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Chapter 1

Preface

The rapid evolution of science and technology is a fundamental aspect of improving
collective well-being. However, it is well-known that the use of every discovery can vary
greatly depending on the intentions of those who leverage such advancements. On the
one hand, we are able to find increasingly effective cures for diseases that once ravaged
society, improve the well-being of citizens, produce cleaner energy, and more. On the
other hand, we face the danger that the same knowledge could be exploited to harm
society. A striking and tragic example is the use of quantum mechanics in the Manhattan
Project, which led to the creation of the first atomic bomb.

For these reasons, it is essential to study countermeasures to the potential harmful
developments in science and technology, in order to ensure ethical research aimed at
collective well-being. To this end, we need to develop techniques to evaluate the
robustness of our systems (digital, social, infrastructural, military, and so on) and
ensure effective defence and recovery strategies.

In this thesis, we will discuss optimization problems related to security. Specifically,
we focus on the security of real-world systems that can be modelled using graphs or
binary matrices. The first problem we consider is the Weighted Safe Set Problem
(WSSP), a graph optimization problem that aims to identify vertex partitions in a graph
that satisfy certain dominance constraints between the parts. It is an NP-hard problem
and is challenging to solve even for small instances. Next, we introduce Binary
Interdiction Problems (BIP), which involve two agents: the leader, called the attacker,
and the follower, called the defender. The defender must solve an optimization
problem after the attacker has interdicted the original instance by blocking or making
certain elements more costly for the defender, with the goal of worsening the defender’s
optimal solution as much as possible. These are zero-sum, turn-based games whose
complexity varies depending on the complexity of the defender’s problem (NP, ΣP

2 , ...).



2 1.1. IMPLEMENTATION DETAILS

The thesis is structured as follows:

• In Chapter 2, we introduce the WSSP, providing a formal definition. We then
describe some practical applications, review the scientific literature, and present
some original Integer Linear Programming (ILP) models.

• In Chapter 3, we present an exact branch-and-bound algorithm for the WSSP,
which leverages a continuous relaxation of the original problem, calculated using
a custom algorithm.

• In Chapter 4, we describe some heuristics for the WSSP.

• In Chapter 5, we introduce Binary Interdiction Problems, particularly hard
interdiction problems. We describe real-world applications and review the
literature related to these problems.

• In Chapter 6, we present a new exact technique to solve these problems and some
methods to enhance its efficiency.

• In Chapter 7, we present some techniques for generating resilient sets of solutions
for the defender. These sets have the property that no feasible attacker’s solution
can simultaneously interdict all the solutions within the set.

The contents of Chapters 3 and 4 are also included in Boggio Tomasaz et al. (2023a),
Boggio Tomasaz et al. (2023b), Boggio Tomasaz and Cordone (2024a) and
Boggio Tomasaz and Cordone (2024b).

1.1 Implementation details

All the experiments in this thesis are conducted on a Linux server, with processor Intel
Xeon E5-2620 v4 with 2.1 GHz, 16 GB of RAM and 8 cores in hyper-threading.

For what concerns the WSSP, we implemented every algorithm described in
Chapters 3 and 4 in C99 and compiled the code with GNU GCC 8.3.0 with optimisation
flag -O3; they run in a single thread.

For the hard interdiction part, we implemented all the algorithms in Chapters 6 and
7 in C++11 and compiled the code with GNU G++ 8.3.0 with optimisation flag -O3. We
relied on Gurobi 11.0.0 to solve the linear programming (continuous, integral or mixed)
formulations implemented. This is the only multi-threading part of the code.
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Chapter 2

Weighted Safe Set Problem

Given a connected undirected graph with weighted vertices, the Weighted Safe Set

Problem amounts to labelling all vertices either as safe or unsafe, in such a way that

the total weight of each connected component induced by safe vertices is not exceeded

by the total weight of any adjacent connected component induced by the unsafe ones.

The aim is to satisfy this requirement with a minimum weight subset of safe vertices.

In this chapter we describe the problem in detail and present some formulations for

it.

The Weighted Safe Set Problem (WSSP) considers a connected undirected graph G =
(V ,E) and a weight function w : V → IR+ defined over its vertices.

In order to define more simply the problem, we introduce some notation:

• for any subset of vertices C ⊆ V , we define its weight w(C ) as the sum of the
weights of its vertices, w(C ) =∑

v∈C wv ;

• for any two subsets of vertices C1,C2 ⊆ V , we say that they are adjacent and we
write C1 ▷◁C2 if at least one edge (u, v) ∈ E has u ∈C1 and v ∈C2;

• given a set of vertices C ⊆ V we denote as CG (C ) the collection of all maximal
connected components in the sub-graph of G induced by C ;

• given a subset of vertices S ⊆V and its complement U =V \ S, we denote as safety
constraint the condition that for each maximal connected component Sc in CG (S)
and each maximal connected component Uc in CG (U ) adjacent to each other, the
weight of Sc is non-smaller than the weight of Uc .

∀Sc ∈CG (S) ∀Uc ∈CG (U ) : Sc ▷◁Uc =⇒ w(Sc ) ≥ w(Uc )

Given a non-empty subset of vertices S ⊆ V and U = V \ S, if the safety constraint is
satisfied for all adjacent components of the two families, we denote S as a safe set, the
components in CG (S) as safe components and those in CG (U ) as unsafe components. The
WSSP searches for a safe set in G of minimum weight with respect to w .

S∗ = arg min
S safe set

w(S) = arg min
S safe set

∑
v∈S

wv
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A visual representation can help illustrate the problem more effectively. Figure 2.1
shows a connected, undirected graph with weights (the numbers inside the vertices
represent their respective weights).
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Figure 2.1: Example of WSSP instance with solution.

The solution is represented by the vertices coloured in black. These identify two
safe components (in green) with a weight greater than or equal to that of each adjacent
unsafe component (in blue).

In contrast, Figure 2.2 illustrates an example of an infeasible solution.

7
86

2 13

4

4

7

7

2

3

1 3

4

5 8

6 8

7

7

4

Figure 2.2: Example of violation of the WSSP constraints.

Here, the set of black vertices induces a connected component (the one in red) of
weight 7 which is adjacent to a complementary connected component (the one in gray)
of weight 13, violating a safety constraint.

A common variant of this problem in the literature is the Connected Weighted Safe
Set Problem (CWSSP), where the safe set S must induce a single safe component. In this
thesis, we will not focus on this latter version, but we will occasionally mention it.
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A special case of the WSSP is when the weight function is unitary (∀v ∈ V : wv = 1)
and the problem is denoted as Safe Set Problem (SSP) and Connected Safe Set Problem
(CSSP) when the connection requirement is imposed. In this thesis we will refer to this
special case as the unweighted version.

The first application of the WSSP described in the literature is the placement of
temporary refuges in buildings, to shelter people from the surrounding rooms in case
of emergency, so that the area consumption is minimised (Fujita et al., 2014). The same
idea can be repurposed for any graph-structured physical environment as well.

An application to social networks is the detection of a small set of users organised in
communities, whose influence could allow an indirect control on all the other
communities (Bapat et al., 2016). From a more general point of view, the problem can
model the search for a sub-network whose control guarantees a form of preponderance
over the entire network.

2.1 Literature review

The WSSP was first presented in Fujita et al. (2014) in the unweighted version. The
same authors prove its NP-hardness and many theorems and properties about the
cardinality of the optimal solution in Fujita et al. (2016). Then, Bapat et al. (2016)
generalise the problem by allowing weights to assume any positive value and prove the
NP-hardness of the new version even for simple graphs, like stars and trees. They also
present a polynomial-time algorithm for path instances. In Fujita et al. (2016), the
authors propose a linear-time algorithm for this variant on unweighted trees. The
complexity of special classes of instances is studied in Àgueda et al. (2018), who show
that the WSSP is polynomial on unweighted trees, pseudo-polynomial on
bounded-treewidth graphs and interval graphs and NP-hard on unweighted planar
graphs and split graphs. The parametrised complexity of the problem is investigated in
Belmonte et al. (2020), proving its fixed-parameter tractability on general unweighted
graphs, with a parameter depending on the size of the solution or the neighbourhood
diversity. Focusing on the unweighted case and special graphs, Cordone and Franchi
(2023) prove the asymptotic structure of optimal solutions for random graphs and
provide upper and lower bounds of matching asymptotic size for grids.

From the computational perspective, Macambira et al. (2019) are the first to
implement an exact approach, solving an Integer Linear Programming (ILP)
formulation with a branch-and-cut approach to manage its exponential number of
constraints. Then, Hosteins (2020) presents the first compact Mixed-Integer Linear
Programming (MILP) formulation. Another branch-and-cut approach is due to
Malaguti and Pedrotti (2023), who describe an ILP formulation with a linear number of
variables.

Moving to approximation algorithms, the literature offers no contribution to
approximate the optimum in polynomial-time for general graphs. In Àgueda et al.
(2018) it is pointed out that, since the NP-hardness proof in Fujita et al. (2016) is based
on a gap-preserving reduction from the Vertex Cover problem, the Safe Set and
Connected Safe Set problems are NP-hard to approximate within a factor of 1.3606. The
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articles by Bapat et al. (2018) and Ehard and Rautenbach (2020) present, respectively, a
polynomial-time approximation algorithm and a scheme (that is, a PTAS) for weighted
trees. Both actually refer to the connected version of the problem, but the
approximation extends to the original problem (with a worse ratio) thanks to the
property that an optimal connected safe set weighs at most twice an optimal safe set.

The only heuristic approach to the WSSP is due to Macambira et al. (2019), who
propose a polynomial-time randomized destructive heuristic, inspired by the
algorithm presented in Fujita et al. (2016) for unweighted trees.

2.2 Formulations for the Weighted Safe Set Problem

As mentioned before, in the literature there are a few formulations for the WSSP. In this
section we show them and provide a quick description.

Separator-based connectivity ILP formulation The branch-and-cut by Macambira
et al. (2019) is the first mathematical programming approach to the WSSP and employs
a MILP formulation with the following variables:

• yk
i is a binary variable equal to 1 if vertex i ∈V belongs to the safe component with

the smallest-index vertex k ∈V (i.e., k is the representative of the safe component
of i ); otherwise, it equals 0.

• nk
i is a binary variable equal to 1 if vertex i ∈ V belongs to the unsafe component

with the smallest-index vertex k ∈ V (i.e., k is the representative of the unsafe
component of i ); otherwise, it equals 0.

• Y k
i j is a binary variable equal to 1 if vertices i , j ∈V belong to the safe component

represented by k ∈V ; otherwise, it equals 0.

• N k
i j is a binary variable equal to 1 if vertices i , j ∈ V belong to the unsafe

component represented by k ∈V ; otherwise, it equals 0.

They also define the function δ :℘(V ) →℘(V ) (℘ represents the power set function)
as

δ(S ⊆V ) = {
i ∈V \ S | (i , j ) ∈ E ∧ j ∈ S

}
This allows to exhibit Formulation 1

min
∑

k∈V

∑
i≥k

wi · yk
i (1.1)

s.t. ∑
k∈V
k≤i

(yk
i +nk

i ) = 1 i ∈V (1.2)

yk
i ≤ yk

k i ,k ∈V , k < i (1.3)

nk
i ≤ nk

k i ,k ∈V , k < i (1.4)
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∑
k∈V \S

k≤i

yk
i + ∑

l∈S
l≤ j

y l
j ≤ 1 (i , j ) ∈ E , S ⊂V (1.5)

∑
k∈V \S

k≤i

nk
i +

∑
l∈S
l≤ j

nl
j ≤ 1 (i , j ) ∈ E , S ⊂V (1.6)

Y k
i j ≤ yk

i i , j ,k ∈V , k < i < j (1.7)

Y k
i j ≤ yk

j i , j ,k ∈V , k < i < j (1.8)

Y k
i j ≥ yk

i + yk
j − yk

k i , j ,k ∈V , k < i < j (1.9)

N k
i j ≤ nk

i i , j ,k ∈V , k < i < j (1.10)

N k
i j ≤ nk

j i , j ,k ∈V , k < i < j (1.11)

N k
i j ≥ nk

i +nk
j −nk

k i , j ,k ∈V , k < i < j (1.12)∑
u>i
u ̸= j

wu · y i
u + ∑

k<i

[
(wk +wi ) · yk

i + ∑
u>k
u<i

wu ·Y k
ui +

∑
u>i
u ̸= j

wu ·Y k
i u

]
≥

∑
u≥ j

wu ·n j
u + ∑

k< j
k ̸=i

[
(wk +w j ) ·nk

j +
∑

u>k
u ̸=i
u< j

wu ·N k
u j +

∑
u> j

wu ·N k
j u

]
−

− ∑
k<i

( ∑
u>k
u ̸=i

wu

)
·N k

i j (i , j ) ∈ E (1.13)

∑
u≥ j

wu · y j
u + ∑

k< j
k ̸=i

[
(wk +w j ) · yk

j +
∑

u>k
u< j
u ̸=i

wu ·Y k
u j +

∑
u> j

wu ·Y k
j u

]
≥

∑
u>i
u ̸= j

wu ·ni
u + ∑

k<i

[
(wk +wi ) ·nk

i +
∑

u>k
u<i

wu ·N k
ui +

∑
u>i
u ̸= j

wu ·N k
i u

]
−

−
( ∑

u>i
u ̸= j

wu

)
·ni

j −
∑
k<i

( ∑
u>k
u ̸= j

wu

)
·N k

i j (i , j ) ∈ E (1.14)

∑
i∈δ(S)
i>v1

y v1
i ≥ y v1

v2
S ⊂V , v1 = argmin

i∈S
i

v2 ∈V \ (S ∪δ(S)), v2 > v1 (1.15)∑
i∈δ(S)
i>v1

nv1
i ≥ nv1

v2
S ⊂V , v1 = argmin

i∈S
i

v2 ∈V \ (S ∪δ(S)), v2 > v1 (1.16)

y i
j , ni

j ∈ {0,1} i , j ∈V , i ≤ j (1.17)

0 ≤ Y k
i j ≤ 1 k, i , j ∈V , k < i < j (1.18)

0 ≤ N k
i j ≤ 1 k, i , j ∈V , k < i < j (1.19)
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The objective function (1.1) represents the total weight of the safe set. The
constraints (1.2) state that each vertex can only belong to one component, either safe
or unsafe. The constraints (1.3, 1.4) prevent any vertex from being part of a component
represented by a vertex k that is not a representative of itself. The constraints (1.5)
ensure that adjacent safe vertices belong to the same safe component, and similarly,
the constraints (1.6) apply to unsafe vertices. The constraints (1.7, 1.8, 1.9) assign the
value 1 to the variable Y k

i j only if both yk
i and yk

j are equal to 1. Similarly, the

constraints (1.10, 1.11, 1.12) ensure that N k
i j equals 1 only if both nk

i and nk
j are equal to

1. The constraints (1.13, 1.14) represent the safety constraints. The constraints (1.15)
ensure the connectivity of vertices within the same safe component by considering
vertex separators between vertices v1 and v2. The constraints (1.16) play a similar role
to the constraints (1.15), but for unsafe vertices.
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Compact flow-based MILP formulation The second approach is a
branch-and-bound, due to Hosteins (2020), and exploits the first compact MILP model
for the WSSP.

Let n = |V | and let w : V →Q+ be a weighting on the vertices. Add to G an artificial
vertex 0 connected to all other vertices in the graph. The variables of the model are:

• xi : binary variable equal to 1 if vertex i is safe; 0 otherwise.

• yi j : binary variable equal to 1 if vertices i and j are adjacent and both are safe; 0
otherwise.

• y ′
i j : binary variable equal to 1 if vertices i and j are adjacent and both are unsafe;

0 otherwise.

• ai c : binary variable equal to 1 if vertex i is safe and is part of the connected
component c ∈ {1, ...,n −1}.

• a′
i c : binary variable equal to 1 if vertex i is unsafe and is part of the connected

component c ∈ {1, ...,n −1}.

• ti c : binary variable equal to 1 if vertex i is safe and is the only vertex in component
c ∈ {1, ...,n −1} receiving non-zero flow from the artificial vertex 0.

• t ′i c : binary variable equal to 1 if vertex i is unsafe and is the only vertex in
component c ∈ {1, ...,n −1} receiving non-zero flow from the artificial vertex 0.

• fi j : continuous flow variable with i ∈V ∪{0} and j ∈V defined for pairs of adjacent
vertices (with vertex 0 being adjacent to all others).

• ωi : total weight of the safe component to which vertex i ∈ V belongs; 0 if i is
unsafe.

• ω′
i : total weight of the unsafe component to which vertex i ∈ V belongs; 0 if i is

safe.

• νc : total weight of the safe component c ∈ {1, ...,n−1}; 0 if the component is unsafe.

• ν′c : total weight of the unsafe component c ∈ {1, ...,n − 1}; 0 if the component is
safe.

Given a vertex v ∈V , the set Nv ⊂V is defined as

Nv = {u ∈V | (u, v) ∈ E }

and the quantity
W := ∑

i∈V
wi
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min
∑
i∈V

wi · xi (2.1)

s.t.

yi j ≥ xi +x j −1 (i , j ) ∈ E (2.2)

y ′
i j ≥ 1−xi −x j (i , j ) ∈ E (2.3)

yi j ≤ xi (i , j ) ∈ E (2.4)

yi j ≤ x j (i , j ) ∈ E (2.5)

y ′
i j ≤ 1−xi (i , j ) ∈ E (2.6)

y ′
i j ≤ 1−x j (i , j ) ∈ E (2.7)∑

j∈Ni

fi j −
∑

j∈Ni∪{0}
f j i =−1 i ∈V (2.8)∑

v∈V
f0v = n (2.9)

f0i ≤ (n −1) ·
n−1∑
c=1

(ti c + t ′i c ) i ∈V (2.10)

fi j ≤ (n −1) · (yi j + y ′
i j ) (i , j ) ∈ E (2.11)

n−1∑
c=1

ai c = xi i ∈V (2.12)

n−1∑
c=1

a′
i c = 1−xi i ∈V (2.13)

ai c ≥ a j c + yi j −1 (i , j ) ∈ E , c ∈ {1, ...,n −1} (2.14)

a j c ≥ ai c + yi j −1 (i , j ) ∈ E , c ∈ {1, ...,n −1} (2.15)

a′
i c ≥ a′

j c + y ′
i j −1 (i , j ) ∈ E , c ∈ {1, ...,n −1} (2.16)

a′
j c ≥ a′

i c + y ′
i j −1 (i , j ) ∈ E , c ∈ {1, ...,n −1} (2.17)

ti c ≤ ai c i ∈V , c ∈ {1, ...,n −1} (2.18)

t ′i c ≤ a′
i c i ∈V , c ∈ {1, ...,n −1} (2.19)∑

i∈V
ti c ≤ 1 c ∈ {1, ...,n −1} (2.20)∑

i∈V
t ′i c ≤ 1 c ∈ {1, ...,n −1} (2.21)

νc =
∑
i∈V

wi ·ai c c ∈ {1, ...,n −1} (2.22)

ν′c =
∑
i∈V

wi ·a′
i c c ∈ {1, ...,n −1} (2.23)
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ωi ≥ νc −W · (1−ai c ) i ∈V , c ∈ {1, ...,n −1} (2.24)

ωi ≤ νc +W · (1−ai c ) i ∈V , c ∈ {1, ...,n −1} (2.25)

ωi ≤W · xi i ∈V (2.26)

ω′
i ≥ ν′c −W · (1−a′

i c ) i ∈V , c ∈ {1, ...,n −1} (2.27)

ω′
i ≤ ν′c +W · (1−a′

i c ) i ∈V , c ∈ {1, ...,n −1} (2.28)

ω′
i ≤W · (1−xi ) i ∈V (2.29)

ωi ≥ω′
j −W · y ′

i j (i , j ) ∈ E (2.30)∑
i∈V

xi ≥ 1 (2.31)

yi j , y ′
i j ∈ {0,1} (i , j ) ∈ E (2.32)

ai c , a′
i c ∈ {0,1} i ∈V , c ∈ {1, ...,n −1} (2.33)

ωi ,ω′
i ≥ 0 i ∈V (2.34)

νc ,ν′c ≥ 0 c ∈ {1, ...,n −1} (2.35)

0 ≤ fi j ≤ n −1 i ∈V ∪ {0}, j ∈V (2.36)

xi ∈ {0,1} i ∈V (2.37)

ti c , t ′i c ∈ {0,1} i ∈V , c ∈ {1, ...,n −1} (2.38)

The objective function (2.1) is the sum of all the weights of the safe vertices. The
constraints (2.2–2.7) ensure the consistency of the variables y with the values taken by
the variables x. These are a linearization of the constraints yi j = xi · x j and y ′

i j = (1−
xi ) · (1− x j ) for each (i , j ) ∈ E . The constraints (2.8) express that the incoming flow to
a vertex must be equal to the outgoing flow +1 (all vertices consume one unit of flow).
The constraint (2.9) imposes that the outgoing flow from the artificial vertex 0 equals
n. The constraints (2.10) impose that the variables t for vertices directly receiving flow
from vertex 0 take the value 1 for some component c ∈ {1, ...,n − 1}. The constraints
(2.11) prevent flow from circulating through edges connecting vertices from different
components. The constraints (2.12, 2.13) ensure that each vertex belongs to only one
safe or unsafe component. The constraints (2.14–2.17) ensure that if two vertices belong
to the same component, then c, the component number, must also be the same. The
constraints (2.18, 2.19) allow for a consistent numbering of the components c related
to the variables a and t . The constraints (2.20, 2.21) impose that at most one vertex
receives flow directly from 0 for each component. The constraints (2.22, 2.23) assign to
the variables ν the sum of the weights of all the vertices that belong to the associated
component. The constraints (2.24–2.29) assign to the variables ω the weight of the safe
or unsafe component related to the associated vertex. The constraints (2.30) are the
safety constraints. The constraint (2.31) imposes that the safe set is not empty.

Component-pair ILP formulation The third approach is another branch-and-cut, due
to Malaguti and Pedrotti (2023), which uses only one binary variable for each vertex in
the graph. For each vertex v ∈ V , let xv = 1 if vertex v belongs to the safe set, and 0
otherwise.
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Let C and C ′ be disjoint subsets of V . Denote by P the collection of such pairs (C ,C ′)
for which: w(C ) < w(C ′); G[C ] and G[C ′] are connected sub-graphs; and there exists
an edge (u, v) ∈ E with u ∈ C and v ∈ C ′. Also, for any C ⊆ V denote with N (C ) = {u ∈
V \C | ∃v ∈C , (u, v) ∈ E } the set of all external neighbours of C .

The formulation is based on the observation that for any pair (C ,C ′) ∈P and any safe
set S of G having non-empty intersection with C , either S ∩N (C ) ̸= ; or S ∩C ′ ̸= ;.

min
∑

v∈V
wv ·xv (3.1)

s.t. ∑
v∈V

xv ≥ 1 (3.2)∑
v∈C ′∪N (C )

xv ≥ xl (C ,C ′) ∈P , l ∈C (3.3)

xv ∈ {0,1} v ∈V (3.4)

Inequality (3.2) enforces that at least one vertex is selected and inequalities (3.3)
ensure the solution satisfies safety conditions. In fact the authors prove the following
lemma (Lemma 2 in Malaguti and Pedrotti (2023)).

Lemma 1. Let X ⊂V and X ̸= ;. If X is not a safe set of G, there is a pair (C ,C ′ ∈P) such
that X ∩C ̸= ; but X ∩C ′ =; and X ∩N (C ) =;.

They also provide numerous valid inequalities to strengthen formulation (3).

2.2.1 Original formulations for the Weighted Safe Set Problem

Here, we present some original formulations for which we did not conduct a
comprehensive research due to poor preliminary results or lack of time.

The first formulation is not a proper ILP or MILP, but rather a combinatorial
formulation that helps to understand the WSSP.

min w(S) = ∑
v∈S

wv (4.1)

s.t. S ⊆V (4.2)

|S| ≥ 1 (4.3)

w(Si ) ≥ w(U j ) Si ∈CG (S),U j ∈CG (V \ S),Si ▷◁U j (4.4)

where Constraint (4.2) states that the solution is a subset of vertices, Constraint (4.3) that
it is non-empty and Constraints (4.4) impose the safety conditions.
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Transitive closure formulation The next formulation is based on the concept that
two vertices are in the same safe component if there is a path between them consisting
entirely of safe vertices and specularly for the unsafe ones. The value L is defined as
L := ⌈log2(|V | −1)⌉ and M := ∑

v∈V wv . Moreover, to provide a more compact form, the
logical operators ∧,∨ and ≡ are implicitly formulated in the classical manner:

z = x ∧ y 7−→


z ≤ x

z ≤ y

z ≥ x + y −1

z =∧
i

xi 7−→
{

z ≤ xi ∀i

z ≥ 1+∑
i (xi −1)

z = x ∨ y 7−→


z ≥ x

z ≥ y

z ≤ x + y

z =∨
i

xi 7−→
{

z ≥ xi ∀i

z ≤∑
i xi

z = (x ≡ y) 7−→


z ≤ x − y +1

z ≤ y −x +1

z ≥ x + y −1

z ≥ 1−x − y

min
∑

v∈V
wv · sv (5.1)

s.t.

x0
uv = (su ≡ sv ) (u, v) ∈ E (5.2)

x0
uv = 0 (u, v) ∉ E (5.3)

y l
ur v = x l

ur ∧x l
r v u, v,r ∈V (5.4)

l = 0, ...,L

x l+1
uv = ∨

r∈V
y l

ur v u, v ∈V (5.5)

l = 0, ...,L−1∑
r∈V

wr · xL
ur ≥

∑
r∈V

wr · xL
r v −M · (1− su)−M · sv (u, v) ∈ E (5.6)∑

v∈V
sv ≥ 1 (5.7)

sv ∈ {0,1} v ∈V (5.8)

x l
uv ∈ {0,1} u, v ∈V (5.9)

l = 0, . . . ,L

y l
ur v ∈ {0,1} u,r, v ∈V (5.10)

l = 0, . . . ,L

The s variables are associated to each vertex v and assume value sv = 1 if v is in the
safe set and 0 otherwise. Then we have the variables x l

uv which assume value 1 if su = sv

and there exists a path of length ≤ 2l of vertices q ∈V with sq = su = sv . Similarly, y l
ur v =
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1 if and only if su = sr = sv and there exist a path from u to r and another path from
r to v both of length ≤ 2l . To ensure the correct value of x l

uv we consider an inductive
structure:

• The base case is when l = 0. If l = 0 it means that the variables x0
uv must assume

value 1 if and only if su = sv and u is adjacent to v (i.e., they are linked by a path of
length ≤ 20 = 1). Constraints (5.2) and (5.3) model exactly this case imposing that
if su ̸= sv or (u, v) ∉ E then x0

uv = 0; otherwise, if su = sv and (u, v) ∈ E then x0
uv = 1.

• For the inductive step we consider that for all values ≤ l the hypothesis hold
(x l

uv = 1 if and only if su = sv and there is a path of vertices of the same kind (safe
or unsafe) of length ≤ 2l between them) and we prove it also for l + 1. From the
inductive hypothesis we know that if there exist a suitable path of length ≤ 2l

from u to some vertex r and another such path from r to v , then x l
ur = 1 = x l

r v
and, therefore, y l

ur v = 1 from constraints (5.4) which implies x l+1
uv = 1 from

constraints (5.5); otherwise, if there is no suitable vertex r , it means that x l
ur = 0

or x l
r v = 0 implying (by constraints (5.4)) that y l

ur v = 0 for every r ∈ V . Therefore,
x l+1

uv = 0 by constraints (5.5).

At last, we are able to tell if two vertices lie in the same components by looking at
xL

uv because, since we can tell if there is a path of length ≤ 2L and L ≥ log2(|V |−1), then
2L ≥ 2log2(|V |−1) = |V | − 1, which is the maximum length of any path. Constraints (5.6)
impose the safety constraints between the components of vertices u and v by summing
the weights of all vertices in the same component. Eventually, if u is unsafe or if v is safe,
the big constant M allows to satisfy the constraint automatically. At last, constraint (5.7)
impose that the solution is not empty.

It is easy to prove that the integrality domain of variables x and y can be relaxed since
the logical constraints preserve integrality.

Transitive closure formulation without big M A main drawback of the previous
formulation is that it requires a sufficiently big coefficient M that weakens the
continuous relaxation. Obviously, one should try to compute the smallest value such
that the formulation still produces a feasible solution (a valid upper bound on the
optimum), but we also present a slightly modified version of formulation (5) that does
not require any big constant. We introduce the binary variables pur v ∈ {0,1} for each
edge (u, v) ∈ E and each vertex r ∈ V . These variables are subject to the following
constraints.

puvr = su ∧ (1− sv )∧xL
vr (u, v) ∈ E ,r ∈V (6.1)∑

r∈V
wr · xL

ur ≥
∑

r∈V
wr ·pvur (u, v) ∈ E (6.2)

The intuitive meaning of the variables puvr is that they assume value 1 when vertex r
is in the same unsafe component as vertex v and u is safe. Therefore, we can remove
constraints (5.6) from formulation (5) and insert constraints (6.1) and (6.2). Also in this
case we can relax the integrality of variables p since it is guaranteed by the integrality of
the variables s.
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Vertex separator formulation This next formulation is similar to the previous two but,
instead of propagating the connectivity, it imposes that two vertices belong to the same
component if and only if there is no vertex separator of the opposite kind (unsafe for a
safe component, and vice versa) that divides them.

A vertex separator S ⊆ V for a connected graph G is a subset of vertices such that
their removal splits the graph in two or more connected components. In our case, we
are interested in (u, v)-separators where u, v ∈V , such that the removal of the separator
from the graph disconnects u and v . Another characterization is that every path from
u to v (or vice versa since G is undirected) crosses at least one of the vertices in the
separator. In particular, we are interested in minimal (u, v)-separators, i.e., separators
that do not contain any proper subset which is itself a (u, v)-separator.

Given two non-adjacent vertices u, v ∈ V , we denote with S(u, v) the set of all
minimal (u, v)-separators. Of course S(u, v) =S(v,u).

The following formulation incorporates (u, v)-separators into its constraints in a way
inspired by Wang et al. (2017).

min
∑

v∈V
wv · sv (7.1)

Subject to: ∑
v∈V

sv ≥ 1 (7.2)

xuv = su ∧ sv (u, v) ∈ E (7.3)

yuv = (1− su)∧ (1− sv ) (u, v) ∈ E (7.4)

xuv ≥ xur +xr v −1 {u, v,r } ∈V (7.5)

yuv ≥ yur + yr v −1 {u, v,r } ∈V (7.6)

xuv ≤ ∑
r∈S

sr (u, v) ∉ E ,S ∈S(u, v) (7.7)

yuv ≤ ∑
r∈S

(1− sr ) (u, v) ∉ E ,S ∈S(u, v) (7.8)∑
r∈V

wr · (xur + yur ) ≥ ∑
r∈V

wr · yvr (u, v) ∈ E (7.9)

sv ∈ {0,1} v ∈V (7.10)

xuv ∈ {0,1} u, v ∈V (7.11)

yuv ∈ {0,1} u, v ∈V (7.12)

In this context, the variables xuv behave in the same way as the variables xL
uv in

formulation (5), but only for the safe vertices. In fact, instead of using L = ⌈log2(|V |−1)⌉
“steps” to propagate the connectivity, here we force xuv = 1 whenever there is some
r ∈V such that xur = 1 = xr v with constraints (7.5). The issue lies in enforcing xuv = 0 if
u and v are in different safe components. In this regard, constraints (7.7) impose that if
there exists a (u, v)-separator of unsafe vertices, then xuv = 0. Similarly, the same
considerations apply to the variables y , which represent the connectivity of the unsafe
vertices. At last, for any edge (u, v) ∈ E , the safety conditions are imposed by
constraints (7.9) where the right-hand-side is simply the weight of the unsafe
component that contains v (0 if v is safe) whereas the left-hand-side is the weight of the
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component (safe or unsafe) that contains u. This way, if u, v are both unsafe and
adjacent, they must be in the same unsafe component and therefore constraint (7.9) is
satisfied. On the other hand, whenever v is safe, the right-hand-side evaluates to 0,
satisfying the constraint. At last, when u is safe and v unsafe, the constraint enforces
the safety condition.

This formulation, once again, still works if we relax the integrality constraints of
variables x and y .

Obviously, the number of constraints (7.7) and (7.8) is not polynomial and,
therefore, we have to resort to a branch-and-cut approach with a separation routine.
The separation problem consists in the search for a pair of vertices u, v such that there
exists a (u, v)-separator that violates constraints (7.7) or (7.8). In particular, if s∗ is the
vector containing the values of the variables sv in some solution (of the continuous
relaxation or the original problem), we can compute the most violated constraint by
considering for each pair of non-adjacent vertices u, v ∈ V the minimum
(u, v)-separator with respect to s∗:

S̊ = min
S∈S(u,v)

∑
v∈S

s∗v

If
∑

v∈S̊ s∗v < x∗
uv , where x∗

uv is the value of variable xuv in the considered solution, then
we add the associated constraint (7.7). The same can be done for constraints (7.8)
considering (1− s∗v ) as weights.

Computing a minimum (u, v)-separator is a polynomial-time problem and can be
done with a well-known reduction to the minimum cut problem by duplicating each
vertex and connecting the pairs with an arc with capacity equal to the weight of the
vertex and all other edges become directed arcs with infinite capacity. However, it is not
necessary to find a minimum separator; often, a minimal separator is sufficient for our
purpose.

Column generation formulation This last formulation, instead of considering binary
variables sv associated to the vertices, considers binary variables associated to
connected components in the graph. In particular, let’s denote with C the set of all
(maximal or non-maximal) connected components of the graph G . If C ∈ C is a
connected component, xC is the binary variable that assumes value 1 if and only if C is
a safe component in the solution and, specularly, yC is the binary variable the assumes
value 1 if and only if C is an unsafe component in the solution.

We denote with wC =∑
v∈C wv the weight of component C .
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min
∑

C∈C
wC ·xC (8.1)

s.t. ∑
C∈C

xC ≥ 1

( ∑
C∈C

xC = k

)
(8.2)∑

C∈C:
u∈C

(xC + yC ) = 1 u ∈V (8.3)

∑
C∈C:

u∈C∨v∈C

xC ≤ 1 (u, v) ∈ E (8.4)

∑
D∈C:

u∈D∨v∈D

yD ≤ 1 (u, v) ∈ E (8.5)

∑
C∈C:

u∈C∧v∉C

wC · xC ≥ ∑
D∈C:

v∈D∧u∉D

wD · yD (u, v) ∈ E (8.6)

xC ∈ {0,1} C ∈ C (8.7)

yD ∈ {0,1} D ∈ C (8.8)

Constraint (8.2) guarantees that the solution is non-empty. If we aim to solve the
CWSSP or any other variant that imposes a given number k ∈ IN of safe components, we
can simply modify the constraint as showed in the parenthesis. Constraints (8.3) impose
that for any vertex u ∈ V , there is exactly one safe or unsafe component that contains
u. Constraints (8.4) and (8.5) make sure that if two adjacent vertices u, v are both safe
or unsafe, they lie in the same component. In fact, they impose that the number of
safe (or unsafe) components that contain u or v is at most 1. At last, constraints (8.6)
implement the safety conditions on the edge (u, v) ∈ E , making sure that the left-hand-
side only considers components C ∈ C with u ∈ C and v ∉ C and the right-hand-side
only considers components D ∈ C with u ∉ D and v ∈ D . This way, the only components
considered are the ones adjacent to each other and, moreover, if both u and v are unsafe,
the right-hand-side evaluates to 0 satisfying the constraint.

Of course, the number of variables in this formulation is not polynomial, therefore
we should resort to column-generation to solve it. Since there are two types of
variables, x and y , we require two similar pricing problems. Unfortunately, both these
pricing problems are very complicated since they consist in the search for a connected
component which maximises the following reduced costs:

max
C∈C

µ+ ∑
u∈C

λu + ∑
(u,v)∈E :

u∈C∨v∈C

θuv +wC · ∑
(u,v)∈E :

u∈C∧v∉C

σuv −wC

max
D∈C

∑
u∈D

λu + ∑
(u,v)∈E :

u∈D∨v∈D

γuv +wD · ∑
(u,v)∈E :

u∈D∧v∉D

σuv

where µ is the dual variable associated to constraint (8.2), λu are the dual variables of
constraints (8.3), θuv are the dual variables of constraints (8.4), γuv the ones of



18 2.3. BENCHMARK INSTANCES

constraints (8.5), σuv are the dual variables of constraints (8.6) and wC , wD are the total
weights of the component.

Disregarding the significant difficulty of this pricing problem, preliminary results
show that the continuous relaxation of this formulation is of good quality.

2.3 Benchmark instances

The benchmarks considered for the WSSP in our computational experiments are
available at

https://homes.di.unimi.it/cordone/research/wssp.html,
together with the detailed results. They can be grouped into several classes based on
their topology, size and weight function. The first two classes derive from the literature.

In the following, we will indicate with n = |V | the number of vertices and with m = |E |
the number of edges of the considered instances.

Benchmark M (Macambira et al., 2019) This benchmark consists of Erdős-Renyi
graphs with a number of vertices covering all values from 10 to 30. For each size, three
different graphs are obtained setting the number of edges to ⌊δn(n −1)/2⌋, with density
δ ∈ {0.3,0.5,0.7}. Each graph corresponds to a weighted instance, with weights
randomly extracted from a uniform distribution in {1, . . . ,100}, and an unweighted one,
where all weights are unitary. Overall, therefore, this benchmark consists of
21 ·3 ·2 = 126 instances. It is publicly available at

http://www.cos.ufrj.br/~luidi/papers/safeset.html
. The optimal values of these instances are known.

Benchmark H (Hosteins, 2020; Boggio Tomasaz et al., 2023a) This benchmark has a
similar structure, as it also includes Erdős-Renyi graphs, but the number of vertices is
n ∈ {20,25,30,35,40,50,60}, there are four classes of densities (δ ∈ {0.1,0.2,0.3,0.4}) and 5
instances for each size and density. Also in this case, weighted and unweighted versions
of the same graphs are considered, but in the former the weights are randomly extracted
from a uniform distribution in {1, . . .10}. Overall, this benchmark consists of 7 ·4 ·5 ·2 =
280 instances. The optimal values are known for most of these instances.

The new classes consist of larger instances, and will be used to investigate the
performance of the algorithms, and its dependence on topological features. The
number of vertices is n ∈ {100,150,200,250,300} for all graphs, except for the real-world
ones. As in benchmark H, each graph corresponds to a weighted instance, with random
weights extracted from {1, . . . ,10}, and an unweighted one.

Benchmark H+ This is an extension of benchmark H with instances of bigger size. The
density δ ranges in {0.1,0.2,0.3,0.4}, each size and density corresponds to 5 instances.
Given the five possible sizes and the two weight functions, this yields 5 · 4 · 5 · 2 = 200
instances.
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Benchmark GC This consists of 9 graphs used in the 10th DIMACS challenge on Graph
Clustering with a number of vertices and edges ranging from n = 34 and m = 78 to n =
453 and m = 2025. Given the two weight functions, this yields 9 ·2 = 18 instances.

Benchmark SW The small-world instances are generated with the Watts–Strogatz
model (Watts and Strogatz, 1998), setting the initial degree of the vertices to d ∈ {6,10}
and the randomisation parameter to p = 0.05. Generating 5 instances for each class
yields 5 ·2 ·5 ·2 = 100 instances.

Benchmark Reg The regular instances have fixed degree d ∈ {5,10} with edges pairing
vertices extracted at random, excluding those that already have reached the required
degree. Since there are 5 graphs for each size and degree, there are 5 ·2 ·5 ·2 = 100 regular
instances.

Benchmark Pla The planar instances are obtained distributing n points in a square
with uniform random integer coordinates in {1, . . . ,100} and computing a greedy
triangulation. As there are 5 graphs for each dimension, the planar instances are
5 ·5 ·2 = 50.

Benchmark Grid The grid instances are 2D and 3D grid graphs with a toroidal
structure (the vertices in the first and the last path for each dimension are linked with
each other). In order to obtain the required number of vertices, we consider the
following sizes for 2D graphs: 10×10, 10×15, 10×20, 10×25, 15×20, and the following
ones for 3D graphs: 4×5×5, 5×5×6, 5×5×8, 5×5×10, 5×6×10. Overall, there are
10 ·2 = 20 grid instances.

