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ABSTRACT. Pattern classification using a compact representation is a crucial component of ma-
chine intelligence. Specifically, it is essential to learn a model with well-regulated parameters to
achieve good generalization. Bridge regression provides a mechanism for regulating parameters
through a penalized ¢,-norm. However, due to the nonlinear nature of the formulation, an
iterative numerical search is typically used to solve the optimization problem. In this work, we
propose an analytic solution for bridge regression based on solving a penalized error formulation
using an approximated fp-norm. The solution is presented in primal form for over-determined
systems and in dual form for under-determined systems. The primal form is suitable for low-
dimensional problems with a large number of data samples, while the dual form is suitable for
high-dimensional problems with a small number of data samples. We also extend the solution to
problems with multiple classification outputs. Numerical studies using simulated and real-world
data demonstrate the effectiveness of our proposed solution.
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1. INTRODUCTION

Pattern classification is an important component for decision making in signal, image and
information processing. Apart from the classifier model and the data concerned, an accurate
classification prediction is also hinged upon factors such as feature representation and model
complexity. In particular, an appropriate selection or weighting between informative features
and non-informative ones can be crucial towards accurate prediction [1]. Moreover, a compact
representation of features not only serves towards resource savage, but also possible feature
discovery [2]. This leads to the attention of compressed sensing [3] that seeks a sparse solution of
systems concerned. To enforce sparseness of estimation, a penalized £p-norm can be incorporated
for learning optimization. In view of the NP hard nature of the fy-norm formulation [4] for
feature selection, alternative solutions for sparse estimation considering ¢; [5] and ¢, norms [6]
have been investigated. Due to the nonlinear nature of the formulation, an iterative search is
often adopted for solution seeking, where convergence becomes a concern.

Besides the features compression aspect, there are also situations when data samples are
scarce. For examples, scarce images of rare disease [7], archaeological samples [8] and other
objects may cast difficulties in effective learning. Several approaches are available to deal with
this situation. These approaches include reduction of model complexity [9, 10], data augmenta-
tion [11], transfer learning [12] and attention mechanism [13]. Depending on the availability of
supplementary information and the requirement of applications, each approach has its strengths
and limitations. The approaches by data augmentation, transfer learning and attention mech-
anism might provide accurate prediction. However, their successful adoption is highly hinged
upon matching of the distribution of augmented, pretrained or focused data with respect to that
of the unknown target data. The approach by model complexity reduction offers a simplified
model but might face the bottleneck when the data for learning is not representative.

In view of the lack of a deterministic solution for analysis and the outlook for an exactly
converged recursive form for online applications, we seek a proximal solution in analytic form
to bridge regression for compressive classification. To deal with problems of small sample size,
we utilize only the given data and work on the approach of model complexity reduction to
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suppress non-informative variables. Different from the iterative approach to solve the ¢y, f1,
elastic-net and ¢, formulations (see e.g., [9, 10, 14]), we formulate a novel deterministic solution
and algorithm for solving the bridge regression which utilizes the £, norm penalty on weight
coeflicients with the error cost function. The main contributions of this work are enumerated as
follows:

e Based on an approximation to the ¢,-norm, an analytic solution for the bridge regression
has been derived independently in primal form for over-determined systems, and in dual
form for under-determined systems. The solution in primal form is found to have a similar
expression as that obtained based on a different cost function utilizing a local quadratic
approximation as the regularization term. The solution in dual form does not find any
precedent in the literature as there has been no attempt from this perspective to the best of
our knowledge. This formulation can be useful for few-shots learning when data is scarce.

e The analytic solution in primal and dual forms are extended to solve for problems with
multiple outputs. In pattern classification, this formulation is useful for multiple category
prediction. Although one could stack multiple predictors of single-output for multi-outputs
prediction, the proposed solution for multi-outputs has the advantage of having a common
covariance for output alignment.

e An algorithm that packs the two analytic solutions for multiple outputs under a single
estimation framework has been constructed. The embodied under-determined and multiple
output solutions are not seen in the existing bridge regression implementation in R. An
extensive study has been performed based on both simulated data and real-world data sets.
Both the solution of the primal form and the dual form show stretchable weight coefficients
estimation for different penalty settings. The solution in dual form shows higher trade-off
between prediction accuracy and coefficient sparseness than that of solution in primal form.

