78.38 78.13 85.93±0.24 82.39 84.99±0.49 86.82±0.10 88.94 ±0.03

Zoom Blur 44.58 80.87 80.56 88.88±0.95 85.01 86.76±0.29 88.36±0.10 89.65 ±0.27

Snow 65.39 72.06 71.46 82.24±1.69 80.68 81.46±0.39 84.42±0.07 86.75 ±0.44

Frost 48.55 68.68 68.81 82.74±1.63 82.12 80.73 ±1.25 84.80±0.06 86.83 ±0.59

Fog 58.81 76.32 75.94 84.16±0.28 76.05 82.52±0.25 86.81±0.12 88.87 ±0.33

Brightness 84.72 85.38 84.87 89.97±1.20 88.96 91.52±0.24 92.52±0.04 94.03 ±0.24

Contrast 25.38 81.27 80.65 86.60±1.39 76.49 82.59±0.92 87.84±0.11 89.56 ±0.48

Elastic Transform 60.90 67.76 67.21 78.46±1.83 77.25 80.04±0.35 80.23±0.06 81.66 ±0.32

Pixelate 39.25 69.59 69.22 82.53±2.01 82.67 81.69±0.58 81.93±0.22 82.13 ±0.34

JPEG Compression 64.96 66.50 66.17 81.76±1.58 79.39 81.58±1.18 78.49 ±0.09 79.69±0.12

Average 46.73 70.43 69.93 81.46 78.21 80.67 82.17 82.92

CIFAR 10.1 89.00 86.40 85.30 88.03 85.70 83.77 86.40 89.27

Table 6.1: Performance comparison with state-of-the-art on CIFAR-
10C and CIFAR10.1 (%).

the cluster separation improves (AUROC of 89.56 at iteration 20)
thus demonstrating the effectiveness of our adaptation technique on
the extracted features. On the other hand, for a limited number of
samples that are wrongly classified before the adaptation, the dis-
tance of these samples to the true class increases with the number of
iterations.

Robustnenss to smaller batch sizes

As demonstrated in [137], most domain adaptation approaches suffer
from the need for large batch sizes to achieve competitive results.
Most methods are usually evaluated with batches that have a size of
128 or more. This is a limitation in the application in which it is
not possible to collect large batches before computing the inference.
For this reason, we compared the performances using different batch
sizes (8, 32, 64, 128) for the CIFAR-10C dataset. Table 6.2 reports
the results of this study showing that most of the SOTA approaches
lose up to 7% of AUROC when the number of samples is lower than
the number of available classes (a performance degradation is also
reported for TIPI in [137]). In contrast, the performance loss of
ReC-TTT is less than 2% even with the smallest batch size.
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Figure 6.2: Quantitative results, compared to the state-of-the-art, on
the CIFAR TinyImageNet-C and VisDA datasets (%). A detailed
report for CIFAR-100, TinyImageNet and VisDA is provided in Ap-
pendix B

.

Which layers to adapt?

Previous studies suggest that the selection of layers that are updated
by the auxiliary task at test time can affect performance [142, 237,
132]. Table 6.3 reports the results of the adaptation of different lay-
ers on CIFAR-10C, having the best performance when updating only
the first three ResNet blocks. While the difference in performance
between three or four trainable layers is negligible (+0.17%), adapt-
ing the first two layers yields a reduction in performance of 2.3%, and
using the first layer only results in a drop of performance of 18.13%.
Differently, for CIFAR-100C and VisDA, we obtained the best re-
sults by updating all four layers of the trainable encoders. This can
be explained by the greater challenge posed by these datasets, i.e.,
the larger number of classes for CIFAR-100C and the harder synth-
to-real domain shift for VisDA, requiring adaptation of features in
deeper layers.
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(a) 0 iteration (b) 10 iterations (c) 20 iterations (d) 50 iterations

(e) 0 iteration (f) 10 iterations (g) 20 iterations (h) 50 iterations

Figure 6.3: t-SNE plot of features after different adaptation iterations
(0, 10, 20, 50) for the Brightness (top row) and Contrast (bottom
row) corruptions of CIFAR-10C. The adaptation at test time helps
separate the features of examples from the same class (represented
by color).

Number of adaptation iterations

Another important aspect of test-time adaptation is the number of
iterations needed at test time to obtain the best results. In line with
previous studies [139, 132] Figure 6.4 shows, for the corruption types
of CIFAR-10C, that the best results are obtained after 20 iterations.
Successive iterations do not yield better results, on average. The
same image for CIFAR-100 corruptions can be found in supplemen-
tary material. The same finding emerges from the other datasets
with the only exception of CIFAR-10.1 where, as per previous exper-
iments [139, 132, 143], adaptation tends to degrade the performances
(90.18% of AUROC without adaptation, 89.27% of AUROC after 20
iterations).
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Batch size PTBN TENT ClusT3 NC-TTT ReC-TTT

8 61.97 62.11 73.73 79.75 81.68
32 68.46 68.46 80.14 81.80 82.54
64 69.45 69.54 80.38 82.01 82.84
128 70.43 70.09 80.67 82.43 82.92

Table 6.2: Robustness to the batch size. Qualitative performance
of different approaches on CIFAR-10C (%) for different bacth sizes
used during training.

Trainable layers Impulse Noise Brightness Pixelate Average

1 layer 16.12 93.26 34.83 64.79
2 layers 61.86 94.00 76.46 80.62
3 layers 69.25 94.06 82.03 82.92
4 layers 69.56 93.78 81.57 82.75

Table 6.3: On the impact of the training different layers. Per-
formance comparison of training different layers of our approach on
CIFAR-10C (%).

On the contrastive loss performances

To show the impact of our contrastive approach we implemented a
TTT method based on the SimSiam [235] framework. This solution
only compares the features at the bottleneck level and is based on a
single encoder, followed by a projection head and a predictor. The
model was trained with the Cross-Entropy loss and the SimSiam loss
as auxiliary task. As reported in the paper presenting the SimSiam
technique [235], the loss is computed as the negative cosine similarity
between i) the features of the projector (fE) extracted by the original
image and ii) the features of the predictor (fP ) of the augmented
version of the image with a stop gradient on the predictor features.
To have a fair comparison with ReC-TTT , we also used horizontal
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Figure 6.4: How many iterations are needed for adaptation?
Performance (AUROC) obtained by our method with different num-
ber of adaptation iterations on CIFAR-10C. For most corruption
types, our method provides a significant boost within few iterations
and remains stable when the number of iterations is increased.

flip as augmentation. During the adaptation phase, we adopted the
same auxiliary loss to adapt the encoder features for a total of 20
iterations.

Table 6.4 shows that the SimSiam contrastive learning approach,
although achieving some good adaptation performances, does not
achieve the same results as ReC-TTT . A possible reason for this re-
sult is that SimSiam cannot fully capture the domain shift, which
is hidden in the whole representation and not only at the bottle-
neck level. This is the main difference with ReC-TTT that instead
compares features at different layers.
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Impulse Noise Brightness Pixelate Average

SimSiam 56.40 82.92 68.69 69.77

ReC-TTT 69.28 94.03 82.13 82.82

Table 6.4: On the contrastive loss. Qualitative results using Sim-
Siam contrastive approach on CIFAR-10C (%).

Impulse Noise Brightness Pixelate Average

One encoder 65.19 93.17 80.36 81.07

Two encoders 69.28 94.03 82.13 82.82
One encoder
(Inference)

67.54 93.31 80.89 81.59

Table 6.5: Using one vs. two encoders. Qualitative results on
different configurations of our approach, on CIFAR-10C (%).

Impact of removing the second trainable encoder

We evaluated the effectiveness of ReC-TTT ’s ensemble learning strat-
egy, which employs two trainable encoders, by comparing it with the
base architecture with a single encoder. Table 6.5 shows the per-
formance for three different corruptions and the average among all
15 corruptions available in CIFAR-10C. We observe that using two
encoders performs better than having a single one in all cases. This
demonstrates the effectiveness of our ensemble learning approach to
stabilize training and provide a more robust prediction. To address
the increased computational complexity introduced by our model, we
investigated the impact of using only one encoder during inference
when constrained by performance requirements. While this approach
results in a slight reduction in performance, it still yields better re-
sults when compared to training the model without the ensemble ar-
chitecture, remaining competitive with the other SOTA approaches.
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6.2.3 Preliminary results on US images

As a preliminary evaluation on US images, we tested our approach
on the knee-elbow dataset described in Section 2.7.2. In this sce-
nario, we compared ReC-TTT with a set of TTA methods based on
the same ResNet50 architecture: ResNet50, PTBN [135], T3A and
T3A+BN [238] TENT [136] and TIPI [137]. To train the models,
we used the knee SQR dataset, while the target domain is the elbow
OLR dataset.

The results obtained are reported in Table 6.6, these results show
the balanced accuracy obtained by different methods of TTA and
TTT. We can see how the model trained on knee images and directly
applied on the elbows fails to classify the images, reaching only a
balanced accuracy of 61.00, while all adaptation approaches provide
significant improvement, ReC-TTT has the highest performance, ob-
taining a balanced accuracy of 70.49. These preliminary results do
not allow for the implementation of the tool for use and still need
to be correctly tuned. However, it shows the potential of these ap-
proaches in such a scenario. Figure 6.5a shows that before adapta-
tion features are not well separated. After the test-time training step
(Figure 6.5b), there is a minor improvement in the separation, but,
as confirmed by the numerical results, it is not sufficient to classify
the images with high accuracy.

ResNet50 PTBN TENT T3A T3A+BN TIPI ReC-TTT

SQR-OLR 61.25 62.31 63.74 62.96 64.30 63.09 70.49

Table 6.6: Performance comparison with state-of-the-art on knee to
elbow dataset (%).

6.3 Conclusions
This Chapter addressed the problem of domain shift between train-
ing and test data under the Test-Time Training framework. We
presented ReC-TTT , a novel TTT approach based on contrastive
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(a) 0 iterations (b) 10 iterations

Figure 6.5: t-SNE plot of features before and after adaptation on the
knee-to-elbow dataset

feature reconstruction that can efficiently and effectively adapt the
model to new unseen domains at test time. Through a series of ex-
tensive experiments, we demonstrated that our model outperforms
other state-of-the-art approaches across diverse datasets subject to
different distribution shifts. An important limitation of previous ap-
proaches is their need for large batches of test samples to correctly
adapt the model. Our results show that ReC-TTT is more robust
to this factor, even when the number of classes is greater than the
number of available samples. Furthermore, we highlight the robust-
ness of our method against training variability, typically observed in
current TTT approaches. Another key advantage of our approach is
that it requires tuning few hyper-parameters at test time, specifically,
the layers to adapt, the learning rate, and the number of adaptation
iterations. Finally, our method was evaluated on knee and elbow
musculoskeletal US images, demonstrating promising results; how-
ever, these results are not yet sufficient for practical implementation
in the CADET system. These results underscore the potential of our
method to improve the applicability of TTT in various domains un-
der challenging conditions. As demonstrated in the literature, this
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allows, especially in the medical field, to solve several problems caused
by privacy and security restrictions, which limit the sharing of data
between different centers that use different machines. Furthermore,
for similar problems, such as in the case of the adaptation to elbow
images, it is possible to save time on the images to be annotated,
obtaining working models in advance and saving the time of doctors.