Overall the number of instances considered is 126+280+200+18+100+100+50+
20 = 894. Table 2.1 summarises their basic features, reporting for each benchmark their
acronym (Name), their type and number of the instances (#), the range of the number of
vertices n, the average degree δ̄ and the average diameterφ. The upper two benchmarks
derive from the literature, the other ones are new.

Name Type # n δ̄ φ

M random 126 [10,30] 9.5 2.5
H random 240 [20,60] 8.1 4.6
H+ random 200 [100,300] 50.1 2.5
GC real-world 18 [34,453] 10.5 5.8
SW smallworld 100 [100,300] 8.0 8.9
Reg regular 100 [100,300] 7.5 4.7
Pla planar 50 [100,300] 5.7 11.3
Grid grid 20 [100,300] 5 11.1

Table 2.1: Main features of the benchmark instances.
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Chapter 3

An Exact Method for the WSSP

In this chapter, we introduce a combinatorial branch-and-bound approach, whose

main strength is a refined relaxation that combines graph manipulations and the

solution of an auxiliary problem. We also propose fixing procedures to reduce the

number of branching nodes alongside with a polynomial-time feasibility check. We

present two versions of the algorithm and compare them with each other as well as

with the state of the art methods from the literature, showing that our new

approaches outperform all their predecessors.

Since the WSSP is a NP-hard problem, solving it to optimality requires implicit
enumeration techniques like the branch-and-bound algorithm by Hosteins (2020), the
branch-and-cut algorithms by Macambira et al. (2019) and Malaguti and Pedrotti
(2023) or the dynamic programming approach by Àgueda et al. (2018) parametrised on
the treewidth. In this chapter, we propose a combinatorial branch-and-bound for
which we provide two different versions, distinguished by the subroutines they use.
The algorithm proceeds by fixing vertices in or out of the solution. Each node of the
branching tree, therefore, corresponds to a sub-problem in which the vertex set V is
partitioned into a triplet 〈S,U ,F 〉, where S is the subset of safe vertices (fixed inside the
solution), U is the subset of the unsafe vertices (fixed outside) and F is the subset of the
residual free vertices. In this framework, since any feasible solution can be interpreted
as a special sub-problem (S,V \ S,;) with no free vertices, we can generalise the
concepts of safe and unsafe components previously introduced by defining:

CG (S) = {Si | i = 1,2, ..., |CG (S)|} as the collection of all safe components Si ,
CG (U ) = {U j | j = 1,2, ...|CG (U )|} as the collection of all unsafe components U j ,
CG (F ) = {Fℓ | ℓ= 1,2, ..., |CG (F )|} as the collection of all free components Fℓ.

where safe, unsafe and free components are the maximal connected components
induced by S,U and F , respectively. Moreover, in this chapter, we will denote the
number of safe components in CG (S) as

k := |CG (S)|
In each node of the branching tree, the algorithm tries to construct a feasible

solution, respecting the current assignments. It computes a lower bound on the
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optimum of the sub-problem. It fixes some free vertices using logical tests. Finally, it
decides how to branch creating two children nodes.

The following proposition provides a technical remark that will be used by the
upper and lower bounding procedures. The intuitive idea is that, when the free vertices
of a sub-problem 〈S,U ,F 〉 are assigned to the safe and the unsafe components to
generate a solution, each original component can be enlarged and possibly merged
with other components of the same type; therefore, each safe component of the
sub-problem is fully included in exactly one safe component of the solution, and each
unsafe component of the sub-problem is fully included in exactly one of the unsafe
components of the solution.

Proposition 1. Let 〈S,U ,F 〉 be a sub-problem and S̃ a set of vertices such that S ⊆ S̃ ⊆
S ∪F , that is a feasible or infeasible solution for the sub-problem. For each component
Si ∈ CG (S) there is a component S̃x ∈ CG (S̃) such that Si ⊆ S̃x and w(Si ) ≤ w(S̃x); for
each component U j ∈CG (U ) there is a component Ũy ∈CG (V \ S̃) such that U j ⊆ Ũy and
w(U j ) ≤ w(Ũy ).

Proof. Consider a safe component Si ∈ CG (S). Since Si is connected, we know that
every pair of vertices u, v ∈ Si are connected through a path involving only vertices of
Si . Since S ⊆ S̃, all the vertices in the path between u and v are also contained in S̃, but
this implies that they are contained in the same component S̃x ∈ CG (S̃). This holds for
each pair of vertices u, v ∈ Si , implying that Si is fully contained in S̃x . As the weights
are non-negative, Si ⊆ S̃x implies w(Si ) ≤ w(S̃x). The same reasoning can be applied to
the unsafe components, as U ⊆V \ S̃ ⊆U ∪F .

3.1 Upper bound and feasibility

Once the safe, unsafe and free components of a sub-problem are known, it is possible
either to find a feasible solution, or to prove that none exists. In particular, the definition
below identifies free components whose vertices belong to the unsafe set in any feasible
solution.

Definition 1. A free component Fℓ ∈CG (F ) is called unsavable if:

1. Fℓ is not adjacent to any safe component;

2. its weight w(Fℓ) is smaller than the weight of at least one adjacent (unsafe)
component.

The following proposition shows that all vertices of the unsavable free components
can be moved from subset F to U , with no risk of excluding feasible solutions.

Proposition 2. In all feasible solutions of sub-problem 〈S,U ,F 〉, the vertices of the
unsavable free components are unsafe.

Proof. Let Fℓ ∈ CG (F ) be an unsavable free component, and U j ∈ CG (U ) an unsafe
component adjacent to Fℓ such that w(U j ) > w(Fℓ). Let S̃ be a feasible solution and
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Ũ j ∈ CG (V \ S̃) the unsafe component that contains U j (Proposition 1). Either Ũ j fully
includes also Fℓ, or there exists a vertex v ∈ Fℓ that is adjacent to Ũ j and belongs to S̃.
The first case implies the thesis. The second case contradicts the feasibility of S̃. In fact,
let S̃(v) ∈ CG (S̃) be the safe component that includes v in S̃. Since Fℓ is unsavable,
S̃(v) ⊆ Fℓ, but all weights are non-negative, and therefore
w(S̃(v)) ≤ w(Fℓ) < w(U j ) ≤ w(Ũ j ), which violates the safety constraint.

Since moving free vertices to U enlarges some unsafe components, other free
components can become unsavable, allowing to apply the proposition repeatedly. At
the end of this chain effect, moving all free vertices to the safe set and checking the
safety requirements on the resulting set provides a simple feasibility test, as proved in
the following theorem.

Theorem 1. A sub-problem 〈S,U ,F 〉 with no unsavable free component is feasible if and
only if S ∪F is a feasible solution.

Proof. If S ∪ F is a feasible solution, the sub-problem is trivially feasible. If, on the
contrary, S ∪ F is infeasible, there is a maximal connected component Ŝi ∈ CG (S ∪ F )
that is adjacent to a maximal connected component U j ∈ CG (U ), and has strictly lower
weight: w(Ŝi ) < w(U j ). Consider any S̃ ⊆ S ∪F . According to Proposition 1, component
U j is fully contained in a component Ũy ∈ CG (V \ S̃). On the other hand, when S ∪F is
reduced to S̃ moving vertices from F to U , component Ŝi can become smaller, or split
in smaller disjoint subsets, or completely vanish. The third case is impossible, because
it would require Ŝi to fully consist of free vertices and have no adjacent safe vertex:
such a component, with w(Ŝi ) < w(U j ), would be unsavable, against the hypothesis.
Therefore, S̃ contains one or more components S̃x ⊆ Ŝi , with weights
w(S̃x) ≤ w(Ŝi ) < w(U j ) ≤ w(Ũy ) and one of these components is adjacent to Ũy .
Consequently, S̃ is infeasible.

The solution provided by the previous theorem for feasible sub-problems is actually
the worst feasible one, but it is a fast way to potentially improve the upper bound during
the visit of the branching tree.

3.2 Lower bound

The lower bounding procedure adopted by the algorithm exploits a sequence of
relaxations, obtained by changing the topology of the graph and removing or
weakening the safety constraints, until we obtain a much simpler problem, for which
we build an ILP formulation, whose continuous relaxation we solve via an ad hoc
algorithm.

At each node of the branching tree, it is possible to compute two simple lower
bounds, based on the weights of the safe and unsafe components of sub-problem
〈S,U ,F 〉. The first bound is trivially the total weight of the safe vertices: for each
feasible solution S̃, in fact, w(S̃) ≥ w(S). The second bound is based on the safety
constraints: in any feasible solution, the unsafe component of maximum weight must
be dominated by the adjacent safe components, and consequently by the total weight
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of the solution. Hence, the maximum weight of any connected component of CG (U )
provides a lower bound on the optimum: w(S̃) ≥ maxU j∈CG (U ) w(U j ).

Since these bounds do not take into account the weights of the free vertices, however,
their quality in the upper levels of the branching tree is usually poor. The development
of a more refined bound is the main contribution of this chapter and the main reason
for the effectiveness of the branch-and-bound algorithm. This bound is based on the
remark that all free vertices that are adjacent to both S and U will be included in the
existing safe and unsafe components, without generating any new one. Therefore, these
free vertices can be used to tighten the previous two bounds. As an example, Figure
3.1 shows a sub-problem 〈S,U ,F 〉 in which S = {1,6}, U = {3,7} and F = {2,4,5}. The
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Figure 3.1: Example of a sub-problem 〈S,U ,F 〉. The weight of each node is displayed
next to it.

two simple lower bounds are w(S) = 9 and w(U ) = 12. However, all the vertices in F
are adjacent to both S and U and, therefore, in every feasible solution their total weight
(w(F ) = 23) will be distributed between S and U . The distribution that minimises the
maximum weight of the two components corresponds to first increasing w(S) by 3 to
level them off and then dividing the residual weight of F in equal parts between S and
U , thus obtaining a lower bound equal to 9+3+ (23−3)/2 = 22. Incidentally, this is also
the value of the optimal solution of the sub-problem, S∗ = {1,4,5,6}.

Such a situation is quite frequent, especially when the graph is dense, as shown by
the following remark based on the model proposed by Gilbert (1959).

Remark 1. Let G = (V ,E) be a random graph following the Erdős-Rényi-Gilbert model,
where each pair of vertices has a fixed probability δ ∈ [0,1] of corresponding to an edge.
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Given a sub-problem 〈S,U ,F 〉, the expected cardinality of the set of free vertices adjacent
to both S and U , X = {x ∈ F | ∃s ∈ S, u ∈U : (s, x) ∈ E ∧ (x,u) ∈ E }, is

E[|X |] = |F | · (1− (1−δ2)|S|·|U |).

Proof. The probability that some vertex f ∈ F belongs to X is

P( f ∈ X ) =P(∃s ∈ S,u ∈U : (s, f ) ∈ E ∧ ( f ,u) ∈ E)

= 1−P(∀s ∈ S,u ∈U : (s, f ) ∉ E ∨ ( f ,u) ∉ E)

= 1−∏
s∈S

∏
u∈U

P((s, f ) ∉ E ∨ ( f ,u) ∉ E)

= 1−∏
s∈S

∏
u∈U

(1−P((s, f ) ∈ E) ·P(( f ,u) ∈ E))

= 1−∏
s∈S

∏
u∈U

(1−δ ·δ)

= 1− (1−δ2)|S|·|U |

Let X f be the binary random variable equal to 1 when f ∈ X , and 0 otherwise. The
cardinality of X is the random variable |X | =∑

f ∈F X f , and therefore, a binomial variable
with parameters |F | and P( f ∈ X ). Its expected value is E[|X |] = |F | ·P( f ∈ X ), which
implies the thesis.

The example of Figure 3.1 conveys the general idea, but is simplified from several
points of view. First of all, the number of safe or unsafe components can be larger than
one, and adding free vertices can merge components, instead of simply enlarging them.
Then, not all free vertices are adjacent both to the safe and unsafe components. Also,
the assignment of free vertices to the components with the aim to reduce the maximum
weight bears a resemblance to the subset sum problem, but is also constrained by the
topology of the graph. Finally, such an NP-complete problem is hard to solve.

In order to deal with all these aspects, we propose two versions of the refined lower
bound. Both versions consider the weights of the free vertices adjacent to both S and
U and the computation is based on the idea of making a conservative guess of how the
weights of some such vertices will redistribute between S and U . The first (strict lower
bound) is theoretically stronger but requires stronger assumptions which might reduce
effectiveness of other components of the algorithm. The second (flexible lower bound)
is theoretically weaker but does not require any assumption.

3.2.1 Strict lower bound

In this version, we assume that:

1. S and U are not empty;

2. at most one of the |CG (S)| = k ≥ 1 components of CG (S) is adjacent to F .

The first limitation is true in most sub-problems, and the second limitation can be
easily maintained in all nodes by adopting a branching rule described in Section 3.4.
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Under this assumption, no pair of such components will be merged by fixing free
vertices in the solution. Without any loss of generality, we can impose that, for any
feasible solution S̃, the first safe components are the same as in S (S̃i = Si for
i = 1, . . . ,k − 1), Sk possibly incorporates free vertices (S̃k ⊇ Sk ), and new safe
components S̃i (i = k + 1, . . . ,r ) are possibly created from scratch. Figure 3.2 provides
examples of the possible cases.

6 4 13

7 5 8 5

5 7 2
4

3 3

1 2 3

4 5 6 7

8 9 10 11

12 13
S1 = S̃1 U1 = Ũ1

S2

S̃2

Ũ2

U2 U3

U4

Ũ3

S̃3Ũ4

Figure 3.2: The safe and unsafe components of sub-problem 〈S,U ,F 〉 (marked in dashed
lines) satisfy two basic limitations: S and U are non-empty, and at most one of the safe
components of CG (S), namely S2, is adjacent to F . Considering any feasible solutions
of the sub-problem (e.g, S̃ = {1,3,4,6,8}), its safe and unsafe components (marked in
continuous lines) can remain the same (S̃1 = S1 and Ũ1 =U1), be augmented (S̃2 = S2 ∪
{1} and Ũ2 =U2∪ {10}) or be created from scratch (S̃3 = {3} and Ũ4 = {2}); only the unsafe
components can merge including free vertices (Ũ3 =U3 ∪ {11}∪U4).

Given sub-problem 〈S,U ,F 〉 with S = {4,6,8} and U = {5,7,9,12,13}, set S consists of
k = 2 components: S1 = {4,8} cannot be augmented because it is not adjacent to
F = {1,2,3,10,11}, whereas S2 = {6} can. In fact, the feasible solution S̃ = {1,3,4,6,8}
induces three safe components: the first one is unchanged with respect to S (S̃1 = S1),
the second one is augmented (S̃2 = {1,6} ⊃ S2) and the third one is completely new
(S̃3 = {3}). Considering the unsafe components, set U induced four: U1 = {5,9},
U2 = {12}, U3 = {13} and U4 = {7}. The complement of the feasible solution
Ũ = V \ S̃ = {2,5,7,9,10,11,12,13} has the following unsafe components: Ũ1 coincides
with U1, Ũ2 is obtained augmenting U2 by vertex 10, Ũ3 is obtained merging U3 and U4
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through vertex 11, and Ũ4 is created from scratch including vertex 2. This confirms the
properties stated by Proposition 1. Additionally, the limitation on sub-problem 〈S,U ,F 〉
guarantees that none of the safe components of S merge.

Now, we focus on the subset of free vertices that are adjacent to both S and U :

F ′ = {v ∈ F | ∃s ∈ S,u ∈U : (s, v) ∈ E ∧ (v,u) ∈ E }.

Under the limitation above introduced, the vertices of F ′ are actually adjacent only to
safe component Sk . In any feasible solution, these vertices either join Sk , increasing its
weight, or join an unsafe component Uℓ, increasing its weight and possibly merging it
with other unsafe components. Since the second situation is harder to treat, we avoid
it modifying the graph so that also the existing unsafe components cannot merge. The
following propositions show that this can be done while simultaneously producing a
relaxation of the original sub-problem. In fact, the manipulations described limit the
ways in which the unsafe components Uℓ can enlarge, but they keep and possibly extend
those in which the safe component Sk can become larger.

Proposition 3. Removing an edge (u, v) from graph G = (V ,E) provides a relaxation of
sub-problem 〈S,U ,F 〉 if u ∈U and v ∈ F or both u, v ∈ F ′.

Proof. We now show that any feasible solution S̃ remains feasible in the graph obtained
removing edges as in the statement, and therefore the resulting problem is a relaxation
of the original one.

Let (u, v) be an edge with u ∈U and v ∈ F . If v ∈ S̃, the safe and unsafe components
of S̃ that include, respectively, v and u are adjacent in G , but can be non-adjacent in the
reduced graph. This would remove a safety constraint. If on the contrary v ∈V \ S̃, u and
v belong to the same unsafe component, and removing the edge could split it, replacing
some safety constraints with other ones concerning unsafe components of lower weight.
In both cases, the feasibility of S̃ is maintained.

Let (u, v) be an edge with u, v ∈ F ′. If one of the two vertices is in S̃, say u, and
the other in V \ S̃, say v , deleting the edge does not cause any change because u ∈ S̃k

and v is directly adjacent also to S̃k . If both are unsafe, deleting the edge can split the
unsafe component that includes them, replacing some safety constraints with weaker
ones. Finally, if both u and v are safe, since they are adjacent to Sk and Sk is connected,
they both belong to component S̃k , that remains connected. Hence, S̃ remains feasible.

A technical detail worth discussing is that removing edges can disconnect the
graph, while the WSSP is commonly defined on connected graphs. With the purpose to
obtain a problem for which lower bounds are simple to compute, we adopt the natural
extension to non-connected graphs that admits the existence of isolated unsafe
components, because they do not violate any safety constraint.
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Proposition 4. Replacing in graph G = (V ,E) an edge (u, v) with u ∈ F ′ and v ∈ F \F ′ with
any edge (s, v) with s ∈ S provides a relaxation of sub-problem 〈S,U ,F 〉.
Proof. Consider any feasible solution S̃ and let (u, v) be an edge with u ∈ F ′ and v ∈
F \ F ′. We add the edge (s, v) with s ∈ S and denote with Sx ∈CG (S) the safe component
that includes s. In the context of the strict lower bound, we require that Sx = Sk , for
the flexible lower bound it can be any safe component. If v ∈ S̃, the safe component
of S̃ that includes v merges with Sx (unless they already were the same), the weight of
their union is larger than the original weights and all safety constraints are even more
strongly satisfied. If v ∈V \ S̃ and u ∈ S̃ the adjacent components induce the same safety
constraint. Finally, if u, v ∈V \S̃, the unsafe component including u and v possibly splits,
inducing weaker safety constraints.
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Figure 3.3: Example of graph manipulations: removing each of the three edges (2,3),
(6,7) or (12,13) (in red) or replacing edge (9,10) (also in red) with (1,10) (in dotted blue)
yields a relaxation of the original problem.

Figure 3.3 shows an example of these relaxations for graph G = (V ,E) with
V = {1, . . . ,13} and the sub-problem with S = {1}, U = {4,5,7,8,11,13} and
F = {2,3,6,9,10,12}). The dashed boxes are the only safe component Sk = {1} and the six
unsafe components U1 = {4}, U2 = {5}, U3 = {7}, U4 = {8}, U5 = {11}, U6 = {13}, while
F ′ = {2,3,6,9}. The weights are reported next to each vertex.

Table 3.1 provides examples of all the modifications discussed in the previous
propositions on the graph of Figure 3.3. The removed or replaced edges are marked
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with crosses, the new edge is drawn with a dotted line and an arrow points it from the
original edge. The first row of the table describes the starting graph, the optimal
solution S∗ and its total weight w(S∗). Each of the following rows reports a
modification applied to the starting graph, the corresponding proposition, the optimal
solution S∗ of the relaxed instance obtained and its total weight w(S∗). The last row
applies all the previous modifications. In all cases, the optimal solution of the original
problem remains feasible, but a new better solution appears; in particular the value of
the last one coincides with the simple bound w(U4) = 3.

Modification Proposition S∗ w(S∗)
nothing {1,3,6,9,10} 5
remove (2,3) 3 {1,6,9,10} 4
remove (6,7) 3 {1,3,9,10} 4
remove (12,13) 3 {1,3,6,9} 4
replace (9,10) with (1,10) 4 {1,3,6,10} 4
all the previous 3, 4 {1,6,10} 3

Table 3.1: Manipulations applied to the graph in Figure 3.3 and their effects on the
optimal solution.

The lower bounding procedure adopted applies Propositions 3 and 4 to graph G so
as to obtain a reduced graph G ′ in the following way:

• remove all edges (u, v) with u, v ∈ F ′;

• remove all edges (u, v) with u ∈U and v ∈ F \ F ′;

• for each vertex v ∈ F ′, remove all but one of the edges (u, v) such that u ∈ U , so
that at most one unsafe component remains adjacent to v ;

• replace every edge (u, v) with u ∈ F ′ and v ∈ F \ F ′ with an edge (s, v) with s ∈ Sk (if
such an edge already exists, just remove (u, v)).

Thanks to these modifications, in the reduced graph the unsafe components Uℓ ∈CG (U )
can include vertices of F ′, but not merge with each other, and they cannot extend to F \
F ′. Therefore, in any feasible solution S̃ of the relaxed problem each unsafe component
includes at most one unsafe component Uℓ and can be denoted by the same index Ũℓ ∈
CG (V \ S̃). Finally, each v ∈ F ′ joins either Sk or the only unsafe component Uℓ adjacent
to v .

The choice of the edge between each v ∈ F ′ and U is arbitrary, but, considering that
the maximum weight of an unsafe component provides a lower bound on the optimum,
it looks more promising to allow a vertex to join an unsafe component of large weight,
rather than a component of small weight. Therefore, we associate each vertex to the
adjacent unsafe component of maximum weight, obtaining a partition of F ′ into subsets
associated to the unsafe components Uℓ.

F ′
ℓ =

{
v ∈ F ′ |Uℓ = arg max

Uy∈CG (U ):
Uy▷◁G {v}

w(Uy )
}

ℓ ∈ L′,
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where L′ ⊆ {1, . . . , |CG (U )|} is the set of indices of the unsafe components Uℓ that are
adjacent to Sk or to F ′, and consequently of the unsafe components Ũℓ that can be
adjacent to and impose safety constraints on S̃k in the original graph. Notice that some
subsets F ′

ℓ
can be empty, either because the corresponding unsafe component Uℓ is

not adjacent to F ′ or because it is of small weight. For example, after applying all the
manipulations listed in Table 3.1 to Figure 3.3, F ′ is partitioned into F ′

1 = {2}, F ′
2 = {3},

F ′
3 =;, F ′

4 = {6}, F ′
5 = {9}, F ′

6 =;.
Now, we can go back to the combinatorial definition of the WSSP . Any feasible

solution S̃ of sub-problem 〈S,U ,F 〉 on graph G ′ must satisfy the safety constraints

w(S̃i ) ≥ w(Ũℓ) S̃i ∈CG ′(S̃),Ũℓ ∈CG ′(V \ S̃) : S̃i ▷◁G ′ Ũℓ, (9)

We relax all of them, except for those that involve S̃k and Ũℓ with ℓ ∈ L′, that we rewrite
as

w(S̃k ) = w(Sk )+ ∑
v∈F∩S̃k

wv xv ≥ w(Uℓ)+ ∑
v∈F ′

ℓ

wv (1−xv ) = w(Ũℓ) ℓ ∈ L′, (10)

where the binary variables xv ∈ {0,1} for v ∈ F are set to 1 if vertex v ∈ S̃, to 0 otherwise.
The left-hand-side of the inequality can be majorised (relaxing the constraint) by simply
replacing F ∩ S̃k with F . Intuitively, this corresponds to allowing free vertices that are
not in component S̃k to contribute to its safety. The advantage is to remove any term
depending on S̃ (which is unknown a priori), apart from the binary variables xv . The
resulting relaxation can be formulated as:

min w(S)+ ∑
v∈F

wv xv (11.1)

w(Sk )+ ∑
v∈F

wv xv ≥ w(Uℓ)+ ∑
v∈F ′

ℓ

wv (1−xv ) ℓ ∈ L′ (11.2)

xv ∈ {0,1} v ∈ F. (11.3)

This problem generalises the optimisation version of the Subset Sum problem, that is NP-
complete (Garey and Johnson, 1979): setting F ′ = F , L′ = {1} and w(Sk ) = w(U1) yields
min

∑
v∈F wv xv subject to

∑
v∈F wv xv ≥ 1/2 ·∑v∈F wv . Since we need to solve problem

(11) at every branching node, we consider its continuous relaxation. Let us introduce the
auxiliary variables σ=∑

v∈F wv xv and τℓ =
∑

v∈F ′
ℓ

wv (1− xv ) with ℓ ∈ L′. These variables
satisfy the following properties:

τℓ =
∑

v∈F ′
ℓ

wv (1−xv ) ≤ ∑
v∈F ′

ℓ

wv = w(F ′
ℓ) ℓ ∈ L′ (12)

σ+ ∑
ℓ∈L′

τℓ =
∑

v∈F \F ′
wv xv +

∑
v∈F ′

wv xv +
∑
ℓ∈L′

∑
v∈F ′

ℓ

wv (1−xv )

= ∑
v∈F \F ′

wv xv +
∑

v∈F ′
wv xv +

∑
v∈F ′

wv (1−xv )

≥ w(F ′) (13)
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from which we derive

minσ (14.1)

w(Sk )+σ≥ w(Uℓ)+τℓ ℓ ∈ L′ (14.2)

τℓ ≤ w(F ′
ℓ) ℓ ∈ L′ (14.3)

σ+ ∑
ℓ∈L′

τℓ ≥ w(F ′) (14.4)

σ,τℓ ≥ 0 ℓ ∈ L′ (14.5)

Notice that constraint (14.4) could be considered in equality version, for some
instances, thanks to the following remark.

Remark 2. Given a feasible solution σ,τℓ of formulation (14) with σ+∑
ℓ∈L′ τℓ > w(F ′),

if σ ≤ w(F ′) then there exists an equivalent (same objective value) feasible solution σ,τ′
ℓ

such that σ+∑
ℓ∈L′ τ′

ℓ
= w(F ′).

Proof. To obtain such solution we just execute the following procedure:

1. initialize τ′
ℓ
= τℓ for every ℓ ∈ L′;

2. select the index ℓ̄= argmaxℓ∈L′ τ′
ℓ

;

3. computeΩ=σ+∑
ℓ∈L′ τ′

ℓ
−w(F ′) as the surplus of constraint (14.4);

4. if τ′
ℓ̄
>Ω, then decrease τ′

ℓ̄
byΩ and stop;

5. otherwise, set τ′
ℓ̄
= 0 and proceed with step 2.

The procedure ends because at most |L′| variables are set to 0. In fact, if all variables
τ′
ℓ
= 0, then σ+∑

ℓ∈L′ τ′
ℓ
=σ+0 ≤ w(F ′) meeting the stopping criteria. Moreover, at the

end of the procedure, the last selected variable τ′
ℓ̄

is decreased byΩmeaning that

σ+ ∑
ℓ∈L′

τ′ℓ−Ω=σ+ ∑
ℓ∈L′

τ′ℓ−
(
σ+ ∑

ℓ∈L′
τ′ℓ−w(F ′)

)
= w(F ′)

To solve problem (14) and compute a lower bound for sub-problem 〈S,U ,F 〉, we
propose Algorithm 1.

First, by setting τℓ = 0 for all ℓ ∈ L′ and σ = max{0, max
ℓ∈L′ w(Uℓ)−w(Sk )}, we obtain

the best solution that satisfies all constraints but (14.4). Then, we increase each τℓ
variable to reduce the infeasibility of (14.4), without violating constraints (14.2, 14.3).
The main loop of the algorithm iteratively computes the violation φ of constraint (14.4)
and identifies the unsafe components which still have a residual capacity (the ones
with τℓ < w(F ′

ℓ
)), along with the minimal value µ of these capacities. As long as the

violation cannot be fairly divided among the components without exceeding their
residual capacity, we increase σ and τℓ (for all ℓ such that τℓ < w(F ′

ℓ
)) by µ to keep
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Input : G = (V ,E): connected undirected graph
w : V → IR+: weight function on the vertices
〈S,U ,F 〉 current sub-problem

1 Algorithm Strict Relaxation(G , w,S,U ,F):

2 z := max

{
w(Sk ), max

ℓ∈L′
w(Uℓ)

}
3 σ := z −w(Sk ) // Satisfies constraints(14.2)
4 τℓ := min

{
w(F ′

ℓ
), z −w(Uℓ)

} ∀ℓ ∈ L′ // Keeps satisfied constraints(14.3)
5 loop
6 φ := w(F ′)−σ− ∑

ℓ∈L′
τℓ // φ is the violation of constraint (14.4)

7 Q := {
ℓ ∈ L′ | τℓ < w(F ′

ℓ
)
}

//
Set of all components
with residual capacity

8 φ̄ :=φ/(|Q|+1)

9 µ := min
ℓ∈Q

{
w(F ′

ℓ
)−τℓ

}
//

Minimal residual capacity among Q
(µ=+∞ if Q =;)

10 if φ̄≤µ then exit loop

11 for ℓ ∈Q do τℓ := τℓ+µ // Since ∀ℓ ∈Q :µ≤ w(F ′
ℓ

)−τℓ,
then (14.3) are satisfied

12 σ :=σ+µ // Since the increment is the same, (14.2) are satisfied
13 end
14 if φ> 0 then // When (14.4) was not already satisfied before the loop
15 σ :=σ+ φ̄
16 τℓ := τℓ+ φ̄ ∀ℓ ∈Q // φ̄≤µ so the increment respects (14.3)
17 end
18 return σ, ∀ℓ ∈ L′ : τℓ

Algorithm 1: Algorithm to solve problem (14)

constraints (14.3) satisfied. Increasing them by the same amount, also constraints
(14.2) remain satisfied. When the condition on the residual violation no longer holds,
we exit the loop and divide the violation equally among the remaining components, to
minimise the increase of the objective function. If constraint (14.4) was already
satisfied before the loop, it means that we already have the optimal solution and that
we must not decrease the variables by φ̄ ≤ 0 because it could possibly violate
constraints (14.5).

At each iteration, at least one of constraints (14.3) is activated, implying that, after at
most |L′| iterations, Q =; and therefore µ=+∞≥ φ̄, exiting the loop. Once outside the
loop, φ̄≤ µ, so τℓ+ φ̄≤ w(F ′

ℓ
) for all ℓ ∈Q: it is possible to increase σ and every τℓ with

ℓ ∈Q by φ̄. Increasing |Q|+1 variables by φ̄= φ/(|Q|+1) reduces the violation of (14.4)
to zero, thus producing a feasible solution.

To prove that Algorithm 1 returns the optimal solution, let us recall that throughout
its execution, constraints (14.2) and (14.3) are never violated and that the termination
condition precisely corresponds to the satisfaction of constraint (14.4). Therefore,
Algorithm 1 returns a feasible solution of formulation (14). To prove that the said
solution is also optimal we first consider the following lemma.
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Lemma 2. Let σ∗,τ∗
ℓ

be the solution returned by Algorithm 1, for each ℓ ∈ L′ such that
τ∗
ℓ
< w(F ′

ℓ
), constraints (14.2) are satisfied with equality.

∀ℓ ∈ L′ : τ∗ℓ < w(F ′
ℓ) =⇒ w(Sk )+σ∗ = w(Uℓ)+τ∗ℓ

Proof. The condition holds at every iteration of the algorithm and we prove it by
induction on the number of iterations performed. The base case is right before the
beginning of the loop. If τℓ < w(F ′

ℓ
) then τℓ = z −w(Uℓ) which implies that

w(Uℓ)+τℓ = w(Uℓ)+ z −w(Uℓ) = z = w(Sk )+σ

Now, the inductive hypothesis is that at the beginning of the iteration, if τℓ < w(F ′
ℓ

) then
w(Sk )+σ = w(Uℓ)+ τℓ. Since τℓ < w(F ′

ℓ
) then ℓ ∈ Q and therefore, at the end of the

iteration, τℓ is incremented by µ. We know that also σ is increased by µ therefore

w(Sk )+σ= w(Uℓ)+τℓ ⇐⇒ w(Sk )+σ+µ= w(Uℓ)+τℓ+µ

so that at the beginning of the next iteration the condition will still hold. Once we exit
the loop, all variables with residual capacities are incremented by the same amount,
thus maintaining the condition satisfied.

Now we prove the optimality.

Theorem 2. The solution σ∗,τ∗
ℓ

returned by Algorithm 1 is optimal.

Proof. Without loss of generality we assume that σ∗ ≤ w(F ′), satisfying the condition
of Remark 2. This assumption is justified, as if σ∗ > w(F ′) it would mean that φ < 0
which is only possible when at the beginning of the algorithmσ∗ is set to z−w(Sk ). This
happens when there is some unsafe component Uℓ of weight z > w(Sk ) and, therefore,
the minimum σ such that w(Sk )+σ≥ w(Uℓ) is σ∗ = w(Ul )−w(Sk ) = z −w(Sk ), proving
that σ∗,τ∗

ℓ
is optimal. On the other hand, if σ∗ ≤ w(F ′) we can use the procedure in

Remark 2 to find an equivalent solution that satisfies constraint (14.4) to equality.
By contradiction, there is some feasible solution σ̄, τ̄ℓ of formulation (14) such that

σ̄ < σ∗. Once again, without loss of generality, we assume σ̄, τ̄ℓ to satisfy
constraint (14.4) to equality (notice that σ̄ < σ∗ ≤ w(F ′)). Since both are feasible
solutions, satisfying constraint (14.4) to equality, the following equation holds

σ∗+ ∑
ℓ∈L′

τ∗ℓ = w(F ′) = σ̄+ ∑
ℓ∈L′

τ̄ℓ

but since σ̄<σ∗ ∑
ℓ∈L′

τ∗ℓ <
∑
ℓ∈L′

τ̄ℓ

which means that there exists some ℓ+ ∈ L′ such that τ∗
ℓ+ < τ̄ℓ+ ≤ w(F ′

ℓ+).
By Lemma 2 we know that w(Sk )+σ∗ = w(Uℓ+)+τ∗

ℓ+ therefore

w(Sk )+ σ̄< w(Sk )+σ∗ = w(Uℓ+)+τ∗ℓ+ < w(Uℓ+)+ τ̄ℓ+

violating constraint (14.2).



34 3.2. LOWER BOUND

In Figure 3.4, F ′ = {1,10,11} is partitioned assigning vertex 1 to U1, vertex 10 to U4

and vertex 11 to U3, while F ′
2 remains empty because U2 has a weight smaller than U3,

even though it is adjacent to vertex 11. Now, z = w(U1) = 15, so we need to increase
the weights of the other components to that value. This amounts to setting σ = 7, τ3 =
5 and τ4 = 2, while τ1 = τ2 = 0 because U1 already has the maximum weight and U2

cannot increase its weight (F ′
2 =;). The residual violation to be distributed isφ= w(F ′)−

σ−∑
ℓτℓ = 29− 7− 5− 2 = 15 and Q = {1,3,4} identifies the unsafe components with

residual capacity; the minimum capacity is µ= w(F ′
1)−τ1 = 2. Since φ̄> µ, we increase

all variables τℓ with ℓ ∈ Q and σ by µ, setting τ1 = 2, τ3 = 7, τ4 = 4, and σ = 9. This
decreases the residual violation to φ = 7 and leaves only 2 augmentable components
(Q = {3,4}). As µ = w(F ′

3)− τ3 = w(F ′
4)− τ4 = 8, and it is not smaller than φ̄ = 7/3, we

exit the loop and distribute the residual violation in equal parts among σ, τ3 and τ4,
increasing them by 7/3. Consequently, the optimal value of σ is σ∗ = 9+ 7/3 and the
lower bound is w(S)+σ∗ = 15+ 8+ 9+ 7/3 = 34+ 1/3, that can be rounded up to 35
(since all weights are integers). This is much larger than the two simple bounds, that
are, respectively, equal to w(S) = 23 and w(U1) = 15. The weight of the optimal solution
S∗ = {2,4,6,8,11} is 42.

2 4 17

10 5 8 5

5 10 12 15

13 10

1 2 3

4 5 6 7

8 9 10 11

12 13
S1 U1

S2

U2

U3U4

Figure 3.4: Example of the computation of the strict lower bound for a sub-problem
〈S,U ,F 〉: the current total weight of the safe components is w(S) = 23 and the current
maximum weight of the unsafe components is w(U1) = 15, but the lower bound can be
raised up to 35, partitioning F ′ = {1,10,11} into F ′

1 = {1}, F ′
2 = ;, F ′

3 = {11} and F ′
4 = {10}

and distributing its weight among S2, U3 and U4. This strongly reduces the gap with
respect to the optimal solution S∗ = {2,4,6,8,11}, whose weight is 42.
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The complexity of Algorithm 1 is easily identified by acknowledging that the main
loop decreases the cardinality of Q by at least 1 in each iteration, resulting in a maximum
of |CG (U )| ≤ |V | iterations. Since each iteration requires to scan the unsafe components
to update Q, computeµ and possibly update variables τℓ, it has complexity O(|CG (U )|) ≤
|V |. Overall, the complexity of the algorithm is O(|CG (U )|2) ≤O(|V |2).

3.2.2 Flexible lower bound

We introduce another property that allows to manipulate the graph obtaining a
relaxation of sub-problem 〈S,U ,F 〉.
Proposition 5. Adding to graph G = (V ,E) an edge (u, v) with u, v ∈ S provides a
relaxation of sub-problem 〈S,U ,F 〉.
Proof. It is a relaxation because all feasible solutions of the sub-problem keep their value
and remain feasible in the modified graph. Given two fixed safe vertices u, v ∈ S and a
solution S̃ for sub-problem (S,U ,F ), there are two cases:

1. u and v belong to the same safe component induced by S̃: then, adding edge (u, v)
changes neither the components nor the value of S̃;

2. u and v belong to different safe components induced by S̃: the addition of (u, v)
merges the two safe components, leaving unchanged all unsafe components and
the value of the objective.

1
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1
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1
1
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S1 S2

U1

U2

U3

Figure 3.5: Example of graph manipulations: inserting edge (5,7) (in dotted blue),
removing the edges (2,3), (10,11) (both in red) or replacing edge (8,9) (also in red) with
(7,9) (in dotted blue) yields a relaxation of the original problem.

Figure 3.5 shows an example of usage of the three properties (3, 4, 5) similar to
Figure 3.3. We consider the sub-problem in which the vertex set V = {1, . . . ,11} is
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partitioned into S = {5,7}, U = {1,4,11} and F = {2,3,6,8,9,10}. Dashed boxes mark the
two safe components S1 = {5} and S2 = {7}, and the three unsafe components U1 = {1},
U2 = {4} and U3 = {11}, while the frontier is F ′ = {2,3}. Table 3.2 provides examples for
the application of the previous propositions, reporting the kind of modification, the
corresponding proposition, the optimal solution of the relaxed instance obtained (S∗)
and the value of the optimum (w(S∗)). The first row refers to the starting graph with no
modification, the last one to the graph obtained applying all of them. Figure 3.5 marks
with a cross a removed or replaced edge and draws with a dotted line a new edge; in
case of replacement, a line with an arrowhead connects the original edge with the new
one. In all examples, the optimal solution of the original problem remains feasible, but
a new better solution appears.

Modification Proposition S∗ w(S∗)
none {3,5,6,7,8,9} 6
insert (5,7) 5 {3,5,7,8,9} 5
remove (2,3) 3 {5,6,7,8,9} 5
remove (10,11) 3 {3,5,6,7,8} 5
replace (8,9) with (7,9) 4 {3,5,6,7,9} 5
all the previous 5, 3, 4 {5,7,9} 3

Table 3.2: Manipulations applied to the graph in Figure 3.5 and their effects on the
optimal solution.

The lower bounding procedure applies all the manipulations of the strict version but
also adds an initial step where all the safe vertices are connected to each other. Once
again, the following manipulations allow to modify graph G to obtain an auxiliary graph
G ′ as follows:

• connect all vertices in S to one another;

• remove all edges (u, v) with u, v ∈ F ′;

• remove all edges (u, v) with u ∈U and v ∈ F \ F ′;

• for each vertex v ∈ F ′, remove all but one of the edges (u, v) such that u ∈U ;

• replace every edge (u, v) with u ∈ F ′ and v ∈ F \ F ′ with an edge (s, v) with s ∈ S (if
such an edge already exists, just remove (u, v)).