The significance of this research outcome lies in the establishment of a set of solutions for
bridge regression in deterministic form that is useful for analysis and learning recognition appli-
cations. Such a deterministic form not only guarantees the convergence of solution but also is
computationally more efficient since it does not need an iterative search for solution. This opens
up the feasibility of a future development for a convergent bridge solution for online compressive
learning of data that arrives sequentially.

The remainder of this paper is organized as follows. Section 2 provides a brief account of
mathematical preliminaries and related works. Section 3 presents the proposed methodology for
solving bridge regression in primal form and in dual form. The solutions for binary classification
problems are subsequently extended to multi-class problems. Section 4 shows some numeri-
cal case studies for observing the profile of coefficient shrinkage. Section 5 contains extensive
experiments to demonstrate the effectiveness of the proposed solution. Section 6 provides an
observation of results and discussion. Section 7 summarizes the paper with some concluding
remarks.

2. RELATED WORKS

Given a data set {z;, y;} of M samples, the ordinary linear least squares [15, 16] regression
utilizes the model

(1) Yi = m;Ta +€, ac RDa

to minimize the sum of squared errors M ¢ = 37 (y; — 27 a)? with an optimal estimation
given by & = (XTX) " 'X"y where X = [z1,...,zy]" and y = [y1,...,ym]? for M > D when
XTX € RP*PD has full rank. For the situation when M < D and when XX € RM*M phas full
rank, the solution given by & = X7 (XXT)_1 y is known as the least norm solution, which is

exact. Here, we pack them together and call it the ols solution as follows:

(2) & — (XTX)_1 X'y, M > D (primal form)
xT (XXT)_1 y, M <D (dual form)
The ols, which minimizes the residual sum of squared errors, provides an unbiased estimation.

However, the estimation comes with large variance when the input features have collinearity.
The ridge regression [17] regularizes the ols learning by inclusion of a penalty to the weight
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coefficients a (also known as learning parameters) based on the /3-norm. For A > 0, the
resulted solution for minimizing Zf\il(yz —zla)? + A Z?Zl oz]2- can be written as

(3) & — (XTX + )\I)_l X'y, M > D (primal form)
X7 (XXT + A1) 'y, M <D (dual form)

where I is an identity matrix congruence to its summing term. Effectively, the ridge regression
provides an estimation with a set of shrunk weight coefficients relative to that of the ols. Due to
the utilization of the fo-norm penalty, the shrinkage is uniform in each of the D dimensions. The
ridge regression circumvents the problem of singularity by shrinking the estimator via penalizing
the weight coefficients in fo-norm during minimization. Since then, the penalized models have
evolved beyond the fo-norm dealing with challenges related to features weighting and selection.

The bridge regression [6] generalizes the ridge regression by replacing the ¢o-norm penalty with
an ¢,-norm penalty of the weight coefficients where the range of p is commonly taken within
0 < p < 2 for compression reason. In other words, the bridge regression uses the following cost
function for minimization:

M D
(4) D wi—al ) Ayl
i=1 j=1

Due to the difficulty in dealing with the absolute operator and the nonlinear formulation, an
analytic or closed-form solution is yet to be available. Moreover, a consolidated treatment
according to the under-determined and the over-determined scenarios are not available in the
literature. The formulation for the under-determined scenario is particularly useful when the
data is scarce. This was termed small sample size (SSS) problem [18, 19] before the deep learning
era and is also known as few-shot learning [20, 21] in the current literature.