We must highlight that our approach, like all TTT models, re-
quires training the entire model and the auxiliary task on the source
dataset. This results in a longer training procedure compared to
TTA approaches and limits the applicability to the availability of the
source data. Secondly, the proposed architecture introduces multiple
encoders that might affect the computational and memory require-
ments during training and adaptation. This is partially solved during
inference: these additional components are not required. Lastly, al-
though we validated our method on three classic benchmarks and on
the knee-to-elbow dataset, further evaluation should be performed on
different pairs of datasets, for example from US images collected with
the hospital probes to those collected with the portable US probes.
This would enable better performance on the data actually collected
by the patients with the portable probes, without requiring the whole
annotation process to train a device-specific model.
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7
PRACTICE: an intelligent

healthcare platform

The application of Artificial Intelligence (AI) methods in the medical
domain is a research area investigated by a large number of research
groups, due to its potential to revolutionize diagnosis, treatment, and
patient care [239].

Combining these advances with the latest trends in the Internet
of Things (IoT) makes it possible to build advanced remote moni-
toring systems taking advantage of sensing devices such as wearable
devices, physiological sensors, and smart home sensors [240]. Such
systems have the goal of continuously and unobtrusively monitoring
the health status of a patient with the long-term objective of improv-
ing the patient’s quality of life and reducing health system costs.

Most of the existing studies in this area mainly focus on the
data analysis aspects that are indeed crucial to provide clinicians
with correct and complete information about the patient’s health
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status. However, real-life deployment of these telemedicine systems
requires the development of several tools that are rarely investigated
in research papers. For instance, several medical domains require
the monitored patient to collaborate in data collection (e.g., self-
collecting data) and this requires user-friendly applications. Simi-
larly, clinicians who receive AI-processed data from their patients
require user-friendly applications that help them analyze the results
to make informed decisions. Furthermore, in supervised settings,
clinicians also need accurate and easy-to-use annotation tools that
can be quickly adapted to research needs.

In this chapter, we describe PRACTICE (Pilot on Remote Au-
tomatiC ulTrasound scan analysIs for hemophiliC patiEnts), a dis-
tributed healthcare system designed in collaboration between com-
puter scientists and clinicians to support the application of AI meth-
ods in the hemophilia domain. In PRACTICE, each hemophilic pa-
tient is provided with a portable ultrasound system. When necessary
(e.g., a routine check or in case of pain), the patient uses the probe
to acquire US images of the joints that are automatically transmit-
ted to the specialized center where a medical practitioner remotely
assesses the presence of joint bleeding supported by state-of-the-art
AI methods (such as [1, 241]).

7.1 Requirements
PRACTICE is the result of a multi-year collaboration between two
teams of researchers, one from the Computer Science Department
of the University of Milan, and the other from the Angelo Bianchi
Bonomi Hemophilia and Thrombosis Center, Fondazione IRCCS Ca’
Granda, Ospedale Maggiore Policlinico, also affiliated with the De-
partment of Pathophysiology and Transplantation of the University
of Milan. The collaboration involved multiple funded projects and
various research goals, with the overarching objective of supporting
the diagnosis process and the follow-up monitoring of joint recess effu-
sions in patients with hemophilia. In this context, the key functional
requirements of the platform are:
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• Supporting medical practitioners in the diagnosis process and
the follow-up monitoring of joint healthcare of the patients
through an interactive computer-aided diagnosis tool that shows
ultrasound images collected by the patients and estimates the
presence of joint recess effusion.

• Providing guidance to patients with hemophilia for the self-
acquisition of US scans of their joints using a portable ultra-
sound probe through an application running on a tablet device
that detects anatomical markers of the joint and interactively
instructs the user on how to move the probe to correctly scan
the recess.

• Facilitate the practitioners in annotating the presence of recess
effusion and outlining the recess in the images collected by the
patients in order to train the computer-aided diagnosis tool to
better recognize recess effusion.

In addition to the medical practitioner and the patient, we also
identify two supporting figures, along with their roles:

• The system administrator that manages the users of the plat-
form, assigns the annotation tasks to the medical practitioners,
and monitors the completion progress of the annotation tasks.

• The data scientist who uses the annotated images to train the
machine learning models.

There are also three non-functional requirements that are relevant
for the system design:

• The entire decision process, starting with the acquisition of the
US images by the patient and concluding with the determi-
nation of the diagnosis by the medical practitioner using the
computer-aided diagnosis tool, should not have a longer dura-
tion, for the physician, than the usual practice, with the patient
going to the hospital for an in-person visit.
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• Since the process involves the remote acquisition of US images,
their transmission to the hospital servers, and their usage in the
annotation system, the training of the machine learning model,
and the computer-aided diagnosis tool, it is crucial to guarantee
the patients’ privacy at all stages of the process.

• Given the research-oriented nature of the project, the data sci-
entist can be interested in exploring various ML models. This
requires high flexibility in the data annotation process.

7.2 System architecture
Figure 7.1 shows PRACTICE system architecture. The system is
composed of the PRACTICE server, the hospital ultrasound device,
the GAJA app running on Windows tablet computers and connected
to a portable ultrasound probe, and two web applications: CADET
and ATOM. In this Chapter, we will focus on GAJA, to which I
made a significant contribution. The CADET and ATOM compo-
nents, where my involvement was less substantial, are described in
Appendix C.

The hospital ultrasound device is a closed system that does not
have a publicly available Software Development Kit (SDK). This
means that it is not possible to develop ad-hoc applications using
the hardware of the ultrasound device. To the best of our knowledge,
this is common for most ultrasound devices. Therefore, we integrated
this device by leveraging its pre-installed application and configuring
it so that, at the end of each visit, it automatically saves the media
(images and videos) in a folder on the PRACTICE server. A daemon
running on the PRACTICE server watches for changes in that folder
and, when it observes a new file, loads the media and its associated
metadata (e.g., date of visit) on the database (main-DB) through
main-API, a set of REST APIs implemented through a Node server.

The other three clients (GAJA, CADET, and ATOM) interact
directly with main-API to store and retrieve data from main-DB.
All three clients also share a common problem: preserving patients’

129



privacy. To address this issue, the PRACTICE system adopts a
pseudonymization approach: all data and media related to a patient
are associated with a pseudo-identifier as soon as they are stored in
the main-DB. All operations related to pseudonymization are imple-
mented by the pseudonymization-API, a set of rest APIs that store
data in the identities-DB, a separate database with higher security
(restricted access). In the following processing, the media is asso-
ciated with the pseudo-identifier, unless the real patient’s name is
required (e.g., by the practitioner during a visit). In these cases,
client applications can access the name through pseudonymization-
API that implements a role-based access control policy (e.g., the
practitioners can access the patients’ names, while data scientists
cannot).

Finally, there are two other components worth mentioning. The
first is ML-API, which provides access to the machine learning mod-
els through a set of REST APIs available only for local calls and
implemented in Python. The second is a set of instances of various
annotation tool services. As detailed in Section C.2, ATOM orches-
trates various third-party annotation tools, each running with its own
instance (and possibly its own database) and interacting with main-
API.

7.3 GAJA: Guided self-Acquisition of Joint

ultrAsound images
One limitation of the current approach is that it is not always possible
for the patient to attend frequent visits (e.g., due to the distance
from the specialized center). Similarly, frequent and urgent visits
can be hard to manage by the specialized center for a number of
reasons, including the limited availability of medical personnel and
the costs. In order to address these issues, the University of Milan
and the Policlinico of Milan are designing a telemedicine system for
at-home joint bleeding diagnosis. The idea of the system is that
each hemophilic patient is provided with a portable ultrasound probe
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Figure 7.1: Overview of PRACTICE architecture

connected to a portable computer. When necessary, as a routine
check or in case of pain, the patient uses the probe to acquire US
images of the joints1 and sends them through the computer to the
specialized center where a medical practitioner remotely assesses the
presence of joint bleeding, supported by a CAD tool using techniques
already proposed in the literature for this problem [1, 241].

One of the main challenges of the system is that the acquisition
of ultrasound images is operator dependent, so it is unclear to what
extent the patients can acquire images that are suitable for remote
diagnosis. This problem has been addressed in the literature with two

1We use the term “patient” to denote the person in charge of acquiring the
US images but actually it can be the patient or a caregiver.
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different approaches: to teach the patients how to acquire the image
so that they can repeat the process without additional support [34]
or to guide the acquisition in real-time with remote support by a
medical practitioner [37]. The limit of the former approach is that
patients tend to forget how to acquire the images [41], while the latter
approach is time-consuming for the medical practitioners.

To overcome the limitations of existing approaches, we present
GAJA (Guided self-Acquisition of Joint ultrAsound images), an ap-
plication that provides an automated guiding system to support the
patient in the acquisition of joint US images. GAJA is designed to
combine the benefits of existing solutions: on one side, it guides the
patient in real-time during the acquisition process, on the other side
it does not require the practitioner to remotely supervise the acquisi-
tion process. Currently, GAJA is a working prototype that supports
the acquisition of knee joint US images.

7.3.1 Interaction design

GAJA was designed by a multi-disciplinary research team involving
computer scientists and medical practitioners. The Automate-Guide-
Remind design principle was defined in the process and a collabora-
tive interaction approach was adopted.

“Automate-Guide-Remind” design principle

Previous papers show that learning to self-acquire US images is dif-
ficult and that patients tend to forget how to use and position the
probe after some time. We conjecture that this is partially due to
the large number of actions that the patient is required to complete
and that affect the successful acquisition of US images: the probe
positioning on the body, its inclination, the joint flexion, putting the
gel on the probe, and setting the probe parameters. To mitigate this
problem we introduce the Automate-Guide-Remind design principle.
According to this principle, as many actions as possible should be
automated so that the patient is not in charge of them. The ac-
tions that cannot be automated, and that require extensive practice
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and deep domain knowledge, which usually only medical practition-
ers acquire during their training, should be guided, meaning that the
system should provide automatic instructions in real-time on how to
use the system. For the remaining actions, which cannot be auto-
mated or guided, clear reminders should be automatically provided
by the system. These actions should only include those that are easy
to explain to the patient and that the patient can easily complete.

To implement the Automate-Guide-Remind design principle we
identified the set of all actions required to successfully acquire a US
image, and divided them into three classes:

• Automated actions. This class contains actions that can be
totally automated and hence are not in charge of the patient.
For example, in GAJA the probe parameters (scan depth and
gain) are tuned by the practitioner in a setup phase and saved as
presets for each scan. During self-acquisition, these parameters
are automatically loaded without intervention by the patient.

• Guided actions. These are the actions that the patient does
while guided in real-time by the system. In GAJA they include
the fine positioning of the probe on the body as well as the
exact joint flexion.