CHAPTER 3. AN EXACT METHOD FOR THE WSSP 37

The optimal solution of sub-problem 〈S,U ,F 〉 on the auxiliary graph G ′ is smaller
than or equal to the optimal solution for G . In order to find it, we can exploit the main
features of G ′:

• the safe vertices form a single safe component;

• the unsafe components remain unchanged: CG (U ) =CG ′(U )

• the unsafe components can include vertices of F ′, but not of F \F ′, and they cannot
merge;

• each v ∈ F ′ joins either S or the only unsafe component adjacent to it.

Just like for the Strict lower bound, the choice of the edge between each v ∈ F ′ and U
is heuristic and we associate v with the adjacent unsafe component of maximum weight.

This time, we partition the frontier F ′ in a slightly different way. In fact, instead of
considering only the unsafe components adjacent to S or to F ′, we take into
consideration all unsafe components. This is because including all unsafe components
introduces more constraints, leading to a stronger lower bound. Additionally, since we
only consider a single safe component, all unsafe components will be adjacent to the
same safe component in any solution. Therefore we redefine F ′

ℓ
as follows:

F ′
ℓ = {v ∈ F ′ |Uℓ = arg max

Uy∈CG (U ):
Uy▷◁G {v}

w(Uy )} Uℓ ∈CG (U )

where F ′
ℓ

is empty when the unsafe component Uℓ is not adjacent to F ′ in G ′.
The new ILP formulation for sub-problem 〈S,U ,F 〉 on graph G ′ is

min w(S)+σ (15.1)

subject to:

w(S)+σ≥ w(Uℓ)+τℓ Uℓ ∈CG (U ) (15.2)

σ= ∑
v∈F

wv ·xv (15.3)

τℓ =
∑

v∈F ′
ℓ

wv · (1−xv ) Uℓ ∈CG (U ) (15.4)

σ≥ 0 (15.5)

τℓ ≥ 0 Uℓ ∈CG (U ) (15.6)

xv ∈ {0,1} v ∈ F (15.7)

Formulation (15) shares its structure with formulation (11) with the main difference
that, this time, the safe component considered is the whole set of vertices fixed to safe
(because we connected them) and all unsafe components are considered.



38 3.2. LOWER BOUND

As before, since the formulation (15) is difficult to solve, we replace the
constraints (15.4) and (15.3) with properties (12) and (13), resulting in the new
continuous LP formulation (16).

min w(S)+σ (16.1)

subject to:

w(S)+σ≥ w(Uℓ)+τℓ Uℓ ∈CG (U ) (16.2)

σ+ ∑
Uℓ∈CG (U )

τℓ ≥ w(F ′) (16.3)

σ≥ 0 (16.4)

0 ≤ τℓ ≤ w(F ′
ℓ) Uℓ ∈CG (U ) (16.5)

And solve it by slightly changing Algorithm 1 into Algorithm 2.

Input : G = (V ,E): connected undirected graph
w : V → IR+: weight function on the vertices
〈S,U ,F 〉 current sub-problem

1 Algorithm Flexible Relaxation(G , w,S,U ,F):
2 z = max{w(S),maxUℓ∈CG (U ) w(Uℓ)}
3 σ= z −w(S)
4 for Uℓ ∈CG (U ) do τℓ = min{w(F ′

ℓ
), z −w(Uℓ)}

5 loop
6 φ= max{w(F ′)−σ−∑

Uℓ∈CG (U )τℓ, 0}
7 Q = {

Uℓ ∈CG (U ) | τℓ < w(F ′
ℓ

)
}

8 φ̄=φ/(|Q|+1)
9 µ= minUℓ∈Q

{
w(F ′

ℓ
)−τℓ

}
10 if φ̄≤µ then exit loop
11 σ=σ+µ
12 for Uℓ ∈CG (U ) do τℓ = τℓ+µ
13 end
14 σ=σ+ φ̄
15 for Uℓ ∈CG (U ) do τℓ = τℓ+ φ̄
16 return w(S)+σ
Algorithm 2: Exact algorithm to solve formulation (16) for sub-problem 〈S,U ,F 〉.

Consider the example of Figure 3.5: after applying all graph manipulations, w(S) =
2, w(U1) = 1, w(U2) = 2, w(U3) = 2, w(F ′

1) = 2, w(F ′
2) = 1, w(F ′

3) = 0. The initialisation sets
z = w(S) = 2, τ1 = 0, τ2 = 1 and τ3 = 0. In the first iteration of the loop, φ = 2 and
Q = {U1,U2}, so φ̄ = 2/3 and µ = 1. We can apply the increase to all components and
raise z to 2+2/3, consistently with the fact that the optimum for graph G ′ is 3.

The correctness of Algorithm 2 can be proven in a similar manner as Algorithm 1 and
their complexity is exactly the same.
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3.3 Vertex fixing

Section 3.1 described a feasibility test for a given sub-problem 〈S,U ,F 〉, that also moves
some vertices from F to U , based on the fact that any solution including them is
necessarily infeasible (see Proposition 2). In the following, we introduce other
properties that allow to move free vertices to S or U , thus reducing the size of the
current sub-problem. The first one simply extends the feasibility test with an implicit
branching operation.

Proposition 6. Given a sub-problem 〈S,U ,F 〉, let C be a component of CG (S∪F ) and f a
vertex of C ∩F . If

w(C )−w f <
∑

U j∈CG (U ):
U j▷◁{ f }

w(U j )+w f (17)

then vertex f belongs to the safe set of all feasible solutions of 〈S,U ,F 〉.
Proof. Moving f from F to U modifies sub-problem 〈S,U ,F 〉 into sub-problem (S,U ∪
{ f },F \ { f }). Correspondingly, all the unsafe components U j ∈CG (U ) that were adjacent
to f (U j ▷◁ { f }) merge into a single one, whose weight is the right-hand-side of (17). On
the other hand, component C loses vertex f and possibly splits into several components,
each with a weight dominated by the left-hand-side of (17). Therefore, at least one of the
safety constraints concerning subset S ∪F \ { f } is violated.

The following property assigns a vertex with another implicit branching based on the
comparison with the value of the best known solution, S̄, that is an upper bound on the
optimum.

Proposition 7. Let 〈S,U ,F 〉 be a sub-problem and f ∈ F a free vertex. If

w(S)+w f ≥ w(S̄)

then vertex f does not belongs to the safe set of any feasible solution better than S̄. If∑
U j∈CG (U ):

U j▷◁{ f }

w(U j )+w f ≥ w(S̄)

then vertex f belongs to the safe set of all feasible solutions better than S̄.

Proof. The proof is based on computing the two simple lower bounds described in the
beginning of Section 3.2, respectively assuming that vertex f is moved to S or to U .

Notice that moving free vertices to S can create new safe components, possibly
violating the assumption made in Section 3.2.1 for the Strict lower bound, that at most
one safe component is adjacent to F . Since this assumption is fundamental for the
correct execution of the lower bound procedure, we move into S only free vertices that
are already adjacent to S. On the other hand, if we opt for the Flexible lower bound in
Section 3.2.2, we can apply all the fixings without any limitation.
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3.4 Exploration strategy and branching rule

We adopted a best-first strategy for the visit of the branching tree, visiting first the open
node which minimises the lower bound, in order to focus the search on the most
promising nodes and produce good upper bounds.

For what concerns the branching strategy, we select the branching vertex as the free
vertex of maximum weight. The rationale of this choice is that assigning such a vertex
in both ways could increase the lower bound by increasing either the total weight of the
safe vertices or the weight of the heaviest unsafe component. In case of ties, we consider
the vertex of maximum degree because it is more likely to be involved in a larger number
of safety constraints, thus strengthening the lower bound.

As already mentioned above, moving free vertices to S can violate the basic
condition required to compute the Strict lower bound. To avoid doing that, we modify
the branching rule selecting the free vertex of maximum weight and degree only among
those that are adjacent to S. In case no such vertex exists, we select it among those that
are adjacent to U . At the root of the branching tree, where both S and U are empty, we
simply apply the basic branching rule. It is worth mentioning that the modified
branching rule also allows to apply the algorithm to the WCSSP. In order to maintain a
single safe component, in fact, it is possible to restrict the selection of the branching
vertex only to the free vertices adjacent to it. In case no free vertex is adjacent to the
safe component, all remaining free vertices must be moved to the unsafe set. This
either solves the current node or proves that it is unfeasible.

For the Flexible lower bound, however, we just consider the free vertex of maximum
weight and, in case of ties, of maximum degree.

3.5 Experimental results

In this section, we analyse the performances of the two versions of the
branch-and-bound algorithm: with strict relaxation (and weaker vertex fixings and
branching rule) or with flexible relaxation (and more effective vertex fixings and
branching rule). At first we compare the state of the art approaches to the version with
strict relaxation and, then, we show that the version with flexible lower bound
outperforms the one with strict lower bound, and therefore all the other methods.

The instances provided by the literature are the ones of benchmarks M and H with
number of vertices |V | ≤ 50. Here we simply extend benchmark H introducing instances
with |V | = 60. The other benchmarks include instances too large to produce meaningful
results.

All these approaches run on different, but comparable, machines. Table 3.3 reports
the acronyms used in the following to denote them and their main features. The
number of threads (Thr.) for B&C1 is not explicitly reported, but is presumably equal to
1. The following additional information is available on the solvers and options. B&C1
was implemented in C++ using CPLEX 12.6 and disabling all heuristics, cuts and
pre-processing. The MILP formulation by Hosteins (2020) was solved with CPLEX 12.9,
disabling CPLEX’s cuts, that slowed down excessively the solution process. B&C2 was
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written in C/C++ and compiled with g++ version 8.3.0, exploiting the Solving
Constrained Integer Programming Optimization Suite version 6.0.2 along with the
Soplex LP solver version 4.0.2; a test with Gurobi reduced the number of branching
nodes, but increased the overall computational time.

Name Reference Processor Frequency RAM Thr.
B&C1 Macambira et al. (2019) Intel Core TM i7-6700 3.40 GHz 15.6 GB -
MILP Hosteins (2020) Intel Core i7-6600U 2.60 GHz 32 GB 4
B&C2 Malaguti and Pedrotti (2023) Intel Core i7-4790 3.60 GHz 32 GB 1
B&Bs This contribution (Strict) Intel Xeon E5-2620 2.1 GHz 16 GB 1
B&Bv This contribution (Flexible) Intel Xeon E5-2620 2.1 GHz 16 GB 1

Table 3.3: Details of the exact algorithms for the WSSP and machines used to test them.

Definition of the total optimality gap The quality of the solution returned by an exact
algorithm is usually measured with the total optimality gap defined as

(U B −LB)/z∗

where

• z∗ is the value of the optimal solution to the problem;

• U B is the upper bound returned by the algorithm;

• LB is the lower bound returned by the algorithm.

Usually, z∗ is unknown and, therefore we have to consider an estimate. The literature
often consider two:

(U B −LB)/U B (18)

(U B −LB)/LB (19)

and the following relationship holds

(U B −LB)/U B ≤ (U B −LB)/z∗ ≤ (U B −LB)/LB

In the following, when possible (in particular, when comparing the different versions
of our algorithm) we will prefer the overestimate (19). However, when comparing our
results to those of authors who adopt the underestimate, for the sake of consistency we
will adopt (18).
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3.5.1 Comparison with the state of the art

We compared the results of B&Bs with those of the competing algorithms available in
the literature.

Table 3.4 reports the results for the weighted benchmark M. Each row refers to a
value of size n, that is reported in the first column. The following three groups of four
columns report the computational time in seconds required by the four approaches to
solve the three instances of size n, which differ by the density δ of the graph. These
results derive from the original references, with the original precision. The instances
with a computational time of 7200 seconds are actually not solved to optimality
because of the imposition of a time limit of 2 hours. While B&C2 dominates the other
approaches for δ = 0.3, B&Bs is slightly slower on those instances, slightly faster for
δ= 0.5 and two to three orders of magnitude faster for δ= 0.7. The computational time
of MILP (some minutes) and B&C1 (sometimes more than 2 hours) are three to four
orders of magnitude larger.

δ= 0.3 δ= 0.5 δ= 0.7
|V | B&C1 MILP B&C2 B&Bs B&C1 MILP B&C2 B&Bs B&C1 MILP B&C2 B&Bs
10 0.87 0 0.0 0.000 1.58 0 0.0 0.001 1.28 1 0.0 0.000
11 0.70 1 0.0 0.000 1.19 0 0.1 0.000 2.78 1 1.4 0.000
12 2.71 1 0.0 0.001 4.13 0 0.1 0.000 4.05 1 7.3 0.001
13 1.93 1 0.0 0.000 3.92 1 0.0 0.000 4.55 1 1.6 0.001
14 6.55 2 0.0 0.001 8.15 2 0.1 0.001 13.78 3 2.7 0.001
15 8.14 2 0.0 0.001 20.73 3 0.1 0.002 26.66 4 2.6 0.003
16 30.72 4 0.0 0.001 27.11 4 0.2 0.001 45.04 6 7.2 0.002
17 24.85 4 0.0 0.003 45.35 4 0.1 0.004 58.95 4 4.3 0.003
18 35.05 4 0.0 0.001 43.11 7 0.5 0.002 96.20 10 2.8 0.003
19 72.18 13 0.0 0.007 74.87 10 0.4 0.003 158.06 14 5.8 0.008
20 130.58 11 0.0 0.009 126.04 13 0.2 0.005 317.75 19 25.4 0.011
21 222.34 11 0.0 0.006 326.43 20 0.5 0.031 304.43 33 9.6 0.036
22 863.93 22 0.0 0.028 515.10 17 0.1 0.032 1422.93 51 1.9 0.028
23 243.63 19 0.1 0.009 428.23 26 0.7 0.012 661.38 44 12.0 0.008
24 455.48 69 0.0 0.040 810.46 59 1.6 0.022 2296.73 76 7.2 0.050
25 940.33 61 0.1 0.046 2209.33 49 1.2 0.046 3065.93 50 13.3 0.029
26 2892.70 203 0.1 0.131 3042.08 80 1.4 0.109 3167.12 113 58.4 0.041
27 2648.34 71 0.1 0.127 4399.39 83 1.6 0.226 2626.44 262 26.6 0.075
28 3081.24 221 0.0 0.100 5961.68 282 0.4 0.084 6761.96 251 14.7 0.051
29 5559.33 138 0.0 0.416 5574.58 211 0.8 0.469 7200.00 254 65.9 0.241
30 3907.08 219 0.2 0.328 7200.00 267 0.1 0.456 7200.00 305 46.8 0.423

Table 3.4: Computational times (in seconds) required to solve the weighted instances of
benchmark M of density δ ∈ {0.3,0.5,0.7} with B&C1, MILP, B&C2 and B&Bs.
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Table 3.5 reports the corresponding results for the unweighted instances. The
structure of the table is the same, and the results are consistent with the ones of
Table 3.4, except for the fact that the difference between B&C2 and B&Bs are more
marked (in favour of B&C2 for δ = 0.3 and of B&Bs for δ = 0.5) and that for δ = 0.7 the
computational time of B&C2 becomes higher than that of MILP in most instances.

δ= 0.3 δ= 0.5 δ= 0.7
|V | B&C1 MILP B&C2 B&Bs B&C1 MILP B&C2 B&Bs B&C1 MILP B&C2 B&Bs
10 0.58 1 0.0 0.000 0.68 0 0.0 0.000 0.72 1 0.0 0.000
11 1.02 0 0.0 0.000 0.94 1 0.2 0.000 1.40 0 19.6 0.000
12 1.58 1 0.0 0.000 2.90 1 0.1 0.001 3.52 1 4.3 0.000
13 1.59 1 0.0 0.001 3.59 1 0.0 0.001 4.34 1 27.5 0.001
14 7.72 2 0.0 0.001 4.60 2 0.2 0.002 6.67 2 38.8 0.001
15 10.08 2 0.0 0.004 14.80 3 0.3 0.002 15.17 4 10.1 0.003
16 16.65 2 0.0 0.004 25.44 4 0.8 0.007 32.52 6 33.1 0.002
17 24.36 5 0.0 0.006 47.98 6 1.5 0.004 48.90 4 455.9 0.002
18 32.09 7 0.0 0.005 39.22 9 2.6 0.003 80.11 6 80.7 0.002
19 54.67 10 0.0 0.017 84.42 10 0.5 0.019 101.36 12 24.9 0.015
20 231.73 11 0.0 0.037 222.89 15 0.8 0.019 194.30 22 93.3 0.004
21 297.90 16 0.0 0.014 408.62 27 0.7 0.016 190.03 37 140.0 0.002
22 379.42 18 0.0 0.033 714.91 15 1.0 0.040 750.14 27 52.1 0.007
23 614.10 34 0.0 0.050 467.30 41 3.7 0.057 546.10 94 418.1 0.018
24 381.10 38 0.0 0.107 658.42 58 0.2 0.155 2434.47 110 311.0 0.012
25 1090.78 59 0.1 0.216 907.91 44 0.5 0.097 1768.22 123 80.7 0.079
26 1560.85 78 0.1 0.267 3307.20 97 6.5 0.182 2388.87 148 878.8 0.017
27 1853.99 150 0.0 0.240 2462.43 134 3.6 0.090 3899.18 168 2416.3 0.186
28 4557.31 284 0.1 0.421 3891.22 248 3.6 0.218 2708.83 194 111.2 0.036
29 4276.96 182 0.1 0.494 4089.23 130 11.1 0.303 4679.83 178 2418.2 0.516
30 4962.59 472 0.1 1.723 7200.00 359 11.1 0.549 7200.00 332 439.1 0.053

Table 3.5: Computational times (in seconds) required to solve the unweighted instances
of benchmark M of density δ ∈ {0.3,0.5,0.7} with B&C1, MILP, B&C2 and B&Bs.

Table 3.6 compares the results of MILP, B&C2 and B&Bs on benchmark H for the
weighted instances. These are available in the literature only for |V | ≤ 50. Each row of
the table refers to a given density and size, reported in the first two columns. The table
reports the arithmetic mean of the optimality gap on each group of 5 instances thus
identified, the number of instances solved within the time limit of one hour and the
average computational time in seconds. For consistency with the results published in
Malaguti and Pedrotti (2023), we compute the optimality gap obtained by each
algorithm a on an instance as the difference between the upper and the lower bound
divided by the upper bound, that is (U Ba −LBa)/U Ba . This provides a lower estimate of
the actual optimality gap, that would be (U Ba −LBa)/z∗, where z∗ denotes the optimal
value.

The proposed branch-and-bound algorithm solves all 120 instances exactly (in 40
minutes in the worst case), whereas MILP solves 71 instances up to 40 vertices and B&C2
solves 97 instances up to 40 vertices. On the biggest instances, the optimality gaps are
around 20−30% for B&C2, larger than 90% for MILP.
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MILP B&C2 B&Bs
δ |V | gap solved sec gap solved sec gap solved sec

0.1

20 - 5 72.2 - 5 0.8 - 5 0.002
25 - 5 746.4 - 5 4.9 - 5 0.009
30 16.65 3 2554.6 - 5 20.1 - 5 0.046
35 39.53 0 3600.0 - 5 55.0 - 5 0.147
40 74.89 0 3600.0 2.2 4 1244.2 - 5 4.306
50 94.55 0 3600.0 22.7 0 3600.0 - 5 237.367

0.2

20 - 5 28.0 - 5 0.3 - 5 0.008
25 - 5 140.2 - 5 1.9 - 5 0.138
30 7.52 4 1472.0 - 5 10.6 - 5 0.803
35 34.49 1 3522.6 - 5 195.3 - 5 6.127
40 72.21 0 3600.0 - 5 1207.8 - 5 21.879
50 93.72 0 3600.0 33.1 0 3600.0 - 5 1072.342

0.3

20 - 5 11.8 - 5 0.2 - 5 0.013
25 - 5 52.0 - 5 2.3 - 5 0.114
30 - 5 562.2 - 5 22.5 - 5 0.481
35 4.31 4 1956.8 - 5 326.6 - 5 3.133
40 43.19 1 3384.0 2.1 3 2400.3 - 5 10.821
50 96.36 0 3600.0 24.1 0 3600.0 - 5 90.216

0.4

20 - 5 12.8 - 5 0.5 - 5 0.016
25 - 5 66.4 - 5 5.1 - 5 0.088
30 - 5 375.0 - 5 34.2 - 5 0.465
35 - 5 905.4 - 5 404.6 - 5 2.151
40 16.05 3 2788.0 - 5 1367.2 - 5 4.239
50 99.41 0 3600.2 17.8 0 3600.0 - 5 50.748

Table 3.6: Average gap (%), number of instance solved within an hour and
average computational time (in seconds) required to solve the weighted instances of
benchmark H with |V | ≤ 50 of density δ ∈ {0.1,0.2,0.3,0.4} with MILP, B&C2 and B&Bs.

The results for the unweighted instances of the same benchmark are displayed in
Table 3.7 and present similar features. B&Bs closes 115 instances over 120, exhausting
the available memory in less than one hour on the 5 instances with n = 50 and δ = 0.1.
In this case, B&C2 and MILP have a similar performance: 73 solved instances for MILP
versus 74 for B&C2, with a predominance of the former on the dense instances and of
the latter on the sparse ones, and shorter computational times for B&C2 on the smaller
instances.
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MILP B&C2 B&Bs
δ |V | gap solved sec gap solved sec gap solved sec

0.1

20 - 5 94.2 - 5 1.3 - 5 0.020
25 - 5 532.2 - 5 5.2 - 5 0.042
30 4.44 4 1743.8 - 5 32.4 - 5 0.189
35 33.84 1 3538.0 - 5 469.4 - 5 3.943
40 67.73 0 3600.0 19.0 1 2976.1 - 5 107.544
50 87.97 0 3600.0 37.6 0 3600.0 35.78 0 1716.793

0.2

20 - 5 15.4 - 5 0.6 - 5 0.034
25 - 5 234.4 - 5 4.9 - 5 0.434
30 - 5 856.8 - 5 45.2 - 5 1.801
35 18.01 2 3437.0 7.7 2 2825.1 - 5 20.079
40 71.13 0 3600.0 29.2 0 3116.9 - 5 55.688
50 93.11 0 3600.0 45.8 0 3600.0 - 5 2500.817

0.3

20 - 5 14.4 - 5 0.2 - 5 0.016
25 - 5 77.6 - 5 12.5 - 5 0.193
30 - 5 362.6 - 5 174.3 - 5 1.069
35 10.64 3 2798.2 10.5 1 3141.5 - 5 6.962
40 38.39 0 3600.0 30.3 0 3368.4 - 5 29.723
50 91.05 0 3600.0 43.2 0 3600.0 - 5 873.641

0.4

20 - 5 14.2 - 5 1.1 - 5 0.020
25 - 5 98.8 - 5 40.8 - 5 0.166
30 - 5 267.8 - 5 256.6 - 5 0.820
35 2.4 4 1709.4 9.8 1 3486.8 - 5 5.449
40 11.58 4 2678.4 26.6 0 3600.0 - 5 17.279
50 95.27 0 3600.0 39.6 0 3600.0 - 5 214.247

Table 3.7: Average gap (%), number of instance solved within an hour and average
computational time (in seconds) required to solve the unweighted instances of
benchmark H with |V | ≤ 50 of density δ ∈ {0.1,0.2,0.3,0.4} with MILP, B&C2 and B&Bs.

Extension of benchmark H In order to check the practical limits of the proposed
approach, we extended the original benchmark H of Hosteins (2020), generating in the
same way instances with 60 vertices. Table 3.8 displays detailed results for such
instances. Each instance is defined by its density δ and an integer index from 1 to 5.
Each row displays the results of B&Bs for both the unweighted and weighted version of
the problem. We report the upper and lower bound returned by the algorithm on
termination (in bold when they coincide), along with the total computation time and
the number of branching nodes (BN). When the computer runs out of memory we
indicate it with the symbol OM in the BN column. Table 3.8 shows that instances of 60
vertices indeed become challenging. Most weighted instances can still be solved (15
over 20), but four hit the time limit of one hour and one exceeds the available memory
in less than one hour. On the other hand, most unweighted instances (16 over 20)
cannot be solved: the sparsest ones require too many branching nodes, whereas those
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with intermediate density reach the time limit with 10%−25% gaps. Only the densest
instances can be solved exactly (or nearly).

Instance Weighted Unweighted
δ # UB LB sec BN UB LB sec BN

0.1

1 77 77 3474.908 214559949 31 13 1405.774 OM
2 79 79 637.409 36033589 34 14 1741.854 OM
3 83 83 1130.850 74132535 30 13 842.090 OM
4 103 84 2641.847 OM 33 13 844.763 OM
5 86 86 3486.326 208196017 32 13 1455.969 OM

0.2

1 124 115 3600.000 114519193 30 24 3600.000 124741717
2 111 111 818.154 26933287 30 25 3600.000 122956349
3 145 127 3600.000 118277525 32 24 1864.234 OM
4 133 130 3600.000 115488031 30 25 3600.000 119412243
5 138 125 3600.000 110968265 30 25 3600.000 121037137

0.3

1 129 129 849.539 20954933 30 27 3600.000 89251817
2 124 124 500.606 12054917 30 27 3600.000 90466873
3 157 157 3002.098 72243237 30 27 3600.000 90122711
4 149 149 979.856 22742691 29 28 3600.000 88076127
5 144 144 1480.667 36611413 30 27 3600.000 90393441

0.4

1 137 137 169.997 3122629 29 29 2178.099 40799191
2 130 130 236.432 4292569 29 29 3097.001 60593849
3 163 163 968.583 17609435 29 29 3199.095 63802285
4 154 154 294.560 5287225 29 29 1597.201 30996299
5 155 155 640.122 11745113 30 29 3600.000 71328489

Table 3.8: Upper bound, lower bound, time (in seconds) and number of branching nodes
visited by B&Bs to solve unweighted and weighted instances of benchmark H of size |V | =
60 and density δ ∈ {0.1,0.2,0.3,0.4}.

3.5.2 Improvements due to the flexible lower bound

We now discuss the impact on the performance of the branch-and-bound algorithm of
the flexible lower bounding procedure, along with the resulting more flexible
management of the branching tree.

We discuss only very quickly the results on benchmark M. Every instance in this
benchmark is solved to optimality in less than half a second. The original algorithm
(that was also quite fast) required at most 1.7 seconds. Given these negligible times, a
more detailed and careful analysis seems to be of poor significance, so we skip it.

We consider in detail the 280 instances from benchmark H. Most of them can be
solved to optimality, but the largest ones are challenging enough to exhaust the
available memory or the time limit, that is set to one hour. We compare the results of
B&Bv with the ones of B&Bs. Tables 3.9 and 3.10 summarise the comparison,
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respectively for the weighted and the unweighted instances. The first two columns
report the density δ and the size |V | of the instances. Then, two groups of columns
provide information on the original branch and bound and the revisited one. Each
group includes the average optimality gap, the number of solved instances, the average
time consumption in seconds (CPU) and the average number of generated branching
nodes (BN). The optimality gap is defined as (U B −LB)/LB , where LB is the the lower
bound and U B the upper bound produced at the end of the computation, and it is
expressed as a percentage. All values are averaged over the 5 instances with the density
and size indicated in the associated row. When all 5 instances of a group are solved to
optimality, the zero gap is replaced by a dash. An asterisk marks the values for which
some instances exhaust the available memory, resulting in an anticipated termination.
The symbol OM indicates that all 5 instances of a group went “out of memory”.

B&Bs B&Bv
δ |V | gap solved CPU BN gap solved CPU BN

20 - 5 0.001 485 - 5 0.003 466
25 - 5 0.009 2453 - 5 0.007 1830
30 - 5 0.046 8773 - 5 0.037 6394

0.1 35 - 5 0.147 23993 - 5 0.109 16155
40 - 5 4.306 518719 - 5 2.788 299276
50 - 5 237.366 19445646 - 5 111.651 8102922
60 4.52% 4 2274.268* 133230523* - 5 1199.706 62877972
20 - 5 0.009 1570 - 5 0.004 724
25 - 5 0.138 19199 - 5 0.042 6154
30 - 5 0.803 84500 - 5 0.113 12504

0.2 35 - 5 6.127 495403 - 5 1.225 105793
40 - 5 21.879 1417253 - 5 3.997 277123
50 - 5 1072.342 49478072 - 5 307.728 14711729
60 6.94% 1 3043.631 97237260 1.82% 3 2290.738 74773767
20 - 5 0.013 1947 - 5 0.004 609
25 - 5 0.114 12616 - 5 0.040 4637
30 - 5 0.481 39254 - 5 0.218 18706

0.3 35 - 5 3.133 204212 - 5 1.084 74413
40 - 5 10.821 576087 - 5 4.898 266300
50 - 5 90.217 3195695 - 5 47.728 1665147
60 - 5 1362.553 32921438 - 5 743.674 17805962
20 - 5 0.016 2119 - 5 0.008 1152
25 - 5 0.088 8404 - 5 0.046 4509
30 - 5 0.465 32787 - 5 0.220 15963

0.4 35 - 5 2.151 119618 - 5 1.210 66598
40 - 5 4.239 181951 - 5 2.059 89991
50 - 5 50.748 1405504 - 5 27.720 773785
60 - 5 461.939 8411394 - 5 271.408 5005143

Table 3.9: Comparison between B&Bs and B&Bv over all weighted instances of the
benchmark.
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For the 140 weighted instances of Table 3.9, the revisited algorithm fails only 2
times, instead of 5, and one of the three newly solved instances avoids termination due
to memory exhaustion. The two instances still unsolved improve both the upper and
the lower bound, getting an optimality gap three times smaller. Computational time
and branching nodes reduce by about 50% for the instances solved to optimality.

B&Bs B&Bv
δ |V | gap solved CPU BN gap solved CPU BN

20 - 5 0.020 6034 - 5 0.022 5964
25 - 5 0.042 10326 - 5 0.048 11280
30 - 5 0.189 32846 - 5 0.199 34788

0.1 35 - 5 3.943 551247 - 5 3.262 410217
40 - 5 107.544 12642269 - 5 44.817 4778665
50 57.91% 0 OM OM 1.25% 4 2165.374 152910911
60 142.42% 0 OM OM 68.40% 0 OM OM
20 - 5 0.034 6582 - 5 0.014 2751
25 - 5 0.434 57475 - 5 0.139 18431
30 - 5 1.801 189567 - 5 0.614 67147

0.2 35 - 5 20.079 1759531 - 5 11.266 1040831
40 - 5 55.688 3775550 - 5 47.749 3390965
50 - 5 2500.817 124134933 - 5 1974.602 100802247
60 23.67% 0 3252.847* 122036862* 33.90% 0 OM OM
20 - 5 0.016 2378 - 5 0.010 1604
25 - 5 0.193 22433 - 5 0.114 13614
30 - 5 1.069 90049 - 5 0.622 54952

0.3 35 - 5 6.962 488122 - 5 4.799 348552
40 - 5 29.723 1612367 - 5 14.626 837818
50 - 5 873.641 34062285 - 5 480.459 18963773
60 9.60% 0 3600.000 89662194 4.29% 0 3600.000 94802520
20 - 5 0.020 2655 - 5 0.013 1823
25 - 5 0.166 16999 - 5 0.110 12119
30 - 5 0.820 60469 - 5 0.388 30495

0.4 35 - 5 5.449 331489 - 5 2.933 180731
40 - 5 17.279 788391 - 5 5.800 270571
50 - 5 214.247 6238868 - 5 56.295 1689201
60 0.69% 4 2734.279 53504023 - 5 710.371 13912611

Table 3.10: Comparison between B&Bs and B&Bv over all weighted instances of the
benchmark.

In the unweighted case (see Table 3.10), the unsolved instances decrease from 21 to
16 out of 140, with out-of-memory terminations reduced from 11 to 10. The average
gaps of the unsolved instances are less than half the original ones, except for the
sub-class with δ= 0.2, which exhibits a moderate increase. For these instances, in fact,
the weaker lower bound does not introduce enough advantages, and the consumption
of memory increases. Computational times and branching nodes also improve, in
particular for the denser instances, but less than in the weighted case. The larger and
sparser instances (|V | = 60 and δ ∈ {0.1,0.2}) are difficult to compare under this respect
because the computation terminates prematurely.
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Chapter 4

Heuristic Methods for the WSSP

In this chapter, we introduce a number of new metaheuristic approaches to the

WSSP. The first two approaches are Greedy Randomised Adaptive Search

Procedures with two phases: the first constructs a solution incrementally, starting

from an empty set and expanding until a feasible solution is achieved; the second is

a destructive procedure that refines this solution. Other three approaches improve

the exploration of the solution space by extending the constructive process after the

first feasible solution has been found, to visit several other ones in its surroundings.

Then, we present a Scatter Search (SS) metaheuristic, that keeps in memory a

multitude of suitable feasible solutions to recombine them obtaining new ones. It

then refines the new discovered solutions and saves the best ones found, while

discarding all the others.

In this chapter, we present several new metaheuristic approaches to address the
WSSP. The first two methods are Greedy Randomised Adaptive Search Procedures that
build a solution incrementally, starting from an empty set and expanding until a
feasible solution is achieved; a final destructive phase then refines this solution. Three
additional approaches enhance solution space exploration by continuing the
constructive process beyond the first feasible solution to explore nearby alternatives.
We also introduce a Scatter Search (SS) metaheuristic, which maintains a diverse set of
feasible solutions in memory, combining them to generate new candidates. These new
solutions are then refined, with only the best retained and all others discarded.

As mentioned before, the WSSP is a NP-hard problem, therefore we are not always
able to find an optimal solution in a reasonable time. As a matter of fact, as reported in
Chapter 3, for instances with |V | ≥ 60 the best existing approaches are not always able
to find an optimal solution (or prove its optimality) in less than 1 hour. For this reason
we investigate heuristic algorithms for the WSSP. The first two approaches that we
present follow the framework of the Greedy Randomised Adaptive Search Procedure
(GRASP) (Feo and Resende, 1989). They are based on a randomised constructive
mechanism that allows multiple restarts, followed by a destructive post-processing
phase to improve the result. Other three approaches improve the exploration of the
solution space by extending the constructive process after the first feasible solution has
been found, to visit several other ones in its surroundings. As they alternate between
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generating redundant solutions and reducing them by removing suitable vertices, these
approaches show strong similarities to the Large Neighbourhood Search (LNS)
framework (Shaw, 1998). Then, we present a Scatter Search (SS) metaheuristic, based
on the idea of merging two feasible solutions, which necessarily yields another feasible
solution. Since the latter is redundant, we reduce it by heuristically removing vertices.

4.1 Two GRASP metaheuristics

GRASP is a general constructive metaheuristic proposed by Feo and Resende (1989). It
is based on the idea that, if a solution is built by subsequently adding elements to an
initially empty set, it can be myopic to take deterministic choices according to a greedy
criterion. In fact, selecting wrong elements in the early steps can force bad selections in
the later ones and ultimately fail to generate good solutions. However, the information
provided by the greedy criterion is often not fully misleading, as the elements of the
optimal solution are not far behind the first suggested one. The correction proposed is,
therefore, to randomly select one of the best elements at each step, instead of
systematically the first. This also allows to apply the constructive scheme iteratively
and obtain several different solutions. Suitable numerical parameters can be used to
tune the randomisation mechanism, so as to make it more greedy or more random, and
correspondingly intensify or diversify the search. In general, an auxiliary exchange
heuristic is applied to improve the solutions thus generated.

This constructive approach is somehow complementary to the destructive one
proposed for the WSSP in Macambira et al. (2019). The latter is based on randomised
choices, too, but iteratively removes vertices from a subset that initially coincides with
the whole vertex set V . Our choice to move in the constructive direction is partly
motivated by mere curiosity and partly by the idea that optimal solutions are in general
of small cardinality (see also the theoretical limit on the size of solutions for the
unweighted case proved in Fujita et al. (2016)). A constructive mechanism obtains such
solutions in a smaller number of iterations, potentially in shorter time and with fewer
possibilities of committing mistakes with respect to a destructive one. The drawback is
that it requires to move through the infeasible region until a feasible solution is found,
and then remove vertices to make it minimal.

Algorithm 3 provides the pseudocode of the GRASP metaheuristics we propose for
the WSSP. They start from the empty set and progressively extend it: each iteration of
the loop in lines 3 − 6 adds an unsafe vertex vnew , until all safety constraints are
satisfied. Procedure Extraction() randomly chooses the new vertex with a selection
criterium discussed in the following, that favours vertices of large degree. Since the
final solution can include redundant vertices, the auxiliary function Destructive()
turns it into a minimal one, testing the removal of each vertex in non-increasing weight
order, and performing it when the result is feasible (lines 10 − 16). Vertices of equal
weight are considered by non-decreasing degree, following the same intuition of the
construction phase.
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input : G = (V ,E): connected undirected graph
w : V →Q+: weight function on the vertices
µ ∈ [0,1] ,α ∈ [0,+∞), type ∈ {RCL,HBSS}: randomisation parameters

output : S: solution returned by the algorithm

1 Algorithm GRASP(G, w, µ, α, type):
2 S :=;
3 while S is not a safe set do
4 vnew := Extraction(G , S, V \ S, µ, α, type)
5 S := S ∪ {vnew }
6 end
7 return Destructive(G , w,S)

8 Function Destructive(G, w, S):
9 Q := S

10 while Q ̸= ; do
11 vmax := argmax

v∈Q
w(v) // minimise the degree to break ties

12 Q :=Q \ {vmax}
13 if S \ {vmax} is a safe set then
14 S := S \ {vmax}
15 end
16 end
17 return S

Algorithm 3: The Greedy Randomised Adaptive Search Procedures

4.1.1 Selection criterium

The choice of the new vertex to extend the current subset S during the constructive
phase of the algorithm is not trivial. The vertex weight seems a natural selection
criterium, but it affects feasibility and optimality in opposite ways: on the one hand,
vertices with a high weight allow to satisfy the safety constraints as soon as possible; on
the other hand, vertices with a low weight allow to minimise the value of the objective
function. Therefore, it is very hard to predict in advance the most advantageous
direction to pursue at each single step.

The vertex degree plays a less obvious, but clearer role. Relaxing the definition stated
in the previous chapters, we denote the safe components as the elements of CG (S) and
the unsafe components those of CG (V \ S), even if S is not yet a feasible solution. Adding
to S vertices of large degree is likely to split the unsafe components, and therefore to
help satisfy the safety constraints. The randomised destructive heuristic of Macambira
et al. (2019) removes vertices of small degree that are adjacent to unsafe vertices of small
weight, to avoid building unsafe components of large weight. Our algorithm focuses
on the aim to fragment the unsafe components: it neglects the weights of the adjacent
vertices and replaces the overall degree with the number of adjacent unsafe vertices.



52 4.1. TWO GRASP METAHEURISTICS

Definition 2. Given a connected undirected graph G = (V ,E) and a subset S ⊆ V , let the
unsafe degree of a vertex v ∈V be the number of adjacent vertices belonging to V \ S.

δV \S(v) = |{u ∈V \ S | (u, v) ∈ E }|

Notice that at the beginning, when S =;, the unsafe degree of any vertex coincides
with its degree.