The bridge regression was first seen in [6] where several statistical tools for chemometrics
regression were studied. According to the study, the parameter p can be viewed as the degree to
which the prior probability is concentrated along the favored directions. A value of p — 0 places
the prior mass towards the directions of the coordinate axes, expressing the prior belief that
only a few of the predictor variables are likely to have high relative influence on the response.
When p = 0, the penalized learning is known as wvariable subset selection [16]. When p = 1,
the least absolute shrinkage and selection operator (lasso) [5] shrinks the estimator with some
parameters being zero based on the ¢1-norm penalty. In order to encompass both capabilities
of variable selection and variable shrinkage, the elastic-net [22] leverages amidst ridge and lasso
by weighting between the /1-norm and the fo-norm penalties. Different from the elastic-net, the
bridge regression [6] penalizes the sum of squared errors by the £,-norm of weight coefficients. It
does variable selection when 0 < p < 1, and shrinks the coefficients when p > 1. For 1 < p < 2,
the bridge regression shrinks the coefficients unevenly with a higher penalty towards those less
relevant ones. Attributed to the general penalty form of £,-norm, the bridge regression fits well
into situations when it needs variable selection or weighting.

The structure of bridge was studied in [23] where a general approach to solve the bridge
regression for p > 1 was developed. The algorithm, which was based on a modified Newton-
Raphson method, solved iteratively for the unique solution for bridge for p > 1. According
to [9], the solution for bridge is continuous only when p > 1. In their proposal, a local quadratic
approximation (LQA) has been adopted iteratively for the ¢, penalized likelihood. It turned out
that the minimization problem can be reduced to a quadratic minimization problem where the
Newton-Raphson algorithm can be adopted to search for a solution [9]. In [10], a local linear
approximation has been proposed to replace the local quadratic approximation for solving the
penalized likelihood with better computational efficiency. In [24], both the local linear and
local quadratic approximations have been studied. They showed that the bridge estimator is a
robust choice under various circumstances comparing with ridge, lasso, and elastic net. In [25],
the author introduced an interesting discussion regarding the metric relationship among several
penalized norms.

From the perspective of balancing between computation and compression in applications, the
work of [26] used an iterative alternating direction method of multipliers (ADMM) for computing
the Elastic net penalized quantile regression. In another instance, the work of [27] considered
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incorporation of uncertainty penalty into Bayesian bridge quantile regression. For evaluation of
bridge regression models, the work of [28] proposed a Bayesian selection criterion where the LQA
approximation has been adopted for bridge penalty. To expedite the multi-task lasso, the work
of [29] proposed a feature elimination rule. To gain control of the interpretability of decision
trees, the work of [30] integrated the lasso regularization in the tree induction to find the best
set of attributes that built a regression model.

Collectively, the bridge regression fits well into situations when it needs variable selection or
weighting involving penalized norm values lower than two. An iterative search for the solution
has been the mainstream approach where convergence becomes a concern. Moreover, a con-
solidated treatment between the over-determined systems and the under-determined systems is
lacking. In particular, the under-determined systems can lead to the small sample size prob-
lem where learning generalization is a concern. We address these issues by proposing a proximal
bridge regression paying particular attention to over-determined and under-determined systems.

3. METHOD: PROXIMAL BRIDGE REGRESSION

In this section, we present an analytic solution for an approximated bridge regression called
prozimal bridge regression. The solution comes in primal form for over-determined systems and
in dual form for under-determined systems. We shall introduce an approximation to the /-
norm in section 3.1 before presenting the two solution forms in sections 3.2-3.3. Sections 3.4-3.6
present the multiple output extension, variance analysis and the algorithm construction.

3.1. A k-measure for {,-norm approximation. Consider a positive valued penalty term
that is an approximation of the /),-norm, in which the absolute value operator is replaced by a
differentiable function f.:

1/k

D
(5) el = D felap)* |
j=1
where a = [a1,...,« D]T is a parameter vector. Here, the power term k replaces p in the £,-norm
to indicate the approximation. A convenient choice for approximating the absolute operator,
which can be efficiently computed, is fe(a;) = /a3 + e~ |a;], € > 0 (see 31, 32]) and Fig. 1).
Note that lime_,o fc(-) = | - | for arbitrary € > 0. For finite € values, the function la|; is not

a norm because it does not have the absolute homogeneity property. We shall call 1|x (5) a
k-measure operator for convenience hereon.

cooo

aman

FIGURE 1. Plot of f(a) = va? + € at several € values.