• Reminded actions. These actions are performed indepen-
dently by the patient, possibly after initial training and with
reminders provided during use. In GAJA these actions include
general probe usage (e.g., apply the gel on the probe) as well
as scan-specific coarse positioning. For example, in the sub-
quadricipital recess (SQR) longitudinal scan the probe should
be centered on the leg and parallel to the femur. The patient
learns to use the probe and to position it during an initial phys-
ical visit with the medical practitioner (the setup step, see Sec-
tion 7.3.1). When patients need to use GAJA independently,
they can access quick reminders as well as a detailed video ex-
planation (by clicking the ’HELP’ button) (e.g., see Figure 7.2).
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Figure 7.2: Instructions provided before the self-acquisition

Based on this design criterion, in the specific case of the SQR
longitudinal scan, we identified two Guided actions shown in Fig-
ure 7.3 where the solid orange boxes represent the current patella
position, while the dashed boxes represent the target area where the
patella should be positioned. Similarly, the purple boxes represent
the femur. The two Guided actions are: positioning the probe with
the correct distance from the knee (see Figure 7.3a) and flexing the
knee to the right angle (see Figure 7.3b). These actions are particu-
larly important because even small errors can make the acquired US
image unsuitable for the diagnosis. In particular, as the probe gets
closer to the knee (see Figure 7.3a left), the patella (rigid orange box
in Figure 7.3a right) moves right in the scan. Similarly, increasing
the knee flexion angle (see Figure 7.3b left) moves the femur down
in the scan. We empirically selected these two actions based on the
experience of the medical practitioners in our research team.

Collaborative interaction approach

GAJA adopts a collaborative interaction approach between the med-
ical practitioner and the patient. The approach consists of a setup
step in which the medical practitioner and the patient collaborate in
person and a self-acquisition step in which the patient independently
acquires the image.

Setup step: The setup step is conducted during an in-person
clinical visit by an expert medical practitioner who trains the pa-
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(a) Probe distance from the knee (b) Knee flexion

Figure 7.3: Effect of moving the probe or the knee angle

tient (preliminary results show that a training session of about 10
minutes is sufficient) and collects a reference image for each target
joint scan2. The collection of reference images is particularly relevant
because the correct probe positioning may vary between patients hav-
ing different physical characteristics and health conditions, hence it
is important to personalize the probe position for each patient.

During the training, the practitioner shows how to use the system
and provides basic instructions on how to coarsely position the probe
and how to follow the guidance instructions. During the reference
image collection, scan-specific anatomical markers are automatically
extracted from the US image using object detection techniques. For
example, Figure 7.4a shows the detected positions of the patella and
of the femur in the SQR scan of the knee. The practitioner positions
the probe, confirming that the markers are positioned correctly, and
acquires a single US image for each scan. While performing this
procedure, the practitioner also specifies the scan depth and gain
parameters that are stored by GAJA. Note that these parameters
should be tuned for each scan and patient.

Self-acquisition step: Self-acquisition requires the patient to
complete a set of tasks. First, the target joint to scan is selected

2A scan is a specific view of a body part obtained by positioning the probe in
a consistent way.
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(a) Setup step by the practitioner (b) Self-acquisition by the patient

Figure 7.4: GAJA two-step image acquisition procedure

from a list, thus loading the probe parameters (Automated action).
The patient then files a clinical history questionnaire (e.g., does the
joint hurt?). Then, a screen containing text indications and images
(see Figure 7.2) reminds the patient to perform Reminded actions
which include adding the gel on the probe and its coarse positioning.

Next, the patient fine-tunes the probe position through aGuided
action. The guidance is provided with two simultaneous modalities.
On the right side of the interface (see Figure 7.4b), visual feed from
the probe is overlaid with the bounding boxes of the detected anatom-
ical markers present in the feed (continuous border). The patient has
to align the anatomical markers with the target areas (with dashed
border) of the same color, which are extracted from the reference
image collected by the practitioner. For example, in Figure 7.4b the
solid boxes represent the current position of the patella (orange) and
femur (purple), while the dashed rectangles represent their position
in the reference image.

The left frame provides symbolic indicators of the quality of the
current positioning, rendered as sliders, each corresponding to a posi-
tioning parameter. Icons at the beginning and at the end of the slider
indicate the range of the movements that govern the corresponding
parameter. The sliding indicator is centered on the line when the
positioning is correct, and it is displaced laterally if the patient needs
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to perform alignment corrections with respect to that parameter. In
the above example, the upper sliding indicator is displaced slightly to
the left, indicating that the probe should be approached to the knee.

Once the probe is correctly positioned (see Section 7.3.2) a mes-
sage informs the user to hold the probe still for 3 seconds. This was
required because we empirically observed that the first acquired im-
ages are motion-blurred and requiring the patient to hold the device
still mitigates this problem.

We also observe that, although the probe is correctly positioned,
it is possible that the acquired image is unsuitable, for example, due
to blurriness or lack of gel. However, sending an unsuitable image
to the practitioner would result in a delay in the diagnosis process, a
loss of time for the practitioner, and in a frustrating user experience
for the patient. To mitigate this problem, we adopted two solutions.
First, GAJA acquires a set of images (instead of a single one), as this
increases the chances that at least one of them is suitable. Second,
we use a ML model to check if at least one of the collected images is
suitable. Thanks to this model, the user can be immediately informed
if no image is suitable and can re-acquire the images. Once a set
of images is acquired, they are sent to the server where they are
stored for the medical practitioner to use in order to formulate a
diagnosis. Note that the larger the set of images sent to the medical
practitioners, the longer it could take them for finding a suitable
one. In order to speed up the diagnosis process, images are ordered
according to the suitability as computed by the ML model, so that the
images with the highest likelihood of being suitable can be processed
first.

7.3.2 Implementation

Architecture

GAJA was implemented as a Windows application and current pro-
totype runs on Surface GO3 3, a touchscreen-based portable device.

3https://www.microsoft.com/en-us/d/surface-go-3
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The device is connected to the portable probe MicrUS Pro-L40S
manufactured by Telemed, Lithuania4 through a USB-C cable. The
application requires bi-directional communication with the ultrasound
probe in order to acquire images in real-time and to change the set-
tings (e.g., depth and gain). This was achieved through an SDK
made available by the probe manufacturer. Thanks to this solution,
the GAJA app can access the US stream of images in real-time, hence
making it possible to locally process the images and show the result
in real-time.

The data produced by GAJA (questionnaire answers, images, and
other metadata, including the detected bounding boxes, and acquisi-
tion time) are transmitted to a remote server, hosted at the hospital,
which stores them. The server also hosts a web app that the prac-
titioner can use to visualize the data acquired by various patients
through GAJA and to provide the diagnoses.

Implementation of machine learning models

GAJA uses two machine learning models: one to detect the anatom-
ical markers, and the other for classifying images suitability.

In order to implement the former model we trained a YOLO V5[201]
architecture that provides a nano version specifically designed to re-
quire low memory and provide fast computation also on low-performance
devices. Our preliminary results were obtained on a dataset com-
posed of both the Knee SQR and a set of 100 images collected us-
ing the portable probe, where the same practitioner annotated the
reperees and show a mean Average Precision at 0.5 IoU (mAP@0.5)
of 0.986 and 0.922 for the patella and femur, respectively. The model
was then exported in the onnx format to be used in GAJA. The
model processing time on the portable device is about 150 millisec-
onds. Considering the other computations that are required for each
frame (e.g., drawing the bounding boxes, acquiring the frame) GAJA
is able to process approximately 4 images per second.

The detection model returns, for each processed frame, the bound-

4https://www.telemedultrasound.com/micrus-pro
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ing boxes of the detected anatomical markers. Since the model can
recognize each anatomical marker more than once in each frame, we
only consider the prediction for each class with the highest confidence.

The bounding boxes are then displayed as an overlay over the US
frame stream. In order to smooth the movements of the bounding
boxes as they appear to the user, we adopted a moving average that
considers the current and the two previous frames.

Preliminary results suggest that the features that most impact
image suitability are the horizontal position of the center of the
patella bounding box and the vertical position of the center of the
femur bounding box. Hence, for each processed frame, the procedure
computes the horizontal distance between the centers of the patella
bounding boxes of the current frame and of the reference image. If
the distance is smaller than a given threshold, the patella is consid-
ered in the correct position. Similarly, GAJA detects if the femur is
in the correct position by considering the vertical distance. If both
the patella and the femur are in the correct position, then the probe
is correctly positioned.

The latter model (classification of image suitability) was imple-
mented as a convolutional neural network based on InceptionV3[242]
and was trained on the Knee SQR dataset, using all the initially dis-
carded non-suitable images. Our preliminary results show an average
F1-score of 0.85. In this particular task, the processing time is slower
as a result of the model complexity. Hence this model does not run
in real-time. The model is currently running on the device but we
plan to run it on the server in the future.

7.4 Conclusions
In this Chapter we introduce PRACTICE, a healthcare system specif-
ically designed to support hemophilic patients and the medical prac-
titioners assisting them. The system was also designed with a third
main actor in mind: the data scientist who uses the collected data
to train new ML models. This required defining medical procedures
and technical solutions for the acquisition, annotation, and storage
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of US media.
All three PRACTICE components are currently being used: CADET

supports the practitioner during visits, and ATOM makes it possible
to assign annotation tasks to practitioners. The third component,
GAJA, is currently available for ten patients who use it to acquire
weekly images of the knee recess.

The main limitation of this contribution is the lack of formal
system validation, in particular from the point of view of its usability
by the patient for the GAJA app, and for the practitioners in the
CADET web app. Another limitation of the current approach is the
lack of a complete integration with the Italian healthcare system:
While our solution facilitates and automates some of the document
production, it still needs to be manually inserted into the healthcare
IT system. For example, while we can register in our system the
need for a follow-up visit, this cannot be automatically reflected in
the hospital booking system.

Finally, the GAJA app has several simplifications. Currently,
the only supported view is the knee SQR, while we analyzed, by
talking to practitioners, that in rarer cases the distension might not
be visible in this view and other views (e.g., lateral, medial) might
be required. Another limitation is the support for other joints; in
fact, as described in Chapter 2, hemophilia affects mainly the knee,
elbow, and ankle. However, the latter two are more complicated
to acquire, especially in the ankle, where small movements of the
probe can result in large changes in the image that would make it
unsuitable, and the development of the guiding system is still in the
prototyping phase. Moreover, GAJA only allows the acquisition of
static images, while recent discoveries indicate that it is necessary to
work toward short videos where the recess is squeezed and released.
This allows analysis of the movement of the particulate within it,
which facilitates the identification of the presence of blood.
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8
Conclusions and Future

Work

8.1 Summary
In this thesis, we addressed several challenges posed by the limitations
of available data in medical imaging, particularly in rare pathologies
like hemophilia and emerging conditions such as MPOX.

First, we tackled the issue of data scarcity by employing transfer
learning to leverage pre-trained models on larger datasets, thereby
improving generalization. Additionally, we applied multi-task learn-
ing to extract knowledge across different tasks, further enhancing
model performance despite limited data.

Secondly, class imbalance, a significant issue caused by the re-
duced frequency of hemophilic swelling and limited access to medical
facilities, was addressed using an anomaly detection framework. This
allowed for training the model solely on Non-distended images, with
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weak supervision provided through bounding boxes, helping to im-
prove sensitivity in the detection of rare conditions.