4.1.2 Randomisation schemes

Algorithm 4 reports the pseudocode of the Extraction() procedure, that selects the
new vertex to add to S applying one of two alternative randomisation mechanisms.
Notice that the candidate set C from which the vertex is extracted coincides with V \ S
in the GRASP metaheuristics, but it will be reduced in the following algorithms.

input : G = (V ,E): connected undirected graph
S: current set of safe vertices
C : candidate set of unsafe vertices
µ ∈ [0,1] ,α ∈ [0,+∞), type ∈ {RCL,HBSS}: randomisation parameters

output : vnew : vertex selected to be added to S

1 Function Extraction(G , S, C , µ, α, type):
2 forall v ∈C do δV \S(v) = |{u ∈V \ S | (u, v) ∈ E }|
3 if type = RCL then
4 δmin := min

v∈C
δV \S(v)

5 δmax := max
v∈C

δV \S(v)

6 δµ :=µ ·δmi n + (
1−µ) ·δmax

7 C ′ := {
v ∈C | δV \S(v) ≥ δµ

}
8 forall v ∈C ′ do π(v) := 1/

∣∣C ′∣∣
9 forall v ∈C \C ′ do π(v) := 0

10 else if type = HBSS then
11 forall v ∈C do ϕ(v) := (δV \S(v))α + 1
12 forall v ∈C do π(v) :=ϕ(v)/

∑
x∈C

ϕ(x)

13 end
14 vnew ← random extraction from C with probability π(·)
15 return vnew

Algorithm 4: The randomised selection procedure

The Restricted Candidate List (RCL) mechanism (lines 4 − 9) determines the
minimum and the maximum unsafe degree of the unsafe vertices, respectively denoted
as δmin and δmax. Then, it computes a convex combination δµ of these values with a
suitable parameter µ ∈ [0,1]. Such a combination is used as a threshold, to build a set C ′

of candidate vertices with large unsafe degree. Then, a candidate vertex is selected at
random with a uniform probability. Large values of µ correspond to more random
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choices, small values to more greedy choices. Even when µ = 0, however, the
mechanism is not deterministic, because several vertices can have the maximum
unsafe degree.

The Heuristic Biased Stochastic Sampling (HBSS) mechanism (lines 11 − 12)
considers all candidate vertices, but assigns them different probabilities, so as to bias
the selection in favour of those with larger unsafe degree. In particular, the probability
of each candidate vertex v is proportional to (δV \S(v))α+1, where the unsafe degree is
raised to a suitable power α≥ 0 and increased by 1 to guarantee a non-zero probability
of being selected also to vertices with no unsafe adjacent vertices. The smaller is α, the
more random the choice; the larger it is, the greedier.

In summary, the two GRASP metaheuristics combine a randomised constructive
phase, based on the vertex unsafe degree and focused on feasibility, and a deterministic
destructive phase, based on the weight of the vertices and focused on optimality. The
latter can be interpreted also as a local search improvement method. In fact, consider
the neighbourhood that includes the feasible solutions obtained adding or removing a
single vertex. A steepest descent algorithm based on it would behave as the destructive
procedure: it would always select the vertex of maximum weight that can be feasibly
removed from the solution. Larger neighbourhoods could be more effective, but the
combination of weight and connectivity aspects of the safety constraints would
probably make their exploration quite inefficient.

The complexity of the GRASP metaheuristics can be easily computed based on the
pseudocode of Algorithms 3 and 4. The constructive phase calls for at most |V | times
the Extraction() procedure, whose complexity is TExtr ∈ O(|E |+ |V |), because it scans
the |E | edges of the graph to compute δV \S and the |V | vertices to determine their
probabilities and select one. The destructive phase has complexity
TDestr ∈ O(|V |(|E |+ |V |)), because it determines which of the O(|V |) vertices of S can be
feasibly removed by visiting the induced sub-graph in O(|E | + |V |) time. Overall, the
computational time is TGRASP ∈O(|V |(|E |+ |V |)).

4.2 A heuristic with Delayed Termination

Our computational experience suggests that halting the constructive phase right after
the achievement of feasibility tends to bind too much the following destructive phase.
Introducing redundant vertices creates more expensive solutions, but these often
contain better minimal solutions, that the destructive procedure is able to identify. In
other words, starting from the whole vertex set is probably excessively loose, but
starting from the first feasible solution found can be too restrictive. We investigate two
complementary ways of delaying the termination of the algorithm introducing
additional vertices. The former, denoted as Simple Delayed Termination (SDT), moves
from a feasible solution further into the feasible region. The latter, denoted as Avoidant
Delayed Termination (ADT) prefers the insertion of vertices that are promising, but
keep the solution infeasible, in order to explore the border of the feasible region. As will
be clear from the analysis of their computational complexity, both approaches take
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more time per iteration than the GRASP approaches described above. However, they
both generate several feasible solutions, instead of a single one, and therefore possibly
provide better results.

4.2.1 Simple Delayed Termination

The pseudocode of the SDT heuristic is reported in Algorithm 5. It starts from the
feasible solution generated by the GRASP metaheuristic (lines 2− 7). Then, it further
enlarges the solution, performing a number γ|V | (with γ ∈ [0,1]) of extra iterations
proportional to the number of vertices. When γ = 0, the SDT heuristic reduces to the
GRASP algorithm.

input : G = (V ,E): connected undirected graph
w : V →Q+: weight function on the vertices
µ ∈ [0,1] ,α ∈ [0,+∞), type ∈ {RCL,HBSS}: randomisation parameters
γ ∈ [0,1]: delay factor

output : S∗: solution returned by the algorithm

1 Algorithm SDT(G, w, µ, α, type, γ):
2 S :=;
3 while S is not a safe set do
4 vnew := Extraction(G , S, V \ S, µ, α, type)
5 S := S ∪ {vnew }
6 end
7 S∗ := Destructive(G , w,S)
8 for l = 1, . . . ,γ |V | do
9 C := {v ∈V \ S | ∃u ∈ S : (u, v) ∈ E }

10 vnew := argmin
v∈C

wv // maximise the degree to break ties

11 S := S ∪ {vnew }
12 S′ := Destructive(G, w, S)
13 if w(S′) < w(S∗) then S∗ := S′

14 end
15 return S∗

Algorithm 5: The Simple Delayed Termination heuristic

Differently from the first constructive phase, the additional one (lines 8−14) starts
from a feasible solution and extracts the new vertex only from a restricted candidate set
C composed by the unsafe vertices adjacent to S, so that feasibility is strictly preserved:

C := {v ∈V \ S | ∃u ∈ S : (u, v) ∈ E }

Since splitting the unsafe components to pursue feasibility is no longer necessary, the
selection mechanism is not mainly based on the degree: it simply chooses the candidate
vertex of minimum weight (using the maximum degree as a tie breaker), in order to
worsen the objective function as little as possible.
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On each enlarged solution S the algorithm applies the destructive procedure to
obtain an improved one, S′, and possibly update the best known one, S∗. Notice that
the following extra iterations will add new vertices to the redundant solution S, not to
the minimal solution S′. The rationale of the algorithm, in fact, is that the redundant
vertices introduced could help the destructive procedure get rid of vertices
misleadingly added by the first randomised constructive phase. Of course, the
destructive phase could remove the extra vertices, and possibly regenerate already
known solutions, but the extra vertices have been chosen minimising the weight. So,
the destructive phase will consider them later, and remove them only if necessary.

The extra constructive phase and the final destructive phase of the SDT heuristic can
be interpreted also as a LNS procedure (Shaw, 1998) that augments a feasible solution
and makes it minimal again, adding and removing redundant elements with a heuristic
criterium.

The complexity of the SDT heuristic is given by the starting GRASP procedure of
lines 2−7, followed by γ|V | iterations of the loop at lines 9−13, whose most expensive
subroutine is the Destructive() procedure. The resulting complexity is
TSDT ∈O(TGRASP +|V | ·TDestr) =O(|V |2(|E |+ |V |)).

4.2.2 Avoidant Delayed Termination

The ADT heuristic is complementary to the SDT heuristic. Its basic idea is to replace
the simple random choice of a new vertex with a full exploration of all available
choices, possibly finding several feasible solutions and improving each one with the
destructive procedure. The termination of the algorithm is delayed after finding the
first feasible solution with the aim to remain in the infeasible region, but still include
promising vertices (with large unsafe degree). The purpose of this choice is to try and
obtain that the current infeasible subset is close (in terms of Hamming distance) to
many feasible solutions that provide good starting points for the destructive procedure.
Another possible interpretation of the ADT heuristic is that it combines the GRASP
constructive mechanism with an exploration of the neighbourhood obtained replacing
the last added vertex with another one. This is clearly an intensification mechanism, to
better investigate the region of the solution space chosen by the randomised
constructive mechanism.

Algorithm 6 provides a detailed pseudocode. The ADT heuristic starts from the
empty set and initialises the best known solution as the whole vertex set. At each
iteration, it performs an exploration phase that considers all unsafe vertices as
candidates and tests for each of them whether adding it to S yields a feasible solution.
If it does, the solution is improved by the destructive procedure and compared with the
best known one, in order to keep it updated, and the vertex is removed from the
candidates. After the exploration, one of the remaining candidate vertices is extracted
at random, with the randomisation schemes already described in Section 4.1.2, and
added to the current solution. If all extensions of the current set are feasible, the
candidate set is empty and the algorithm terminates. Otherwise, the termination is
delayed, as in the SDT heuristic, until the number of extra vertices added after finding
the first feasible solution exceeds γ|V |. Notice that, even when γ = 0, the algorithm
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does not reduce to the GRASP metaheuristic, because the additional exploration phase
in general finds several feasible solutions, instead of a single one.

The single steps of the ADT heuristic are also much slower. In fact, each of the
O(|V |) iterations in the loop of lines 6−22 applies the loop of lines 8−15 to the O(|V |)
candidate vertices of set C . Each iteration of this inner loop tests the feasibility of the
current solution at line 9 with a visit in O(|V |+ |E |) time. In the positive case, it applies
the Destructive() procedure, that takes TDestr. Out of the inner loop (lines 17−18), a
new vertex is selected in time TExtr and added to the current solution. In summary, the
complexity is TADT ∈ O(|V |[|V |(|V | + |E | + TDestr) + TExtr]) = O(|V |3(|E | + |V |)). This is
clearly larger than SDT, though it should be remarked that the Destructive()
procedure is not applied at every iteration and on the whole graph.

input : G = (V ,E): connected undirected graph
w : V →Q+: weight function on the vertices
µ ∈ [0,1] ,α ∈ [0,+∞), type ∈ {RCL,HBSS}: randomisation parameters
γ ∈ [0,1]: delay factor

output : S∗: solution returned by the algorithm

1 Algorithm ADT(G, w, µ, α, type, γ):
2 S :=;
3 S∗ :=V
4 l := 0
5 found := false
6 repeat
7 C :=V \ S
8 for c ∈V \ S do
9 if S ∪ {c} is a safe set then

10 found := true
11 S′ := Destructive(G , w,S ∪ {c})
12 if w(S′) < w(S∗) then S∗ := S′

13 C :=C \ {c}
14 end
15 end
16 if C =; then break
17 vnew := Extraction(G , S, C , µ, α, t y pe)
18 S := S ∪ {vnew }
19 if found then
20 l := l +1
21 end
22 until l > γ |V |
23 return S∗

Algorithm 6: The Avoidant Delayed Termination heuristic
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4.2.3 Truncated Avoidant Delayed Termination

The exploration phase that evaluates all candidate vertices yields potential
improvements, but also implies a significant increase in complexity. The Truncated
Avoidant Delayed Termination (TADT) heuristic reduces the exploration effort to
achieve a compromise between efficiency and effectiveness. The idea is to randomly
extract the candidate vertices and stop as soon as one generates an infeasible solution,
instead of considering all of them. Notice that the random extraction favours the
candidates that are more likely to yield feasible solutions, if possible.

input : G = (V ,E): connected undirected graph
w : V →Q+: weight function on the vertices
µ ∈ [0,1] ,α ∈ [0,+∞), type ∈ {RCL,HBSS}: randomisation parameters
γ ∈ [0,1]: delay factor

output : S∗: solution returned by the algorithm

1 Algorithm TADT(G, w, µ, α, type, γ):
2 S :=;
3 S∗ :=V
4 l := 0
5 found := false
6 repeat
7 C :=V \ S
8 stop := false
9 while not stop and C ̸= ; do

10 vnew := Extraction(G , S, C , µ, α, t y pe)
11 C :=C \ {vnew }
12 if S ∪ {vnew } is a safe set then
13 found := true
14 S′ := Destructive(G , w,S ∪ {vnew })
15 if w(S′) < w(S∗) then S∗ := S′

16 else
17 S := S ∪ {vnew }
18 if found then
19 l := l +1
20 end
21 stop := true
22 end
23 end
24 until l > γ |V | or C =;
25 return S∗

Algorithm 7: The Truncated Avoidant Delayed Termination heuristic

Algorithm 7 provides the pseudocode. The TADT heuristic starts from an empty set,
initialises the best known solution with the whole vertex set and considers all unsafe
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vertices as candidates. Instead of scanning them systematically, it extracts one
candidate at random with the already described randomisation schemes, and checks
whether adding it to the current solution makes it feasible. If it does, the algorithm
improves the solution, possibly updates the best known one and proceeds to another
extraction, removing the used vertex from the candidate set (and, of course, not adding
it to the solution), as in the regular ADT. If the solution obtained is not feasible,
however, the algorithm straightly proceeds with the next iteration, ignoring all
candidates left. This reduces the computational effort, while possibly missing feasible
solutions. The rationale is that, since the extraction is biased in favour of the more
promising vertices, the unexplored solutions are likely to be also infeasible, or at least
less interesting than the explored ones. This approach is similar in principle to the so
called first-best exploration strategy of large neighbourhoods, that accepts the first
improving neighbour solution found, as opposed to the global-best strategy, that
selects the best one (Hansen and Mladenović, 2006).

When γ = 0, the TADT heuristic explores the same infeasible solutions as GRASP (if
the pseudorandom numbers are the same), which form a subset of those explored by
ADT. The difference between GRASP and TADT, with γ= 0, is that the former terminates
as soon as it finds a feasible solution, whereas the latter explores other feasible solutions,
terminating only at the first infeasible one.

The complexity of the TADT heuristic is the same as ADT in the worst case, that
corresponds to finding all feasible solutions at each iteration of the loop in lines 9−23,
and therefore entering the block in lines 13 − 15, before the unfeasible solution that
terminates the loop. The resulting complexity is, consequently,
TTADT ∈O(|V |3(|E |+ |V |)), but the worst case is likely to be less frequent than in ADT.

4.3 A Scatter Search metaheuristic

In this section we discuss a new SS metaheuristic for the WSSP. Scatter Search is a
general-purpose approach to optimisation introduced by Glover (1977). It requires an
auxiliary basic algorithm to generate a reference set, composed by feasible solutions
suitably selected among the ones found during the computation. The reference set is
divided into two disjoint subsets B and D : the former includes the best nB solutions
found so far, the latter the most “diverse” nD solutions. The concept of diversity,
defined in detail in the following, derives from the Hamming distance between the
incidence vectors of the solutions. The main idea of SS is to “recombine” pairs of
solutions drawn from the reference set so as to obtain new solutions, that become
candidates to join the reference set.

Algorithm 8 reports our adaptation of this basic scheme to the WSSP.
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Input : G = (V ,E): connected undirected graph
w : V → IR+: weight function on the vertices
µ ∈ [0,1] ,nB ,nD ∈ IN: parameters

1 Algorithm Scatter Search(G , w,µ,nB ,nD):
2 B =; // best known reference solutions
3 D =; // diverse reference solutions
4 while |D| < nB +nD do // Initialisation of the reference set
5 S = GRASP(G , w,µ)
6 if S ∉ D then D = D ∪ {S}

7 end
8 for i = 1, . . . ,nB do // Selection of the best reference solutions
9 S = argminX∈D w(X )

10 D = D \ {S}
11 B = B ∪ {S}

12 end
13 for X ∈ D do // Computation of the diversity indices
14 δ[X ] =∑

Y ∈B∪D\{Y } Hamming(X ,Y )
15 end
16 change = true
17 while change do // As long as the reference set changes
18 change = false
19 for S1 ∈ B do
20 for S2 ∈ B ∪D : S1 ̸= S2 do
21 S = Destructive(G , w,S1 ∪S2) // Merge and improve S1 and S2

22 Y = argmaxX∈B w(X ) // Find the candidate to leave B
23 if w(S) < w(Y )∧S ∉ B then
24 B = B ∪ {S} \ {Y } // Replace Y with S
25 for X ∈ D do δ[X ] = δ[X ]+Hamming(X ,S)−Hamming(X ,Y )
26 S = Y // The new candidate to enter D is Y
27 change = true
28 end
29 Y = argminX∈D δ[X ] // Find the candidate to leave D
30 δ[S] =∑

X∈B∪D\{Y } Hamming(S, X)
31 if δ[S] > δ[Y ]∧S ∉ D then
32 D = D ∪ {S} \ {Y } // Replace Y with S
33 for X ∈ D do δ[X ] = δ[X ]+Hamming(X ,S)−Hamming(X ,Y )
34 change = true
35 end
36 end
37 end
38 end
39 return S∗ = argminX∈B w(X )

Algorithm 8: The Scatter Search Heuristic
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First we generate nB + nD reference solutions with the GRASP metaheuristic
described in Section 4.1, making sure that they are all different from each other. Once
the reference set is generated, we move its nB best solutions to B (the set of best known
reference solutions) and leave the remaining ones in D (the set of diverse reference
solutions). Afterwards, for each solution X ∈ D we compute its diversity index δ[X ]
summing the Hamming distances between X and every other solution in the whole
reference set B ∪D .

Now, the core of the algorithm iteratively tries to update the reference set: every
time it succeeds, it sets the flag variable change to true in order to imply another
iteration; when the reference set is unchanged, the process terminates. Each iteration
scans pairs of non-identical reference solutions (S1,S2). The former must be of good
quality, whereas the latter can have either a small cost or a high diversity index to
pursue, respectively, intensification or diversification. We now recombine the two
solutions, merging them and removing the redundant vertices with a destructive
procedure. We show in the following that this guarantees to produce a feasible solution
S. This solution becomes a candidate to join the reference set. First we test whether S
should enter subset B by identifying the worst solution in B (denoted as Y in the
pseudo-code), that is the candidate to leave B . If S is strictly better than Y and is not
already in B , then we proceed to replace Y with S. Now S is in the reference set and Y is
out, but it might be qualified to enter D . Therefore, we save Y in S for the following
step. The flag change becomes true to mark the modification of the reference set and
the diversity value of every solution in D is updated accordingly. Then, we compute the
diversity index of S (be it the original recombined solution or the one expelled from B)
and identify the solution with smallest diversity index in D as the candidate to leave
that set (once again, denoted as Y ). If S is strictly more diverse than Y and it is not
already in D , we replace Y with S, set the flag change to true and update the diversity
indices.

The choice of GRASP over the Delayed Termination Heuristics is motivated by the
faster computation of the former and the fewer parameters to tune, in order to focus on
the effect of the recombination mechanism.

Recombination The recombination procedure at Line 21 of Algorithm 8 exploits the
following basic property of the WSSP to derive a new safe set from any given pair of safe
sets.

Proposition 8. Given a graph G = (V ,E) with vertex weights w : V → IR+, if S and S′, are
safe sets for (G , w), then S ∪S′ is also a safe set.

Proof. Let S̃ ∈ CG (S ∪ S′) be a connected component induced by the vertices of the
merged safe sets and Ũ ∈ CG (V \ (S ∪ S′)) a connected component induced by the
vertices that do not belong to any of them. We will show that, if S̃ and Ũ are adjacent,
they always satisfy the safety constraint, and therefore S ∪ S′ is safe. Since Ũ is
connected and its vertices are unsafe in S, there exists an unsafe component
U j ∈ CG (V \ S) that contains it: Ũ ⊆ U j . As well, there exists U ′

j ∈ CG (V \ S′) such that

Ũ ⊆U ′
j . If S̃ ▷◁ Ũ , by definition there is an edge (u, v) ∈ E with u ∈ Ũ and v ∈ S̃. Suppose,
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without loss of generality, that v ∈ S and Si ∈ CG (S) is the connected component that
contains it in the original solution S, and notice that u ∈U j and U j ▷◁ Si . The feasibility
of S implies that w(U j ) ≤ w(Si ) and, therefore, the following chain of inequalities hold

w(Ũ ) ≤ w(U j ) ≤ w(Si ) ≤ w(S̃)

implying the thesis.

The previous proposition allows to derive a new feasible solution from any pair of
elements in the reference set. Obviously, such a solution is non-minimal and, therefore,
of poor quality. For this reason, every time we produce a recombined solution, we
improve it removing redundant vertices with the destructive mechanism described
above for the GRASP procedure (see Algorithm 3).

Computational complexity The initialisation phase of the SS algorithm requires
nB +nD calls to the GRASP heuristic, which has complexity O(|V | · (|E | + |V |)). For the
sake of simplicity, this analysis assumes that no duplicate solutions are generated,
though, in very degenerate cases, the iterations to reach the required number of
different solutions might be unlimitedly numerous. It also requires to classify the
reference solutions into either best known or diverse (O(nB log(nB +nD )) time) and to
compute the diversity indices, which takes O(nD (nB + nD )) · |V |) operations. This is
negligible with respect to the main loop. In fact, each iteration of the loop scans
nB (nB +nD −1) pairs of reference solutions. It merges them and feeds the result to the
destructive procedure, whose complexity is in O(|V | · (|V | + |E |)). The update of the
reference set requires to check whether the recombined solution is different from the
reference ones and qualified to enter subsets B or D . This can be done in
O((nB + nD )|V |) time, while the update of the diversity indices takes O(nD |V |). In
conclusion, the total complexity of the heuristic is
O(L · nB (nB + nD ) · |V | · (|V | + |E | + nB + nD ), where L is the number of iterations.
Typically, parameters nB and nD are small constants and the complexity reduces to
O(L · |V | · (|V |+ |E |)).

Multiple restart Algorithm 8 terminates when the reference set converges to a set that
the deterministic recombination mechanism is unable to modify. In order to let the
algorithm proceed beyond convergence, we can simply restart it: the GRASP procedure
used in the initialisation step, in fact, is usually able to generate new solutions through
randomisation. This will allow to perform experiments with a given time limit in order to
compare the SS metaheuristic to the state of the art approaches. Of course, the time limit
also imposes a premature termination condition within Algorithm 8 when it is reached
before convergence.
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4.4 Computational experiments

This section describes the computational results obtained by the algorithms presented
above on the benchmarks of large instances.

At first we present the tuning of the parameters for the GRASP metaheuristics
(Section 4.4.1), the delayed termination algorithms (Section 4.4.2) and the Scatter
Search (Section 4.4.3). Unexpected results on the benchmark H+, suggest that these
instances are particularly easy to solve. We will also propose a conjecture regarding this
behaviour, which aligns with certain theoretical results from the literature. Then, we
will compare the performance of the constructive-destructive algorithms with each
other (Section 4.4.4) and the performance of the best one with the only existing
heuristic in the literature and with the known optimal values (Section 4.4.5). Once
again, we compare the Scatter Search with the best heuristic that arises from the
previous experiments (Section 4.4.6). Additionally, we will discuss the structure of the
solutions, focusing in particular on the number of safe and unsafe components
(Section 4.4.7). At last, we present the results obtained by the branch-and-bound
algorithm presented in Chapter 3 (flexible version) with a heuristic initialisation.

Definition of the optimality gap To measure the quality of the solution returned by a
heuristic algorithm, usually one computes the optimality gap

(U B − z∗)/z∗

where, as in Section 3.5 U B is a valid upper bound and z∗ is the value of the optimal
solution. Unfortunately, optimal results are available only for instances up to 60 vertices.
One could replace z∗ with a lower bound but, for the considered instances the quality
of such values is quite bad. Consequently, the results will be evaluated computing the
percent gap

(U B −U B∗)/U B∗ (20)

where U B∗ is the value of the best known solution for the given instance. This
underestimates the actual optimality gap and the dissimilarities between different
parameter tunings and algorithms, but is the best possible measure with the available
information.
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4.4.1 Parameter tuning for the GRASP metaheuristics

Both GRASP metaheuristics have a single parameter that tunes the balance between a
greedy and a random behaviour. The RCL-based heuristic depends on a real parameter
µ ∈ [0,1], for which we consider seven possible values (µ ∈ {0.0,0.1,0.2,0.3,0.4,0.5,0.6})
that progressively enlarge the restricted candidate set, making more random choices.
The HBSS-based heuristic depends on parameter α ≥ 0, for which we consider four
possible values: α ∈ {0,1,2,3}, that progressively bias the choice in favour of the vertices
with a high unsafe degree, making it less random.

We have first applied the 11 resulting heuristics (one for each parameter value
considered: 7 for RCL and 4 for HBSS) with a time limit of 10 seconds on the large
random graphs of benchmark H+. The outcome was completely unexpected: on a large
majority of instances (140 out of 200) all heuristics returned the same result. What is
more, this result is the best one found by all algorithms, including also the large
number of SDT, ADT, TADT and SS variants discussed in the following. The
phenomenon shows a clear trend with respect to the size, density and weight
distribution of the instances. Table 4.1 reports for each weight function (on the left the
weighted instances, on the right the unweighted ones), size (on the rows) and density
(on the columns) the maximum gap obtained by any of the 11 GRASP heuristics on any
of the 5 instances with the given features. Label “-” marks the classes in which all
settings obtained the best result for all instances: they are all characterised by a large
size |V | and density δ. The convergence of these values to zero is sharp, and quicker for
the unweighted instances than for the weighted ones.

weighted unweighted
|V | 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4
100 26.2% 5.8% 2.0% 1.2% 14.3% 2.0% - -
150 6.6% 1.2% - - 2.8% - - -
200 2.9% - - - 1.0% - - -
250 1.2% - - - - - - -
300 0.6% - - - - - - -

Table 4.1: Maximum gap of the solutions returned by the 11 different parameter settings
of the GRASP metaheuristics on each group of 5 instances of benchmark H+ with the
same number of vertices, density and weight distribution

Our conjecture is that these results are optimal, but we have no formal proof for
this statement. Hypothetically, an unknown flaw could affect all algorithms and induce
them to generate the same result, but only if the instance is sufficiently large and dense.
What makes this explanation unlikely is that the solution systematically returned has
nearly always the same structure: the safe set forms a single component with a value
equal to half the total weight of the graph. These results are consistent with Cordone and
Franchi (2023), where the authors demonstrate the asymptotic behaviour of random
graphs, indicating that the optimal solution of the safe set tends to partition the graph
into a single safe component and a single unsafe component of nearly equal weight.
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Table 4.2 reports the average gaps achieved by the GRASP metaheuristics with their
11 different tunings on the large benchmarks. The upper half refers to the weighted
instances and the lower half to the unweighted ones. Each row concerns a class of
instances (plus a row with the overall average), each column a different tuning of the
randomisation parameter, with the RCL mechanism on the left and the HBSS one on
the right. We provide aggregate results because no interesting dependency appears
with respect to the size or density of the instances.

µ α

class 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0 1 2 3

w
ei

gh
te

d

H+ 1.12% 0.99% 0.93% 0.93% 1.01% 1.18% 1.31% 1.68% 1.68% 1.62% 1.66%
SW 34.86% 33.99% 28.09% 29.17% 27.83% 30.90% 31.29% 29.01% 29.09% 30.22% 30.37%
Reg 7.22% 7.36% 8.21% 8.90% 8.88% 9.14% 11.02% 11.54% 11.54% 11.60% 12.27%
Pla 12.53% 12.36% 10.12% 9.23% 10.26% 9.70% 13.26% 14.71% 14.76% 16.30% 16.76%
Grid 7.30% 6.97% 5.71% 7.05% 6.98% 6.99% 8.69% 9.58% 9.58% 8.54% 7.78%
all 11.07% 10.83% 9.44% 9.78% 9.63% 10.35% 11.34% 11.32% 11.34% 11.68% 11.89%

u
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d

H+ 0.46% 0.38% 0.25% 0.39% 0.31% 0.45% 0.67% 0.74% 0.74% 0.74% 0.75%
SW 18.70% 18.76% 16.65% 16.82% 17.28% 18.07% 21.54% 23.41% 23.41% 22.48% 21.88%
Reg 2.82% 2.82% 3.01% 3.17% 3.66% 3.71% 4.11% 5.27% 5.29% 5.11% 5.03%
Pla 9.48% 8.35% 7.03% 6.14% 6.34% 6.73% 7.60% 8.15% 8.15% 7.08% 7.41%
Grid 51.09% 50.67% 36.18% 26.53% 17.97% 18.91% 10.62% 12.39% 12.39% 12.55% 13.27%
all 7.96% 7.80% 6.58% 6.20% 6.03% 6.34% 7.00% 7.81% 7.82% 7.47% 7.40%

Table 4.2: Average gaps produced by the different versions of the GRASP metaheuristic
for each class of instances

As already observed, the random instances of benchmark H+ are easy, in particular
in the unweighted case. On the contrary, the other benchmarks exhibit larger gaps, that
vary strongly depending on the instance class and on the parameter tuning.
Unfortunately, no tuning is consistently superior for all classes. For the weighted
instances, the RCL mechanism with µ= 0.2 is the best on average and reasonably good
for all classes. The Wilcoxon’s signed rank test (Wilcoxon, 1945) provides significant
p-values for the better performance of this tuning over all HBSS variants (p < 10−6) and
over the RCL variants with µ= 0.0, 0.5 and 0.6 (p < 1%), but not for the other values. For
the unweighted instances, the RCL mechanism with µ = 0.4 is the best on average and
reasonably good for all classes except for the grid instances. Wilcoxon’s test, however,
supports this choice with significant p-values only with respect to the HBSS variants
(p < 10−6) and the RCL variants with µ = 0.6 (p < 0.0002), while the other comparisons
are non-significant. Notice that, when making a series of hypothesis tests, the
probability of coming to at least one false conclusion by chance, known as family-wise
error rate, should be kept under control. This can be done, in a conservative way, by
applying the Bonferroni correction (Dunn, 1961), that amounts to dividing the required
threshold by the number of tests performed. Once this correction is applied, the only
statistical results that remain significant are that the chosen variants (µ = 0.2 for the
weighted instances and µ = 0.4 for the unweighted ones) perform better than all the
HBSS variants.



CHAPTER 4. HEURISTIC METHODS FOR THE WSSP 65

4.4.2 Parameter tuning of the Delayed Termination approaches

The delayed termination heuristics depend on two parameters: one rules the
randomisation mechanism also used in the GRASP approaches, the other is the delay
factor γ that determines how many additional vertices to introduce in the solution after
finding the first feasible solution.

Even if the RCL mechanism dominates the HBSS heuristic, we decided to keep both
of them, and all of the parameter tunings previously considered. This is partly due to
the limited statistical significance of the results obtained on GRASP, and partly on the
idea that the delayed termination could interact in hardly predictable ways with the
randomisation scheme. The best tuning of randomisation with the standard
termination could easily be very different from the best tuning with a delayed
termination. Randomisation, in fact, is a classical diversification mechanism, whereas
the delayed termination is an intensification mechanism: they play complementary
roles.

We therefore consider the same values of µ and α used above, while γ is set in
{0.0,0.1,0.2,0.3,0.4}. Tables 4.3, 4.4 and 4.5 report the overall average gaps with respect
to the best known result on the large benchmarks H+, SW, Reg, Pla and Grid,
respectively for the SDT, ADT and TADT heuristics. The upper half of the tables is
dedicated to the weighted instances, the lower half to the unweighted ones. The left
part considers the 7 possible values of parameter µ for the RCL mechanism, the right
part the 4 values of α for the HBSS mechanism. Each row refers to one of the 5 values of
the delayed termination parameter γ.

Concerning SDT, the best average gap for the weighted instances is 2.84% (marked
in bold), and is obtained by µ = 0.3 and γ = 0.2, with a maximum gap equal to 21.55%
on the whole benchmark. Wilcoxon’s test suggests that there is a subset of parameter
settings for which the difference in performance with respect to the best one is not
statistically significant. We have shaded in dark grey the settings for which the p-value
of these tests is ≥ 0.05 and in light grey those for which 0.05 > p ≥ 10−4. This reduction
of the p-value by a factor of 500 aims to account for the family-wise error rate induced
by the large number of tests performed, applying the (rather conservative) Bonferroni
correction.

For the unweighted instances, unexpectedly, the HBSS mechanism with α = 0 or 1
and γ = 0.1 obtains a 4.01% average gap, with a maximum of 27.91%. The two tunings
have very similar results, probably due to the fact that the weights of all vertices and
the degrees of many are the same, which makes the selection of promising elements
a hard task for the algorithm. The RCL mechanism tends to perform worse than the
HBSS one on average, contrary to what happened in the GRASP algorithms. However,
in this case, Wilcoxon’s test suggests a wide subset of settings that are not statistically
dominated, and most of these settings adopt the RCL mechanism, including the ones
that performed well on the weighted instances.
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SDT µ α

γ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0 1 2 3
w

ei
gh

te
d

0.0 11.15% 10.88% 9.46% 9.86% 9.76% 10.45% 11.38% 11.38% 11.37% 11.70% 11.98%
0.1 4.50% 4.21% 3.85% 3.72% 3.93% 4.47% 5.20% 6.05% 6.03% 5.90% 5.39%
0.2 3.62% 3.55% 3.17% 2.84% 3.03% 3.46% 3.84% 4.38% 4.39% 4.30% 4.49%
0.3 4.06% 3.86% 3.26% 3.35% 3.39% 3.75% 4.41% 4.65% 4.66% 4.54% 4.55%
0.4 4.55% 4.37% 4.03% 3.77% 4.07% 4.35% 4.88% 5.19% 5.14% 5.07% 5.00%

u
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d 0.0 8.03% 7.85% 6.56% 6.26% 6.09% 6.43% 6.89% 7.82% 7.82% 7.57% 7.55%
0.1 6.05% 6.00% 4.57% 4.37% 4.27% 4.22% 4.14% 4.01% 4.01% 4.17% 4.61%
0.2 5.62% 5.85% 5.32% 4.71% 4.71% 4.69% 4.78% 4.65% 4.65% 5.16% 5.16%
0.3 6.13% 6.15% 5.47% 5.39% 5.49% 5.18% 5.24% 5.41% 5.40% 5.83% 5.84%
0.4 6.51% 6.58% 5.86% 5.94% 6.01% 5.62% 5.70% 5.97% 5.97% 6.16% 6.12%

Table 4.3: Average gaps produced by the different versions of the SDT heuristic on the
large instances of benchmarks H+, SW, Reg, Pla and Grid. In dark grey the settings for
which the p-value is ≥ 0.05 and in light grey those for which 0.05 > p ≥ 10−4.

Concerning ADT (Table 4.4), the best average gap, that is 9.29%, is obtained by µ =
0.2 and γ = 0.4, and the maximum one is equal to 49.11%. The unweighted instances
behave in a similar way, with the best tuning in µ= 0.3 and γ= 0.4, yielding an average
gap equal to 7.82% and a maximum one equal to 52.94%. These gaps are much larger
than those obtained by SDT. This could suggest that keeping on the border of the feasible
region is a less effective strategy than diving into it, but it could also simply be due to the
stronger computational cost of ADT. The RCL mechanism tends to be better than HBSS:
nearly all good parameter settings adopt the former.

ADT µ α

γ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0 1 2 3

w
ei
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te

d

0.0 19.91% 19.99% 18.78% 18.77% 19.47% 19.70% 22.17% 22.38% 22.36% 23.25% 22.38%
0.1 12.84% 12.95% 12.76% 12.84% 13.41% 14.28% 17.06% 17.02% 17.00% 17.45% 16.55%
0.2 11.21% 11.04% 11.44% 10.95% 11.95% 12.35% 13.77% 14.95% 15.00% 15.28% 14.78%
0.3 10.36% 10.02% 9.94% 9.89% 10.13% 11.14% 12.30% 12.67% 12.69% 13.17% 12.22%
0.4 9.35% 9.36% 9.29% 9.79% 10.20% 10.47% 11.74% 11.70% 11.67% 11.79% 10.92%
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d 0.0 13.19% 13.64% 11.27% 11.37% 11.54% 12.56% 13.36% 14.18% 14.17% 13.63% 13.85%
0.1 8.81% 8.82% 8.65% 7.90% 8.81% 10.09% 11.72% 11.22% 11.22% 11.79% 11.64%
0.2 8.28% 8.47% 8.33% 8.02% 8.41% 9.26% 10.23% 10.89% 10.93% 11.15% 10.63%
0.3 7.93% 7.98% 8.07% 8.13% 8.32% 8.96% 9.76% 9.69% 9.67% 10.16% 10.31%
0.4 8.10% 8.39% 8.54% 7.82% 8.50% 9.45% 9.78% 9.97% 9.94% 9.84% 10.37%

Table 4.4: Average gaps produced by the different versions of the ADT heuristic on the
large instances of benchmarks H+, SW, Reg, Pla and Grid. In dark grey the settings for
which the p-value is ≥ 0.05 and in light grey those for which 0.05 > p ≥ 10−4.
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TADT (Table 4.5) applies the same rationale as ADT while limiting the computational
time and, indeed, it obtains better gaps. For the weighed instances, the best average gap,
that is 6.90%, is obtained by µ= 0.3 and γ= 0.2, while the maximum one is 41.38%. For
the unweighted instances, the best tuning is µ = 0.3 and γ = 0.1 or 0.2, with an average
gap equal to 5.06% and a maximum one of 52.94%. These settings are not only similar
to each other, but also to those used by SDT. Moreover, as for SDT, the RCL mechanism
dominates the HBSS one.

TADT µ α

γ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0 1 2 3

w
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0.0 10.62% 10.53% 9.76% 9.33% 9.79% 10.03% 11.02% 10.85% 10.85% 11.46% 11.20%
0.1 8.54% 8.65% 7.74% 6.97% 7.87% 8.40% 9.13% 9.47% 9.49% 9.58% 9.29%
0.2 8.58% 8.88% 7.54% 6.90% 7.25% 7.35% 7.98% 8.38% 8.33% 8.38% 8.39%
0.3 8.59% 8.87% 7.77% 6.98% 7.22% 7.16% 7.31% 7.96% 7.92% 7.60% 7.74%
0.4 8.82% 8.94% 7.82% 7.04% 7.22% 7.13% 7.34% 7.68% 7.68% 7.63% 7.83%
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d 0.0 7.97% 7.94% 6.38% 5.85% 5.95% 5.92% 6.60% 6.40% 6.42% 6.98% 6.58%
0.1 7.17% 7.13% 5.99% 5.06% 5.49% 5.56% 6.07% 6.72% 6.74% 6.46% 6.59%
0.2 6.99% 7.01% 6.08% 5.06% 5.32% 5.56% 5.97% 6.27% 6.25% 6.39% 6.48%
0.3 6.99% 6.97% 6.06% 5.24% 5.40% 5.62% 6.00% 6.56% 6.60% 6.43% 6.32%
0.4 7.00% 6.98% 6.03% 5.24% 5.45% 5.48% 5.75% 6.91% 6.88% 6.73% 6.48%

Table 4.5: Average gaps produced by the different versions of the TADT heuristic on the
large instances of benchmarks H+, SW, Reg, Pla and Grid. In dark grey the settings for
which the p-value is ≥ 0.05 and in light grey those for which 0.05 > p ≥ 10−4.

In summary, none of the considered tunings clearly dominates the other ones on all
benchmarks, but the best performing algorithms (SDT and TADT) behave in a similar
way, with the RCL variants performing better than the HBSS ones and the intermediate
values ofµ and γ better than the extreme ones. In particular, delaying the termination of
the constructive phase is always profitable. One could also wonder whether the results
obtained on the random graphs of benchmark H+, with their peculiar structure (a single
large safe component opposed to a single large unsafe one), could have an excessive
impact on the parameter tuning. In practice, this is not the case: while the average gap
on the other instances tends to be much larger, its dependence on the values of the
parameters remains pretty much the same. In fact, most of the instances in benchmark
H+ contribute with a zero gap: they reduce the overall average, but do not influence the
comparisons. Wilcoxon’s test, in particular, automatically neglects such instances.
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4.4.3 Tuning of the Scatter Search metaheuristic

The SS algorithm requires three parameters: the positive integer values nB and nD

determine the size of the reference set, while the real coefficient µ ∈ [0,1] tunes the
randomisation mechanism exploited by the GRASP algorithm that initialises it. For the
sake of simplicity, we assume the number of best known and diverse reference
solutions to be (at least nearly) the same: nB = ⌈R/2⌉, nD = ⌊R/2⌋, where R is the overall
size of the reference set.

In order to determine the best tuning for parameters µ and R, we run the algorithm
for 10 seconds on each of the large instances, that belong to the SW, Reg, Pla and Grid
benchmarks (we did not consider H+ because of the scarcely significant structure of the
instances). The values of the parameters that we consider are R ∈ {5,10,15,20,30,40}
and µ ∈ {0.1,0.2,0.3,0.4}. We estimate the quality of a heuristic solution S with the gap
(w(S)− w(S̄))/w(S̄), where S̄ is the best known solution for the given instance. When
w(S̄) is not optimal, this underestimates the actual gap. However, we shall see that for
large instances neither the optimum nor a tight lower bound is known. Therefore, this
is the most accurate estimate available and allows a comparison of different heuristic
results.