In the following, the raised power form of k-measure is shown to be convex when the approx-
imation function f.(-) is convex.

Lemma 1. Forallk > 1, ]2042\,’2 is convex on o when fc is convex.

Proof: Based on the convexity of f. on each element «;, i = 1,..., D (of the parameter vector
a), we have

(6) Je(pagr + (1 — p)auz) < pfe(ain) + (1 —p) fe(ase), 0<p <1
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Suppose h(6) := 6* with k,6 > 0 where we know that h is nondecreasing and convex on 6 since
dh/df = k6%~ > 0 and d?h/d6? = k(k — 1)0¥=2 > 0, Vk > 1 (see also [33]). Using (6) plus the

fact that h is nondecreasing and convex, we have for each i =1,..., D,
h(fe(pair + (1 = paiz)) < hlpfe(on) + (1 — p) fe(ou2))
(7) < ph(flan) + (1= h(flai)), 0<p<1.

Since summation of convex functions preserves the convexity, we have

D D
(8) Zh(fe(/wéﬂ + (1 = paiz)) < Z,Uh(fe(ail)) + (1= p)h(flaz)), 0<u<l,

=1 =1
. . D N _ D Nk k _ T
which means convexity of > ;7 h(ag) = > ;7 fe(a)® = |y on o = [a,...,ap]". [ ]

Fig. 2 shows the contours of the £,-norm metric for 1 < p < 2 and the corresponding k-
measure ([lal|x, (5)) together with its k-powered form (jla|¥) within the same interval. From
the third row of plots in Fig. 2, except for the difference in curvature, we see that the entire k-
measure and its k-powered form approximate well to the solution p-norm for the plotted range of
1 < {p, k} < 2. This suggests vertices of the vector space being feasible solutions for the desired
constrained solution search. Such an observation shall be exploited in the following development
for compressive solution when 1 < k < 2.
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F1GURE 2. Contour plots at levels [0.1, 0.4, 0.7, 1]. Top row: ||, for p €
{2.0,1.5,1.1}. Second row: |y for k € {2.0,1.5,1.1} at € = 0.0001. Third row:
peqff for k € {2.0,1.5,1.1} at € = 0.0001. Bottom row: §>°7_, |ag;|?%a3 for
q € {2.0,1.5,1.1} with ag; = a; — 0.01.

The bottom row of Fig. 2 shows another approximation of the ¢,-norm by a Local Quadratic
Approximation (LQA, [9]) given by

qlagl’™" 5
9 a4 ~ ;i q += C — ol
( ) ’ ]‘q | ]| 9 |040j| ( 7 0])’
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where the minimization problem of an approximated bridge regression can be expressed as
T q —
; - X - X 1 E ' 19—2
(10) argiin (3 0‘) (y 0‘) 9 £ . ‘a0J| «a

The plots of LQA in this row have been generated based on 2 ?:1 | o |92 a]z for q €
{2.0,1.5,1.1} at ag; = a; — 0.01. These plots show much difference between the adopted k-
measure and the existing LQA [9].

3.2. Proximal bridge regression in primal form. For over-determined systems, we mini-
mize the sum of squared errors with a k-measure penalty as shown in Theorem 1 below. We call
such minimization proximal bridge regression in primal form (or primal p-bridge in brief). In
this formulation, o denotes an element-wise operator. For example, A°* indicates raising each
element of A to the power k. Also, diag(a) denotes a diagonal matrix with its diagonal elements
given by vector a, and eig;(A) denotes the jth eigenvalue of matrix A.