To mitigate the challenges of domain-shift, we proposed a new do-
main adaptation technique, which uses cross-reconstruction as aux-
iliary task to adapt the model to the new domain. This was also
applied in similar US images, such as the knee and elbow joints,
without requiring large labeled datasets for each region. Through
these methods, we demonstrated that it is possible to improve model
performance and adaptability in the context of highly imbalanced
and scarce medical datasets, paving the way for more effective deep
learning applications in rare pathology detection.

Finally, as the ultimate goal of my Ph.D. was to provide a sup-
portive tool for the management of hemophilia, both for patients
and practitioners, we integrated the previously discussed contribu-
tions into a unified system: PRACTICE. This system comprises
three key elements designed to streamline hemophilia care. First,
GAJA is an application that offers an automated guiding system
to help patients acquire ultrasound images of their joints indepen-
dently. Second, CADET employs AI methods to help clinicians diag-
nose hemarthrosis. Lastly, ATOM provides a platform for clinicians
to efficiently annotate ultrasound images. The PRACTICE system
is currently in use at the Policlinico of Milano, while ten patients are
currently undergoing a preliminary test on the self-collection of US
images with the GAJA app.

8.2 Discussion and limitations
In this thesis, we faced several challenges and introduced computer
vision solutions to address problems related to medical data. The
contribution is twofold: first, we proposed solutions that can be gen-
eralized to various computer vision problems in the medical domain
and possibly also in other domains; second, we specifically addressed
the unmet needs of current hemophilia management practices. In
this section, we will briefly discuss the results obtained, their impli-
cations for the management of hemophilia, and the limitations of the
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proposed approaches.

8.2.1 Impact

The direct impact of our methods on current hemophilia treatment
practices can be divided into three aspects: improved patient out-
comes, enhanced practitioner efficiency, and cost savings for the health-
care system.

Concerning patients, the GAJA app, which allows self-collection,
would reduce the need for frequent hospital visits, reducing long wait-
ing times, often caused by the limited availability of highly specialized
practitioners. It would also allow every patient to make routine visits
that may lead to the early detection of blood effusion in the absence
of pain. This will also lead to fewer cases of untreated joints, with
a reduced risk of permanent damage and, at the same time, to a
reduction in the risk of overtreatment and a reduction in the risks
associated with excessive treatment, such as inhibitor development,
infections, and thrombosis [243]. This self-collection capability not
only improves accessibility, but also ensures timely monitoring and
intervention, potentially leading to better health outcomes and an
increased quality of life for patients with hemophilia.

For practitioners, the CADET web app is designed to guide the
examination procedure, potentially improving diagnostic accuracy.
This also significantly reduces the time needed to complete the ex-
amination, as no specific tool was previously available, which required
doctors to manually write the diagnoses for different joints on paper,
calculate the HEAD-US score, and then copy everything into the
healthcare system. Our system enables a more direct completion of
selected fields, thereby reducing the possibility of human errors and
speeding up the whole process. As an unintended benefit, the design
of the tools and the analysis of the requirements for the various ele-
ments of this thesis led to the definition of a standardized procedure
that was still missing for the early detection of effusions using US
evaluation. This work is currently being formalized and will soon be
submitted by our research group. Another positive impact is on the
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training of less experienced practitioners in the analysis of ultrasound
images. The ability to view and analyze multiple sessions, along with
annotations and diagnoses made by more experienced practitioners
directly on the web app, makes CADET, in conjunction with ATOM,
an effective training platform. This allows practitioners to compare
their diagnoses and discuss any differences.

Finally, the implementation of PRACTICE in actual medical fa-
cilities could impact both direct and indirect costs. For direct costs,
reducing overtreatment would minimize the expenses associated with
replacement drugs, which can add up to more than 220, 000 yearly
euros per patient [244]. It would also lower hospitalization costs by
reducing the need for surgeries to mitigate permanent joint damage.
Furthermore, the remote acquisition app would reduce the number of
in-hospital visits, allowing practitioners to dedicate more time to the
most urgent patients. For indirect costs, improved joint health in pa-
tients would reduce expenses such as transportation costs, follow-up
visits, and impact on educational and professional activities due to
mobility limitations or frequent absences for medical appointments.
This would also limit the workload of the healthcare system by re-
ducing the number of patients who require hospital care.

Although an accurate health technology impact assessment is cur-
rently being conducted at the University of Milan, a preliminary eval-
uation on economic sustainability can be made. Without taking into
consideration the costs of developing and reseaching, the cost per
user is limited by the hardware costs. In this specific scenario, pa-
tients receive a tablet of around e300 and a portable probe that
costs around e4, 000, which will be potentially used by patients for
many years. If we consider a single injection of replacement drugs
at around e2, 000, avoiding two injections could pay for all hardware
costs. Furthermore, this does not consider the costs of hospital visits,
transportation, etc.
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8.2.2 Applicability limitations

Despite the contributions proposed in this thesis, it is important to
reflect on the limitations to better understand the impact and to
define future research directions.

As the primary goal in hemophilia management is the identifica-
tion of blood effusion, the extremely limited available data and the
complexity of distinguishing between synovial fluid and blood effusion
on US images made it impractical to focus directly on this problem.
Instead, we directed our efforts to the simpler task of detecting re-
cess distension, which serves as a necessary condition to identify the
presence of blood within the joint.

Furthermore, the research problem is evolving, even from a med-
ical perspective. Through the studies conducted in these years, we
have realized that subjective annotation is highly dependent on the
practitioner’s skill level. In addition, the interpretation of the US
image by the practitioner is influenced by their knowledge of the pa-
tient’s medical history. In the last version of the dataset, we acquired
annotations from three different practitioners.These results allowed
practitioners to discuss and better define the problem. Another re-
quirement that has recently changed is to classify the distention into
four classes (instead of two, as done in this thesis). The rationale
is that, since distension can occur in various levels of severity, the
anatomical characteristics can vary greatly within a single class con-
sidering only two classes. We are therefore moving toward a 4-class
classification approach, where the levels are absent, minimum, mild,
and severe, where the level of the distension is defined by precise
anatomical measures.

Another key limitation with respect to the feasibility of the PRAC-
TICE system is that all works presented in Chapters 4, 5, and 6
are based on images collected with a single hospital US probe, the
quality of which is higher than the portable probes that are used to
collect images in the POC. More evaluations should be performed
to evaluate the ability to generalize from the hospital dataset to the
portable one. Fortunately, this is supported by the studies on domain
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adaptation that show the potential of adapting the model to similar
domains.

The dataset used in this evaluation presents several limitations
that could affect the generalizability of the results. The majority of
patients are Italians and are currently being treated with replace-
ment drugs. This condition introduces potential bias, given that the
anatomical and medical conditions of the patients are influenced by
ongoing treatments. Furthermore, all US images were collected using
the same machine, which may limit the diversity of imaging quality
and techniques. This uniformity may not reflect the variability in the
equipment used in other medical settings. In regions where replace-
ment drugs are less available, the conditions of the patient’s joints
could be worse, and as a result, the appearance of recesses could dif-
fer, further complicating the applicability of these findings to diverse
populations.

An aspect that significantly limited the progress of this research
was the extensive annotation time required, and indeed the anno-
tation process took more than a year. This thesis aimed to reduce
the reliance on a heavily annotated dataset, which would be ideal for
training standard deep learning models.

Another limitation is that the dataset produced could not be
shared outside the university due to privacy restrictions, which re-
stricted other interested groups from conducting research that could
improve performance, validate our findings, or provide valuable com-
parisons. This lack of access also limits potential collaboration, which
is crucial for advancing the field and ensuring the generalizability and
robustness of our methods.

Finally, to improve trustworthiness, it is essential to provide prac-
titioners with explanations of how the model arrived at specific deci-
sions. This concept is commonly referred to as eXplainable AI (XAI).
In Chapter 3, we demonstrate how this can assist during diagnosis.
Currently, the CADET system lacks implementation of this feature,
which will be indispensable to provide practitioners with the neces-
sary support.
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8.3 Future works

8.3.1 Blood effusion detection

As future work, we are beginning to investigate segmentation tech-
niques to extract the recess area in the US images. This approach will
enable precise measurements in centimeters, allowing us to manually
extract key features such as the perimeter, area, and horizontal seg-
ment that bisects the recess at half its height. These measurements
are important because distension is currently subjectively assessed
based on these measurements.

As discussed in Section 8.2.2, one main limitation on the appli-
cability of our approach is the inability of the models to differentiate
between synovial and blood effusion, the latter being the actual man-
ifestation that requires treatment. Knowing that a possible approach
to identifying the presence of blood is by looking at how the parti-
colate moves inside the recess after a dynamic manover: the probe
must be squeezed alternately, so as to compress and relax the recess.
In the presence of synovial liquid, the liquid appears without swirling
movements. In contrast, in the presence of blood, small spekles move
within the recess in a cahotic pattern (similar to the effect of a snow
globe) [26]. Given this context, we plan to adopt the segmentation
technique to isolate the recess area to analyze the content of the re-
cess, without the distraction caused by the typical noise of the US on
the muscles and tissues surrounding it. It is important to note that,
as mentioned previously, the data acquisition process is costly and
time consuming for the practitioners. Fully supervised approaches
might not be ideal in this scenario, and supported by the results
obtained with weak supervision, we intend to extend LoRIS, giving
more focus on the segmentation performances. In addition, temporal
enforcement could be adopted to obtain consistent segmentation in
videos [245].

The acquisition of images and videos of blood effusions is highly
complex. Although the ground-truth could be assessed directly by
puncturing the recess and analizing the fluid, this is an invasive ap-

147



proach that cannot be easily performed on all patients. In addition,
visible effusions presented in the center occur only a couple of times
each year. This is because to collect images of this condition, patients
must have ongoing bleeding and visit our facility, whereas they typi-
cally go to the emergency room, where our system is not integrated.
This highlights the importance of a multicenter study in collecting
a sufficient amount of data. However, the total number of images
will remain small, underscoring the need for machine learning tech-
niques that can work effectively with limited data. To facilitate the
procedure, we defined a standardized protocol with the practitioners
to collect and annotate the images without puncturing the patients.
When there is a suspicion of bleeding, the patient is treated, and af-
ter 2 to 4 days, if swelling reduces, it indicates that the content was
blood. In contrast, if swelling persists, it was caused by something
else. This allows us to accurately identify which episodes and their
corresponding images were of a blood effusion. Once these results are
obtained, we can start analyzing the dynamic patterns that occur in-
side the recess by looking, for example, at the optical flow or using
anomaly detection in videos to find unusual behavior, as described
above.

8.3.2 Improved CAD system

To extend the work done on the PRACTICE system there are sev-
eral research directions that need to be addressed. The first would
be to integrate the system that allows analysis and detection of dis-
tention in other joints, such as the elbow and ankle, together with
their different views. This can be achieved through the adoption of
domain adaptation techniques when really similar (e.g. knee to el-
bow), while it will probably require to collect and annoate new data
for completely different anathomical structures such as the ones of
the ankles.

In future work, it will be essential to improve model calibration
to improve the reliability of the predictions, particularly when using
them as an index of the presence of a pathology. A well-calibrated
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model should exhibit a strong inverse relationship between predic-
tion confidence and error rate, which means that higher certainty
should correlate with higher accuracy, ultimately supporting more
informed decision making. This is important for clinical applica-
tions, as overconfident but incorrect predictions could lead to under
and overtreatment.