Table 4.6 exhibits the results of the parameter tuning. There are two
macro-columns: the first considers the weighted instances and the second the
unweighted ones. Each row is associated with a value of R and each column with a
value of µ. For each combination, we separately display the average gap over all
weighted instances and all unweighted ones. We highlight the best values, that
correspond to configuration µ = 0.2,R = 10 for the weighted instances (labelled SSw)
and µ= 0.1,R = 10 for the unweighted ones (labelled SSu).

weighted unweighted
µ µ

0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4

R

5 8.90% 7.25% 7.95% 8.14% 6.66% 6.64% 6.51% 7.75%
10 8.54% 6.76% 7.43% 7.26% 5.83% 6.54% 6.48% 7.87%
15 8.45% 7.23% 6.92% 8.02% 6.71% 6.44% 6.59% 8.17%
20 8.43% 7.03% 8.01% 7.89% 6.58% 6.28% 7.09% 7.80%
30 8.95% 7.64% 7.18% 8.46% 7.28% 6.78% 6.98% 8.76%
40 8.73% 8.01% 8.70% 8.81% 7.18% 6.65% 6.89% 8.89%

Table 4.6: Average gaps produced by the Scatter Search heuristic after 10 seconds on all
large instances for every configuration of the parameters.

Considering the maximum gap, instead of the average one, SSw is still the best
version for the weighted instances, with a maximum gap of 26.74%. On the other hand,
the configuration that minimises the maximum gap for unweighted instances is
µ = 0.1,R = 20, which achieved 20.51%, whereas SSu performs slightly worse with
23.08%. If we consider the whole benchmark, weighted and unweighted instances
combined, SSw has the best average and maximum gaps: 6.65% and 28.21%
respectively. Statistical tests confirm the existence of a group of configurations
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surrounding SSw and including SSu, whose performance does not show strongly
significant differences. In Section 4.4.6, we will apply both SSw and SSu to all instances.

4.4.4 Comparison of the constructive-destructive approaches

After analysing the influence of the parameter tuning on the performance of all the
considered algorithms, we proceed to compare the best versions of the alternative
approaches, investigating the distribution of the gap values and distinguishing not only
the weighted and unweighted instances, but also the single specific benchmarks.

In particular, for the weighted instances we compare GRASP with µ= 0.2, SDT with
µ = 0.3 and γ = 0.2, ADT with µ = 0.2 and γ = 0.4 and TADT with µ = 0.3 and γ = 0.2,
once again with a running time of 10 seconds on each instance. The average gaps
reported in Table 4.3 suggest that SDT should perform better than TADT, whereas the
other approaches should be worse than the previous ones, but more or less comparable
with each other.

A more detailed comparison can be performed with the SQD diagram (Hoos and
Stützle, 2004), that reports the fraction of instances for which the gap achieved does not
exceed each possible value. Figure 4.1 provides the diagram of the four algorithms on
the weighted large instances.
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Figure 4.1: Solution Quality Distribution diagram over the large weighted instances of
the presented heuristics (each using its best parameters). The diagram reports on the
y-axis the fraction of instances such that each algorithm returns a solution whose gap
(with respect to the best solution) is not worse than the value reported on the x-axis.



70 4.4. COMPUTATIONAL EXPERIMENTS

It shows a clear dominance of SDT over TADT, and of the latter over the other two
algorithms. GRASP and ADT seem comparable, even if GRASP has worse results.
Wilcoxon’s test fully confirms these feelings: while the difference between GRASP and
ADT is not statistically significant (p ≤ 0.083 in favour of GRASP), all other relations
have a p-value smaller than 10−11. The number of best known results found is
consistent with these results: 76 for SDT, 62 for TADT, 59 for GRASP and ADT.

As for the unweighted instances, we compare GRASP with µ = 0.4, SDT with α = 1
and γ= 0.1, ADT with µ= 0.3 and γ= 0.4 and TADT with µ= 0.3 and γ= 0.2. Figure 4.2
shows the corresponding SQD diagram. In this case, GRASP dominates ADT and both
perform worse than SDT and TADT, which, however, do not clearly dominate each other.
SDT seems more conservative, having less solutions with a large gap, but TADT finds a
larger fraction of solutions with a small gap (less than 5%). According to Wilcoxon’s test,
ADT is significantly dominated by the other three algorithms (p < 10−4) and GRASP is
dominated by TADT (p ≤ 3.55 ·10−5). The comparison of SDT with GRASP is weakly in
favour of the former (p = 0.06), whereas we cannot say anything about SDT and TADT.
As for the number of best know results found, this is slightly in favour of TADT (106)
over SDT (96), while GRASP and ADT are worse, and nearly equivalent to each other
(respectively, 87 and 86).
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Figure 4.2: Solution Quality Distribution diagram over the large unweighted instances
of the presented heuristics (each using its best parameters). The diagram reports on the
y-axis the fraction of instances such that each algorithm returns a solution whose gap
(with respect to the best solution) is not worse than the value reported on the x-axis.
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The wide range of gaps observed reflects the very different performance that the
algorithms exhibit on different classes of instances. This phenomenon is more
pronounced in the GRASP metaheuristic than in the delayed termination algorithms,
but clear in all cases. Table 4.7 describes in more detail the average gaps with respect to
the best known results obtained by each algorithm on specific classes of instances. The
left part of the table refers to the weighted instances, and the right part to the
unweighted ones. In each part, four columns correspond to the four competing
algorithms. A group of rows is associated with each benchmark, and further
disaggregated with respect to a relevant structural parameter: benchmark H+ is divided
according to the density of the graph, benchmarks SW and Reg according to the
(respectively, initial or exact) vertex degree, benchmark Grid is divided into 2D and 3D
grids. We can see that SDT finds the best average gaps for most instance classes, but is
less effective on the weighted grids and the unweighted regular graphs. Conversely,
TADT has a good performance on these two classes. ADT and GRASP are less effective,
apart from some classes of unweighted random graphs. This is consistent with the
plots of Figures 4.1 and 4.2.

weighted unweighted
class GRASP SDT ADT TADT GRASP SDT ADT TADT

H+

0.1 2.63% 0.67% 3.00% 2.00% 1.08% 2.13% 1.41% 0.30%
0.2 0.80% 0.37% 0.86% 0.65% 0.16% 0.41% 0.41% 0.24%
0.3 0.26% 0.25% 0.34% 0.26% 0.00% 0.00% 0.00% 0.00%
0.4 0.05% 0.00% 0.05% 0.05% 0.00% 0.00% 0.00% 0.00%
all 0.93% 0.32% 1.06% 0.74% 0.31% 0.63% 0.46% 0.14%

SW
6 30.46% 5.56% 15.92% 19.49% 14.80% 7.97% 18.97% 12.51%

10 25.71% 5.34% 29.38% 20.51% 19.76% 6.28% 18.78% 12.55%
all 28.09% 5.45% 22.65% 20.00% 17.28% 7.13% 18.88% 12.53%

Reg
5 10.98% 3.53% 12.73% 6.70% 2.92% 5.69% 4.49% 2.63%

10 5.45% 2.74% 6.50% 4.55% 4.39% 5.38% 4.21% 1.62%
all 8.21% 3.13% 9.62% 5.63% 3.66% 5.54% 4.35% 2.12%

Pla all 10.12% 6.29% 14.47% 9.08% 6.34% 7.39% 18.15% 8.37%

Grid
2D 7.03% 5.22% 8.52% 4.43% 23.24% 7.28% 17.64% 31.27%
3D 4.39% 4.64% 11.88% 3.29% 12.70% 4.72% 17.80% 15.38%
all 5.71% 4.93% 10.20% 3.86% 17.97% 6.00% 17.72% 23.32%

all 9.44% 2.84% 9.29% 6.90% 6.03% 4.01% 7.82% 5.06%

Table 4.7: Average gaps produced by each heuristic (using its best parameters) on
specific subsets of the large benchmark instances.

Since the real-world graphs of benchmark GC are rather heterogeneous, we analyse
them individually. Table 4.8 is divided into an upper part dedicated to the weighted
instances and a lower part dedicated to the unweighted ones. The first three columns
provide the name of each instance, its number of vertices |V | and of edges |E |. The
remaining columns report, respectively, for the weighted and the unweighted instance,
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the value of the objective function for the solution returned by each of the four
competing algorithms. The best result for each instance is bolded. The last row of each
half of the table provides the average percent gap with respect to the best known result.
While the smaller instances are solved with the same value by all algorithms, the larger
ones show significant differences. The TADT heuristic hits the largest number of best
known results (11 out of 18) and has the smallest average gap (0.92%), but in this
benchmark GRASP comes second (with 10 best results and a gap equal to 2.17%) and
the other two heuristics are worse, in particular in the unweighted case. This is in
contrast with the better performance of SDT, observed on average for the other
benchmarks, but consistent with the good performance of TADT.

Instance |V | |E | GRASP SDT ADT TADT

w
ei
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d

adjnoun 112 425 155 151 156 153
celegans_metabolic 453 2025 242 254 264 239
celegansneural 297 2148 545 560 572 528
dolphins 62 159 83 83 83 83
football 115 613 243 212 225 215
jazz 198 2742 380 418 431 388
karate 34 78 27 27 27 27
lesmis 77 254 57 57 57 57
polbooks 105 441 119 127 119 127
Avg.gap 2.42% 3.23% 4.63% 1.29%
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adjnoun 112 425 31 31 31 31
celegans_metabolic 453 2025 49 53 47 48
celegansneural 297 2148 90 93 97 89
dolphins 62 159 14 15 14 14
football 115 613 44 52 51 40
jazz 198 2742 85 91 94 87
karate 34 78 6 6 6 6
lesmis 77 254 11 11 11 11
polbooks 105 441 24 24 24 24
Avg.gap 1.92% 7.68% 5.88% 0.56%

Table 4.8: Results obtained by the presented heuristics (with their best parameter
tuning) in 10 seconds on the real-world graphs of benchmark GC
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4.4.5 Comparison with the state of the art

In this section we apply the SDT algorithm, with its best tuning, to all instances available
in the literature, that is to benchmarks M and H.

Considering the former, we compare SDT with the randomised destructive
heuristic introduced in Macambira et al. (2019), that is denoted as RD in the following.
The two algorithms run on different machines (the destructive heuristic is evaluated on
an Intel Core TM i7-6700 with a 3.40 GHz CPU and 15.6 GB of RAM memory) and the
computational times are quite short, which makes them easily subject to random
fluctuations. We attempt a very approximate comparison through the conversion
coefficient provided by PassMark Software (2022), according to which our machine
should be 9224/8094 = 1.14 times faster than that employed by RD.

In order to try and perform a fair comparison, we have adopted the same approach
of Macambira et al. (2019), fixing the number of restarts, instead of the computational
time. Hence, both approaches run 1000 iterations of their respective procedures. At
each iteration, RD starts from the whole vertex set and removes one vertex at a time,
generating a single minimal solution. Each iteration of SDT generates γ|V | redundant
solutions and reduces each of them to a minimal one.

Table 4.9 reports the results aggregated for instances with the same weight function
and graph density δ, as specified in the first two columns. The third column provides
the number of instances for each class. The following block of two columns (labelled
“Domination”) displays the number of instances for which each algorithm yields a result
strictly better than its competitor. Then, the table provides the number of optima found
by the two algorithms (all instances are solved exactly). The average and maximum gaps
follow (with the better one in bold). The last block of two columns reports the average
and the minimum value of the ratio between the computational times of RD and SDT.

Domination Optima Average gap Maximum gap
tRD

tSDT
δ # RD SDT RD SDT RD SDT RD SDT Avg. Min.

w
ei

gh
te

d 0.3 21 0 12 9 21 5.37% 0.00% 20.24% 0.00% 3.22 1.74
0.5 21 0 15 6 15 4.88% 0.45% 12.96% 4.62% 3.30 1.98
0.7 21 0 8 10 17 1.80% 0.58% 11.71% 5.29% 3.41 2.34
all 63 0 35 25 53 4.02% 0.34% 20.24% 5.29% 3.31 1.74

u
n

w
ei

gh
te

d 0.3 21 0 0 21 21 0.00% 0.00% 0.00% 0.00% 4.48 1.74
0.5 21 0 2 16 18 2.30% 1.48% 14.29% 14.29% 4.18 2.18
0.7 21 0 1 17 18 1.73% 1.20% 11.11% 9.09% 4.09 2.28
all 63 0 3 54 57 1.34% 0.89% 14.29% 14.29% 4.25 1.74

all 126 0 38 79 110 2.68% 0.62% 20.24% 14.29% 3.78 1.74

Table 4.9: Results obtained by 1000 iterations of RD and SDT on benchmark M. We
display the number of instances for which one of the two algorithms performs better
than the other, the number of optimal values found, the average and maximum gap
with respect to the optimum and the (average and minimum) ratio of the computational
times.
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In the direct comparison, the SDT algorithm is always better (38 times) or at least
as good (88 times) as RD. This is especially true for the weighted instances, where the
strictly better results are 35 over 63 (in the unweighted ones, RD already found a large
majority of the optimal results). Overall, SDT finds 110 optima versus 79, out of 126
instances. The average gap of SDT is better than that of RD over both the weighted
and unweighted instances. As for the computational time, SDT is 3 to 4 times faster
than RD. Even considering the 1.14 ratio suggested by PassMark Software (2022), the
computational times are at least comparable.

Since benchmark H has been solved only with exact algorithms, and the
performance of a heuristic cannot be meaningfully compared with them, we evaluate
the ability of SDT to find in short time the optimal or best known results. In particular,
the branch-and-bound algorithm B&Bs of Chapter 3 solves to optimality 254 out of the
280 instances, but requires one hour of computation on the same machine. Table 4.10
reports the results of SDT with a time limit of 60 seconds: each row corresponds to one
of the possible sizes and each column to one of the four classes of density. The left part
of the table concerns the weighted instances, and the right part the unweighted ones.
Each cell contains the average gap with respect to the optimal, or the best known,
solution.

weighted unweighted
|V | 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4
20 18.59% - - - - - - -
25 3.70% - - - 2.50% - - -
30 - - - - - - - -
35 - - 0.24% 0.84% - - - 2.50%
40 - 0.83% - 2.31% - 1.25% 4.44% 4.21%
50 1.37% - 1.94% 3.05% -24.77% 1.90% 2.61% 4.17%
60 -0.74% -1.73% 2.93% 2.68% -36.26% -7.17% 0.69% 2.76%

avg. 3.28% -0.13% 0.73% 1.27% -8.36% -0.57% 1.11% 1.95%

Table 4.10: Results obtained by SDT in 60 seconds on the small random instances of
benchmark H.

Overall, the heuristic equals 193 results out of 280, concentrated in the smaller sizes
(with the exception of the sparsest instances, whose optimal solutions seem hard to
find). It worsens 68 results, mainly for denser instances of medium size. The gap tends
to decrease for larger sizes, and finally becomes negative as 19 results on the sparser
and larger instances are improved. The unweighted instances show remarkable gap
reductions. While the heuristic is unable to find all the best results in short time, it gives
however a useful contribution to reduce the optimality gap of the exact algorithm; in
particular, 2 of the 26 open instances can now be solved running the
branch-and-bound with the improved starting solution.
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4.4.6 Comparison between the Scatter Search and the Delayed
Termination heuristics

This section compares the Scatter Search heuristic with the Simple Delayed Termination
(SDT) and the Truncated Avoidant Delayed Termination (TADT) heuristics (which are
the best performing so far). Table 4.11 reports the average gaps produced by SDT, TADT,
SSu and SSw for the various classes and sub-classes of large instances. The table is,
once again, divided into two macro-columns separating the weighted instance from the
unweighted ones. Each column is dedicated to a heuristic and each row to a sub-class
of instances, with a last row providing the overall averages. We highlight in black the
minimum gap among all heuristics for each sub-class.

Class Sub weighted unweighted
SDT TADT SSu SSw SDT TADT SSu SSw

SW
6 18.91% 34.60% 10.58% 6.78% 16.24% 18.40% 6.58% 6.17%

10 6.36% 21.64% 15.23% 11.93% 11.46% 14.30% 9.77% 13.29%
all 12.63% 28.12% 12.90% 9.36% 13.85% 16.35% 8.17% 9.73%

Reg
5 4.51% 7.71% 6.79% 5.34% 3.49% 2.73% 2.99% 2.96%

10 2.74% 4.55% 4.59% 5.39% 4.46% 1.62% 3.90% 3.95%
all 3.62% 6.13% 5.69% 5.37% 3.98% 2.17% 3.45% 3.46%

Pla all 12.59% 15.49% 7.66% 5.38% 11.78% 10.89% 6.05% 6.14%

Grid
2D 16.44% 15.60% 3.07% 5.19% 15.80% 38.43% 8.94% 11.83%
3D 4.68% 3.33% 3.37% 3.22% 20.85% 19.24% 2.02% 2.29%
all 10.56% 9.47% 3.22% 4.20% 18.32% 28.83% 5.48% 7.06%

all 9.13% 16.26% 8.54% 6.76% 10.14% 11.01% 5.83% 6.54%

Table 4.11: Comparisons between the average gaps produced by each of the considered
heuristics over different classes of large benchmark instances.

The results show that both versions of SS perform overall better than SDT and
TADT, producing smaller gaps on the totality of the instances. The new heuristics are
also more robust, as their maximum gaps are also smaller: 28.21% for SSw and 31.82%
for SSu versus 36.08% for SDT and 62.50% for TADT. As well, they provide a larger
number of best known solutions: 123 for SSw and 87 for SSu as opposed to 69 for SDT
and 52 for TADT, out of 270. Indeed, SSw strictly improves 57 results and SSu improves
50 with respect to the previous best known ones. Wilcoxon’s signed rank test (Wilcoxon,
1945) confirms the better performance of the two SS tunings with respect to TADT with
p-values always smaller than 0.0005, but for SDT this only holds for the unweighted
instances. For the weighted instances, in fact, the difference with respect to SDT is
statistically insignificant for SSu and rather weak for SSw (p ≈ 6%). Delving into details,
in fact, we can observe that for the regular instances (100 out of 270) the algorithms
that produce the smallest gaps are SDT for the weighted case and TADT for the
unweighted one. The special topology of this class, with its uniform value of the degree,
undermines the ability of the SS metaheuristic, probably due to the role played by the
degree in the GRASP initialisation procedure. Another sub-class of instances for which
SDT performs better than SS is the small-world benchmark with initial degree 10, but
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only for unweighted instances.
For the sake of simplicity, in the following experiments we decided to select a single

version of SS. All the indices above applied (average gap, maximum gap, number of best
known solutions found and improved) concur in suggesting SSw as the better candidate.

4.4.7 Structure of the solutions and relation with the Connected Safe
Set Problem

The literature on the SSP often discusses a variant, known as Connected Safe Set
Problem (CSSP), in which the solution is required to consist of a single safe component
(Fujita et al., 2014). We have already remarked in Section 4.4.1 that most of the best
known solutions for random graphs consist of a single safe component opposed to a
single unsafe one. We here extend the analysis of the structure of the best solutions to
all large benchmarks.

Table 4.12 considers the same classes of instances addressed by Table 4.7. The first
two columns specify the benchmark and class. The following two blocks of four
columns refer, respectively, to the weighted and the unweighted instances. In each
block, two columns, labelled |CG (S)|, provide the average and the overall range of
values (minimum and maximum between square brackets) that the number of safe
components assumes in the best known solution. The other two columns, labelled
|CG (V \ S)|, provide the same information for the unsafe components. We refer to the
best known solutions because they are the only possible approximation of the
unknown optimal ones.

weighted unweighted
|CG (S)| |CG (V \ S)| |CG (S)| |CG (V \ S)|

class Avg. Range Avg. Range Avg. Range Avg. Range

H+

0.1 1 [1,1] 3 [2,6] 1 [1,1] 2.2 [1,5]
0.2 1 [1,1] 1.52 [1,3] 1 [1,1] 1.32 [1,3]
0.3 1 [1,1] 1.2 [1,2] 1 [1,1] 1 [1,1]
0.4 1 [1,1] 1.04 [1,2] 1 [1,1] 1 [1,1]
all 1 [1,1] 1.69 [1,6] 1 [1,1] 1.38 [1,5]

SW
6 1 [1,1] 5.36 [4,7] 1.12 [1,2] 4.44 [3,8]

10 1 [1,1] 3.68 [3,5] 1 [1,1] 3.08 [3,4]
all 1 [1,1] 4.52 [3,7] 1.06 [1,2] 3.76 [3,8]

Reg
5 1 [1,1] 7.04 [3,16] 1.48 [1,3] 9.76 [2,19]

10 1.08 [1,2] 7.08 [2,18] 1.36 [1,2] 7.56 [2,18]
all 1.04 [1,2] 7.06 [2,18] 1.42 [1,3] 8.66 [2,19]

Pla all 1 [1,1] 7.92 [5,13] 1 [1,1] 6.36 [4,10]

Grid
2D 1 [1,1] 4.8 [4,7] 1 [1,1] 3.4 [3,4]
3D 1 [1,1] 4.8 [3,8] 1 [1,1] 3 [2,6]
all 1 [1,1] 4.8 [3,8] 1 [1,1] 3.2 [2,6]

all 1.01 [1,2] 4.23 [1,18] 1.10 [1,3] 4.04 [1,19]

Table 4.12: Structure of the best known solutions for all classes of instances.
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The clearest observation is that a large majority of solutions have a single safe
component (445 out of 470), while 24 have 2 components and only one has 3. In short,
the CSSP has very frequently the same solution as the basic SSP. Considering the
unsafe components, the random instances exhibit the behaviour already described in
Section 4.4.1: the best known solution is often complemented by a single unsafe
component, and this becomes more and more frequent as the size and density of the
instances increases. The sparse instances show a wider range of values, but still the
number of unsafe components is often equal to 1 (in 140 instances out of 470) and
most of the time less than 10 (in more than 400 instances). The larger values seem to
occur in the regular instances, but it is presently impossible to determine whether this
actually reflects the structure of the optimal solutions for such instances, or the fact
that the best known results are actually far from optimal. The same results are
illustrated in Figure 4.3 which displays the number of safe components (in blue) and
unsafe components (in red) for each of the 235 large instances. In order to improve
readability, the instances have been sorted in ascending order of the number of safe
components (in the first case) or of the number of unsafe components (in the second
case) in the best known solution. The figure can also be understood as the cumulative
number of instances for which the best known solution has a number of safe (or
unsafe) components lower than a threshold given on the vertical axis.
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Figure 4.3: Number of safe and unsafe components in each instance, for both weighted
(left) and unweighted instances (right).
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4.4.8 Heuristic initialisation of the branch and bound

We now examine the impact of heuristic initialization on the performance of the branch-
and-bound algorithm presented in Chapter 3.

Since it was the heuristic that performed best, we decided to adopt SS to generate
an initial incumbent solution for the B&Bv (see Section 3.5) algorithm. Tables 4.13 and
4.14 share the same structure of Tables 3.9 and 3.10, but compare the results obtained
without the heuristic initialisation (B&Bv) or with the most robust and versatile
parameter setting of SS (SSw+B&Bv). Since the smaller instances are all solved to
optimality within seconds (the longest computation for |V | ≤ 35 lasts 20.079 seconds)
we decided to focus only on the instances with |V | ≥ 40, which pose a significant
challenge to the algorithm. The time limit is still of one hour, including the time spent
on the heuristic. The heuristic is run for 0.1 seconds for |V | = 40, 1 second for |V | = 50
and 10 seconds for |V | = 60. The rationale for this choice is that it makes sense to
increase the time limit as the size of the instance grows.

The gaps reported in the following tables are not computed with (20) as in the
previous sections but with (19).

B&Bv SSw+B&Bv
δ |V | gap solved CPU BN gap solved CPU BN

40 - 5 2.788 299276 - 5 2.391 244278
0.1 50 - 5 111.651 8102922 - 5 99.951 7217037

60 - 5 1199.706 62877972 - 5 844.651 43528549
40 - 5 3.997 277123 - 5 3.763 251329

0.2 50 - 5 307.728 14711729 - 5 285.167 13837516
60 1.82% 3 2290.738 74773767 1.07% 3 2217.319 74164033
40 - 5 4.898 266300 - 5 4.940 265918

0.3 50 - 5 47.728 1665147 - 5 44.492 1554477
60 - 5 743.674 17805962 - 5 648.941 15708243
40 - 5 2.059 89991 - 5 2.302 96953

0.4 50 - 5 27.720 773785 - 5 26.165 713841
60 - 5 271.408 5005143 - 5 270.733 4837895

Table 4.13: Comparison between the B&Bv algorithm without and with an initial
heuristic solution over all the weighted instances of the benchmark.

Considering the weighted instances (see Table 4.13), the number of unsolved ones
remains 2 out of 60, but for one of them both the lower and the upper bound improve.
The computational time and the number of branching nodes tend to decrease, but not
uniformly. The denser instances with |V | = 40 and |V | = 60, in fact, show a moderate
increase. In the unweighted case (see Table 4.14), the number of unsolved instances
decreases from 16 to 15 and the number of memory overflows from 10 to 3. The average
gap sharply decreases on the sparse instances, as both the lower and the upper bound
improve. For δ ∈ {0.1,0.2}, the computational times and the branching nodes are
significantly lower. For δ = 0.3, however, the decrease is weak and for δ = 0.4 there is a
moderate increase, as in the weighted case.
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B&Bv SSw+B&Bv
δ |V | gap solved CPU BN gap solved CPU BN

40 - 5 44.817 4778665 - 5 25.667 2718502
0.1 50 1.25% 4 2165.374 152910911 - 5 1242.201 92944220

60 68.40% 0 OM OM 14.40% 0 3600.000* 189966296*
40 - 5 47.749 3390965 - 5 23.600 1821474

0.2 50 - 5 1974.602 100802247 - 5 1320.257 72594184
60 33.90% 0 OM OM 10.40% 0 3600.000 131862708
40 - 5 14.626 837818 - 5 13.135 782608

0.3 50 - 5 480.459 18963773 - 5 435.720 18325922
60 4.29% 0 3600 94802520 4.29% 0 3600.000 98738374
40 - 5 5.8 270571 - 5 5.515 266566

0.4 50 - 5 56.295 1689201 - 5 60.285 1862514
60 - 5 710.371 13912611 - 5 789.761 15958696

Table 4.14: Comparison between the B&Bv algorithm without and with an initial
heuristic solution over all the unweighted instances of the benchmark.

In summary, a good heuristic initialisation gives a useful contribution mainly on the
sparser instances, that are the harder ones for the exact algorithm.

To test the limits of the algorithm, we feed it the instances with |V | = 100 from the
SW, Reg and Pla benchmarks, that had been previously tackled only by heuristic
approaches. Given the larger size, we have set the time limit for the heuristic
initialisation to 60 seconds. We excluded the Grid benchmark because it includes only
two instances with 100 vertices. Unfortunately, this size proved challenging for the
exact algorithm: all instances caused a memory overflow before hitting the time limit of
one hour.

Table 4.15 reports the results. Its first two columns identify the main classes and the
sub-classes of instances, the third one reports the average gap on the weighted
instances (as usual, 5 instances for each row) and the last column does the same for the
unweighted instances.

Class Sub-class weighted unweighted

SW
6 67.97% 116.21%

10 70.36% 117.44%

Reg
5 122.00% 370.61%

10 105.38% 193.97%
Pla 40.93% 75.90%

Table 4.15: Average gaps produced by the SS+B&Bv algorithm over the instances with
|V | = 100 after reaching the memory limit.

The weighted instances are confirmed to be easier than the unweighted ones. The
most difficult instances are the regular ones, followed by the small-world instances
and, finally, the planar ones. These results suggest that further improvements would
probably require the development of a tighter lower bound, to avoid generating a huge
number of branching nodes.
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Chapter 5

Hard Interdiction Problems

In this chapter, we describe the class of binary interdiction problems that we call

hard interdiction. In these problems there are two agents which are called attacker

and defender which aim to optimise the same objective in opposite directions. The

attacker disrupts the defender’s instance by blocking elements so that the latter’s

optimal solution has the worst possible objective value. We introduce the notation

for these problems and discuss the main results from the literature. Then we focus

our attention on two specific hard interdiction problems and their respective

properties.

Binary Interdiction Problems are bilevel combinatorial optimisation problems that
can be described as zero-sum Stackelberg games with two agents: the leader (also
called attacker) and the follower (also called defender). The follower’s goal is to solve a
combinatorial optimisation problem for a given instance where the attacker might
have interdicted some elements, that is, simply blocked them or made them more
expensive. We denote the former case as Hard Interdiction Problems (HIP) and the
latter as Soft Interdiction Problems (SIP). On the other hand, the attacker, who is the
first to move, has to decide which elements to interdict, considering that each element
incurs an interdiction cost and the total cost of the chosen elements must not exceed a
given budget. In this thesis we focus on HIP.
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5.1 Notation

Without loss of generality, we consider a generic interdiction problem in the max-min
form, where the attacker aims to maximise the defender’s feasible solution of minimum
cost. Throughout the thesis we will adopt the following notation:

• Y is the set of all feasible solutions for the defender (also called responses);

• c : Y →R+ is the objective value of the responses;

• I is the set of all interdictable elements;

• g : I →R+ is the interdiction cost of each element in I ;

• B ∈R+ is the interdiction budget;

• XB := {
x ∈℘(I )| ∑

i∈x gi ≤ B
}

is the set of all feasible solutions for the attacker (also
called attacks), where ℘ is the power set function;

To simplify the discussion, we also introduce some possible abuses of notation:

• given an interdictable item i ∈ I and a feasible defender’s solution y ∈ Y , we
indicate by i ∈ y the fact that, if i is interdicted, then y is no longer feasible; on the
other hand, i ∉ y means that the interdiction of i does not affect the feasibility of
y ;

• consequently, given feasible solutions x ∈ XB and y ∈ Y for the two agents, x ∩ y ={
i ∈ x|i ∈ y

}
is the set of elements of the former that makes the latter infeasible;

• ∀Y ′ ⊆ Y : ∀x ∈ XB : Y ′(x) := {
y ∈ Y ′|x ∩ y =;}

is the set of solutions in Y ′ that
remain feasible after attack x; in particular, Y (x) is the set of all defender’s
solutions that are feasible after attack x;

• ∀x ∈ XB : c(x) := miny∈Y (x) c(y) denotes the objective value of the best defender’s
solution after attack x.

Now we can formulate the HIP as follows

H I P : max
x∈XB

c(x) = max
x∈XB

min
y∈Y (x)

c(y) (21)

Throughout the thesis we will address x∗ := argmaxx∈XB c(x) as the optimal solution
of HIP and c(x∗) as its value. We will also assume the availability of an exact procedure
to solve the defender’s problem for any given attack x. In this context, any feasible attack
found during the computation is denoted as an incumbent solution and provides a lower
bound on c(x∗), just like in a classical branch-and-bound approach. On the other hand,
computing an upper bound on c(x∗) is more complicated.
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5.2 Literature review

The first interdiction problem considered in literature is due to Wollmer (1964) that
considered the Maximum Flow Interdiction Problem (MFIP): given a directed graph
G = (N , A) with a source node s ∈ N and a sink node t ∈ N , arc capacities c : A → IR+,
interdiction costs g : A → IR and a positive attack budget B ∈ IR+, compute a feasible
attack x ⊆ A, subject to

∑
(i , j )∈x gi j ≤ B , such that the maximum s − t flow in graph

Gx = (N , A \ x) with capacities c is minimised. For this problem, the author proposes a
simple exact algorithm. A military application of the MFIP is considered by Ghare et al.
(1971) that also provide a branch-and-bound algorithm for the problem. Only some
decades after, Phillips (1993) proves the NP-hardness of the MFIP.

Other problems arise after the MFIP, like a non-binary interdiction version of the
shortest path problem by Fulkerson and Harding (1977) that they prove to be
equivalent to a parametric version of the minimum cost flow problem. Then the
shortest path interdiction problem (hard version) is presented in Malik et al. (1989) as
well as a flawed algorithm for its computation. In fact, as pointed out in Section 5.2 of
Israeli and Wood (2002), the authors made assumptions that turned out to be incorrect.
Nonetheless, Israeli and Wood (2002) themselves correct these mistakes by proposing
two solution methods that are still used today to solve interdiction problems. The
complexity of this problem is proved to be NP-hard by Ball et al. (1989).

Moreover, other interdiction problems are considered in the literature like the
Maximum Clique Interdiction Problem (Rutenburg, 1991; Furini et al., 2019), the Bilevel
Knapsack Interdiction Problem (Caprara et al., 2013, 2014, 2016; Fischetti et al., 2019;
Della Croce and Scatamacchia, 2020; Weninger and Fukasawa, 2023), various facility
location interdiction problems (Church et al., 2004; Scaparra and Church, 2008;
Fischetti et al., 2019; Fröhlich and Ruzika, 2021; Lunday, 2024), the minimum cut
interdiction problem (Abdolahzadeh et al., 2020), the electric power grid interdiction
problem (Church et al., 2004), and many other problems.

Real world applications Given the adversarial nature of these problems, they are
capable of accurately modelling a wide range of real-world situations. For example,
Ghare et al. (1971) propose a military application to interdict some supply routes of an
invader by considering the MFIP. Similarly, Morton et al. (2007) propose an intel
application for disrupting the supply network of illegal items such as nuclear weapons.
Changing typology, Assimakopoulos (1987) proposes an interdiction model for the
containment of infections inside hospitals. Another possible application is presented
by Mansi et al. (2012) that model a financial investments planning as an interdiction
problem. Numerous other practical applications can be modelled using interdiction
problems.

Computational complexity The complexity of these problems varies significantly
depending on the specific problem taken into account. In fact, according to the status
of the follower’s problem, two main cases emerge. When the follower’s problem is
polynomial, the interdiction problem is in NP and often NP-complete. Examples of
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such NP-complete problems are the Shortest Path Interdiction Problem and the
Maximum Flow Interdiction Problem. When the follower’s problem is NP-complete,
the interdiction often ends up being ΣP

2 -complete, as happens for example for the
Bilevel Interdiction Knapsack Problem and the Maximum Clique Interdiction Problem
(Caprara et al., 2013; Rutenburg, 1991) and several other interdiction problems
considered in Grüne and Wulf (2023).

Solution methods Some authors presented ad-hoc formulations for specific
problems. See for example Church et al. (2004) and Scaparra and Church (2008) for
facility location. Other approaches can be applied to more general cases.

When the defender’s problem is polynomial, it is possible to exploit the
dualise-and-combine technique. The dualise-and-combine is a technique the consists
in manipulating the dual formulation of the defender’s problem and directly applying
the binary interdiction variables since now both levels share the same optimisation
directions. This is only possible (assuming that P ̸= N P ) when the defender’s problem
is polynomial because we have to be able to model the problem with continuous
variables to dualise the formulation.

However, many interdiction problems do not satisfy such requirements and
sometimes even if they do, the dualise-and-combine method does not yield efficient
approaches. Therefore, in the literature the most common techniques to solve these
problems are Benders decomposition and super-valid (covering) inequalities (Wood,
1993; Israeli and Wood, 2002). The former is designed for SIP but can also be applied to
HIP, and consists in reformulating the problem as a single level formulation with a
combinatorial number of constraints that are associated to every defender’s feasible
solutions. This way, it is possible to express the interdiction as an increment of the
objective value of the solutions that are affected by the attack. The super-valid
inequalities are covering constraints that impose that some good quality defender’s
feasible solution has to be interdicted. They can be applied to a single level
reformulation in order to strengthen them, or can be used independently, in which
case we refer to them as covering decomposition. All these methods will be better
explained in Section 6.1. It is worth mentioning that Fischetti et al. (2019) define a class
of interdiction problems that enjoy the so called downward monotonicity property
which allows to reduce HIP into an equivalent SIP version without resorting to large
coefficients.

For more details about interdiction problems, models and algorithms we refer the
interested reader to Smith and Song (2020).

5.2.1 Fortification problems

Recently, the focus of research in this area has shifted to Binary Fortification Problems
(BFP). These problems are a natural extension of BIPs that introduce an additional
initial turn in which the defender spends a protection budget P ∈ IR+ to immunise some
elements. In details, for every interdictable element i ∈ I there is a fortification cost
pi ∈ IR+ and the fortification problem consists in computing a subset of interdictable
elements w ⊆ I such that

∑
i∈w pi ≤ P and these elements cannot be interdicted.
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In other words, if W = {w ⊆ I |∑i∈w pi ≤ P } is the set of feasible fortifications and
XB (w) := {x ∈ XB |x ∩ w = ;} is the set of feasible attacker’s solutions which does not
interdict the elements fortified by w , the generic BFP can be formulated as

BF P : w∗ = arg min
w∈W

c(w) = arg min
w∈W

max
x∈XB (w)

min
y∈Y (x)

c(y) (22)

and w∗ is the optimal solution.
To the best of our knowledge, the first fortification problem presented in the

literature is due to Brown et al. (2006) where the authors describe a situation that
involves deciding what components to fortify in an electric grid targeted by some
terrorists. Moreover, problems like the shortest path fortification problem are tackled
by Cappanera and Scaparra (2011); Lozano and Smith (2017); Leitner et al. (2023) where
the defender can immunise some arcs that the attacker won’t be able to interdict in
order to contain the damage.

The practical applications of these problems can be easily found in the effort to find
the best way to protect a system (typically a network) from some malicious attacker.

The complexity of such problems is even higher than that of interdiction
counterpart. In fact, Boggio Tomasaz et al. (2024) show that many fortification
problems are ΣP

2 -complete even if the last-level problem is polynomial. Moreover, the
complexity of generalized multi-level interdiction problems seems to confirm the
conjecture that as the number of levels increases, the complexity of the problem rises
to the next higher class in the polynomial hierarchy. This is confirmed in the specific
case of the multi-level knapsack interdiction problem (even with unit costs), for which
Boggio Tomasaz et al. (2024) demonstrate the ΣP

k -completeness for every possible
number of levels k.

It is easy to notice that fortification problems are a form of HIP applied to another
interdiction problem. Therefore, any algorithmic framework for HIP also works for
fortification problems. In fact, the main exact approaches for these problems consist of
single level reformulations based on Benders decomposition and super valid
inequalities. Notice that for these multi-level problems with 3 or more levels, it is not
possible to exploit the dualise-and-combine technique since their complexity is higher
than NP. On the other hand, since the attacker’s problem has a knapsack structure, it is
possible to exploit the downward monotonicity property to efficiently convert the
higher level problem from HIP to SIP. This last expedient is exploited in Leitner et al.
(2023) that propose a branch-and-cut algorithm for any fortification problem.

5.3 Two representative problems

In this thesis we focus on two HIPs: the hard version of the Shortest Path Interdiction
Problem (SPIP) also commonly referred to as “k-most-vital arc problem”; and the Set
Covering Interdiction Problem (SCIP).

These problems share certain traits but also exhibit key differences: The SPIP has
been extensively studied in the literature and represents a classic case of interdiction
where the defender’s problem is polynomial; on the other hand, the SCIP is a new
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problem (although similar problems can be found in the literature) where the
defender’s problem is NP-complete.

For both problems, we provide a formal description along with any relevant
properties. In particular, we demonstrate how to recognize degenerate instances where
the attack budget becomes sufficient to completely interdict the defender’s solution
space, Y . As the attack budget B increases, the attacker’s solution space, XB , expands
monotonically, leading to progressively better outcomes for the attacker (and worse for
the defender). This progression begins at B = 0, where the only feasible attack is the
trivial empty set ;, reducing the problem to that of the defender. It culminates when B
reaches a point where an attack becomes feasible that interdicts all of the defender’s
solutions. Beyond this point, further increasing the budget yields no additional benefit
for the attacker, as the optimal outcome has already been achieved.