Theorem 1. Given the data {x;,y;}, i = 1,..., M where x; = [z;1, - ,xi,D]T and y; are
respectively the regressors and the response for the ith observation. Consider the linear regression
model Xa with parameter vector o € RP and regressor matriz X = [1,---,zp]T. Suppose

XTX is of full rank. Then, under the limiting case of € — 0 and for k > 1, & that satisfies

Mk -1
(11) a = ( diag{|a|*® =2} + XTX> XTy
minimizes
(12) (y — Xa)" (y — Xax) + Apetl},
o(k —2)

when the matriz (2 diag{|c| } + XTX) is invertible. This happens for sure as soon as

)\k‘
13 = <  mi ig;(X7X)).
(13) 5 e ,D}(‘%‘ ?) je{I}f}gD}(eng( )
Proof: According to the definition of k-measure in (5 = [(a@+e)k/4 . (a2 | +e)FHT

), let
where we can write o]y = (@’ @)/ and |} = (&" ). Next take the first derivative of (12)

with respect to a and set it to zero:

0
da

ok
—2XT(y - Xa) + )\g 2a 0 (a°2 +¢€) (3

(y - Xa)'(y - Xa) +ra'a) = 0

—1)

o
)
Qi
I

o

=

o(k — o
—2X"(y — Xa) + Mk ao (a® +€) G-1, (a”?+€) =0
02 ol -1 _ T
= )\kao(a +e) = 2X'(y — Xa).
(14)
For the limiting case of €, we have
o(k — o(k —
limka o (a™ +¢) G=Y ~ kao (a®?) -1
e—0
1 ok=2
— k:sgn( )O (ao2)§ o (0102) 2

(15) = ksgn(a)o (a®?)” 7 .
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Equation (14) can then be written as

Ak sgn(a) o (aOQ)O% = 2XT(y — Xa)
= sma)olalt ) = X'(y - Xa).
% sgn(a) o |a** 1 4+ XTXa = XTy,
%ao la)?® =2 4 XTXa = XTy,
(16) (2’“ diag{|a|°® =21 + XTX> a = Xy,

which leads to (11) when (’\2—’C diag{|a|°®* ~2)} + X7X) is nonsingular.
Let A = 2F diag{|a|°* =2} and B = X”X which is given to be of full rank, then A + B can

be written as B(I + B7'A). Based on the power series expansion, we have (I + B~1A)~! =
I+(-B7!A)+(-B71A)2+(-B~'A)3+. .., that actually converges to the inverse of I+ B~1A

whenever | — B7'A|| < 1 for any sub-multiplicative norm. When A is symmetric, we have
[A]l = max;(|eig;(A)]) for matrix norm given by [[A[| := sup,g W Since this norm is

sub-multiplicative, we also have || — B7*A| < || — B7!|||A|. Hence, | - B~ !A|| < 1 is implied
by

. _ Ak _
an) (e, (O X)) - 2 ) < 1,
or
1 Ak
1 S22 |(k=2) 1.
(18) min, (jeig, (7x)]) | 2 sl <

This leads to (13) where the absolute values are not necessary as eigenvalues for X7 X are
positive.

Finally, as both (y — Xa)T(y — Xa) and |} (Lemma 1) are convex on a for k > 1,
the summation of two convex functions in the objective function (12) is convex. Hence the
minimizer. |

Remark 1: In practice, when the samples are uncorrelated, it is frequent to have XX
invertible or have condition (13) satisfied.

It is interesting to observe that the solution given by (11) appears to have a similar form
as that in [9, 24] (see (19)) where a different £)-norm approximation, based on the LQA (i.e.,
minimization of (10)) instead of the k-measure (i.e., minimization of (12)), had been utilized
for the penalty term.

A 71
(19) aj = (2(‘] diag{|evg;|°? =2} + XTX> XTy.
U

3.3. Proximal bridge regression in dual form. For under-determined systems, we minimize
]Za2|ﬁ subject to y = Xa. We call such minimization prozimal bridge regression in dual form
(or dual p-bridge in brief). Similar to the primal proximal bridge regression, our goal here is to
have a compressive estimate for 1 < k < 2.