Furthermore, GAJA has been currently evaluated with non-hemofilic
patients, in a group that is statistically more inclined toward the use
of technological devices. In fact, we are conducting a user study, with
the aim of assessing the ability of the system to guide hemophilic pa-
tients to collect reliable US scans. Currently, 9 patients out of the
target 13 are participating in the tests. 3 of the patients have com-
pleted the 19-week study in which they were asked to collect an im-
age each week. A longitudinal study will also measure the extent to
which GAJA can be used by patients over a long period, as previous
work [41] revealed that it can be challenging for patients to remem-
ber how to use the system. We conjecture that, since GAJA adopts
the Automate-Guide-Remind design principle, it will substantially
mitigate this problem.

To deal with the limit imposed by the lack of portable-probe anno-
tated images, we plan to adopt ReC-TTT to assess the performances
of a model trained with only images generated by high-end probes,
on low-end probes. Similarly, the technique will require to be tuned
to achieve sufficient performances on the knee-to-elbow adaptation.

Since thrustworthiness and transparency are essential, especially
in the medical domain, we plan to adopt XAI techniques to better
identify the models’ choices. This aims to increase the reliability of
the predictions and suggest which parts of the images or videos should
be relevant to the practitioners to make the diagnosis. It will also
be essential to address the technological validation process and legal
approval of the developed tool before it can be introduced as a prod-
uct for patients. This involves ensuring that the technology meets
regulatory standards and demonstrates safety and efficacy through
rigorous testing and conducting comprehensive clinical trials.
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8.3.3 Dataset publication

We are discussing with the ethics committee the procedures for data
collection, annotation and obtaining informed patient consent for the
public sharing of anonymized data, to ensure ethical compliance. The
ground truth annotations of distension and blood effusion will be
based on the diagnosis generated during visits and together with the
knowledge of the patient’s history, and we will provide annotations
(based on individual images) made by different practitioners. A fu-
ture research direction will be to explore how leveraging the concor-
dance and discordance between them can improve the approximation
of the ground truth and lead to a more calibrated model. An intra
and inter practitioners assessment will be conducted.
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A
Visualization of LoRIS

results

In this section, we provide examples of the qualitative evaluation of
LoRIS results (Figure A.1).

Note that false positives can occur when the model fails in the
reconstruction of nomral recesses (see Figure A.1a), in this case the
dice score is 0, therefore lowering the average performance of the
model. In the second example (Figure A.1b) the model correctly
recontructed the image, but the reconstructed recess still appears
partially swallen and therefore the distance algorithm is not capa-
ble of identifying the whole anomalous area. Finally, the last two
examples (Figures A.1c and A.1d) show a good reconstruction and
anomaly detection, leading to higher dice scores (0.64 and 0.77).
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(a) Dice score: 0.00.

(b) Dice score: 0.40.

(c) Dice score: 0.64.

(d) Dice score: 0.77.

Figure A.1: Qualitative evaluation of LoRIS reconstructions and seg-
mentations.

152



B
ReC-TTT extended results

For CIFAR-100C, TinyImageNet-C and VisDA our model was com-
pared with the same state-of-the-art approaches except TTT++ where
the results were not reproducible nor available: ResNet50 [178], PTBN [135],
TENT [136], TIPI [137], ClusT3 [132] and NC-TTT [143]. As per
previous experiments TTA methods were evaluated on the same pre-
trained ResNet50, while TTT approaches were trained using the same
ResNet50 base architecture and the same training strategy.

B.1 VisDA
Table B.1 reports the detailed results on the VisDA dataset. ReC-
TTT outperforms most approaches on average, with a notable in-
crease compared to the ResNet50 baseline without adaptation (+25.81).
On train→val and train→ test , NC-TTT performs better than ReC-
TTT (≈+1% on average). Moreover, the results demonstrate that
TTT methods show greater robustness on complex datasets, such as
VisDA, compared to methods like Source, PTBN, and TENT, which
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are more competitive on the CIFAR datasets. This performance dif-
ference may be attributed to the reconstruction task’s ability to cap-
ture more generalizable features, while simpler approaches struggle
to detect more subtle domain shifts.

Table B.1: Performance comparison with state-of-the-art on VisDA
dataset (%).

VisDA train→val VisDA train→ test Average

ResNet50 35.01 36.58 35.80
PTBN 54.53 53.63 54.08
TENT 58.13 57.04 57.59
TIPI 60.22 62.26 61.24
ClusT3 60.89 61.33 61.11
NC-TTT 62.49 62.57 62.53

ReC-TTT 62.06 61.12 61.59

B.2 CIFAR-100C
Table B.2 shows in detail the results and the comparison with state-
of-the-art approaches on all the perturbations of CIFAR-100C. ReC-
TTT the best results, demonstrating a 30% increase in AUROC after
adaptation compared to the baseline. This improvement surpasses
the most recent state-of-the-art approaches as ClusT3 and NC-TTT
by 3%.

B.2.1 Number of adaptation iterations

Similarly to what was identified in previous studies [139, 132, 143]
and was confirmed for CIFAR-10C, also in the case of CIFAR-100C
the best results are obtained after 20 adaptation iterations, while for
some perturbation the same results can be obtained also with less
interaction, after 20 the results tend to remain invariant for all the
different perturbations. Figure B.1 shows for all the corruption of
CIFAR-100C the results obtained at different iterations.
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Corruption Type ResNet50 PTBN TENT TIPI ClusT3 NC-TTT ReC-TTT

Gaussian Noise 13.23 42.30 51.35 48.88 52.79 46.03 48.12
Shot Noise 15.46 43.30 52.63 50.61 52.91 47.04 50.43
Impulse Noise 7.89 37.41 45.39 43.80 45.54 41.53 45.29
Defocus Blur 27.36 67.46 69.44 68.72 66.66 67.00 71.21
Glass Blur 21.18 46.44 51.01 50.93 50.76 48.08 49.94
Motion Blur 38.18 64.21 67.27 66.63 62.92 64.31 68.86
Zoom Blur 32.81 66.68 69.33 68.84 65.42 66.24 69.91
Snow 44.85 55.52 60.47 59.51 56.65 58.70 60.21
Frost 31.56 54.76 58.35 57.90 56.91 58.55 60.16
Fog 32.79 56.77 62.29 61.12 53.95 57.73 62.22
Brightness 66.13 68.97 71.40 71.00 66.78 71.36 73.47
Contrast 11.87 63.47 65.63 65.17 56.46 61.53 67.06
Elastic Transform 48.87 57.93 60.07 59.94 59.07 60.25 62.37
Pixelate 26.70 59.75 64.06 63.56 62.26 61.17 63.61
JPEG Compression 48.88 52.45 57.84 57.79 59.34 55.69 57.05

Average 31.19 55.83 60.44 59.63 57.89 57.68 60.66

Table B.2: Performance comparison with state-of-the-art on CIFAR-
100C perturbations (%).

B.3 TinyImagenet-C
Table B.3 reports the results obtained on TinyImagenet-C, a dataset
of 10.000 images with the same 15 corruptions described for CIFAR10-
C and CIFAR100-C, but with 200 classes. ReC-TTT outperforms all
the other methods also on this dataset, with a 2.46% improvement
compared to NC-TTT , the second-best-performing model.
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Figure B.1: Performance (AUROC) reached by our method with
different numbers of adaptation iterations on CIFAR-100C.

Corruption Type ResNet50 PTBN TENT TIPI ClusT3 NC-TTT ReC-TTT

Gaussian Noise 13.20 30.46 31.03 32.22 32.65 31.92 34.87
Shot Noise 16.28 32.26 33.07 34.27 34.72 34.47 36.60
Impulse Noise 7.49 20.80 21.87 23.04 22.78 22.78 26.09
Defocus Blur 16.71 33.09 34.20 31.98 29.08 25.28 31.09
Glass Blur 7.42 15.97 16.88 17.60 16.26 15.67 19.59
Motion Blur 27.71 43.09 44.40 43.54 43.92 43.39 45.55
Zoom Blur 20.98 39.76 40.89 40.01 41.17 40.46 42.53
Snow 31.00 36.94 37.39 38.18 42.97 43.46 40.33
Frost 36.28 39.29 40.21 41.43 45.32 45.51 44.59
Fog 16.40 31.51 32.52 32.82 37.85 37.68 33.08
Brightness 36.48 44.70 45.09 46.39 51.19 50.62 48.53
Contrast 2.59 12.22 12.91 10.71 2.27 2.27 8.32
Elastic Transform 28.93 39.42 39.83 40.68 41.60 41.47 44.91
Pixelate 37.00 47.78 48.50 48.95 37.00 39.31 52.96
JPEG Compression 47.04 47.78 40.88 50.21 50.57 50.91 53.32

Average 23.03 34.47 35.15 35.47 35.32 35.03 37.49

Table B.3: Performance comparison with state-of-the-art on
TinyImageNet-C perturbations (%).
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C
Details on PRACTICE

components

C.1 CADET: Computer-Aided Diagno-

sis for hEmarThrosis
CADET is a web-based interface that supports clinicians in formulat-
ing the diagnosis; it manages both in-presence and remote visits. To
design CADET we first analyzed the habitual visit procedure adopted
by practitioners without the support of a computer-aided diagnosis
system. The physicians used to collect media with the ultrasound
probe and then enter the diagnosis of blood effusion in a word pro-
cessor file, following a template that defines a set of information for
each joint [14]. The diagnosis was finally uploaded to the national
health system server and, after printing, stored in the patient’s phys-
ical medical record.

157



(a) Images selection (b) Diagnosis questionnaire

Figure C.1: CADET interface

This procedure had several limitations. First, the media and exam
data were not linked, making access to the patient’s medical history
(complete with diagnosis and the media) impractical. This affects
practitioners, who need to review the stored data during follow-up
visits, and also makes it impossible to use the data for the training
of ML models. Second, some operations required the practitioner’s
intervention although, in principle, they could be automated. This
included, for example, the creation of the diagnosis on the word pro-
cessor. Finally, no CAD system was implemented and remote visits
were not possible.

We initially designed a first CADET prototype in which the prac-
titioner could use the web app to automatically acquire media from
the ultrasound probe. This solution was designed with the idea that
the practitioner could quickly switch from CADET to the probe.
However, due to technical limitations of the ultrasound probe (no
SDK is available), this was not possible. Therefore, we designed a
solution in which the practitioner first acquires media using the ul-
trasound probe and then interacts with CADET to formulate the
diagnosis. The practitioner first completes an initial general medical
history through a guided questionnaire and then selects the joint, one
at a time. The diagnosis of each joint is divided into four steps: media
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selection (Figure C.1a), joint-specific history, a questionnaire related
to the standard HEAD-US procedure [14], and a guided questionnaire
for the diagnosis of blood effusion (Figure C.1b).

After completing the process for each joint, the practitioner can
access the final diagnosis that follows the same format as the word
processor template. This report can then be uploaded to the national
health system server and possibly printed for physical storage.

The remote diagnosis procedure is similar, with the main differ-
ence that some information is already available (media and history).