5.3.1 Shortest Path Interdiction Problem

Let G = (N , A) be a directed graph (or the directed symmetric version of an original
undirected graph) with a cost function c : A → R+ over the arcs, two special nodes
s, t ∈ N , interdiction costs g : A → R+ and an attack budget B ∈ R+. The SPIP looks for a
subset of arcs x ⊆ A subject to

∑
(i , j )∈x gi j ≤ B such that the shortest path from s to t in

the graph Gx = (N , A \ x) is maximised.
Similarly to the MFIP, the SPIP has military defence applications in the disruption of

supply routes of a potential invader.
The computational complexity has already been discussed in Section 5.2, where it

was shown that, since the shortest path problem is polynomial, the SPIP is
NP-complete (Ball et al., 1989). Moreover, since the defender’s problem is polynomial,
it is possible to apply the dualise-and-combine technique to obtain the following
well-known formulation for the SPIP.

max dt (23.1)

s.t.

d j −di ≤ ci j +M · xi j (i , j ) ∈ A (23.2)

ds = 0 (23.3)∑
(i , j )∈A

gi j · xi j ≤ B (23.4)

di ≥ 0 i ∈ N (23.5)

xi j ∈ {0,1} (i , j ) ∈ A (23.6)

where the intuitive meaning of the variables is:

• xi j = 1 if and only if arc (i , j ) is interdicted;

• di is the distance (in terms of c) from s to i in the interdicted instance.

As we can see, the formulation is almost identical to the classical dual formulation for
the shortest path problem. The presence of the binary variables x only affects the model
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in the budget constraint (23.4) and in the classical constraint (23.2) where, instead of
the usual cost ci j , the right-hand-side is ci j +M ·xi j . The idea is that by interdicting the
arc (i , j ), its cost increases by some very large constant M that discourages the defender
from choosing a path including such arc. In practice M has to be larger than the optimal
solution of the SPIP.

As anticipated, to check whether an instance is trivial (can be completely interdicted)
we can exploit a very simple idea:

Remark 3. A minimum s − t cut (using the interdiction costs g as capacities) is the
minimum interdiction cost attack that is able to interdict all s − t paths in G.

Therefore, we can compute the minimum cut in polynomial time and, if its value
is smaller than or equal to the attack budget B , the minimum cut itself is the optimal
attack for the SPIP.

In the literature, Malik et al. (1989) tried to exploit this relationship between the SPIP
and the minimum cut problem even further by computing a minimum cut of a sub-
graph of G to interdict a subset of s − t paths. However, the flaw was that they assumed
that the minimum attack that interdicts a subset of paths is equal to the minimum cut
of the sub-graph induced by the considered paths. This was proved wrong by Israeli
and Wood (2002) that provide a counterexample. Another interesting aspect about the
relationship between the SPIP and flow-related problems is that the real-valued version
of the SPIP (the increment in the cost is not binary but continuous) can be reduced to a
computation of a minimum cost flow problem (Fulkerson and Harding, 1977).

Lagrangean relaxation and min-cost flow An interesting fact that we discovered, is
that the Lagrangean relaxation of the budget constraint in formulation (23) for the SPIP
is strictly related to the min-cost flow problem.

The relaxation assumes the form

max dt −λ ·
( ∑

(i , j )∈A
gi j · xi j −B

)
≡ dt −λ ·

∑
(i , j )∈A

gi j · xi j (24.1)

s.t.

d j −di ≤ ci j +M ·xi j (i , j ) ∈ A (24.2)

ds = 0 (24.3)

di ≥ 0 i ∈ N (24.4)

xi j ∈ {0,1} (i , j ) ∈ A (24.5)

where we discarded the +λ ·B term in the objective because it is a constant factor.
Now, let’s consider the classical formulation for the problem of computing a

minimum cost flow of value W > 0 from s to t with capacities g . The costs of the arcs
are c and the value W , for now, is arbitrary. We denote with δ−k := {i ∈ V | (i ,k) ∈ A} the
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in-neighbourhood and with δ+k := { j ∈V | (k, j ) ∈ A} the out-neighbourhood.

min
∑

(i , j )∈A
ci j · yi j

s.t.

∑
i∈δ−k

yi k −
∑

j∈δ+k
yk j =


W , if k = t

−W , if k = s

0 , otherwise

k ∈V

0 ≤ yi j ≤ gi j (i , j ) ∈ A

and its dual formulation

max W ·dt −
∑

(i , j )∈A
gi j · ri j (25.1)

s.t.

d j −di ≤ ci j + ri j (i , j ) ∈ A (25.2)

ds = 0 (25.3)

di ≥ 0 i ∈ N (25.4)

ri j ≥ 0 (i , j ) ∈ A (25.5)

The structure is very similar to that of formulation (24) except for the variables ri j

instead of M ·xi j and the coefficients in the objective: W multiplies dt and there is no λ
that multiplies the sum. If we consider the continuous relaxation of formulation (24),
we can see that if M is an upper bound of the variables ri j , we can perform a variable
change ri j = M ·xi j . This way, constraints (24.2) and (25.2) become identical. Moreover,
now the objective becomes

max dt −λ
∑

(i , j )∈A
gi j ·

ri j

M
= dt − λ

M

∑
(i , j )∈A

gi j · ri j

and, to adjust the coefficient of dt , we multiply the objective by W > 0, obtaining

max W ·dt − W ·λ
M

∑
(i , j )∈A

gi j · ri j

but since W is an arbitrary parameter, we can set W = M
λ to obtain

max W ·dt −
∑

(i , j )∈A
gi j · ri j = M

λ
·dt −

∑
(i , j )∈A

gi j · ri j

which is exactly the objective (25.1).
This result is consistent with Fulkerson and Harding (1977) where they show that the

continuous version of the soft shortest path interdiction is equivalent to the minimum
cost flow problem.
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5.3.2 Set Covering Interdiction Problem

In order to provide a simple description, we use the binary matrix version of the
problem. Given a binary matrix A ∈ {0,1}m×n with associated sets of column indices
I = {1, . . . ,n} and row indices J = {1, . . . ,m}, and a cost function c : I → R+, a feasible
defender’s solution y is a subset of columns of A such that the sub-matrix induced by
the columns of y contains at least a 1 in every row: Y = {y ⊆ I|∀ j ∈J : ∃i ∈ y : A j i = 1} is
the set of all feasible solutions. The defender aims to find the feasible solution y∗ which
minimises the sum of the column costs. On the other hand, given an interdiction cost
g : I → R+ on each column and a budget B ∈ R+, the attacker aims to block a subset of
columns x ⊆ I with

∑
i∈x gi ≤ B , so that the optimal response of the defender, that does

not use the interdicted columns, has maximum cost.
The SCIP, unlike the SPIP, does not have a polynomial defender’s problem, therefore

it is not possible to apply the dualise-and-combine unless P = N P . Moreover, we believe
it to be ΣP

2 -complete, therefore we cannot provide a compact ILP formulation unless
P = N P .

As for the SPIP, we now discuss the possibility to forbid all defender’s solutions. Let

C j := {i ∈ I|A j i = 1} ∀ j ∈J
Ri := { j ∈J |A j i = 1} ∀i ∈ I

be the set of columns that cover a given row j ∈ J and the set of rows that are covered
by a given column i ∈ I .

Proposition 9. The SCIP admits an attack x∗ that forbids all defender’s solutions if and
only if there is some row j ∈J such that the sum of the interdiction costs of the columns
C j respects the budget.

∃x∗ ∈ XB : Y (x∗) =; ⇐⇒ ∃ ȷ ∈J :
∑

i∈C ȷ

gi ≤ B

Proof. Suppose we know some feasible attack x∗ ∈ XB that can interdict the entire Y .
Let’s consider the defender’s solution ŷ = I \ x∗ of all columns except the ones
interdicted. Since x∗ interdicts all feasible solutions, ŷ must be an infeasible set of
columns. Therefore, there must be some row ȷ ∈ J which is not covered by ŷ . Since ŷ
contains every column except the interdicted ones, it means that all columns C ȷ have
been interdicted, so C ȷ ⊆ x∗ and

∑
i∈C ȷ

gi ≤ ∑
i∈x∗ gi . Finally, since x∗ ∈ XB , we know

that
∑

i∈x∗ gi ≤ B which implies
∑

i∈C ȷ
gi ≤ B .

On the other hand, suppose there is a row ȷ ∈J such that
∑

i∈C ȷ
gi ≤ B . If we choose

x∗ = C ȷ we obtain a feasible attack that blocks every defender’s solution since all
elements that cover ȷ have been interdicted.

This proposition allow us to determine in polynomial time (just a single scan of the
matrix A) if the instance is trivial, and if so, identifies the best attack as

ȷ = argmin
j∈J

∑
i∈C j

gi =⇒ x∗ =C ȷ
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The classical approaches to solve the Set Covering Problem perform a pre-processing
phase to reduce the instance by finding essential columns, that certainly belong to an
optimal solution, removing dominated columns and rows, and fixing columns based
on reduced costs or other mathematical properties (Beasley, 1987). We here discuss
whether these concepts can be extended to the SCIP.

An essential column is a column that is included in every defender’s feasible
solution. In practice, a column e ∈ I is essential if and only if there is some row j ∈ J
such that C j = {e}. Since essential columns must necessarily be included in the
defender’s solution, they are unlikely to exist in a reasonable SCIP instance. In fact, if
there is an essential column, the attacker could just interdict it obtaining an attack
which satisfies the condition of Proposition 9. Only if all essential columns have
interdiction costs strictly bigger than the attack budget, we can apply the reduction by
imposing their presence in the defender’s optimal solution and, therefore, erasing the
covered rows.

A column d ∈ I is dominated by a subset of columns D ⊆ I when all rows that d
covers (and possibly other ones) can be covered by D at smaller or equal cost:

Rd ⊆ ⋃
i∈D

Ri ∧ cd ≥ ∑
i∈D

ci

In this case, d can be discarded. A row f ∈J is dominated by a row f ′ ∈J when covering
f ′ implies that also f is covered:

C f ′ ⊆C f

In this case, removing f from J does not change the optimal solutions.
Column and row domination often have a waterfall effect, since removing columns

could generate new dominated rows and removing rows could generate new dominated
columns. Unfortunately, in the SCIP, only dominated rows can be directly removed. In
fact, even if column d is dominated by D , the defender might want to use d when some
columns of D are interdicted. However, the following properties hold.

Proposition 10. If each column in D = {d1, . . . ,dk }, taken singularly, dominates column
d (i.e., {d1} dominates d, {d2} dominates d, etc.) and

∑k
l=1 gdl + gd > B, then d can be

erased.

Proposition 11. If column d is dominated by subset D, then it is useless to interdict d
unless some column in D is also interdicted.

Properties 10 and 11 will be exploited in Section 6.5.2 implementing them inside of
an exact algorithm for the SCIP.
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Chapter 6

An Exact Method for Hard Interdiction
Problems

In this chapter, we discuss the state of the art exact approaches to solve HIP. In

particular we consider the classical Single level reformulation, which is well-suited

for SIP, based on a Benders Decomposition; and the Covering Decomposition

approach. Then we present two new algorithmic frameworks: the first is an

adaptation of the classical Single level reformulation for HIP; the second is a

generalisation of the Covering Decomposition which is able to produce a

super-optimal bound during the computation. Moreover, we propose three heuristic

methods to generate diverse and good-quality defender’s solutions that allow to

speed up the computation times of the presented algorithms. Experimental results,

conducted on the SPIP and SCIP, show that the generalised covering decomposition

and the adaptation of the single level reformulation have similar performances,

with the former being slightly more efficient than the latter. Moreover, we compare

the three heuristic generation methods with the ones from the literature showing

major improvements in the running time of the algorithms.

Since binary interdiction problems are very hard to solve, most exact approaches in
the literature follow a specific algorithmic pattern: consider a restricted set of defender’s
solutions and produce a feasible attack which depends on such restricted set; compute
the best defender’s solution for the given attack; insert such solution in the restricted
set; reiterate until a termination condition is satisfied.

In this work, we discuss the state of the art methods for solving binary interdiction
problems which are based on Single level reformulations and Covering Decompositions.
Then, we adapt the former for the Hard interdiction specific case and generalise the
latter in order to provide better results. Moreover, since all these methods are based on
considering a restricted set of defender’s solution, we introduce three new methods to
generate a multitude of suitable solutions to decrease the number of iterations of the
algorithms.
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6.1 The state-of-the-art general framework

The general algorithmic structure used in the literature is based on the iterative
refinement of a lower and an upper bound on the optimal solution. In particular, it
corresponds the state-of-the-art approaches proposed by Israeli and Wood (2002)
(Algorithm 1E) or Lozano and Smith (2017) (Algorithm 1 for the attacker’s problem).

6.1.1 Restricted Response Relaxation

Since the scheme previously mentioned involved the computation of a super-optimal
bound, we need to find a way to compute one. A typical approach to compute a
super-optimal bound is to solve a relaxation of the original problem (e.g., the
continuous relaxation, a Lagrangean relaxation, a surrogate relaxation, etc.). In this
case, we will use a relaxation of problem (21) presented in detail in Lozano and Smith
(2017), but previously exploited also in other works, such as Israeli and Wood (2002).

The restricted response relaxation (RRR) consists in considering only a subset Y ′ ⊆ Y
of the defender’s feasible solutions and computing an attack x ∈ XB that implies the
maximum value in the best solution of the defender restricted to Y ′.

RRR(Y ′) : max
x∈XB

min
y∈Y ′(x)

c(y) (26)

Notice that RRR(Y ′) is, in fact, a relaxation of HIP because the feasible region XB

remains unaltered, but the objective value for every solution x ∈ XB becomes not smaller
than the original value:

min
y∈Y ′(x)

c(y) ≥ min
y∈Y (x)

c(y) = c(x)

since it is trivial to prove that Y ′(x) ⊆ Y (x). It is important to point out that, while the
attacker’s problem is relaxed, the defender’s one is more constrained, since its solution
space gets smaller.

Proposition 12. Given Y1 ⊆ Y2 ⊆ Y , RRR(Y1) ≥ RRR(Y2)

Proposition 12 holds because ∀x ∈ XB : Y1(x) ⊆ Y2(x). Its practical meaning is that
bigger subsets Y ′ produce better upper bounds. Ultimately, we will search for some
Y ′ ⊆ Y such that RRR(Y ′) produces a solution of value c(x∗).

Before discussing in more detail, in Section 6.1.3, the ways proposed in the literature
to solve RRR(Y ′), we present a general algorithmic framework that is currently adopted
by the state-of-the-art approaches and exploits the capability of solving the restricted
response relaxation.

6.1.2 A general algorithmic structure

Building on the concepts introduced above, the algorithm manages a restricted set of
defender’s solutions and iteratively refines a lower and an upper bound on c(x∗) by
computing a new attack based on the restricted set of defender’s moves to possibly
update the incumbent, and one or more responses to enlarge the current set Y ′.
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1 y∗ = argminy∈Y c(y)
2 LB = c(y∗)
3 U B =+∞
4 x̄ =;
5 Y ′ = {y∗}
6 while LB <U B do
7 x̂ = argmaxx∈XB miny∈Y ′(x) c(y) // Solve RRR(Y ′)
8 U B = miny∈Y ′(x) c(y)
9 ŷ = argminy∈Y (x̂) c(y) // Solve the defender’s problem for x̂

10 if c(ŷ) > LB then // Update the incumbent
11 x̄ = x̂
12 LB = c(ŷ)
13 end
14 generate a heuristic subset Y ′′ ⊆ Y \ Y ′

15 Y ′ = Y ′∪ {ŷ}∪Y ′′

16 Y ′ = Y ′ \ {y ∈ Y ′|c(y) >U B}
17 end
18 return x̄

Algorithm 9: Algorithm for the exact computation of HIP.

More in detail, Algorithm 9 starts by solving the defender’s problem and, thus,
obtaining an initial value for the lower bound LB . The initial value of the upper bound
U B is set to infinity, the best known attack x̄ is empty and the set Y ′ contains only the
optimal defender’s solution. Then, the algorithm tightens the lower and the upper
bound until they match. First, it solves the relaxation RRR(Y ′), which provides a
feasible attack x̂ and an upper bound. Thanks to Proposition 3 in Lozano and Smith
(2017), the upper bound never increases, and therefore there is no need to check if it
improves the previous one. The true objective value of x̂ is then evaluated by
computing (with any ad-hoc algorithm) the optimal defender’s solution (ŷ) in response
to x̂. If the objective value of x̂, that is c(ŷ), is greater than the current lower bound, it
means that the attack x̂ is more effective than the incumbent and, therefore, update x̄.
Then, we extend the restricted defender’s solution set Y ′ with ŷ . Along with it, we might
also want to add a suitably generated set Y ′′ of heuristic solutions (we will discuss this
later in Section 6.4). At last, we erase from Y ′ any solution whose cost exceeds U B ,
since such solutions will never affect the optimum of RRR(Y ′), and therefore there is no
need to keep them in Y ′ (as showed in Lozano and Smith (2017)). The termination of
this algorithm is guaranteed by the fact that each iteration generates a different attack x̂
and XB is finite (see Proposition 4 in Lozano and Smith (2017)).

The versions of Algorithm 9 proposed in the literature mainly differ in terms of:

• the update of the best solution found up to that moment;

• the method used to solve RRR(Y ′) at line 7;

• the procedures to generate heuristic solutions at line 14.
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6.1.3 Solving the Restricted Response Relaxation

Solving problem RRR(Y ′) allows to find a new attack and an upper bound on the
optimum of the HIP. It would be convenient to have a method that could compute
RRR(Y ′) without explicitly considering each solution in Y ′. However, this approach
appears challenging, and the only attempt in the literature to do so (by Malik et al.
(1989)) had a conceptual flaw stemming precisely from not evaluating individual
solutions but rather their aggregation as a whole.

Different ways to perform this task have been proposed in the literature. We here
describe the main ones.

Single-level reformulation The literature on SIP (Israeli and Wood, 2002; Cappanera
and Scaparra, 2011; Lozano and Smith, 2017; Furini et al., 2019) often adopts the
following single-level reformulation:

max θ (27.1)

s.t.

θ ≤ c(y)+∑
i∈y

di · xi y ∈ Y ′ (27.2)∑
i∈I

gi · xi ≤ B (27.3)

xi ∈ {0,1} i ∈ I (27.4)

where, for each i ∈ I , di is the increment, due to the interdiction of i , in the objective
value of any solution y such that i ∈ y . The problem becomes equivalent to a Hard
interdiction problem when ∀i ∈ I : di > c(x∗). We can therefore apply this formulation
to Hard interdiction by setting a sufficiently large value of di (a so called big M). In
particular, Fischetti et al. (2019) show how to compute smart values for di if the
problem has the downward monotonicity property.

Furthermore, Lozano and Smith (2017) observe that it is possible to strengthen the
coefficients and rewrite constraints (27.2) as

θ ≤ c(y)+∑
i∈y

min{di ,U B +ε− c(y)} ·xi y ∈ Y ′ (28)

where ε is a very small positive constant.
They also point out that, if an attack x ∈ XB is such that c(y)+∑

i∈y di · xi > U B for
every solution y ∈ Y ′, then formulation (27) cannot improve the upper bound. For the
sake of efficiency, attack x can be directly returned without solving it to optimality. To
keep this into account, the authors propose to add the following constraint:

θ ≤U B +ε (29)
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Covering decomposition Israeli and Wood (2002) propose a family of super-valid
inequalities to strengthen up formulation (27). These inequalities require to know a
lower bound LB on the optimum and hold for all solutions y ∈ Y ′ with c(y) ≤ LB . They
are of the form ∑

i∈y
xi ≥ 1 y ∈ Y ′ : c(y) ≤ LB (30)

If c(y) ≤ LB for all y ∈ Y ′, these inequalities are satisfied by the attacks that disrupt
all known defender’s solutions. The best response ŷ to such an attack can be added to
Y ′ to proceed with the next iteration. The authors propose an exact and an approximate
way to exploit these properties. The idea is to replace the original formulation with the
following parametric covering decomposition:

min
∑
i∈I

gi · xi (31.1)

s.t.∑
i∈y

xi ≥ 1 y ∈ Y ′ : c(y) ≤β (31.2)

xi ∈ {0,1} i ∈ I (31.3)

which represents the search for an attack that disrupts every defender’s solution with a
cost not larger than β in the current restricted set. Any feasible solution of (31) with a
value≤ B , be it optimal or heuristic, identifies such an attack, and allows to proceed with
the general iterative algorithm. On the other hand, if the optimum of formulation (31)
is > B , no feasible attack is able to cover (that is, to interdict) all the required solutions.
Then, some solution y+ ∈ Y ′, with c(y+) ≤ β, is not interdicted by x∗, implying that
y+ ∈ Y (x∗) and c(x∗) ≤ c(y+) ≤ β. This terminates the process, thanks to the following
theorem enunciated and proved by Israeli and Wood (2002) (Theorem 6).

Theorem 3. If x+ is the optimal solution of formulation (31) for some valueβ and
∑

i∈I gi ·
x+

i > B, then β is a valid upper bound on the optimum of HIP.

Israeli and Wood (2002) propose an exact and an approximated version of
Algorithm 9. The exact one sets β = LB in each iteration, so that, when the algorithm
terminates, lower bound and upper bound coincide and HIP is solved to optimality.
The approximated version sets β = LB + ε, with ε > 0 a tolerance parameter; when it
terminates, the best feasible attack has an absolute approximation guarantee equal
to ε. The main drawback of both versions is that they produce a valid upper bound only
at the end of the computation, which is non-polynomial. Moreover, the approximated
approach requires to guess a value of ε corresponding to a reasonable computational
time. The next section proposes a remedy for these disadvantages.
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6.2 A minor improvement on the single level
reformulation

Now, we present our adaptation of the single level reformulation to the Hard
interdiction case. We apply the improved constraints (28), (29) as well as the
super-valid inequalities (30), but also the following possible strengthening. Since Hard
interdiction is equivalent to setting all coefficients di = +∞, we should use coefficient
U B + ε− c(y) in all constraints (28). Notice that Algorithm 9 at line 16 discards all
solutions in Y ′ that exceed the upper bound U B , implying that the objective value of all
solutions in Y ′ do not exceed U B . That is also true when a finite upper bound is
unknown, and U B =+∞. In our application of constraints (28), we will replace U B with

cmax(Y ′) := max
y∈Y ′ c(y)

In fact, solving the formulation with this setting produces useful information even
when cmax(Y ′) is strictly smaller than c(x∗), and therefore not a proper upper bound.
Suppose, in fact, that c(x∗) > cmax(Y ′) ⇔ miny∈Y (x∗) c(y) > maxy∈Y ′ c(y). Since Y (x∗)
and Y ′ have disjoint cost ranges, Y (x∗) ∩ Y ′ = ;, implying that x∗ interdicts all
solutions in Y ′. Consequently, when the optimum of the formulation exceeds cmax(Y ′),
we know that the upper bound is still infinite, but the attack x obtained can be used to
generate a response that enlarges Y ′.

So, our reformulation for RRR(Y ′) will assume the following form.

max θ (32.1)

s.t.

θ ≤ c(y)+ (cmax(Y ′)+ε− c(y))
∑
i∈y

xi y ∈ Y ′ (32.2)

θ ≤ cmax(Y ′)+ε (32.3)∑
i∈y

xi ≥ 1 y ∈ Y ′ : c(y) ≤ LB (32.4)∑
i∈I

gi ·xi ≤ B (32.5)

xi ∈ {0,1} i ∈ I (32.6)

The inclusion of the super-valid inequalities in formulation (32) is discretionary, as
they only serve to tighten the formulation. In fact, in Section 6.5.1, we show that their
use in the SPIP results in worse outcomes than when they are not used.
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6.3 A new approach for the Restricted Response
Relaxation

We here discuss an alternative approach to solve RRR(Y ′). The basic idea is to apply a
covering decomposition, but include in the restricted set Y ′ also defender’s solutions
y with a cost c(y) strictly larger than the optimum and sort them in non-decreasing
cost order. Then, the objective value of any attack x ∈ XB will be the cost of the non-
interdicted solution of smallest index. Notice that this is true only for Hard interdiction
problems, not for other kinds of interdiction. The following proposition exploits this
property to solve RRR(Y ′).

Proposition 13. Given Y ′ = {y1, y2, . . . , yk } ⊆ Y such that c(y1) ≤ c(y2) ≤ . . . ≤ c(yk )
(without loss of generality), for any attack x ∈ XB there exists q ∈Nwith q ≤ k such that x
interdicts the first q solutions of Y ′. If q < k, solution yq+1 is not interdicted by x and
c(yq+1) is the objective value of x in RRR(Y ′).

The previous proposition shows that solving RRR(Y ′) amounts either to showing that
Y ′ is fully interdictable with the current budget or to identifying a specific solution in Y ′.
As discussed above, the former case can be easily tested solving formulation (31) on the
whole of Y ′. For the latter one, we propose the following formulation:

max
∑

y∈Y ′
c(y) · ty (33.1)

s.t.∑
y∈Y ′

ty = 1 (33.2)

ty ≤ 1−xi y ∈ Y ′, i ∈ y (33.3)

ty ≤
∑

i∈y ′
xi y, y ′ ∈ Y ′ : c(y ′) < c(y) (33.4)∑

i∈I
gi · xi ≤ B (33.5)

ty ∈ {0,1} y ∈ Y ′ (33.6)

xi ∈ {0,1} i ∈ I (33.7)

where the binary variables xi simply represent an attack, assuming value 1 if the
element i is interdicted, and 0 otherwise. One of the binary variables ty assumes value
1 to identify a response y of minimum cost that is not interdicted by attack x; the other
ones are equal to 0. The objective value (33.1) is equal to the cost of that solution.
Constraint (33.2) imposes a single ty variable with value 1, forcing the others to 0.
Constraints (33.3) ensure that ty = 0 for any solution y ∈ Y ′ interdicted by an attacked
element i . Constraints (33.4) ensure that ty = 1 only if y is an uninterdicted solution of
minimum cost: they consider every pair of solutions y, y ′ ∈ Y ′ such that c(y ′) < c(y) and
force ty = 0 whenever y ′ is not interdicted (

∑
i∈y ′ xi = 0). Constraint (33.5) imposes to

respect the interdiction budget.
Notice that this formulation is incorrect when some attack x ∈ XB can interdict all

solutions in Y ′, since it will select a solution y+ ∈ Y ′ and assign ty+ = 1. Since y+ ∈ Y ′
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we know that even though c(y+) ≤ cmax(Y ′) < c(x∗) and it will not produce a valid upper
bound. However, this situation is ruled out in advance.

Formulation (33) uses more variables and constraints than formulation (32), but
presents smaller coefficients, and this could be related to tighter integrality gaps. With
respect to the covering decomposition, it allows (and, actually, encourages) the
inclusion in Y ′ of solutions with a cost larger than the current lower bound. If
prematurely terminated, it provides both an upper and a lower bound, instead of
simply a lower bound, without the need to guess the upper bound. Consequently, it
does not pose a priori the alternative between converging to the optimum (Algorithm 2
in Israeli and Wood (2002)) or getting a solution with a predefined absolute
approximation (Algorithm 2E).

The approach described above is related to the formulation presented by Scaparra
and Church (2008) for a fortification-interdiction p-median problem. In this problem,
given a set of locations that currently host facilities, first the defender selects a subset to
immunise, then the attacker selects another subset in order to maximise the overall
service cost. The approach enumerates the feasible attacks, assuming that their
number is tractable. Then, it sorts by increasing objective values the ones that range
between a suitable lower and upper bound (computed with an interpolation technique
and a sequence of auxiliary Set Covering problems). Finally, it finds the best
fortification pattern solving a suitable MILP formulation on the considered attacks. The
first enhancement introduced by our approach is to consider a restricted subset of the
lower level solutions, instead of generating them exhaustively. The second one is that
auxiliary Set Covering problems are used to directly determine the optimum, instead of
narrowing the range between the lower and upper bound and, therefore, the size of the
formulation.

Formulation (33) actually requires heavy and slow computations. Nevertheless, we
can exploit its structure (the imposition of a single variable equal to 1) to decompose it
into a sequence of easier sub-problems. The idea is to select a suitable solution y ∈ Y ′

and set ty = 1 and ty ′ = 0 for all the other ones. Then we try to compute a feasible attack
x which fits these conditions on the t variables. We denote this problem as Restricted
Response Covering Decomposition (RRCD(Y ′, y)). By imposing such conditions on
formulation (33) we obtain

max c(y)

s.t.

xi = 0 i ∈ y∑
i∈y ′

xi ≥ 1 y ′ ∈ Y ′ : c(y ′) < c(y)∑
i∈I

gi · xi ≤ B

xi ∈ {0,1} i ∈ I

which is a pure feasibility problem, because the objective function is a constant.
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Therefore, we convert the budget constraint into an objective function as follows

min
∑
i∈I

gi · xi (34.1)

s.t.

xi = 0 i ∈ y (34.2)∑
i∈y ′

xi ≥ 1 y ′ ∈ Y ′ : c(y ′) < c(y) (34.3)

xi ∈ {0,1} i ∈ I (34.4)

obtaining a formulation similar to the covering decomposition (31), but tightened by the
additional constraint (34.2) that the attack cannot include the elements that interdict the
selected response.

If such an attack does not exist or has an interdiction cost larger than the budget, it is
clear that we should consider a solution y of non-larger cost. If, on the contrary, we can
find (heuristically or exactly) a solution x̃ such that

∑
i∈I gi · x̃i ≤ B , the values of the x̃

variables with the corresponding ones for the t variables provide a feasible solution for
formulation (33).

1 T = Y ′

2 x̂ =;
3 loop
4 ỹ = argmaxy∈T c(y)
5 solve RRR(Y ′, ỹ) with formulation (34) obtaining x̃
6 if

∑
i∈I gi · x̃i ≤ B then

7 x̂ = x̃
8 exit loop
9 end

10 T = T \ {ỹ}
11 end
12 return x̂

Algorithm 10: Procedure for the computation of RRR(Y ′) via sequential set covering
computations.

Algorithm 10 allows to compute an optimal solution of formulation (33). Set T
includes the candidate uninterdictable solutions of Y ′ (at the beginning, T = Y ′), while
x̂ (initialised as an empty set) will return at the end the optimal attack solution of
RRR(Y ′). Of course, we assume that RRR(Y ′) is feasible: Y ′ should contain at least a
solution that can be interdicted within the available budget. The algorithm iteratively
selects the candidate solution ỹ ∈ T of maximum objective value and solves
RRCD(Y ′, ỹ) with formulation (34), obtaining the optimal solution x̃. If x̃ respects the
budget, it is saved in x̂ and returned, because it is the optimal solution of RRR(Y ′). The
corresponding upper bound is c(ỹ). Otherwise, ỹ is removed from T and the next
candidate solution is considered. Instead of moving sequentially from the solution of
maximum cost, one could apply more refined schemes (such as dichotomic search).
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However, in practice the optimal solution is nearly always very close to the maximum
one, and therefore, the naive strategy only requires very few iterations. Intuitively, this
derives from the fact that Y ′ is a restricted set that contains only solutions whose cost
respects the current upper bound. Of course, it is also possible to solve RRCD(Y ′, ỹ)
heuristically at line 5, instead of finding the optimum, provided that the objective of the
heuristic solution is ≤ B . In fact, the real issue is to find a feasible attack covering all
solutions cheaper than ỹ . The algorithm is correct, as it just applies an implicit
branching on ty in formulation (33). Its overall complexity corresponds to solving
RRCD(Y ′, y), which is equivalent to a Set Covering problem, at most |Y ′| times, since
|T | starts from |Y ′| and decreases by one at each iteration. Since Y ′ contains only
solutions y with c(y) ≤ U B and the final value of c(ỹ) is the new upper bound, the
solutions that are removed from T during the computation will be removed also from
Y ′ in line 16 of Algorithm 9.

We now want to emphasize that if Y ′ was populated exclusively by solutions with an
objective value less than or equal to the LB, this method would be entirely equivalent to
the covering decomposition, as an UB would never be identified. Moreover, since the
procedure relies on solving Set Covering problems, this new approach can be seen as a
generalised version of the covering decomposition.

Reduction procedures The following new theorem shows that logical properties of the
relation between attacks and responses can be exploited to remove further solutions
from Y ′, thus reducing the computational effort.

Theorem 4. Given y̌ ∈ Y ′, if RRCD(Y ′, y̌ ) does not admit any feasible solution (i.e.,
formulation (34) cannot produce an attack with objective ≤ B), then y̌ can be
permanently erased from Y ′ without affecting the optimal value of RRR(Y ′).

Proof. The statement is true when c(y̌) > U B , because removing solutions whose
objective is greater than the upper bound does not affect the optimum, therefore we
focus on the opposite case: c(y̌) ≤ U B . By hypothesis, the optimum of RRCD(Y ′, y̌) is
> B , meaning that no feasible attack is able to interdict all solutions with objective
< c(y̌) ≤U B without interdicting also y̌ . On the other hand, we know that it is possible
to interdict with a single feasible attack x̂ ∈ XB all solutions in Y ′ with objective < U B
(that is, a larger set of solutions), otherwise we could improve the U B using Theorem 3.
Hence, RRCD(Y ′, y̌) violates the budget because it asks for a solution which does not
interdict y̌ . In other words, the only way to interdict all solutions with objective < c(y̌)
without violating the budget B is to interdict also y̌ . This means that the presence of y̌
inside Y ′ does not affect RRR(Y ′), allowing to erase the said solution from Y ′.

Theorem 4 allows to delete solutions from Y ′ as soon as they fail to produce a feasible
attack using formulation (34). Consequently, Algorithm 10 can directly use Y ′ instead of
the auxiliary set T .



CHAPTER 6. AN EXACT METHOD FOR HARD INTERDICTION PROBLEMS 101

6.4 Diversification strategies

So far, we have assumed to include in the restricted set Y ′ only the best response ŷ
generated at each step. When c(ŷ) > LB , this mechanism updates the incumbent and
the lower bound, so that Y ′ is populated only by solutions with cost ≤ LB .
Consequently, RRR(Y ′) does not provide an upper bound as long as all responses
generated are interdictable, that is, until the optimality condition is satisfied. This
basically reduces the approach to the exact covering decomposition of Israeli and
Wood (2002), without exploiting the additional results presented above.

It is therefore of paramount importance to generate and introduce in Y ′ also some
heuristic solutions, as suggested by line 14 of Algorithm 9. The literature provides
different techniques to obtain good heuristic solutions for specific interdiction
problems. Considering the SPIP, for example, Israeli and Wood (2002) propose a local
search technique to generate several s − t paths from a single shortest path tree. Lozano
and Smith (2017) describe an adaptation of the pulse algorithm to generate several
good quality s − t paths with limitations on the number of generated solutions that
insist on the same arcs. They also discuss a more general approach, based on the
optimal response of the defender to a random attack x. Leitner et al. (2023) propose a
constructive procedure to generate heuristic solutions (that, in their case, are attacks).

Some of these techniques are ad-hoc and not easy to adapt to general problems.
Many are thought for SIP, and do not work as well on the Hard version. In the former
case, in fact, even elements interdicted in the optimal attack could still be part of an
optimal response, whereas in the latter it is a good defence strategy to diversify as much
as possible the generated solutions, because that will make it harder for the attacker
to interdict all of them. An approach aware of this point is more likely to pursue the
aim better than simply reacting with the optimal response to the last attack, and should
speed up the convergence to the optimum. In the following, we propose a few general
diversification mechanisms to produce sufficiently different heuristic solutions for HIP.

We assume that a defender’s solution is a subset of elements of a finite ground set
J (∀y ∈ Y : y ⊆ J ) and that the objective function is additive: c(y) = ∑

j∈y c j , where c j

is the cost of the single element j ∈ J . We denote as Y ⊤ ⊆ Y the set of all solutions
generated and added to Y

′
up to the current point in the computation (including also

the removed ones). For each interdictable element i ∈ I , we maintain a counter of the
solutions y ∈ Y ⊤ such that i ∈ y :

∀i ∈ I oi := |{y ∈ Y ⊤|i ∈ y}| (35)

and we combine these counters to define the auxiliary objective function:

∀y ∈ Y o(y) := ∑
i∈y

oi

gi
(36)

Then, we consider a bi-objective defender’s problem, searching for efficient
trade-offs between the cost of the solution and the repeated use of basic elements of
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the ground set.

min c(y)

min o(y)

s.t. y ∈ Y (x̂)

where x̂ is the last generated attack.
On the one hand, in fact, solutions with a cost larger than the upper bound are

useless. On the other hand, solutions blocked by elements with a high number of
occurrences in Y ⊤ are easier to interdict focusing on those elements. The problem
aims to avoid two complementary failures: generating an expensive solution and
obtaining again the optimal one ŷ . In addition, our experience suggests that also the
computation (at line 9 of Algorithm 9) of the optimal response ŷ with respect to c(y)
benefits from considering o(y) as a secondary objective in case of ties. Notice that,
while the original objective function remains the same throughout the computation,
the auxiliary one changes adaptively.

The next subsections describe three heuristic procedures to generate good and
diversified solutions.

6.4.1 Lexicographic bi-objective

The first procedure considers a lexicographic bi-objective version of the defender’s
problem, where the diversification index o(y) is the main objective, while the cost c(y)
is secondary.

min c(y)

s.t. y ∈ Y (x̂)

o(y) = min
y ′∈Y (x̂)

o(y ′)

For some problems, such as the SPIP, this can be directly tackled with a dedicated
algorithm. For other problems, such as the SCIP, optimising the main objective and
then imposing its value as a constraint and optimising the secondary objective can be
inefficient. Since the approach is heuristic in principle, we can resort to an approximate
reformulation that optimises a linear combination of the two objectives:

min c ′(y) = c(y)/γ+o(y)

s.t. y ∈ Y (x̂)

with a sufficiently large coefficient γ. When the interdiction cost is unitary, (∀i ∈ I : gi =
1), as often assumed in the literature, function o(y) always has integer values and any
γ > maxy∈Y (x̂) c(y) (e.g., γ = |J | ·max j∈J c j +1) guarantees that minimising c ′ solves the
lexicographic bi-objective problem. For integral values of gi , it is possible to rescale o(y)
in order to obtain the same property.
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Since both objectives are additive, the reformulated problem can be solved with the
same algorithm used for the original one, replacing the original cost function with c ′ :
J →R+:

c ′j =
{

c j /γ+o j /g j j ∈ I

c j /γ j ∉ I

In fact:

c ′(y) = c(y)/γ+o(y) = ∑
j∈y :
j∉I

(c j /γ)+ ∑
j∈y :
j∈I

(c j /γ)+ ∑
j∈y :
j∈I

(o j /g j ) =

= ∑
j∈y :
j∉I

(c j /γ)+ ∑
j∈y :
j∈I

(c j /γ+o j /g j ) = ∑
j∈y

c ′j

At each iteration of Algorithm 9 (line 14), therefore, we compute
y ′′ = argminy∈Y (x̂) c ′(y) and check its cost c(y ′′). If c(y ′′) ≤ U B , we add y ′′ to Y ′′ and
increment by one the counters oi with i ∈ y ′′; otherwise, y ′′ is useless and we reset
Y ⊤ =; and oi = 0 for all i ∈ I .

6.4.2 Adaptive convex combination

While diversification is important, focusing too much on it is not necessarily effective.
Suitably tuned convex combinations of o(y) and c(y) could be preferable. Our second
reformulation solves:

min cα(y) = (1−α) · c(y)+α ·o(y)

s.t. y ∈ Y (x̂)

where coefficient α ∈ [0,1] tunes the weight of the two objectives. In fact, when α = 0,
c0(y) = c(y), whereas α = 1 corresponds to c1(y) = o(y). As in the previous case,
additivity allows to solve the problem with the same algorithm used for the original
one.

Notice that, as α decreases and the focus moves from o to c, the optimal solution
with respect to cα(y) has monotonically non-increasing costs. Therefore, Algorithm 9
starts with α = 1 to maximise diversification. At line 14, given the last generated attack
x̂, it computes solution y ′′ = argminy∈Y (x̂) cα(y) and performs the following adaptive
update of α:

• if c(y ′′) >U B , update α=α ·0.9 to reduce the cost;

• if c(y ′′) ≤U B and y ′′ = ŷ , update α=α ·1.1 to increase the diversification;

• if c(y ′′) ≤U B and y ′′ ̸= ŷ , insert y ′′ into Y ′′.