CADET adopts two main solutions to support the practitioner.
First, it implements a knowledge-based system to guide the practi-
tioner in diagnosis formulation. This solution was first designed in
terms of a decision tree in which each node is a Boolean condition and
each leaf is the join-specific medical report. CADET implements this
decision tree through a questionnaire (see Figure C.1b) in which some
answers are automatically provided based on the data inserted in the
previous steps (e.g., whether the patient has pain) and the remain-
ing are provided by the practitioner. The second solution adopted to
support the diagnosis is to automatically detect recess distention [1],
which is a necessary condition for blood effusion. Taking into account
the media available for a given joint, the system suggests a disten-
tion value on a scale of four possible alternatives (see Figure C.1b).
The practitioner can then decide to accept the suggested value or to
change it.

Several solutions were also adopted to speed up the process. First,
CADET automatically pre-selects the media obtained from a visit
based on a ML solution that identifies, for each media, the scan,
the joint name, and its laterality. For each joint, some data are
precomputed on the basis of previous visits and the patient’s medical
history. For example, for each joint, the practitioner has to specify
whether there is a prosthesis. If the practitioner specifies that there
is one during a visit, the system automatically loads the same value
during the following visits. Finally, CADET automatically generates
the diagnosis file that can be uploaded to the national system.
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C.2 ATOM: Annotation Task Orchestra-

tor Module
Deep learning algorithms rely on large datasets to effectively learn to
generalize patterns of various pathological conditions or to identify
areas of interest. However, a public dataset of US media is not avail-
able for the medical domain considered. Therefore, we created a new
dataset by collecting US media from hemophilic patients. Data was
collected by expert practitioners during hospital visits, using a high-
end ultrasound device. Since media is acquired during regular visits,
the overall procedure was designed to avoid additional workload for
the practitioners and inconvenience to patients.

One problem that emerged during the creation of the dataset
is related to the fact that US imaging is highly dependent on the
operator and has a high inter-patient variability hence making the
acquired data highly heterogeneous, a factor that can negatively im-
pact the training of the machine learning models. To mitigate this
problem, we defined an acquisition protocol based on the following
principles [1, 26].

• Inclusion criteria. The media of patients with significantly
different characteristics (at the level of musculoskeletal US imag-
ing) are excluded from the dataset. For example, children and
patients with prostheses are excluded.

• Standardization. By adopting well-established procedures in
the medical literature and practice, we defined a standard pro-
cedure for image acquisition. This includes, for example, the
set of joints to consider and, for each of them, the set of scans 1.

• Parameters definition. When acquiring an ultrasound me-
dia, the practitioner can tune several settings (e.g. power and

1A scan defines the probe position and, consequently, which anatomical targets
are framed in the US image.
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frequency). We selected a fixed value for most of these set-
tings, leaving the practitioner with the ability to select only a
few parameters whose value has to be defined specifically for
each patient (e.g., the “depth” value).

After dataset acquisition, we defined a set of tools and practices
for data annotation. The guiding objectives were to reduce the an-
notation time and errors. To achieve these objectives, we initially
developed an ad-hoc annotation tool. However, we then realized that
the research activities frequently required the creation of new anno-
tation tasks. For this reason, we designed the ATOM (Annotation
Task Orchestrator Module) system that allows the administrator to
quickly create a new annotation task by specifying the following data.

• The set of media from the dataset.

• The annotation tool, a third-party application. For example,
for some annotation tasks, we used Label Studio [246] that, for
privacy reasons, we configured to run on our server. These tools
automatically transmit the annotations to PRACTICE, which
stores them.

• The type of annotation (e.g., the set of classes).

• The set of annotators (i.e., practitioners).

The system was designed to interact with any compatible an-
notation tool, including those for creating image class annotations,
bounding boxes, and segmentations. In addition to creating annota-
tion tasks, ATOM also provides two main functions. One function is
designed for annotators, who can access the list of tasks assigned to
them and run the annotation tool. The other function is designed for
the administrator to monitor the completion of the annotation tasks
and to check the inconsistencies among the annotators. Specifically,
for each annotation task, the administrator can define one or more
equality functions. Then ATOM uses these functions to create a con-
fusion matrix that shows, for each pair of annotators, the percentage
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Figure C.2: ATOM admin example screen

of images (among those annotated by both annotators) that have the
same annotation (according to the equality functions). Figure C.2
shows an example screen of the admin panel, on the left we can see
the list of active tasks, with the progress. On the right a detailed view
of a single selected task, where the progress is divided among the dif-
ferent practitioners and the tables on the bottom report statistics of
the currently annotated data for various equality functions.
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D
Joint ultrasound views

Table D.1: All the views available in the HEAD-US protocol. *Indi-
cates the most appropriate view for identifying a blood effusion.

Joint View Acronym

Ankle Lateral transverse scan of the sinus tarsi ST*
Anterior longitudinal scan over the tibio-talar joint TTL
Posterior longitudinal scan of the tibio-talar joint TTP

Anterior transverse scan over the talar dome TTT

Elbow Anterior transverse scan of distal humeral epiphysis DHE
Posterior longitudinal scan over the olecranon recess OLR*

Anterior longitudinal scan over the radio-humeral joint RHJ
Anterior longitudinal scan over the ulno-humeral joint UHJ

Knee Anterior longitudinal scan of over the subquadricipital recess SQR*
Medial transverse scan of the parapatellar recess MED
Lateral transverse scan of the parapatellar recess LAT
Anterior cranial scan of the femoral trochlea FEM
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E
Glossary of Medical Terms

• Anechoic: Referring to a structure that does not produce
echoes on an ultrasound, appearing completely black; typically
indicates the presence of fluid.

• Blood clot: A mass formed by platelets and proteins in the
blood that helps stop bleeding by sealing wounds in blood ves-
sels.

• Blood effusion: The accumulation of blood in a body cavity,
often due to trauma, injury, or a medical condition.

• Hemophilia: A genetic disorder that impairs the body’s abil-
ity to make blood clots, leading to prolonged bleeding.

• Isoechoic: Describes a tissue or structure that has a similar
echogenicity (brightness) to surrounding tissues on an ultra-
sound, making it difficult to differentiate from them.
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• Musculoskeletal: Pertaining to the muscles and skeleton, en-
compassing structures such as bones, joints, ligaments, and
muscles.

• Nonreplacement drugs: Medications used to manage symp-
toms or conditions without replacing or supplementing deficient
substances in the body.

• Profilaxis: A preventive treatment or procedure aimed at re-
ducing the risk of disease or complications.

• Replacement drugs: Medications that substitute or supple-
ment deficient hormones, enzymes, or other substances in the
body.

• Subclinical bleeding: Minor bleeding that does not produce
noticeable symptoms and may not be detected without specific
tests.

• Synovial hyperplasia: An increase in the number of cells
in the synovial membrane, often associated with inflammatory
conditions and joint diseases.

• Synovial effusion: The accumulation of excess synovial fluid
in a joint space, often resulting from injury, inflammation, or
underlying conditions.

165



F
Code availability

The code made available can be found at the following links:

• Chapter 3: https://zenodo.org/records/7981159

• Chapter 5: https://github.com/warpcut/LoRIS

• Chapter 6: https://github.com/warpcut/ReC-TTT
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Acronyms

• AD: Anomaly Detection

• AI: Artificial Intelligence

• ANOVA: ANalysis Of VAriance

• API: Application Programming Interface

• CAM: Class Activation Maps

• CAD: Computer Aided Diagnosis

• CDC: Centers for Disease Control and Prevention

• CI: Confidence Interval

• CNN: Convolutional Neural Network

• CT: Computed Tomography

• DB: DataBase

• DG: Domain Generalization

• DL: Deep Learning

• DD: Directional Difference

• FC: Fully Connected
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• FN: False Negative

• FP: False Positive

• GAN: Generative Adversarial Network

• GMS: Gradient Magnitude Similarity

• HEAD-US: Hemophilia Early Arthropathy Detection with Ul-
traSound

• IoU: Intersection over Union

• JADE: Joint Tissue Activity and Damage Examination

• LR: Learning Rate

• mAP: Mean Average Precision

• ML: Machine Learning

• MPOX: Monkeypox

• MRI: Magnetic Resonance Imaging

• MTL: Multi-Task Learning

• OLR: OLecranic Recess

• POC: Point-Of-Care

• PRACTICE: Pilot on Remote AutomatiC ulTrasound scan
analysIs for hemophiliC patiEnts

• REST: Representational State Transfer

• SDK: Software Development Kit

• SQR: Sub-Quadricipital Recess

• SSIM: Structural Similarity Index Measure
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• TTA: Test-Time Adaptation

• TL: Transfer Learning

• TN: True Negative

• TP: True Positive

• TTT: Test-Time Training

• UAD: Unsupervised Anomaly Detection

• US: Ultra-Sound

• WHO: World Health Organisation

• WSL: Weakly-Supervised Learning

• XAI: eXplainable Artificial Intelligence
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[102] S. Akçay, A. Atapour-Abarghouei, and T. P. Breckon, “Skip-
ganomaly: Skip connected and adversarially trained encoder-
decoder anomaly detection,” in 2019 International Joint Con-
ference on Neural Networks (IJCNN), pp. 1–8, IEEE, 2019.

184



[103] S. Akcay, A. Atapour-Abarghouei, and T. P. Breckon,
“Ganomaly: Semi-supervised anomaly detection via adversarial
training,” in Asian Conference on Computer Vision, Springer,
2019.

[104] V. Zavrtanik, M. Kristan, and D. Skočaj, “Reconstruction by
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Milacski, S. Koshino, E. Sala, H. Nakayama, and S. Satoh,
“Madgan: Unsupervised medical anomaly detection gan using
multiple adjacent brain mri slice reconstruction,” BMC bioin-
formatics, vol. 22, pp. 1–20, 2021.

[112] W. H. Pinaya, M. S. Graham, R. Gray, P. F. Da Costa, P.-D.
Tudosiu, P. Wright, Y. H. Mah, A. D. MacKinnon, J. T. Teo,
R. Jager, et al., “Fast unsupervised brain anomaly detection
and segmentation with diffusion models,” in International Con-
ference on Medical Image Computing and Computer-Assisted
Intervention, pp. 705–714, Springer, 2022.

[113] M. Jiang, C. Hou, A. Zheng, X. Hu, S. Han, H. Huang, X. He,
P. S. Yu, and Y. Zhao, “Weakly supervised anomaly detection:
A survey,” arXiv preprint arXiv:2302.04549, 2023.

[114] L. Ruff, R. A. Vandermeulen, N. Görnitz, A. Binder, E. Müller,
K.-R. Müller, and M. Kloft, “Deep semi-supervised anomaly
detection,” arXiv preprint arXiv:1906.02694, 2019.

[115] Y. Zhao, G. Zheng, S. Mukherjee, R. McCann, and A. Awadal-
lah, “Admoe: Anomaly detection with mixture-of-experts from
noisy labels,” in Proceedings of the AAAI Conference on Arti-
ficial Intelligence, vol. 37, pp. 4937–4945, 2023.

[116] H. Kervadec, J. Dolz, S. Wang, E. Granger, and I. B. Ayed,
“Bounding boxes for weakly supervised segmentation: Global
constraints get close to full supervision,” in Medical imaging
with deep learning, pp. 365–381, PMLR, 2020.

186



[117] C. Rother, V. Kolmogorov, and A. Blake, “” grabcut” inter-
active foreground extraction using iterated graph cuts,” ACM
transactions on graphics (TOG), vol. 23, no. 3, pp. 309–314,
2004.

[118] J. Dai, K. He, and J. Sun, “Boxsup: Exploiting bounding
boxes to supervise convolutional networks for semantic segmen-
tation,” in Proceedings of the IEEE international conference on
computer vision, pp. 1635–1643, 2015.

[119] M. Rajchl, M. C. Lee, O. Oktay, K. Kamnitsas, J. Passerat-
Palmbach, W. Bai, M. Damodaram, M. A. Rutherford, J. V.
Hajnal, B. Kainz, et al., “Deepcut: Object segmentation
from bounding box annotations using convolutional neural net-
works,” IEEE transactions on medical imaging, vol. 36, no. 2,
pp. 674–683, 2016.

[120] S. Han, X. Hu, H. Huang, M. Jiang, and Y. Zhao, “Adbench:
Anomaly detection benchmark,” Advances in Neural Informa-
tion Processing Systems, vol. 35, pp. 32142–32159, 2022.

[121] X. Liu, Z. Liu, Y. Zhang, M. Wang, B. Li, and J. Tang,
“Weakly-supervised automatic biomarkers detection and clas-
sification of retinal optical coherence tomography images,”
in 2021 IEEE International Conference on Image Processing
(ICIP), pp. 71–75, IEEE, 2021.

[122] J. Yang, N. Mehta, G. Demirci, X. Hu, M. S. Ramakrishnan,
M. Naguib, C. Chen, and C.-L. Tsai, “Anomaly-guided weakly
supervised lesion segmentation on retinal oct images,” Medical
Image Analysis, vol. 94, p. 103139, 2024.

[123] J. Wolleb, F. Bieder, R. Sandkühler, and P. C. Cattin, “Dif-
fusion models for medical anomaly detection,” in International
Conference on Medical image computing and computer-assisted
intervention, pp. 35–45, Springer, 2022.

187



[124] J. Li, H. Cao, J. Wang, F. Liu, Q. Dou, G. Chen, and P.-
A. Heng, “Fast non-markovian diffusion model for weakly su-
pervised anomaly detection in brain mr images,” in Interna-
tional Conference on Medical Image Computing and Computer-
Assisted Intervention, pp. 579–589, Springer, 2023.

[125] A. Torralba and A. A. Efros, “Unbiased look at dataset bias,”
in CVPR 2011, pp. 1521–1528, IEEE, 2011.

[126] J. P. Miller, R. Taori, A. Raghunathan, S. Sagawa, P. W.
Koh, V. Shankar, P. Liang, Y. Carmon, and L. Schmidt,
“Accuracy on the line: on the strong correlation between
out-of-distribution and in-distribution generalization,” in In-
ternational Conference on Machine Learning, pp. 7721–7735,
PMLR, 2021.

[127] K. Zhou, Y. Yang, Y. Qiao, and T. Xiang, “Domain general-
ization with mixstyle,” arXiv preprint arXiv:2104.02008, 2021.

[128] J. Cha, S. Chun, K. Lee, H.-C. Cho, S. Park, Y. Lee, and
S. Park, “Swad: Domain generalization by seeking flat min-
ima,” Advances in Neural Information Processing Systems,
vol. 34, pp. 22405–22418, 2021.

[129] H. Venkateswara, J. Eusebio, S. Chakraborty, and S. Pan-
chanathan, “Deep hashing network for unsupervised domain
adaptation,” in Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pp. 5018–5027, 2017.

[130] J. Liang, D. Hu, and J. Feng, “Do we really need to access
the source data? source hypothesis transfer for unsupervised
domain adaptation,” in International conference on machine
learning, pp. 6028–6039, PMLR, 2020.

[131] Y. Sun, X. Wang, Z. Liu, J. Miller, A. Efros, and M. Hardt,
“Test-time training with self-supervision for generalization un-

188



der distribution shifts,” in International conference on machine
learning, pp. 9229–9248, PMLR, 2020.

[132] G. A. V. Hakim, D. Osowiechi, M. Noori, M. Cheraghalikhani,
A. Bahri, I. Ben Ayed, and C. Desrosiers, “Clust3: Information
invariant test-time training,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 6136–6145,
2023.

[133] K. Saenko, B. Kulis, M. Fritz, and T. Darrell, “Adapting visual
category models to new domains,” in Computer Vision–ECCV
2010: 11th European Conference on Computer Vision, Herak-
lion, Crete, Greece, September 5-11, 2010, Proceedings, Part
IV 11, pp. 213–226, Springer, 2010.

[134] K. Zhou, Z. Liu, Y. Qiao, T. Xiang, and C. C. Loy, “Domain
generalization: A survey,” IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 2022.

[135] Z. Nado, S. Padhy, D. Sculley, A. D’Amour, B. Lakshmi-
narayanan, and J. Snoek, “Evaluating prediction-time batch
normalization for robustness under covariate shift,” arXiv
preprint arXiv:2006.10963, 2020.

[136] D. Wang, E. Shelhamer, S. Liu, B. Olshausen, and T. Darrell,
“Tent: Fully test-time adaptation by entropy minimization,”
arXiv preprint arXiv:2006.10726, 2020.

[137] A. T. Nguyen, T. Nguyen-Tang, S.-N. Lim, and P. H. Torr,
“Tipi: Test time adaptation with transformation invariance,”
in Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pp. 24162–24171, 2023.

[138] Y. Gandelsman, Y. Sun, X. Chen, and A. Efros, “Test-time
training with masked autoencoders,” Advances in Neural In-
formation Processing Systems, vol. 35, pp. 29374–29385, 2022.

189



[139] D. Osowiechi, G. A. V. Hakim, M. Noori, M. Cheraghalikhani,
I. Ben Ayed, and C. Desrosiers, “Tttflow: Unsupervised test-
time training with normalizing flow,” in Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer
Vision, pp. 2126–2134, 2023.

[140] D. Chen, D. Wang, T. Darrell, and S. Ebrahimi, “Contrastive
test-time adaptation,” in Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp. 295–
305, 2022.

[141] Z. Zhang, W. Chen, H. Cheng, Z. Li, S. Li, L. Lin, and G. Li,
“Divide and contrast: Source-free domain adaptation via adap-
tive contrastive learning,” Advances in Neural Information Pro-
cessing Systems, vol. 35, pp. 5137–5149, 2022.

[142] Y. Liu, P. Kothari, B. Van Delft, B. Bellot-Gurlet, T. Mordan,
and A. Alahi, “Ttt++: When does self-supervised test-time
training fail or thrive?,” Advances in Neural Information Pro-
cessing Systems, vol. 34, pp. 21808–21820, 2021.

[143] D. Osowiechi, G. A. V. Hakim, M. Noori, M. Cheraghalikhani,
A. Bahri, M. Yazdanpanah, I. Ben Ayed, and C. Desrosiers,
“Nc-ttt: A noise constrastive approach for test-time training,”
in Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pp. 6078–6086, 2024.

[144] C. Fang, S. Bai, Q. Chen, Y. Zhou, L. Xia, L. Qin, S. Gong,
X. Xie, C. Zhou, D. Tu, et al., “Deep learning for predict-
ing covid-19 malignant progression,” Medical image analysis,
vol. 72, p. 102096, 2021.

[145] W. Ma, C. Chen, S. Zheng, J. Qin, H. Zhang, and Q. Dou,
“Test-time adaptation with calibration of medical image classi-
fication nets for label distribution shift,” in International Con-
ference on Medical Image Computing and Computer-Assisted
Intervention, pp. 313–323, Springer, 2022.

190



[146] M. Bateson, H. Lombaert, and I. Ben Ayed, “Test-time adapta-
tion with shape moments for image segmentation,” in Interna-
tional Conference on Medical Image Computing and Computer-
Assisted Intervention, pp. 736–745, Springer, 2022.

[147] J. M. J. Valanarasu, P. Guo, V. Vibashan, and V. M. Patel,
“On-the-fly test-time adaptation for medical image segmenta-
tion,” in Medical Imaging with Deep Learning, pp. 586–598,
PMLR, 2024.

[148] H. Yang, C. Chen, M. Jiang, Q. Liu, J. Cao, P. A. Heng, and
Q. Dou, “Dltta: Dynamic learning rate for test-time adapta-
tion on cross-domain medical images,” IEEE Transactions on
Medical Imaging, vol. 41, no. 12, pp. 3575–3586, 2022.

[149] D. Hendrycks and T. Dietterich, “Benchmarking neural net-
work robustness to common corruptions and perturbations,”
arXiv preprint arXiv:1903.12261, 2019.

[150] B. Recht, R. Roelofs, L. Schmidt, and V. Shankar, “Do ima-
genet classifiers generalize to imagenet?,” in International con-
ference on machine learning, pp. 5389–5400, PMLR, 2019.

[151] X. Peng, B. Usman, N. Kaushik, D. Wang, J. Hoffman, and
K. Saenko, “Visda: A synthetic-to-real benchmark for vi-
sual domain adaptation,” in Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition Workshops,
pp. 2021–2026, 2018.

[152] M. G. Campana, M. Colussi, F. Delmastro, S. Mascetti, and
E. Pagani, “Mpox close skin images,” May 2023.

[153] Tzutalin, “Labelimg.” https://github.com/tzutalin/

labelImg, 2015.

191

https://github.com/tzutalin/labelImg
https://github.com/tzutalin/labelImg


[154] K. Tingelhoff, K. W. Eichhorn, I. Wagner, M. E. Kunkel, A. I.
Moral, M. E. Rilk, F. M. Wahl, and F. Bootz, “Analysis of man-
ual segmentation in paranasal ct images,” European archives of
oto-rhino-laryngology, vol. 265, no. 9, pp. 1061–1070, 2008.

[155] World Health Organization (WHO), “2022 mpox (monkeypox)
outbreak: Fact sheets.” https://www.who.int/news-room/

fact-sheets/detail/monkeypox. Accessed: 2023-02-08.

[156] S. N. Ali, M. Ahmed, J. Paul, T. Jahan, S. Sani, N. Noor,
T. Hasan, et al., “Monkeypox skin lesion detection using
deep learning models: A feasibility study,” arXiv preprint
arXiv:2207.03342, 2022.

[157] X. Wu, W. Ni, L. Jie, Y.-K. Lai, S. Cheng, Dongyu, Ming-
Ming, and J. Yang, “Joint acne image grading and counting via
label distribution learning,” in IEEE International Conference
on Computer Vision, 2019.
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classification from ultrasound images using probability-based

198



optimal deep learning feature fusion,” Sensors, vol. 22, no. 3,
p. 807, 2022.

[205] J. Redmon and A. Farhadi, “Yolov3: An incremental improve-
ment,” arXiv.org, 2018.

[206] Z. Zheng, P. Wang, W. Liu, J. Li, R. Ye, and D. Ren, “Distance-
iou loss: Faster and better learning for bounding box regres-
sion,” in Proceedings of the AAAI conference on artificial in-
telligence, vol. 34, pp. 12993–13000, 2020.