The rationale is that finding a bad solution indicates an excessive focus on
diversification and finding the cheapest solution indicates an excessive focus on cost,
whereas finding a good solution different from the optimal one is a positive outcome,
that suggests to confirm the current coefficient Notice that, performing a single update
per iteration, the auxiliary function o(y) changes at every application, providing a
moving target for the desired value of α.
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6.4.3 Dichotomic search convex combination

Our third diversification mechanism is based on the following reformulation

min o(y)

s.t. y ∈ Y (x̂)

c(y) ≤U B

which aims to generate the most different solution from the previously generated ones,
but with a cost ≤U B . In general, the additional constraint does not allow to solve this
problem with the same algorithm as the basic one. However, thanks to the
monotonicity of c(yα) with respect to α, it is possible to obtain a heuristic
approximation by minimising cα with α set to the maximum value (αbest) for which the
cost respects the upper bound.

max α

s.t. α ∈ [0,1]

yα = arg min
y∈Y (x̂)

cα(y)

c(yα) ≤U B

This approach is heuristic because it finds the best supported solution, instead of the
best one overall (Ehrgott, 2005).

1 αlb = 0

2 αub = 1
3 Y ′′ =;
4 while αub −αlb > ε do
5 α= (αlb +αub)/2
6 y ′′ = argminy∈Y (x̂) cα(y)
7 if c(y ′′) ≤U B then
8 Y ′′ = Y ′′∪ {y ′′}
9 update oi for all i ∈ I

10 αlb =α
11 else
12 αub =α
13 end
14 end
15 return Y ′′

Algorithm 11: Dichotomic search for the largest value of α that respects the upper
bound.

Algorithm 11 implements line 14 in Algorithm 9 computing αbest with a dichotomic
search. This has the possible additional advantage to generate several more or less
diversified solutions, instead of the single one generated by the first two mechanisms.
The procedure starts by initialising the range for αbest, between αlb = 0 and αub = 1 and
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the set Y ′′ of all generated solutions to an empty set. Then, it iterates, setting α to the
middle point of the current range and computing the solution y ′′ that minimises cα(y)
and is not interdicted by the attack x̂. If its cost is c(y ′′) ≤U B , we add it to Y ′′, update
the counters oi and remove the lower half of the range, because by monotonicity
αbest > α. Otherwise, we remove the upper half of the range, because we cannot
produce a solution with c(y ′′) ≤U B and, therefore, αbest <α. The algorithm terminates
when the range between the two bounds falls below a small constant ε, so that the total
number of iterations is r max := log2(1/ε).

6.4.4 Preliminary observations about the diversification methods

We here discuss the possible pros and cons of the diversification methods presented in
this work and also the two previously described from the literature.

Analysing the computational complexity, we can notice that the Lexicographic
method is a very simple method which quickly produces good solutions by performing
a single execution of the defender’s problem algorithm; the Adaptive method also
requires a single execution of such algorithm; the Dichotomic method intensifies the
effort on finding a good solution by performing a dichotomic search instead of a single
attempt; the Local Search method by Israeli and Wood (2002) (similarly to the first two
methods) only requires a computation of Dijkstra’s algorithm and a little extra effort;
the Pulse method by Lozano and Smith (2017), after computing a shortest path tree (via
Dijkstra’s algorithm), performs a DFS to explore the solutions tree, stopping after a
given tractable number of solutions is found.

Analysing the effectiveness in diversifying the solutions, the Adaptive method
should produce better solutions than the Lexicographic method because the former
considers a convex combination which includes also the objective of the latter (α close
to 1) and adaptively tunes α; the Dichotomic method should furthermore improve the
results by searching for the best value for α; the Local Search method produces various
solutions which share a sub-path with the optimal solution, and therefore fail to
effectively diversify; the Pulse method has a similar limitation as the Local Search
method since during a DFS exploration of the solution space, a lot of solutions with the
same initial sub-path are produced.

Moreover, our methods are designed to work on a variety of interdiction problems
whereas the two from the literature are specific for the SPIP.
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6.5 Experimental results

In this section we present the computational results obtained by using Algorithm 9 to
solve SPIP and SCIP with the techniques presented in the previous sections. The
purpose of this experimental section is to determine which of the techniques described
in the previous sections performs best for the SPIP and the SCIP. In particular, we apply
Algorithm 9 and we solve the restricted response relaxation RRR(Y ′) either with the
single-level reformulation (32), the classical covering decomposition (31) or with the
generalised covering decomposition of Algorithm 10 and formulation (34). We will refer
to the first approach as SLR, the second as CD, and the final one as GCD. Then, we will
combine these approaches with the diversification mechanisms described in
Section 6.4.1 (LEX), Section 6.4.2 (ADA) and Section 6.4.3 (DIC), alongside with no
diversification mechanism at all (None).

For simplicity reasons, we only consider instances of the two problems with unitary
interdiction costs. This is a common choice in the literature, for which the budget B
actually becomes the cardinality of the attacks on the network.

When some instance is not solved to optimality before the time limit of 1 hour, we
measure the quality of the returned solution. To do so, we estimate the total optimality
gap with (19) as previously done for the exact algorithm for the WSSP.

The choice of the value ε (used in DIC) for both problems is ε = 1/(|J | · |Y ⊤|) where
|J | is the maximum number of elements in any solution and |Y ⊤| is an upper bound on
the maximum counter of any element in any solution. This choice is motivated by the
fact that, doing so, when the original objective c(y) is integral, the precision of the
dichotomic search is enough to allow α to be so small that the auxiliary objective o(y)
becomes secondary, obtaining a lexicographic bi-objective problem. Moreover, the
maximum number of iterations becomes r max = log2(|J |)+ log2(|Y ⊤|).

6.5.1 Shortest Path Interdiction Problem

We consider the instances generated by Lozano and Smith (2017), discarding the cost-
increment due to arc interdiction, because we consider the Hard version of the SPIP,
instead of the soft version. These instances have the same structure as those in Israeli
and Wood (2002) and Cappanera and Scaparra (2011). They consist in directed graphs
G = (N , A) with two special nodes s, t ∈ N . All other nodes are disposed in a 2D-grid
fashion, with the same number of rows and columns denoted as n ∈ {10,20,30,40,50,60}.
The source node s has no in-going arcs, but has out-going arcs to all nodes in the first
column. Conversely, the destination node t has no out-going arcs, but has in-going arcs
from all nodes in the last column. Every node of the grid has one arc going to the node
above and the node below in the same column, to the node on the right in the same row
and to the node above and the node below the node on the right. The nodes in the first
and the last row and in those in the last column make exception, because they lack some
adjacent nodes above, below or on the right. Figure 6.1 illustrates a very simple instance
with n = 4.

The costs of the arcs are random integer numbers with a uniform distribution
between 1 and ρ with ρ ∈ {10,100}. We consider the attack budgets B ∈ {5,6,7,8,9} and
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s t

Figure 6.1: Structure of a 4×4 directed grid instance according to the Israeli and Wood
(2002) model.

10 instances for each size, randomization parameter and attack budget obtaining
6 ·2 ·5 ·10 = 600 instances.

The first experiment measures the impact of the super-valid inequalities (SVI) (30)
using formulation (32) in the context of HIP. We compare the time consumption of SLR
with and without the SVI over all benchmark instances, considering the diversification
mechanisms introduced in Section 6.4.

The second experiment is to determine which approach is better for the SPIP. We
confront the best performing version of SLR from the previous experiment with GCD
considering all diversification mechanism introduced in Section 6.4 over all benchmark
instances. Moreover, we compare the results of the best performing setting with the
diversification mechanisms presented in Israeli and Wood (2002) (Local Search: LS) and
Lozano and Smith (2017) (Pulse) over a subset of “easier” instances consisting in the
ones with attack budgets B ∈ {5,6,7}.

Table 6.1 associates each row to the benchmark instances with the same parameters
B and n. There are three macro-columns: the first reports the values B and n, the second
is associated with the SLR approach without SVI and the third to the SLR approach with
SVI. The second and third macro-columns are composed by 4 columns, each of which
associated with a diversification mechanism. Each entry of the table exhibits the average
computation time to solve the associated instances with the associated approach. The
last row, instead of the average computing time, displays the sum of the computation
times of all instances.
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SLR SLR+SVI
B n None LEX ADA DIC None LEX ADA DIC
5 10 0.14 0.15 0.17 0.11 0.09 0.16 0.15 0.11

20 0.33 0.50 0.37 0.37 0.43 0.63 0.43 0.44
30 0.67 0.85 0.80 0.98 0.97 1.71 0.78 1.07
40 4.10 12.64 2.47 3.94 4.83 16.56 3.60 4.49
50 6.29 4.44 3.04 6.29 4.35 10.37 3.35 5.23
60 6.21 10.93 5.22 8.74 16.71 23.53 10.58 9.84

6 10 0.23 0.36 0.30 0.20 0.20 0.34 0.31 0.21
20 1.07 1.53 0.99 0.77 1.55 2.32 1.14 1.03
30 1.28 2.13 1.50 1.64 2.27 3.60 2.00 2.04
40 29.66 50.57 15.29 13.60 53.54 98.26 23.17 23.11
50 9.28 32.78 7.87 10.74 19.92 48.79 13.83 11.77
60 17.46 40.34 10.80 16.91 31.83 58.35 13.61 18.83

7 10 0.51 0.92 0.66 0.44 0.61 0.91 0.66 0.42
20 2.68 3.59 2.18 1.45 4.53 4.96 2.71 1.83
30 3.82 5.59 3.29 3.19 6.97 7.12 6.22 3.92
40 62.47 68.66 18.55 25.81 161.62 118.48 55.39 37.85
50 40.63 146.86 38.97 33.10 90.73 265.24 48.33 49.97
60 114.67 147.72 54.51 53.29 210.67 227.94 74.48 81.40

8 10 1.41 2.17 1.38 0.90 1.68 2.50 1.51 0.96
20 6.15 8.49 4.98 3.30 14.53 10.11 6.40 3.73
30 12.63 16.62 7.72 6.91 21.20 23.35 11.57 9.36
40 79.42 86.55 62.00 64.83 228.07 142.04 81.16 137.61
50 230.48 445.63 113.33 106.59 388.61 462.08 180.71 156.33
60 317.90 293.95 123.51 129.23 696.64 499.51 229.01 229.91

9 10 3.55 4.00 2.41 1.42 4.24 4.16 2.50 1.34
20 19.54 25.66 14.81 9.25 34.72 32.56 18.38 9.23
30 35.27 40.60 19.52 14.27 73.82 53.74 27.90 18.38
40 201.98 340.78 98.39 109.98 573.51 423.35 201.37 213.69
50 573.31 687.85 381.22 395.66 1012.46 822.96 588.19 519.36
60 747.40 816.73 337.03 211.25 1169.83 1023.95 631.73 575.69

sum 50611 65992 26665 24703 96622 87792 44823 42583

Table 6.1: Comparisons between the time consumption of SLR with and without SVI.

We can observe that approaches adopting the SVI rarely produce better results than
those that do not. Moreover, the two columns that produce the better values are
associated with SLR using ADA and DIC.

Given this, Table 6.2 shows the same information regarding GCD and compares it
with the two columns that produced the best results in the previous table.
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GCD SLR
B n None LEX ADA DIC ADA DIC
5 10 0.09 0.08 0.09 0.09 0.17 0.11

20 0.29 0.38 0.28 0.36 0.37 0.37
30 0.50 0.68 0.44 0.72 0.80 0.98
40 3.47 6.28 1.97 3.17 2.47 3.94
50 3.20 4.82 2.00 3.72 3.04 6.29
60 9.89 10.30 4.48 7.65 5.22 8.74

6 10 0.19 0.17 0.17 0.15 0.30 0.20
20 1.07 0.90 0.66 0.69 0.99 0.77
30 1.64 1.49 1.28 1.41 1.50 1.64
40 26.60 41.37 14.77 12.28 15.29 13.60
50 14.62 18.34 7.04 10.25 7.87 10.74
60 25.19 23.81 9.24 13.00 10.80 16.91

7 10 0.51 0.43 0.37 0.30 0.66 0.44
20 3.15 2.51 1.60 1.44 2.18 1.45
30 3.73 3.49 3.15 2.77 3.29 3.19
40 89.74 58.83 20.74 23.18 18.55 25.81
50 58.00 112.48 22.96 32.73 38.97 33.10
60 141.79 103.22 43.60 42.52 54.51 53.29

8 10 1.35 1.04 0.77 0.58 1.38 0.90
20 7.38 5.41 3.34 2.83 4.98 3.30
30 10.84 8.73 5.99 5.78 7.72 6.91
40 105.83 61.95 49.71 36.97 62.00 64.83
50 309.60 263.26 73.17 90.16 113.33 106.59
60 483.08 220.84 128.48 104.38 123.51 129.23

9 10 3.33 1.83 1.32 0.88 2.41 1.42
20 18.52 13.33 9.73 7.74 14.81 9.25
30 36.92 23.30 15.41 12.68 19.52 14.27
40 315.25 281.59 94.17 80.66 98.39 109.98
50 640.56 520.36 408.60 393.70 381.22 395.66
60 766.06 556.78 298.01 281.42 337.03 211.25

sum 61648 46960 24471 23484 26665 24703

Table 6.2: Comparisons between the time consumption of SLR and GCD.

It is possible to notice that, for almost every row, the GCD approach produces better
results than SLR. In particular, the diversification mechanisms ADA and DIC often
perform best but the last two rows show slightly smaller gaps for the SLR approaches.
Moreover, the same GCD approaches also produce the minimum sum of the time
consumptions over all instances.

Another interesting aspect to consider is the number of iterations of Algorithm 9
performed by adopting GCD and SLR with all the presented diversification
mechanisms. Table 6.3 has 3 macro-columns: the first has two columns which specify
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the parameters B and n of the considered instances; the second is associated to the
GCD approach and has 4 columns dedicated to the diversification mechanisms; the
third macro-column is identical to the previous one but for the SLR approach. For each
row, we exhibit the average number of iterations among the considered instances (the
ones with the same values of B and n), performed by all the methods. Moreover, the
last row, instead of the average, for each column exhibits the sum of the iterations over
all the instances. We highlight in bold the minimum value for each row.

GCD SLR
B n None LEX ADA DIC None LEX ADA DIC
5 10 48 34 39 21 48 35 40 20

20 79 67 61 33 71 64 59 32
30 89 82 69 37 97 84 80 43
40 169 169 109 71 172 182 118 77
50 154 154 104 59 165 137 118 75
60 246 213 144 79 214 213 149 90

6 10 72 52 50 25 75 52 52 26
20 128 106 88 49 127 108 97 48
30 165 131 116 59 147 137 119 65
40 356 327 223 128 355 348 225 139
50 306 260 178 107 273 287 185 110
60 367 325 212 121 348 370 212 137

7 10 113 75 73 36 122 76 75 37
20 223 150 130 67 213 153 133 67
30 247 182 164 85 266 201 164 89
40 639 465 309 181 622 531 303 202
50 537 471 263 189 477 536 311 180
60 774 595 386 232 748 641 431 264

8 10 186 103 96 48 197 106 102 51
20 333 207 174 86 332 212 182 96
30 359 273 214 119 439 301 234 134
40 749 527 379 219 784 590 494 320
50 956 720 422 276 955 796 459 295
60 1446 863 556 337 1301 861 570 370

9 10 277 117 115 49 303 121 115 51
20 535 293 251 128 546 296 258 130
30 620 367 308 152 698 405 315 165
40 1240 851 512 308 1277 894 571 357
50 1676 1017 661 416 1695 1012 669 483
60 1870 1123 712 424 1948 1184 815 425

sum 299118 206373 142338 82864 300304 218630 153087 91533

Table 6.3: Number of iterations of Algorithm 9 performed by each of the presented
approaches.
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As we expected, for both GCD and SLR, when no diversification mechanism is used,
the number of iteration is higher, followed by the LEX mechanism which slightly
decreases the number of iterations. The ADA mechanism further improves the result by
halving the number of iterations with respect to None. At last, DIC displays the
minimum number of iterations among all methods obtaining a smaller order of
magnitude with respect to None. The differences between GCD and SLR are not very
marked but, fixing a diversification method, GCD often seems to produce fewer
iterations.

Now, we are interested in the instances that remain unsolved after 1 hour of
computation for at least one of the considered approaches. Table 6.4 associates each
row to one of the 8 unsolved instances and each column to one of the considered
approaches. The entries display the gap produced at the end of the 1 hour expiration
time and, when the instance is solved to optimality, a “-” is exhibited.

GCD SLR
n ρ B None LEX ADA DIC None LEX ADA DIC

50 100 8 - - - - - 2.41% - -
50 10 8 - - - - - 1.75% - -
40 10 9 - - - - - 1.11% - -
50 100 9 ∞ 4.52% 3.37% 3.11% ∞ 4.24% 2.99% 2.74%
50 10 9 ∞ 1.74% - - - 0.86% - -
60 100 9 ∞ - - - ∞ 0.22% - -
60 100 9 ∞ - - - ∞ 1.25% - -
60 10 9 ∞ 0.75% - - ∞ - - -

∞ 0.88% 0.42% 0.39% ∞ 1.48% 0.37% 0.34%

Table 6.4: Comparisons between the gaps produced by SLR and GCD over the unsolved
instances.

For these challenging instances, the best gaps are produced by the SLR approach
with DIC that solves to optimality 7 out of 8 instances and produces a gap of 2.74% for
the remaining one. That said, similar results are produced by SLR with ADA but also by
GCD with ADA and DIC.

Comparison with the state of the art Now, we want to compare the new approaches
(GCD and SLR with DIC) with the ones in the literature. As far as we know, the best
performing algorithms for the SPIP are presented by Israeli and Wood (2002) and
Lozano and Smith (2017). Both of them present a Benders decomposition-based
approach. Israeli and Wood (2002) also present a Covering Decomposition.

To the best of our knowledge, there are no computational results, in the literature,
about the hard version of the SPIP, and therefore we performed additional experiments
also for the state-of-the-art approaches. The Benders decomposition-based approaches
are designed for the soft case, therefore we adapt them for the hard case as described in
Section 6.2 with the improvement there described. Obviously, the LS and Pulse



112 6.5. EXPERIMENTAL RESULTS

mechanisms have been re-implemented. In particular, the Pulse algorithm has been
translated from the original Java code1 to C++.

Table 6.5 has a structure similar to the previous tables. Here, the second
macro-column is dedicated to the state-of-the-art methods that we have identified in
Israeli and Wood (2002) (CD+LS, SLR+LS) and Lozano and Smith (2017) (SLR+Pulse).
The third macro-column is dedicated to the GCD method with the LS, Pulse and DIC
heuristic generation mechanisms. We only reported the results for instances with
B ∈ {5,6,7} because these methods require too much time for harder instances.

state of the art GCD
B n SLR+LS CD+LS SLR+Pulse LS Pulse DIC
5 10 0.16 0.05 0.75 0.31 10.64 0.09

20 0.67 0.15 3.67 1.93 43.73 0.36
30 1.90 0.54 13.80 7.78 91.72 0.72
40 8.71 2.86 63.01 35.70 178.19 3.17
50 25.28 12.92 99.62 61.30 188.63 3.72
60 36.85 10.26 160.14 133.76 264.98 7.65

6 10 0.32 0.09 1.34 0.61 24.54 0.15
20 2.15 0.38 7.52 5.74 104.91 0.69
30 4.60 1.00 28.54 19.60 178.76 1.41
40 28.51 12.95 119.39 80.14 254.30 12.28
50 53.64 24.11 158.57 138.03 243.95 10.25
60 82.65 36.45 248.78 204.06 406.56 13.00

7 10 0.75 0.17 2.79 1.23 44.30 0.30
20 5.95 1.07 16.98 12.47 206.24 1.44
30 12.29 2.87 60.64 50.56 291.73 2.77
40 60.10 36.44 185.28 128.97 300.57 23.18
50 89.91 51.19 233.55 186.55 304.67 32.73
60 133.40 85.98 266.46 340.26 409.64 42.52

sum 10956.95 5589.70 33416.59 28179.72 70961.15 3128.55

Table 6.5: Comparisons between the state-of-the-art methods and the new ones over
the easier instances.

The results show that, once again, the Covering Decomposition method by Israeli
and Wood (2002) with the Local Search heuristic generation, performs best for the
smaller instances. On the other hand, the GCD approach with DIC outperforms all the
others for the bigger instances and handles larger values of B effectively as it scales up.

1Available online as “Supplementary Material” at https://doi.org/10.1287/ijoc.2016.0721
(Lozano and Smith, 2017).
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The same results are displayed in a graphical form in Figure 6.2.
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Figure 6.2: Time consumptions of the considered approaches in logarithmic scale.
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6.5.2 Set Covering Interdiction Problem

For the SCIP we introduce a new benchmark of randomly generated instances. They
are represented by binary square matrices A ∈ {0,1}n×n with n ∈ {100,150,200}, so that
I =J = {1, . . . ,n}. The density parameter

δ :=
∑n

i=1

∑n
j=1 Ai j

n2
= number of 1 entries

total number of entries

ranges in {0.1,0.2,0.3,0.4}. The covering costs ci for each column i ∈ I are generated
uniformly at random between 1 and 100, whereas the interdiction costs gi = 1 for each
i ∈ I are unitary. For each size n and density δ we consider 5 instances and the
interdiction budget B ∈ {5,6,7,8,9}. Overall, the number of considered instances in the
benchmark is 3 ·4 ·5 ·5 = 300.

To strengthen formulation (34) for the SCIP, we introduce the following cuts, based
on Proposition 11 and generated during a pre-processing phase.

If D ⊆ I : D dominates d =⇒ xd ≤ ∑
i∈D

xi (43)

Moreover, we also apply Proposition 10 to erase all columns dominated by a good
number of other columns. Unfortunately, preliminary results show that the
effectiveness of these enhancements is negligible for the instances considered. In fact,
we do not observe any significant change in execution times compared to not using
them at all.

The first experiment aims to narrow down the most promising approaches by using
only a subset of “easy” instances: we only consider the instances with δ ∈ {0.2,0.3,0.4}
and B ∈ {5,6,7}.
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Table 6.6 shows the results for GCD. Each row is associated to a group of 5 instances
with the same values of B ,δ,n and the first three columns identify such parameters;
the following four columns are associated to the diversification mechanisms presented
in Section 6.4. Each entry displays the average computing time to solve the associated
instances with the associated approach. We also report the sum of the computation
times over all instances with the same budget B . For each line we highlight in bold the
minimum values among the 4 considered approaches.

B δ n None LEX ADA DIC
5 0.2 100 9.96 14.09 8.11 7.43

150 22.62 31.60 18.77 20.78
200 59.23 74.76 40.20 41.82

0.3 100 3.26 4.53 2.95 2.61
150 9.65 11.24 8.45 6.13
200 24.86 26.83 22.98 15.81

0.4 100 1.98 2.18 1.56 1.13
150 4.81 5.69 4.35 2.64
200 18.08 20.11 15.65 9.34

sum all 772.29 955.08 615.07 538.44
6 0.2 100 33.64 50.39 22.50 23.47

150 89.42 123.08 60.71 70.75
200 199.04 282.48 120.55 141.21

0.3 100 6.77 10.56 5.96 4.93
150 20.81 27.73 15.94 13.47
200 47.66 55.39 39.69 29.44

0.4 100 3.31 4.40 2.72 2.03
150 8.38 11.51 7.19 4.56
200 33.90 39.66 26.36 16.59

sum all 2214.66 3025.99 1508.12 1532.22
7 0.2 100 106.88 179.36 73.85 74.55

150 309.60 475.68 209.09 247.58
200 728.94 1134.79 423.36 481.72

0.3 100 15.21 26.22 13.87 12.59
150 46.37 69.00 34.02 29.12
200 86.91 119.62 71.42 54.00

0.4 100 5.69 8.48 4.83 3.55
150 14.30 21.43 12.30 8.12
200 60.22 70.06 44.32 28.38

sum all 6870.58 10523.19 4435.29 4698.06

Table 6.6: Average time consumption to solve SCIP using GCD with all diversification
mechanisms on the “easy” instances.
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Table 6.7 reports the same information as Table 6.6 with respect to the SLR approach.

B δ n None LEX ADA DIC
5 0.2 100 9.24 44.53 25.71 18.2

150 21.71 104.52 71.25 46.8
200 54.24 200.21 137.08 85.17

0.3 100 3.40 8.53 5.49 4.37
150 8.41 22.44 14.68 8.96
200 24.39 34.9 28.09 18.59

0.4 100 1.87 3.03 2.1 1.44
150 4.88 7.19 5.05 3.08
200 17.7 22.87 15.71 9.92

sum all 729.20 2241.13 1525.79 982.59
6 0.2 100 30.50 216.79 111.1 66.95

150 74.49 501.04 282.73 157.07
200 162.04 946.29 442.08 237.66

0.3 100 6.31 32.19 16.51 11.59
150 19.41 80.33 42.85 25.02
200 49.05 103.07 65.58 42.59

0.4 100 3.08 8.76 5.27 3.04
150 8.51 18.17 10.2 5.88
200 29.85 49.62 32.14 18.75

sum all 1916.11 9781.29 5042.25 2842.71
7 0.2 100 98.27 846.02 330.21 185.91

150 272.06 2026.19 902.17 440.48
200 518.99 3136.11 1574.39 657.24

0.3 100 14.34 101.01 49.93 29.71
150 48.11 221.86 110.34 57.83
200 79.46 263.48 143.58 83.55

0.4 100 5.8 20.55 10.58 6.5
150 13.81 40.7 21.63 12.24
200 57.35 90.73 55.46 34.24

sum all 5540.99 33733.30 15991.49 7538.47

Table 6.7: Average time consumption to solve SCIP using SLR with all diversification
mechanisms on the “easy” instances.

From Tables 6.6 and 6.7, we can infer that the most promising approaches for GCD
are ADA and DIC whereas for SLR are None and DIC. Therefore, the next experiment
confronts these 4 approaches over all benchmark instances.
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Table 6.8 shares a similar structure with the previous tables except for the fact that
we aggregate all instances with the same values of B and n.

GCD SLR
B n ADA DIC None DIC
5 100 18.34 22.29 20.35 62.66

150 82.80 122.16 87.64 219.60
200 183.24 312.73 163.98 472.94

6 100 90.53 114.52 95.33 229.69
150 475.13 667.31 459.87 863.47
200 882.48 948.36 872.87 975.78

7 100 415.82 545.28 474.97 780.19
150 964.23 973.81 983.90 1028.39
200 1035.08 1047.26 1064.09 1094.90

8 100 921.35 921.96 991.61 1026.65
150 1091.17 1108.82 1197.21 1248.13
200 1313.22 1398.70 1410.28 1471.45

9 100 1057.73 1057.77 1207.63 1183.91
150 1457.58 1547.60 1638.33 1706.15
200 1829.71 1856.76 1849.82 1871.06

sum all 236368 252907 250358 284700

Table 6.8: Average time consumption to solve SCIP using the 4 promising approaches
identified by Tables 6.6 and 6.7 over all benchmark instances.

The results of Table 6.8 show that the four approaches have similar performances
but the GCD with ADA often produces the smallest average time consumption as well as
the smallest sum.
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The same results are displayed in a graphical form in Figure 6.3, aggregating the
instances by dimension n, to show the trend of the runtime as the budget B increases.
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Figure 6.3: Time consumption of the considered approaches, as B increases.
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The number of iterations of Algorithm 9 performed by the selected approaches are
reported in Table 6.9. The latter shares the same structure with Table 6.8 but, instead of
the average time consumption, exhibits the average number of iterations.

GCD SLR
B n ADA DIC None DIC
5 100 317.35 188.30 436.45 191.10

150 532.00 328.90 712.35 327.25
200 698.40 455.45 923.95 444.15

6 100 596.85 332.85 910.50 332.20
150 1059.55 611.25 1601.90 589.25
200 1324.20 637.70 2178.15 597.75

7 100 1095.60 593.65 1746.75 567.20
150 1372.60 633.10 2875.35 600.80
200 1242.30 581.25 3138.95 590.15

8 100 1441.45 678.45 2867.55 558.05
150 1374.80 654.35 3646.60 611.95
200 1494.85 788.25 4149.65 703.25

9 100 1457.95 719.60 3758.35 533.65
150 1651.90 830.40 4715.25 720.55
200 1752.70 858.65 5030.95 767.35

sum all 348250 177843 773854 162693

Table 6.9: Average number of iterations using the 4 promising approaches, over all
benchmark instances.

As expected, of the considered diversification methods, DIC is the one that
minimizes the number of iterations, None the one that maximizes it, and ADA between
the other two. An interesting aspect is that, although Table 6.8 shows GCD+DIC to be
faster than SLR+DIC in terms of time, SLR+DIC requires fewer iterations, suggesting
that a single iteration of GCD takes less time than one of SLR.
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For what concerns the instances that have not been solved before the 1 hour
deadline, we computed the average gaps produced and the number of solved instances.
In Table 6.10, each row is associated to the instances which share the same values of B
and n. There are 3 macro-columns: the first reports the parameters B and n; the
second concerns the produced gaps and the third the number of solved instances. The
second macro-column consists of three columns associated with the approaches
considered in the previous table, except for SLR with None for which a finite gap is
produced only at the end of the computation. Each entry exhibits the average gap
produced among all the associated instances by the associated approach. The third
macro-column consists of four columns associated with all the approaches considered.
Each entry displays the number of instances solved by the associated approach among
the associated instances. Recall that every row is associated to 20 instances.

gap solved
GCD SLR GCD SLR

B |I | = |J | ADA DIC DIC ADA DIC None DIC
5 100 - - - 20 20 20 20

150 - - - 20 20 20 20
200 - - - 20 20 20 20

6 100 - - - 20 20 20 20
150 - 0.13% 0.32% 20 19 20 17
200 1.23% 1.40% 1.59% 16 15 17 15

7 100 - - 0.14% 20 20 20 19
150 2.81% 2.45% 2.69% 15 15 15 15
200 6.58% 5.06% 4.98% 15 15 15 15

8 100 1.75% 1.09% 2.15% 16 16 15 15
150 7.38% 5.12% 6.56% 15 15 15 15
200 14.41% 7.68% 10.60% 15 15 15 15

9 100 5.84% 2.82% 7.51% 15 15 15 15
150 17.70% 8.06% 14.10% 15 15 15 14
200 26.73% 12.36% 20.29% 11 11 11 11

average 5.63% 3.08% 4.73%
maximum 123.88% 52.00% 100.33%

Table 6.10: Average gaps and number of instances solved by the four promising
approaches over all benchmark instances.

The results show that the minimum average gap (when positive) is associated to the
GCD approach with diversification DIC. Moreover, the same approach produces the
minimum average gap over all instances, as well as the smallest maximum gap. For
what concerns the number of solved instances, we can observe that there are no
significant differences between the various approaches since often the number of
instances solved to optimality is the same or differs by at most 2.

To better visualize the produced gaps over all the instances, Figure 6.4 provides the
Solution Quality Distribution diagram of the considered approaches. The gap values are
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reported on the horizontal axis whereas the vertical axis describes a fraction of instances
as a percentage. For every approach, we report the curve that describes the fraction of
instances such that the produced gap is smaller than or equal to a certain gap.
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Figure 6.4: SQD for the SCIP over all benchmark instances, using the considered
approaches.

Figure 6.4 highlights the positive and negative aspects of all the methods. The
methods which solve the highest number of instances to optimality are GCD+ADA and
SLR+None with 84.33%. A very close result is achieved by GCD+DIC with 83.67%
followed by SLR+DIC with 82%. As the gap grows, GCD+DIC rapidly takes the highest
spot, GCD+ADA and SLR+DIC initially perform similarly but eventually the latter pulls
ahead of the former, and SLR+None remains constant since it cannot provide any
useful upper bound (infinite gap). These results suggest that, even if the time
consumptions tend to be similar, among the considered approaches, when the
computation is prematurely terminated, GCD+DIC obtains the best results almost
halving the worst result with respect to the second best SLR+DIC.
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Chapter 7

Resilient Samples for Hard Interdiction
Problems

In this chapter, we propose formulations and algorithms to compute Resilient

Samples of defender’s feasible solutions. A Resilient Sample is a set of solutions

which cannot be interdicted with a single attack of given budget. Specifically, we

present a technique to compute a small Resilient Sample for the SPIP in polynomial

time. Subsequently, we generalise the same technique for a certain class of

interdiction problems maintaining the size and polynomial time guarantees. Then,

we present a heuristic method for arbitrary interdiction problems that allows to

compute a resilient sample whenever the previous approach is not applicable. At

last, we present another method for producing a resilient sample for binary

fortification and similar problems.

In the previous chapter, we discussed how important and challenging it is to
produce a good super-optimal bound for solving HIP. To produce such a bound, it is
important to be able to compute a well-diversified and high-quality set of defender
solutions. Obviously, one could exploit the diversification mechanisms in Section 6.4,
but these methods do not provide any guarantee that the set of solutions will yield a
super-optimal bound. For this reason it is important to identify solution sets that
cannot be simultaneously interdicted by a single feasible attack: the Resilient Samples
(RS). In particular we are interested in RS of small (polynomial) cardinality.

Another reason for the interest in RS is that, from the perspective of the defender,
they provide a set of solutions which ensures that at least one option will remains
available at all times.

In the following, we will formally define the concept of resilient sample and then
present a method that guarantees to compute in polynomial time one of manageable
size for the SPIP. We then generalise the method for a broader class of interdiction
problems with specific characteristics. For the even more general class of HIPs to which
this approach cannot be applied, we propose an alternative method for computing a
resilient sample. This last method does not ensure the production of a correct RS and
does not guarantee polynomial time; however, it provides a set of solutions that can
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serve as a useful starting point for exact approaches and may be expanded to form a RS.
Finally, we provide a reliable and efficient method for computing a RS for binary
fortification problems, that can also be used for any interdiction problem where the
solution space of the defender has a knapsack structure.

7.1 Definition

We define the central subject of this chapter.

Definition 3. Given a budget B ∈ IR+, a Resilient Sample Y ′ ⊆ Y is a set of defender’s
feasible solutions such that for any feasible attack x ∈ XB , at least one solution in Y ′ is not
interdicted.

∀x ∈ XB : ∃y ∈ Y ′ : x ∩ y =;
As a consequence of the definition above, we can derive a necessary and sufficient

condition for the existence of a RS. Notice that whenever the attacker’s budget is
insufficient to interdict the whole defender’s solution space, then the latter is a RS. On
the contrary, whenever the attacker is able to interdict the whole defender’s solution
space, there cannot be a RS.

Remark 4. Any interdiction problem admits a RS if and only if the attacker’s budget is not
sufficient to interdict the whole defender’s solution set.

A RS is a useful object to compute for the following reasons:

• it provides a non-trivial super-optimal bound for the considered interdiction
problem (Theorem 3);

• Y ′ in Algorithm 9 can be initialised with an RS to provide a good diversified
restricted set since the beginning;

• from a defensive point of view, it provides a set of “recovery plans” ensuring that
at least one of them is still operative after the interdiction.

To check whether a given set Y ′ is a RS, we can solve formulation (31) with β = +∞
and compare the optimal objective value g (x∗) =∑

i∈I gi x∗
i with the attack budget B .

Remark 5. Given a subset of defender’s feasible solutions Y ′ ⊆ Y and an attack budget
B ∈ IR+, Y ′ is a RS if and only if g (x∗) > B.

This fact, even though it does not provide a way to compute a RS, lays the
foundations for all the methods we will describe in the following sections.
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7.2 Resilient Sample for the Shortest Path Interdiction
Problem

In this section, we describe how to compute a RS for the SPIP. We will show that the
relationship between the SPIP and the min-cut problem is not just evidenced by the fact
that a min-cut provides a supremum for the attack budget (see Section 5.3.1), but also
reveals a connection with the max-flow problem that allows us to produce a RS.

To obtain the RS we consider the continuous relaxation of the covering
decomposition (31) for the SPIP and analyse its dual formulation. We point out that the
dual is similar to a path-decomposition of a feasible flow. Therefore we provide an
algorithm to compute such decomposition and demonstrate that the result is a RS for
the SPIP.

Given a SPIP instance with a graph G = (N , A), a source node s ∈ N and a sink node
t ∈ N , arc costs c : A → IR+, interdiction costs g : A → IR+ and interdiction budget B ∈ IR+,
consider the continuous relaxation of formulation (31):

min
∑

a∈A
ga ·xa (44.1)

s.t.∑
a∈y

xa ≥ 1 y ∈ Y ′ (44.2)

xa ≥ 0 a ∈ A (44.3)

where we can drop the xa ≤ 1 constraints, since it is a minimisation problem.
Now, we consider the dual formulation

max
∑

y∈Y ′
fy (45.1)

s.t.∑
y∈Y ′:
a∈y

fy ≤ ga a ∈ A (45.2)

fy ≥ 0 y ∈ Y ′ (45.3)

which is a path-decomposition based formulation for the maximum flow problem (see
Section 3.5 of Ahuja et al. (1993)) with a restricted number of paths and coefficients g
as capacities. This is consistent with the fact that formulation (31) is related to the min-
cut problem. Moreover, if the maximum s − t flow for the instance (with capacities g ) is
smaller than or equal to B , we can conclude that the problem is trivial because we can
actually disconnect s and t within the given budget and, therefore, no resilient samples
can be produced.

Otherwise, let’s consider an s − t flow f of value v( f ) > B . As stated in Theorem 3.5
of Ahuja et al. (1993), any such flow can be decomposed into a polynomial number of
paths.
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We now present an algorithm to perform this decomposition as follows.

1 Algorithm Decompose(G = (N , A), g : A →R+, B ∈R+, f feasible flow):
2 Y ′ :=;
3 f̃y := 0 ∀y ∈ Y // Implicitly
4 while ∃y ∈ Y : min

a∈y
{ fa} > 0 do

5 f̃y := min
a∈y

{ fa}

6 Y ′ := Y ′∪ {y}
7 for a ∈ y do fa := fa − f̃y

8 end
9 return Y ′, f̃

Algorithm 12: Algorithm for computing a path-decomposition of a feasible flow f

At the beginning of Algorithm 12, Y ′ is initialized to ; and the vector f̃ is implicitly
(because Y is too big) set to 0 for every entry. Then, in the main cycle (line 4), we look for
some s − t path y whose arcs have a positive amount of flow f (we don’t specify which
path specifically). In particular we look for the arc of minimum flow a and set f̃y := fa .
Then we decrease the flow of every arc in y by f̃y producing a new flow whose value is
smaller than the previous by f̃y . Also notice that f̂a = 0 at the end of the iteration. The
algorithm stops when there are no longer s − t paths with positive flow and returns the
desired Y ′ and the vector f̃ .

Notice that at the end of this algorithm the remaining flow f might not be null for
some arcs in the graph. This is because there might still be cycles which do not
contribute to the value of the flow. Moreover, since at each iteration at least one arc is
set to 0, the maximum number of iterations of the algorithm is |A| and, since each
iteration inserts a single path in Y ′, also the maximum cardinality of Y ′ is |A|.

The decomposition values f̃ can be used to regain a feasible flow f ′ with v( f ′) = v( f )
by defining

f ′
a := ∑

y∈Y :
a∈y

f̃y =
∑

y∈Y ′:
a∈y

f̃y

Of course, the second equality holds because fy = 0 for any solution in Y \ Y ′. Since
f ′ is a feasible flow we know that ∑

y∈Y ′:
a∈y

f̃y = f ′
a ≤ ga (46)

Therefore, f̃ is a feasible solution for formulation (45) with value
∑

y∈Y ′ f̃y = v( f ′) =
v( f ) > B .
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Now, we can show that the set Y ′ returned by Algorithm 12 is actually a resilient
sample, provided that the input flow f has value v( f ) > B .

Theorem 5. Let Y ′ be the set returned by Algorithm 12, Y ′ is a resilient sample for the
SPIP.

Proof. To prove this theorem, we show that the optimal solution of the covering
decomposition (31) has a value g (x∗) bigger than the budget B in accordance with
Remark 5. To do so, we prove the following chain of inequalities

B < v( f ) = ∑
y∈Y ′

f̃y ≤ (45)∗ ≤ (44)∗ ≤ g (x∗)

where (45)∗ and (44)∗ are the optimal values of their respective formulations.
By hypothesis, v( f ) > B . Since f̃ is a path-decomposition of f which maintains the

same value, it follows that v( f ) = ∑
y∈Y ′ f̃y . Given that f̃ is a feasible (possibly non

optimal) solution of formulation (45) using Y ′, we know that
∑

y∈Y ′ f̃y ≤ (45)∗. By weak
duality theorem, (45)∗ ≤ (44)∗. At last, since g (x∗) is the optimal solution of (31) and
(44) is its relaxation, we conclude that (57)∗ ≤ g (x∗).