[207] D. Sarvamangala and R. V. Kulkarni, “Convolutional neural
networks in medical image understanding: a survey,” Evolu-
tionary intelligence, vol. 15, no. 1, pp. 1–22, 2022.

[208] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and
A. Zisserman, “The pascal visual object classes (voc) chal-
lenge,” International journal of computer vision, vol. 88, no. 2,
pp. 303–338, 2010.

[209] K. H. Brodersen, C. S. Ong, K. E. Stephan, and J. M. Buh-
mann, “The balanced accuracy and its posterior distribution,”
in 2010 20th international conference on pattern recognition,
pp. 3121–3124, IEEE, 2010.

[210] B. Ci and R.-O. Rule, “Confidence intervals,” Lancet, vol. 1,
no. 8531, pp. 494–7, 1987.

[211] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the im-
portance of initialization and momentum in deep learning,” in
International conference on machine learning, pp. 1139–1147,
PMLR, 2013.

[212] E. Bochinski, T. Senst, and T. Sikora, “Hyper-parameter opti-
mization for convolutional neural network committees based on
evolutionary algorithms,” in 2017 IEEE international confer-
ence on image processing (ICIP), pp. 3924–3928, IEEE, 2017.

199



[213] M. Power, G. Fell, and M. Wright, “Principles for high-quality,
high-value testing,” BMJ Evidence-Based Medicine, vol. 18,
no. 1, pp. 5–10, 2013.

[214] N. Schenker and J. F. Gentleman, “On judging the significance
of differences by examining the overlap between confidence in-
tervals,” The American Statistician, vol. 55, no. 3, pp. 182–186,
2001.

[215] S. Asgari Taghanaki, K. Abhishek, J. P. Cohen, J. Cohen-Adad,
and G. Hamarneh, “Deep semantic segmentation of natural
and medical images: a review,” Artificial Intelligence Review,
vol. 54, pp. 137–178, 2021.

[216] R. El Jurdi, C. Petitjean, P. Honeine, V. Cheplygina, and
F. Abdallah, “High-level prior-based loss functions for medical
image segmentation: A survey,” Computer Vision and Image
Understanding, vol. 210, p. 103248, 2021.

[217] V. Kulharia, S. Chandra, A. Agrawal, P. Torr, and A. Tyagi,
“Box2seg: Attention weighted loss and discriminative feature
learning for weakly supervised segmentation,” in European
Conference on Computer Vision, pp. 290–308, Springer, 2020.

[218] G. Feng, L. Zhang, Z. Hu, and H. Lu, “Learning from box anno-
tations for referring image segmentation,” IEEE Transactions
on Neural Networks and Learning Systems, 2022.

[219] J. Ma, Y. He, F. Li, L. Han, C. You, and B. Wang, “Segment
anything in medical images,” Nature Communications, vol. 15,
no. 1, p. 654, 2024.

[220] W. Xue, L. Zhang, X. Mou, and A. C. Bovik, “Gradient mag-
nitude similarity deviation: A highly efficient perceptual image
quality index,” IEEE transactions on image processing, vol. 23,
no. 2, p. 684–695, 2014.

200



[221] F. Peyvandi, I. Garagiola, and E. Biguzzi, “Advances in the
treatment of bleeding disorders,” Journal of Thrombosis and
Haemostasis, vol. 14, no. 11, pp. 2095–2106, 2016.

[222] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolu-
tional networks for biomedical image segmentation,” in Med-
ical Image Computing and Computer-Assisted Intervention,
Springer, 2015.

[223] B. Zhang, P. V. Sander, and A. Bermak, “Gradient magnitude
similarity deviation on multiple scales for color image quality
assessment,” in International Conference on Acoustics, Speech
and Signal Processing, pp. 1253–1257, IEEE, 2017.

[224] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” arXiv preprint arXiv:1412.6980, 2014.

[225] T. Eelbode, J. Bertels, M. Berman, D. Vandermeulen, F. Maes,
R. Bisschops, and M. B. Blaschko, “Optimization for medical
image segmentation: theory and practice when evaluating with
dice score or jaccard index,” IEEE Transactions on Medical
Imaging, vol. 39, no. 11, pp. 3679–3690, 2020.

[226] J. Pirnay and K. Chai, “Inpainting transformer for anomaly
detection,” in International Conference on Image Analysis and
Processing, pp. 394–406, Springer, 2022.

[227] T. Liu, B. Li, X. Du, B. Jiang, L. Geng, F. Wang, and Z. Zhao,
“Fair: Frequency-aware image restoration for industrial visual
anomaly detection,” arXiv preprint arXiv:2309.07068, 2023.

[228] Z. Zong, G. Song, and Y. Liu, “Detrs with collaborative hybrid
assignments training,” in Proceedings of the IEEE/CVF inter-
national conference on computer vision, pp. 6748–6758, 2023.

[229] N. Tajbakhsh, L. Jeyaseelan, Q. Li, J. N. Chiang, Z. Wu, and
X. Ding, “Embracing imperfect datasets: A review of deep

201



learning solutions for medical image segmentation,” Medical
Image Analysis, vol. 63, p. 101693, 2020.

[230] S. Kumari and P. Singh, “Deep learning for unsupervised do-
main adaptation in medical imaging: Recent advancements
and future perspectives,” Computers in Biology and Medicine,
p. 107912, 2023.

[231] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple
framework for contrastive learning of visual representations,” in
International conference on machine learning, pp. 1597–1607,
PMLR, 2020.

[232] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh,
S. Agarwal, G. Sastry, A. Askell, P. Mishkin, J. Clark, et al.,
“Learning transferable visual models from natural language su-
pervision,” in International conference on machine learning,
pp. 8748–8763, PMLR, 2021.

[233] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, “Momentum
contrast for unsupervised visual representation learning,” in
Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 9729–9738, 2020.

[234] J. Guo, L. Jia, W. Zhang, H. Li, et al., “Recontrast: Domain-
specific anomaly detection via contrastive reconstruction,” Ad-
vances in Neural Information Processing Systems, vol. 36, 2024.

[235] X. Chen and K. He, “Exploring simple siamese representation
learning,” in Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition, pp. 15750–15758, 2021.

[236] P. Chrabaszcz, I. Loshchilov, and F. Hutter, “A downsampled
variant of imagenet as an alternative to the cifar datasets,”
arXiv preprint arXiv:1707.08819, 2017.

202



[237] Y. Lee, A. S. Chen, F. Tajwar, A. Kumar, H. Yao, P. Liang,
and C. Finn, “Surgical fine-tuning improves adaptation to dis-
tribution shifts,” arXiv preprint arXiv:2210.11466, 2022.

[238] Y. Iwasawa and Y. Matsuo, “Test-time classifier adjustment
module for model-agnostic domain generalization,” Advances
in Neural Information Processing Systems, vol. 34, pp. 2427–
2440, 2021.

[239] P. Rajpurkar, E. Chen, O. Banerjee, and E. J. Topol, “Ai in
health and medicine,” Nature medicine, vol. 28, no. 1, pp. 31–
38, 2022.

[240] N. Y. Philip, J. J. Rodrigues, H. Wang, S. J. Fong, and J. Chen,
“Internet of things for in-home health monitoring systems: Cur-
rent advances, challenges and future directions,” IEEE Journal
on Selected Areas in Communications, vol. 39, no. 2, pp. 300–
310, 2021.

[241] R. Gualtierotti, S. Arcudi, A. Ciavarella, M. Colussi, S. Ma-
scetti, C. Bettini, and F. Peyvandi, “A computer-aided diagno-
sis tool for the detection of hemarthrosis by remote joint ultra-
sound in patients with hemophilia,” Blood, vol. 140, no. Sup-
plement 1, pp. 464–465, 2022.

[242] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna,
“Rethinking the inception architecture for computer vision,”
in Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 2818–2826, 2016.

[243] L. A. Valentino, “Considerations in individualizing prophylaxis
in patients with haemophilia a,” Haemophilia, vol. 20, no. 5,
pp. 607–615, 2014.

[244] J. O’Hara, D. Hughes, C. Camp, T. Burke, L. Carroll, and D.-
A. G. Diego, “The cost of severe haemophilia in europe: the

203



chess study,” Orphanet journal of rare diseases, vol. 12, pp. 1–8,
2017.

[245] N. Painchaud, N. Duchateau, O. Bernard, and P.-M. Jodoin,
“Echocardiography segmentation with enforced temporal con-
sistency,” IEEE Transactions on Medical Imaging, vol. 41,
no. 10, pp. 2867–2878, 2022.

[246] M. Tkachenko, M. Malyuk, A. Holmanyuk, and N. Li-
ubimov, “Label Studio: Data labeling software,”
2020-2024. Open source software available from
https://github.com/heartexlabs/label-studio.

204


	Introduction
	Context
	Motivation
	Challenges
	Contributions
	Data scarcity
	Data imbalance
	Domain-shift
	System integration

	Thesis outline

	Background
	Hemofilia and joint blood effusion
	Technological Solutions for Hemophilia
	State of the art on transfer learning
	State of the art on multi-task learning
	State of the art on unsupervised anomaly detection
	State of the art on domain adaptation
	Datasets description
	Subquadricipital knee recess distension
	Knee and elbow recess distenssion
	Corruption datasets
	The Mpox Close Skin Images dataset


	Adoption of Transfer Learning Approaches to Detect Mpox using Smartphone images
	Mpox detection system for mobile devices
	Model selection and fine-tuning
	CNN optimization for mobile devices
	Explaining the model's predictions

	Experimental evaluation
	Evaluation protocol and metrics
	Hyperparameters tuning
	Mpox detection performances

	Analysis of Grad-CAM indications
	Mobile optimization
	Conclusion

	Multi-Task Learning for Ultrasound Detection of Subquadricipital Recess Distension
	Problem modeling
	Methodology
	Detection approach
	Multi-task approach

	Evaluation
	Baselines
	Metrics
	Evaluation methodology
	Hyper-parameters selection
	Results
	Examples

	Conclusions

	Weakly-supervised Anomaly Detection for Ultrasound Images
	Methodology
	Problem Formulation
	Localized reconstruction
	Anomaly detection
	Automatic detection of the recess bounding box

	Experimental evaluation
	Experimental methodology
	Anomaly detection and segmentation results
	Automated detection of the recess bounding box

	Conclusions

	Test-time training with contrastive feature reconstruction on ultrasound images
	Methodology
	Contrastive feature reconstruction
	Encoder ensemble

	Experiments
	Experimental setup
	Empirical results
	Preliminary results on US images

	Conclusions

	PRACTICE: an intelligent healthcare platform
	Requirements
	System architecture
	GAJA: Guided self-Acquisition of Joint ultrAsound images
	Interaction design
	Implementation

	Conclusions

	Conclusions and Future Work
	Summary
	Discussion and limitations
	Impact
	Applicability limitations

	Future works
	Blood effusion detection
	Improved CAD system
	Dataset publication


	Visualization of LoRIS results
	ReC-TTT extended results
	VisDA
	CIFAR-100C
	Number of adaptation iterations

	TinyImagenet-C

	Details on PRACTICE components
	CADET: Computer-Aided Diagnosis for hEmarThrosis
	ATOM: Annotation Task Orchestrator Module

	Joint ultrasound views
	Glossary of Medical Terms
	Code availability