Thanks to Theorem 5 we know that the optimal solution of formulation (31) using the
set Y ′ produced by Algorithm 12 has objective bigger than B and, therefore, to interdict
all paths in Y ′ it is necessary to pay more than the budget. In other words, Y ′ is a resilient
sample for the SPIP.

Resilient Sample for the Maximum Flow Interdiction Problem Since an s−t path can
be treated as a special case of s − t flow, we can use the same technique also for the
Maximum Flow Interdiction Problem. In this case we would compute an initial s−t flow
with respect to the capacity function g of value v( f ) > B and, then, decompose it into
paths with Algorithm 12. The objective value of such paths y ∈ Y ′ would be equal to
the minimum capacity among all the arcs in the path, c(y) = mina∈y ca . Of course, the
quality of such solution is poor, because a single path is usually not able to transport
a large quantity of flow. Anyway, one could use these solutions as a starting point to
produce better solutions.
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7.3 Resilient Sample for defender’s problems with
integrality property

We now generalize the procedure in the previous section for the following class of
interdiction problems.

Definition 4. A binary interdiction problem is called Totally Unimodular with Binary
Interdictable Variables (TUBIV) if the defender’s problem can be modelled with a linear
programming formulation such that:

1. the coefficients matrix is totally unimodular (Hoffman and Kruskal, 1956);

2. the right-hand-side coefficients are integers;

3. the variables that can be interdicted are binary.

Notice that these three conditions hold for the special case of the SPIP. The idea is,
once again, to produce a resilient set Y ′ by computing a linear combination of
solutions and, then, extracting such solutions one by one together with their positive
linear coefficients.

First, we consider a generic linear programming formulation for the defender’s
problem with the desired requirements. Then we design a non-linear formulation for
the problem of finding a RS. Since this formulation has several critical aspects, we will
relax it and perform a variable change. The new relaxed formulation possesses several
favourable properties that allow us to easily compute a feasible solution which can be
interpreted as a linear combination of the solutions in the RS. Then, we propose an
algorithm to extract from such solution the RS by iteratively computing a defender’s
feasible solution with a suitable LP formulation.

Suppose that the defender’s problem has some elements that can be interdicted
(variables fixed to 0) and some others that cannot. We partition such elements into
subsets I and J respectively. The attacker has a budget B ∈ R+ available to interdict the
elements in set I by paying a cost gi ∈Z+. Notice that we are imposing that the vector g
is integral because it will be essential for the correctness of the method.

Assume that the defender’s problem can be modelled with the following formulation.

opt
∑
i∈I

ci yi +
∑
j∈J

c j y j (47.1)

s.t.∑
i∈I

aki yi +
∑
j∈J

ak j y j = bk ∀k ∈ K (47.2)

yi ∈ {0,1} or 0 ≤ yi ≤ 1 ∀i ∈ I (47.3)

y j ∈Z+ or y j ≥ 0 ∀ j ∈ J (47.4)

The variables yi are the ones that the attacker can fix to 0 by paying interdiction cost
gi ; variables y j are other variables necessary to correctly model the problem. The
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formulation is a generic formulation with linear objective function and linear
constraints (without loss of generality we consider only equality constraints). The
variable domains are binary for yi with i ∈ I and non-negative integers for y j with j ∈ J .
However, since the matrix is totally unimodular, we consider its continuous relaxation.

In this environment, we denote the (a priori unknown) cardinality of Y ′ as |Y ′| =
Q and assign an integer index r ∈ R = {1,2, . . . ,Q} to each solution y r ∈ Y ′. This way,
formulation (31) slightly changes into

min
∑
i∈I

gi · xi (48.1)

s.t.∑
i∈I :
yr

i =1

xi ≥ 1 ∀r ∈ R (48.2)

xi ∈ {0,1} ∀i ∈ I (48.3)

where y r
i is the value of variable yi in solution y r . Similarly, formulation (45) becomes

max
∑
r∈R

fr (49.1)

s.t.∑
r∈R:
yr

i =1

fr ≤ gi ∀i ∈ I (49.2)

fr ≥ 0 ∀r ∈ R (49.3)

Along the same lines as what we did in the previous section, we aim to determine the
solutions to introduce in Y ′ and their dual values ( f in formulation (49)) allowing us to
exploit Theorem 5 also for this situation.

The following (non-linear) formulation describes the problem of finding Q solutions
of the defender’s problem and their dual values. Recall that Q is not known a priori, but
for now, we assume its value and use it as a parameter of the formulation.

opt
∑
r∈R

fr

(∑
i∈I

ci y r
i +

∑
j∈J

c j y r
j

)
(50.1)

s.t. ∑
r∈R

fr y r
i ≤ gi ∀i ∈ I (50.2)

∑
r∈R

fr > B

(
≡ ∑

r∈R
fr = ⌊B +1⌋ =: B+

)
(50.3)∑

i∈I
aki y r

i +
∑
j∈J

ak j y r
j = bk ∀k ∈ K ∀r ∈ R (50.4)

y r
i ∈ {0,1} ∀i ∈ I ∀r ∈ R (50.5)

y r
j ∈Z+ ∀k ∈ K ∀r ∈ R (50.6)

fr ≥ 0 ∀r ∈ R (50.7)
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Although this is a search problem (we aim to find any resilient sample), we model
it as an optimization problem by introducing the objective function (50.1). While this
function is not strictly necessary, it proves convenient for reasons that we will discuss
later. The first constraints (50.2) state that for each interdictable element i ∈ I , the sum
of the fr variables such that y r

i = 1 has to be smaller than or equal to the interdiction
cost gi . Constraint (50.3) imposes that the sum of the fr variables must be bigger than
B . Since strict inequalities are difficult to handle we just choose a value B+ > B and
consider the equality version of the constraint. In particular, we define B+ := ⌊B + 1⌋
because we are interested in the smallest integer greater than B , and the reasons for
this will be clearer later. At last, constraints (50.4) simply impose the original generic
constraints (47.2) over all solutions y r .

This is a troubling formulation for two main reasons: it is non-linear and requires to
know the cardinality Q of Y ′. But we can relax this formulation by applying a surrogate
relaxation of the constraints (50.4), using the variables fr as multipliers and summing
over the index set R:

∀k ∈ K :
∑
r∈R

fr

(∑
i∈I

aki y r
i +

∑
j∈J

ak j y r
j

)
= ∑

r∈R
fr bk ⇐⇒∑

r∈R

∑
i∈I

aki fr y r
i +

∑
r∈R

∑
j∈J

ak j fr y r
j = bk

∑
r∈R

fr ⇐⇒∑
i∈I

aki

∑
r∈R

fr y r
i +

∑
j∈J

ak j

∑
r∈R

fr y r
j = bk B+

Now, let’s introduce the variables φi ∀i ∈ I and φ j ∀ j ∈ J defined as

φi := ∑
r∈R

fr y r
i ≤ ∑

r∈R
fr = B+ ∀i ∈ I

φ j := ∑
r∈R

fr y r
j ∀ j ∈ J

so that we can rewrite the surrogate generic constraint as∑
i∈I

aki φi +
∑
j∈J

ak j φ j = B+ bk ∀k ∈ K

and, removing constraint (50.3) (further relaxing the formulation) we obtain

opt
∑
i∈I

ci φi +
∑
j∈J

c j φ j (51.1)

s.t.

φi ≤ gi ∀i ∈ I (51.2)∑
i∈I

aki φi +
∑
j∈J

ak j φ j = B+ bk ∀k ∈ K (51.3)

0 ≤φi ≤ B+ ∀i ∈ I (51.4)

φ j ≥ 0 ∀ j ∈ J (51.5)
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Notice that, formulation (51) is very similar to formulation (47), except for these
reasons:

• the presence of constraints (51.2)

• the right-hand-side of every constraint (51.3) is the right-hand-side of (47.2)
multiplied by B+

• variables yi are substituted with φi and y j with φ j

• the domain of the variables with index i ∈ I is no longer 0 ≤ yi ≤ 1 but 0 ≤φi ≤ B+

Formulation (50) has the following useful property.

Proposition 14. If B is insufficient to interdict all defender’s solutions, then a feasible
solution of formulation (50) exists, implying that also a solution of formulation (51) exists.

Proof. Since B is insufficient to interdict the whole set Y , it means that Y is a resilient
set itself. Now, consider the optimal dual variables f ∗ obtained solving
formulation (49) using Y ′ = Y . We can show that if we use f ∗ as the variables f in
formulation (50) and set Y ′ = Y , we obtain a feasible solution for the said formulation.
Since f ∗ is a feasible solution, the inequality (49.2) holds and, therefore,
constraints (50.2) are satisfied. Moreover, since f ∗ maximises the sum of its entries,
also constraint (50.3) is also satisfied (recall that B is insufficient to interdict Y in its
entirety). Trivially, since all solutions in Y are feasible, they fullfill constraints (47.2)
and, therefore, constraints (50.4) are also satisfied. Given that, formulation (51) is
obtained from (50) by relaxing some constraints and substituting the variables, we can
produce a feasible solution also for formulation (51) simply from the definition of
variables φ.

Moreover, since formulations (47) and (51) are very similar, also this second
proposition hold.

Proposition 15. The coefficients matrix of formulation (51) is totally unimodular.

Proof. Recall that the coefficients matrix of formulation (47) is totally unimodular.
Formulation (51) shares the same structure except for constraints (51.2) but such
constraints do not affect the total unimodularity. This is because they are just variable
bounds and therefore they have a single 1 coefficient in every row of the matrix.
Therefore, following the definition of totally unimodular matrix and the Laplace
expansion of the determinant it is possible to prove that unimodularity is
preserved.

Therefore, if B+ and all interdiction costs g are integer, then formulation (51) has the
integrality property.
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Solving formulation (51), we obtain the solution φ∗ which “contains” the linear
combination of all solutions in Y ′. To “extract” such solutions from φ∗ we slightly
modify formulation (47) as follows.

opt
∑
i∈I

ci yi +
∑
j∈J

c j y j (52.1)

s.t.∑
i∈I

aki yi +
∑
j∈J

ak j y j = bk ∀k ∈ K (52.2)

0 ≤ yi ≤ min{1,φ∗
i } ∀i ∈ I (52.3)

0 ≤ y j ≤φ∗
j ∀ j ∈ J (52.4)

Once again, the coefficients matrix of this formulation is totally unimodular
because we just introduced variable bounds and, since φ∗ is integer, formulation (52)
has integral solutions. Moreover, the following proposition, about the feasibility of the
said formulation, holds.

Proposition 16. If φ∗ is a feasible solution for formulation (51) with respect to B+, then
formulation (52) admits a feasible solution.

Proof. Consider the solution y∗ = φ∗/B+. Since φ∗ satisfies constraints (51.3) we know
that

∀k ∈ K :
∑
i∈I

aki φ
∗
i +

∑
j∈J

ak j φ
∗
j = B+ bk ⇐⇒

⇐⇒ ∑
i∈I

aki φ
∗
i /B++∑

j∈J
ak j φ

∗
j /B+ = bk ⇐⇒

⇐⇒ ∑
i∈I

aki y∗
i +∑

j∈J
ak j y∗

j = bk

Therefore, y∗ satisfies constraints (52.2). Moreover, since φ∗ ≥ 0 and B+ ≥ 1 it follows
that 0 ≤ y∗ =φ∗/B+ ≤φ∗. Moreover, for each i ∈ I , φ∗

i ≤ B+ and therefore y∗
i =φ∗

i /B+ ≤
1 satisfying all variable bounds. Therefore y∗ is a feasible (possibly fractional) solution
of formulation (52).

Given that, for any positive integer B+, the formulation (52) admits a feasible
solution and has the integrality property, we can extract the first solution from φ∗ by
computing the optimal solution of (52). Then we update φ∗ by removing the solution
from the linear combination and repeat the process until all solutions are extracted.
Algorithm 13 describes the procedure.
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1 Algorithm Resilient Sample for TUBIV(B ∈ IR+, g : I →Z+):
2 B+ := ⌊B +1⌋
3 Y ′ =;
4 f̃r = 0 ∀r ∈Z+ // Implicitly
5 Solve (51) using B+ and g as parameters, producing φ∗

6 r = 0
7 φr =φ∗

8 Br = B+

9 while Br > 0 do
10 r = r +1
11 Solve (52) using φr−1 as parameters, producing y r

12 δI = min
i∈I :
yr

i =1

φr−1
i

13 δJ = min
j∈J :

yr
j ≥1

φr−1
i /y r

j

14 f̃r = min
{
δI ,⌊δJ ⌋

}
15 Y ′ = Y ′∪ {y r }
16 for i ∈ I do φr

i =φr−1
i − f̃r y r

i
17 for j ∈ J do φr

j =φr−1
j − f̃r y r

j

18 Br = Br−1 − f̃r

19 end
20 return Y ′, f̃

Algorithm 13: Algorithm for computing a resilient sample for any TUBIV problem.

Initially, Y ′ is set to ; as well as f̃r = 0 for any index r ∈Z+ since we do not know Q a
priori (obviously we do not do it explicitly). Then, we solve formulation (51) using B+ to
obtain φ∗. The index r is initialised to 0 and corresponds to the number of the current
iteration of the main cycle and the index of the current solution extracted from φ∗. We
set the parameters φr and Br to the initial values φ∗ and B+ respectively. Then, the
while loop begins. First, we increase r and solve formulation (52) using φr−1 to obtain
y r . Then, we compute δI which is the minimum value of φr−1

i among all i ∈ I for which
y r

i = 1 and, similarly, we compute δJ which is the minimum value of φr−1
j /y r

j among

all j ∈ J for which y r
j ≥ 1 (recall that y r

j might be strictly bigger than 1). The dual value

f̃r is computed as the minimum between δI (which is already integer) and the floor of
δJ . Then, we insert y r in Y ′. At this point, we update φr as follows: for each i ∈ I , we
decrease φr−1

i by f̃r y r
i ; for each j ∈ J , we decrease φr−1

j by f̃r y r
j . At last, we set the value

Br to the value of the previous iteration Br−1 decreased by f̃r . These updates of Br and
φr allow us to proceed with the computation because they guarantee that φr , after the
update, is a feasible (integer) solution of (51) using Br as parameter (see Proposition 17).
Finally, when Br ≤ 0, it means that the sum of all f̃r produced so far equals B+ and
therefore we can return Y ′ alongside with the dual values.
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The correctness of the algorithm is guaranteed by the following propositions.

Proposition 17. At each iteration of Algorithm 13, φr is a feasible solution of (51) using
Br as parameter.

Proof. By induction on r we can see that when r = 0, the hypothesis is trivially true.
When r > 0, by inductive hypothesis, φr−1 is a solution of (51) with parameter Br−1 and
therefore constraints (51.3) are satisfied.

∀k ∈ K :
∑
i∈I

aki φ
r−1
i +∑

j∈J
ak j φ

r−1
j = Br−1 bk

Now, we consider the left-hand-side of the same constraints for φr :

∀k ∈ K :
∑
i∈I

aki φ
r
i +

∑
j∈J

ak j φ
r
j =

=∑
i∈I

aki (φr−1
i − f̃r y r

i )+∑
j∈J

ak j (φr−1
j − f̃r y r

j ) =

=∑
i∈I

aki φ
r−1
i −∑

i∈I
aki f̃r y r

i +
∑
j∈J

ak j φ
r−1
j −∑

j∈J
ak j f̃r y r

j =

=Br−1 bk − f̃r

(∑
i∈I

aki y r
i +

∑
j∈J

ak j y r
j

)
=

=Br−1 bk − f̃r bk = bk (Br−1 − f̃r ) = Br bk

This, proves that φr satisfies constraints (51.3). Moreover, since φr ≤ φr−1 ≤ g we know
that also constraints (49.2) are satisfied. The only thing left to prove is that φr ≥ 0: we
know that φr = φr−1 − f̃r y r therefore we have to check that f̃r y r ≤ φr−1. Recall that
f̃r ≤φr−1

i for all i ∈ I : y r
i = 1 and f̃r ≤φr−1

j y r
j for all j ∈ J : y r

j ≥ 1. Therefore, f̃r y r
i ≤φr−1

i

and f̃r y r
j ≤φr−1

j .

Proposition 18. At each iteration of Algorithm 13, all values of φr , y r , f̃r and Br are
positive integers.

Proof. By induction on r we can check that when r = 0 the values φr = φ∗ and Br = B+

are integers because of Proposition 15, given that B+ is chosen integer (B+ = ⌊B + 1⌋).
If r > 0, the first thing that is computed is y r : we know from Proposition 16 (whose
conditions are met due to the previous point) that a feasible solution y r exists and that
formulation (52) has integrality property. Moreover, we can assume that y r ̸= 0 since,
otherwise, {y r } would be a resilient sample alone. Since 0 ̸= y r ≤ φr−1, we know that
f̃r > 0. Moreover, f̃r is integral by construction. As we can see, φr is obtained from
subtractions and multiplications of integers, therefore is integral itself and never smaller
than 0 (proven in the previous point). At last, Br is integer (because f̃r is integer) and
greater than 0 because of the termination condition of the while cycle.
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Proposition 19. At the end of Algorithm 13, the sum of all f̃r computed so far is equal to
B+.

Proof. At the end of the algorithm, we exit the cycle with r reaching the final value Q,
because BQ ≤ 0. First, we prove that BQ = 0 and cannot be negative. This is because for
any r > 0, ∃i ∈ I : f̃r ≤φr−1

i ≤ Br−1 since φr is a feasible solution of formulation (51) with
parameter Br−1. Therefore, Br = Br−1− f̃r ≥ 0 for all r > 0 implying that BQ = 0. Knowing
that f̃r = Br−1 −Br for any r > 0, we can conclude that∑

r∈R
f̃r =

∑
r∈R

(Br−1 −Br ) = B0 −BQ = B+

The solutions obtained can be recomposed again as described in the proposition
below.

Proposition 20. The linear combination of the solutions in Y ′ using f̃ as coefficients is a
feasible solution of formulation (51), using parameter B+, equivalent to φ∗.

Proof. Recall that in Algorithm 13, the relationship between φr and φr−1, for any r > 0,
is

φr =φr−1 − f̃r y r ⇐⇒ f̃r y r =φr−1 −φr

Now we can show that∑
r∈R

f̃r y r = ∑
r∈R

(φr−1 −φr ) =φ0 −φQ =φ∗−φQ

From Proposition 17 we know that φQ is a solution of formulation (51) with respect to
BQ = 0. Therefore, constraints (51.3) for φ∗−φQ is

∀k ∈ K :
∑
i∈I

aki (φ∗
i −φQ

i )+∑
j∈J

aki (φ∗
j −φQ

j ) =

=∑
i∈I

aki φ
∗
i −

∑
i∈I

aki φ
Q
i +∑

j∈J
akiφ

∗
j −

∑
j∈J

akiφ
Q
j =

=B+ bk −BQ bk = B+ bk

Since BQ = 0 we also know that ∀i ∈ I : 0 ≤φQ
i ≤ BQ = 0 =⇒ φ

Q
i = 0. So, ∀i ∈ I : φ∗

i −φ
Q
i =

φ∗
i ≤ gi , satisfying also constraints (49.2) and the variable bounds.
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PROPERTY

Finally, we can prove that the set Y ′ returned by Algorithm 13 is a resilient sample
with respect to B .

Theorem 6. Given a TUBIV problem with a budget B ∈ IR+, the set Y ′ returned by
Algorithm 13 is a resilient sample.

Proof. Similarly to Theorem 5, we want to prove that

B < ∑
r∈R

f̃r ≤ (49)∗ ≤ g (x∗)

where (49)∗, g (x∗) are the optimal values of formulations (49) and (48) respectively.
We know from Proposition 19 that∑

r∈R
f̃r = B+ > B

Moreover, we know from Proposition 20 that

∀i ∈ I :
∑

r∈R:
yr

i =1

f̃r =
∑
r∈R

f̃r y r
i =φ∗

i −φQ
i ≤ gi

proving that f̃ is a feasible solution of formulation (49). At last, we know that the
optimum of formulation (49) is smaller than or equal to the optimum of
formulation (48) because the former is the dual of the continuous relaxation of the
latter. That said, since the minimum budget to interdict Y ′ is strictly bigger than the
given budget B , we know that Y ′ is a resilient sample.

7.3.1 SPIP as a special case

Now we show that the technique showed in section 7.2 is simply a special case of the one
in this section.

Consider the classic LP formulation for the shortest path problem

min
∑

(i , j )∈A
ci j yi j

s.t.

∑
i∈δ−k

yi k −
∑

j∈δ+k
yk j =


−1, k = s

1, k = t

0, otherwise

k ∈ N

yi j ∈ {0,1} or 0 ≤ yi j ≤ 1 (i , j ) ∈ A
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By applying the new technique we obtain

min
∑

(i , j )∈A
ci j φi j

s.t.

∑
i∈δ−k

φi k −
∑

j∈δ+k
φk j =


−B+, k = s

B+, k = t

0, otherwise

k ∈ N

0 ≤φi j ≤ min{B+, gi j } (i , j ) ∈ A

which is a s − t min-cost flow formulation with flow value B+. This adds to the
various pieces of evidence supporting the relationship between the min-cost flow and
the SPIP like the one in Fulkerson and Harding (1977) and the lagrangean relaxation in
Section 5.3.1.

7.3.2 A counterexample beyond the procedure’s applicability

Unfortunately, the technique presented in this section strongly relies on the problem to
be TUBIV. In fact, we can show an example where we consider an ILP defender’s problem
(without a totally unimodular matrix) for which we cannot exploit the last technique.

Consider the Set Cover instance

min y1 + y2 + y3

s.t.

y1 + y2 − s1 = 1

y1 + y3 − s2 = 1

y2 + y3 − s3 = 1

y1, y2, y3 ∈ {0,1}

s1, s2, s3 ≥ 0

and the Interdiction problem where B = g1 = g2 = g3 = 1. So we choose B+ = 2 > B
obtaining

min φ1 +φ2 +φ3

s.t.

φ1 +φ2 −σ1 = 2

φ1 +φ3 −σ2 = 2

φ2 +φ3 −σ3 = 2

φ1 ≤ 1

φ2 ≤ 1

φ3 ≤ 1

φ1,φ2,φ3,σ1,σ2,σ3 ≥ 0
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whose optimal solution is φ1 = φ2 = φ3 = 1 and σ1 = σ2 = σ3 = 0. Since σs are all zero,
it means that the s variables have to be zero in formulation (52), obtaining a problem of
the form

y1 + y2 = 1

y2 + y3 = 1

y1 + y3 = 1

which is not feasible when y are binary, showing that there are instances of problems for
which our procedure fails to produce a RS.

7.4 Resilient Sample for any Binary Interdiction Problem

As showed in Section 7.3.2, the previous technique is not able to find a RS for any binary
interdiction problem. Of course, one could still extract a number of feasible solutions
with Algorithm 13 and stop whenever formulation (52) fails to produce a feasible
solution. If so, even if the produced set is not a RS, we can use it as base to produce one.

In this section we will use a classical constraint-separation approach to generate a
resilient sample for a generic binary interdiction problem. This approach is still
heuristic, meaning that it does not provide any guarantee that the produced set is a RS.
The approach involves considering the continuous relaxation of the covering
decomposition and utilizing it as a Master problem. After obtaining an optimal
solution for the Master, we then address a Separation problem, which entails
computing a feasible solution for the defender that corresponds to the most violated
covering constraint associated with the Master’s solution, and subsequently adding this
constraint to the Master. In a certain way, this approach is similar to Algorithm 9 (from
Chapter 6) with the main difference that here we consider a continuous relaxation of
the covering decomposition instead of the computation of the RRR.

Similarly to section 7.3, we provide a generic MILP formulation for the defender’s
problem. Once again, the elements in the set I are the ones that can be interdicted
whereas the ones in J cannot.

opt
∑
i∈I

ci yi +
∑
j∈J

c j y j (55.1)

s.t.∑
i∈I

aki yi +
∑
j∈J

ak j y j = bk ∀k ∈ K (55.2)

yi ∈Z+ or yi ∈R+ ∀i ∈ I (55.3)

y j ∈Z+ or y j ∈R+ ∀ j ∈ J (55.4)
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Furthermore, we redefine the formulations (31) and (48) for the most general case.

min
∑
i∈I

gi xi (56.1)

s.t. ∑
i∈I :
yi>0

xi ≥ 1 y ∈ Y ′ (56.2)

xi ∈ {0,1} i ∈ I (56.3)

And its continuous relaxation.

min
∑
i∈I

gi xi (57.1)

s.t. ∑
i∈I :
yi>0

xi ≥ 1 y ∈ Y ′ (57.2)

xi ≥ 0 i ∈ I (57.3)

We aim to populate the set Y ′ iteratively by solving the following separation problem

min
∑
i∈I

x̃i γi (58.1)

s.t.∑
i∈I

aki yi +
∑
j∈J

ak j y j = bk ∀k ∈ K (58.2)

yi ≤ ȳi γi ∀i ∈ I (58.3)

yi ∈Z+ or yi ∈R+ ∀i ∈ I (58.4)

y j ∈Z+ or y j ∈R+ ∀ j ∈ J (58.5)

γi ∈ {0,1} ∀i ∈ I (58.6)

where x̃ is the optimum of formulation (57). To correctly model the objective function,
we introduce the binary variables γi ∀i ∈ I which assume value 1 whenever yi > 0 due to
constraints (58.3) and assume value 0 otherwise due to the minimisation and the non-
negativity of x̃. By finding the optimal solution of formulation (58) we identify the most
violated constraint (57.2) with respect to x̃.

From these considerations we derive Algorithm 14. At first, the optimal defender’s
solution y∗ is computed by solving formulation (55). The set of candidate solutions T is
initialised to {y∗} and then we enter the main loop. Inside the loop we compute the
optimal solution x̃ of formulation (57) only considering the covering constraints
associated with the solutions in T . If the minimum budget to interdict T with the
relaxed attack x̃ is greater than B we know that T contains a resilient sample and,
therefore, we exit the loop. Otherwise, we solve the pricing problem by computing the
optimal solution ỹ of formulation (58) using x̃ as shadow prices. If the sum of the x̃i

such that ỹi > 0 is greater than 1, it means that the “most violated constraint” is not
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1 Algorithm Resilient Sample for Binary Interdiction(B ∈R+,
g : I →R+):

2 Solve formulation (55), obtaining y∗

3 T = {y∗}
4 loop:
5 Solve formulation (57) setting Y ′ = T , obtaining x̃
6 if

∑
i∈I

gi x̃i > B then

7 return Y ′ = {y ∈ T :
∑

i∈I :
yi>0

x̃i = 1}

8 end
9 Solve formulation (58) using x̃, obtaining ỹ

10 if
∑

i∈I :
ỹi>0

x̃i ≥ 1 then

11 exit loop
12 end
13 T = T ∪ {ỹ}
14 Heuristically generate solutions ŷ ∈ Y such that

∑
i∈I :
ŷi>0

x̃i < 1

15 Insert such solutions into T
16 end
17 return T as heuristic set

Algorithm 14: Algorithm for computing a resilient sample for the a generic Binary
Interdiction problem

violated, implying that it is not possible to increase the objective of formulation (57). In
such case, we return T as a heuristic set. Otherwise, we insert ỹ in T and also consider
other heuristic solutions whose associated covering constraint is violated (maybe
exploiting the diversification mechanisms in Section 6.4). Once we exit the loop,
because the objective of x̃ is greater than B , we select all solutions in T associated with
an active covering constraint with respect to x̃. This set is a RS because to interdict all of
its solutions we need more budget than B .

Considering the unfortunate case where we cannot find any solution which violates
constraint (57.2), it is unknown a priori if T is a RS. In fact, since (57) is a relaxation
of (56), the optimal solution of the latter using Y ′ = T might be > B producing a RS.
Moreover, if T is not a RS, one could initialise Y ′ = T in Algorithm 13 and try to compute
a RS exploiting the exact approach presented in Chapter 6.
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7.5 Resilient Sample for Binary Fortification Problems

Since Fortification Problems can be interpreted as interdiction problems where the
defender solves another Interdiction Problem, we can extend this work also for the
fortification step.

Once again, we are interested in a RS but, this time, instead of sampling the set Y
of defender’s solutions, we will sample the set XB of feasible attacks looking for some
X ′ ⊂ XB . XB has a very simple knapsack structure because the solutions are subsets of
the interdictable elements whose interdiction cost does not exceed the attack budget B .

Similarly to the case of the Shortest Path Interdiction Problem, if the fortification
budget P is big enough to immunise some optimal solution (of the last level problem)
we could simply fortify every element in that solution and the problem would be trivial.

Therefore, we are interested in some optimal solution y∗ ∈ Y of minimum
fortification cost (the cost you have to pay in order to fortify the entire solution).
Formally

c∗ := min
y∈Y

c(y)

Y ∗ := {y ∈ Y | c(y) = c∗}

y∗ := arg min
y∈Y ∗

∑
i∈y

pi

In the specific case of the Shortest Path Fortification Problem, finding the shortest
path which minimises also the sum of the fortification costs can be done easily by
modifying Dijkstra’s algorithm so that comparisons will be hierarchical (path cost is
more important that fortification cost) instead of scalar.

A very trivial initial sample can be computed as follows

1 Algorithm FortificationSet(G = (N , A), f : A →R+, BF ∈R+):
2 y∗ = arg min

y∈Y ∗
∑

i∈y fi

3 if
∑

i∈y∗
fi ≤ BF then return trivial instance

4 X ′ = {{i } | i ∈ y∗}
5 return X ′

Algorithm 15: Algorithm for the computation of RS X ′

Algorithm 15 is pretty simple: line 2 is the computation of an optimal solution of
minimum fortification cost (modified Dijkstra’s algorithm for the Shortest Path
Fortification Problem), then we check for the triviality of the instance and at last we
return X ′ as the set of singletons of the elements in y∗.

The set X ′ is indeed a RS because, trivially, if the defender tries to interdict any of the
attacks {i } = x ∈ X ′, he must fortify i . This means that, in order to interdict every attack
x ∈ X ′ we need to fortify all the elements in the optimal solution y∗ which is impossible
since

∑
i∈y∗ pi > P .
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There are some improvements that can be considered:

• if P is much smaller than
∑

i∈y∗ pi we can try to erase some singletons from X ′ in
order to decrease its size but maintaining the property that

∑
{i }∈X ′ pi > P

• we can populate the singletons in X ′ with other elements maintaining two
properties:

1. ∀x ∈ X ′ :
∑

i∈x pi ≤ P (feasible attacks)

2. ∀x1, x2 ∈ X ′ : x1 ∩x2 =; (independent attacks)

The reason for these two improvements is that this way we can obtain stronger
attacks which lead to a stronger super-optimal bound. In fact the lower bound
(because we are minimising) produced by X ′ is the objective of the attack x ∈ X ′ that
produces the smallest defender’s solution

min
x∈X ′ min

y∈Y (x)
c⊺y ≤ min

w∈WP
max

x∈XB (w)
min

y∈Y (x)
c⊺y = c(w∗)

This is true because since X ′ cannot be completely interdicted by the defender, we
know that at least one of the attacks will remain admissible in the optimal solution. The
one with smallest cost is a valid lower bound.

The Algorithm 16 is an improvement of Algorithm 15. The first lines of Algorithm 16
are Algorithm 15 but instead of X ′ we obtain X̂ . Then the first operations (lines 5-10) are
to remove from X̂ all the attacks x̃ such that X̂ remains a resilient set (line 8), starting
from the attacks that produce the solution of minimum cost. Then we initialise X ′ :=;
which is the set of the attacks that will be returned at the end and it is a set of attacks that
do not change anymore during the execution of the algorithm. We compute also the set
L of all the elements outside the attacks in both X ′ and X̂ , they will be the elements
candidate for being inserted in the attacks of X̂ . Then, in the while loop (lines 13-29), we
extract the attack x̃ that produces the minimum cost solution ỹ among all attacks in X̂ .
In the for loop (lines 17-24) we try to insert in x̃ some element of ỹ which is not in any
other attack, preserving its feasibility (line 18). If none of the candidate elements can be
feasibly inserted, the attack x̃ is removed from X̂ and inserted in X ′.

The algorithm returns a resilient set of disjoint (none of them have any element in
common) feasible attacks X ′ of good quality (heuristically). Moreover the cardinality of
X ′ is tractable:

|X ′| ≤ |y∗| ≤ max
y∈Y

|y |

The fact that the attacks are disjoint is crucial for the resilience of X ′ because
otherwise it could be that, fortifying an element that occurs in more than one attack, X ′

might be completely interdicted.
The attacks could be furthermore improved by some exchange heuristics.

Moreover, this approach can be exploited to compute a RS for any problem with a
knapsack solution space.
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1 Algorithm FortificationSetImproved(G = (N , A), c : A →R+, f : A →R+,
BI ∈R+, BF ∈R+):

2 y∗ = arg min
y∈Y ∗

∑
i∈y pi

3 if
∑

i∈y∗
pi ≤ P then return trivial instance

4 X̂ = {{i } | i ∈ y∗}
5 loop:
6 x̃ = argmin

x∈X̂
min

y∈Y (x)
c(y)

7 ỹ = arg min
y∈Y (x)

c(y)

8 if
∑

{i }∈X̂ \{x̃}
pi ≤ P then exit loop

9 X̂ = X̂ \ {x̃}
10 end
11 X ′ =;
12 L = A \

⋃
x∈X̂

x

13 while X̂ ̸= ; do
14 x̃ = argmin

x∈X̂
min

y∈Y (x)
c(y)

15 ỹ = arg min
y∈Y (x̃)

c(y)

16 change = false
17 for j ∈ ỹ ∩L do
18 if

∑
i∈x̃ pi +p j ≤ P then

19 x̃ = x̃ ∪ { j }
20 L = L \ { j }
21 change = true
22 break
23 end
24 end
25 if change == false then
26 X ′ = X ′∪ {x̃}
27 X̂ = X̂ \ {x̃}
28 end
29 end
30 return X ′

Algorithm 16: Algorithm for the computation of an improved resilient sample X ′
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Chapter 8

Conclusions

In this thesis, we described several optimisation problems related to network safety,
focusing on the Weighted Safe Set Problem (WSSP), the Shortest Path Interdiction
Problem (SPIP) and the Set Covering Interdiction Problem (SCIP).

In Chapter 2 we described the WSSP and surveyed the related literature. Then, we
described several linear programming (continuous, integer, mixed-integer)
formulations and introduced several benchmark instances, both from the literature
and newly generated ones.

In Chapter 3 we proposed an exact combinatorial branch-and-bound algorithm to
solve the WSSP. For this algorithm we devised two main versions: the first employs a
strict lower bound procedure that strongly affects many other aspects of the
branch-and-bound; the second applies a flexible lower bound procedure that allows
more freedom in the other aspects of the branch-and-bound even if the bound is
theoretically weaker. We tested the algorithm on the instances from the literature to
show that both versions outperform the state-of-the-art methods. Then, we also
introduced new harder instances and showed that the flexible version outperforms the
strict one.

In Chapter 4 we presented several constructive-destructive metaheuristics for the
WSSP as well as a Scatter Search heuristic. We tuned their hyper-parameters in order to
find the best performing versions in terms of quality of the produced solution in a given
time. Then, we compared the new heuristics with each other and with the only available
heuristic from the literature. The results showed that the new heuristics outperform the
old one and that, among them, the best performing one is the Scatter Search.

In Chapter 5 we shift the focus to Interdiction problems. In particular, we dwell on
the hard interdiction problems where the attacker blocks/erases elements from the
instance. We present a literature survey on these problems and other related problems
like the fortification ones. Then, we delve into details for the SPIP and SCIP.

In Chapter 6 we described the state-of-the-art exact methods for solving
interdiction problems. Then, we proposed an adaptation of these approaches for the
specific case of hard interdiction, along with an original framework that can be
interpreted as a generalization of one of the approaches from the literature. Moreover,
we presented 3 diversification techniques to speed up the computation of the optimal
solution. We showed the improvements of the new methods by implementing them for
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both the SPIP and the SCIP. For the SPIP, we ran the algorithms on grid instances from
the literature showing that the new framework is competitive with the state-of-the-art.
Moreover, we compared the 3 diversification techniques with a few others available
from the literature for the SPIP. For the SCIP, we performed some experimental
computation on new generated instances, yielding results where the original
framework outperforms the other approaches.

In Chapter 7 we introduced the concept of Resilient Sample (RS) which is a subset of
defender’s feasible solutions such that no feasible attack is able to interdict all of them
simultaneously. We provide a method for computing a RS for the SPIP and show that
the same method can be applied to the maximum flow interdiction problem. Then we
generalise the same method for a broader class of interdiction problems that we called
TUBIV. Then we showed the limits of the proposed method and provided an alternative
heuristic method which works for any interdiction problem. At last we described how
to build a RS method for fortification problems and other problems with a knapsack
solution space.
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binary fortification games. European Journal of Operational Research 307, 1026–1039.

Lozano, L., Smith, J.C., 2017. A backward sampling framework for interdiction problems
with fortification. INFORMS Journal on Computing 29, 123–139.

Lunday, B.J., 2024. The maximal covering location disruption problem. Computers &
Operations Research 169, 106721.

Macambira, A.F.U., Simonetti, L., Barbalho, H., Gonzàlez Silva, P.H., Maculan, N., 2019.
A new formulation for the safe set problem on graphs. Computers and Operations
Research 111, 346–356.

Malaguti, E., Pedrotti, V., 2023. Models and algorithms for the weighted safe set problem.
Discrete Applied Mathematics 329, 23–34.

Malik, K., Mittal, A.K., Gupta, S.K., 1989. The k most vital arcs in the shortest path
problem. Operations Research Letters 8, 223–227.

Mansi, R., Alves, C., Valério de Carvalho, J.M., Hanafi, S., 2012. An exact algorithm for
bilevel 0-1 knapsack problems. Mathematical Problems in Engineering 2012, 504713.

Morton, D.P., Pan, F., Saeger, K.J., 2007. Models for nuclear smuggling interdiction. IIE
Transactions 39, 3–14.

PassMark Software, 2022. CPU benchmarks. https://www.cpubenchmark.net.

Phillips, C.A., 1993. The network inhibition problem, in: Proceedings of the Twenty-
Fifth Annual ACM Symposium on Theory of Computing, Association for Computing
Machinery. p. 776–785.

Rutenburg, V., 1991. Complexity classification of truth maintenance systems, in: STACS
91: 8th Annual Symposium on Theoretical Aspects of Computer Science Hamburg,
Germany, February 14–16, 1991 Proceedings 8, Springer. pp. 372–383.

Scaparra, M.P., Church, R.L., 2008. An exact solution approach for the interdiction
median problem with fortification. European Journal of Operational Research 189,
76–92.

Shaw, P., 1998. Using constraint programming and local search methods to solve
vehicle routing problems, in: Maher, M., Puget, J.F. (Eds.), Proceedings of the Fourth
International Conference on Principles and Practice of Constraint Programming (CP
’98), Springer–Verlag. pp. 417–431.

Smith, J.C., Song, Y., 2020. A survey of network interdiction models and algorithms.
European Journal of Operational Research 283, 797–811.

Wang, Y., Buchanan, A., Butenko, S., 2017. On imposing connectivity constraints in
integer programs. Mathematical Programming 166, 241 – 271.



BIBLIOGRAPHY 153

Watts, D.J., Strogatz, S.H., 1998. Collective dynamics of “small-world” networks. Nature
393, 440–442.

Weninger, N., Fukasawa, R., 2023. A fast combinatorial algorithm for the bilevel
knapsack problem with interdiction constraints, in: Del Pia, A., Kaibel, V.
(Eds.), Integer Programming and Combinatorial Optimization, Springer International
Publishing, Cham. pp. 438–452.

Wilcoxon, F., 1945. Individual comparisons by ranking methods. Biometrics Bulletin 1,
80–83.

Wollmer, R., 1964. Removing arcs from a network. Operations Research 12, 934–940.

Wood, R., 1993. Deterministic network interdiction. Mathematical and Computer
Modelling 17, 1–18.