Theorem 2. Consider an under-determined system'y = Xa, where'y € RM is the given target
vector, X € RM*P s the regressor matriz and o € RP is the parameter vector, with number of

1
samples M < D regressor dimensions. Assume XX and X|XT|°5 =T are of full rank for certain
k > 1. Then for that k > 1 and under the limiting case of € — 0, the stationary point given by

1
°%—1
)]

(20) & = sgn(0)o|XT (XXT) I x¢* 1

where

—1
(21) 6 = XTPEr[XXTPE]
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minimizes
(22) helf subject to y = Xa.
Proof: According to the definition of k-measure in (5), let & := [(a2+€)*/4, .-, (o, +e)F/4T

where we can write lalx = (@’ @)/* and |t = (" @&). Then, taking the first derivative of
the Lagrange function of (22) and setting it to zero gives:

i(aTa+ﬂT(y—Xa)) =0
g-zao(a°2+e)°(%’1)o2d—XT[3 =0
kao(a? 4+ Vo (a2 —XT8 = 0

(23) = kao(a?+e) Y = XTg,

For the limiting case of €, we have

2 g hao (@?+e)F 0~ kao(a?) Y,

e—0

which implies

kao(a?)” 7 = X'
ksgn(a) o (aoz)% o (aOQ)O% = X'
ksgn(a) o (a02 T xXTp
(25) = (a02)0% = sgn(a)o <;XTB) .
Taking square elementwise for both sides of (25), we have
(26) ()Y = <1XTB> -
k

We know that the vector lim¢_.q (a°2+e) has nonnegative elements and thus lim¢_g (0402 + e) °
has nonnegative elements. Hence, we deduce from (23) that sgn(a) = sgn(X?'3), and

oL

1 -1
(27) o = san(X7B)o XT{kﬂ}
Next, suppose that
1 \|°FT
o 1
(28) sen(X7 @) [x7 {18} T = XTIy

for some «, then premultiply X to both sides of (27) gives

oL

1 k=1
Xa = Xsgn(X'g)o XT{kB}
= Xa = X|XT]°ﬁ’y, according to (28)
=y = X|XT]°ﬁ*y, since y = Xa

(29) =

-1 -1
[X‘Xﬂ%%] y, since [X!Xﬂoﬁ] is invertible.

(5 -

1)
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Knowing also that XX is invertible, we substitute (29) into (28) and get

o(k—1)

1 “F—1 oL o1 -1
sen(X7 o [x! {18} 7 = xton [xixte]
-1 o(k —1)
xt {18} = sXT)o|XIPR [xx!RT] Ty
/1 T Tioz5 Tot:] 7t o=
xx?{1a} = sen(x7p) % XTI [xxT ]y

(30)

Subsequently, substitute (30) into (27) and we have

B 1 o(k—1)
& = sgn(X7B)o X7 (XX7) 1X<\XT|%11 [X\XT]Oﬁ} y> R
(31) = sgn () o [XT (XXT) ' X0k~ DorT
where
Tio—— Tio 171
(32) 9 = X7 [X|x | k—l} y.

The sign of sgn(XT3) = sgn (@) has been deduced from the top row of (30). Equations (31)-(32)
hold well without singularity for all @ € R” and all X € RM*? for k > 1. Finally, since |} is
convex according to Lemma 1 and the linear constraint function (y = Xea) is also convex, the
Lagrange function of (22) is convex. Hence the minimizer. ]

Remark 2: In [31], a simpler version of global solution was conjectured for a weighted least
norm regression. However, Theorem 2 reveals that such a solution cannot be any simpler.
From application viewpoint, although the validity of k£ stretches beyond 2 in Theorem 1 and
in Theorem 2, the region of interest for parametric shrinking is £ < 2. We shall thus focus
on k € [1,2] for over-determined systems and k € (1,2] for under-determined systems in our

development, both included the well-known non-compressive £s-norm for benchmarking purpose.
O

3.4. Extension to Multiple Outputs. The above results can be extended for regression with
multiple outputs. Particularly, by utilizing the same regressor matrix (X) with different outputs
(yi, L =1,...,C), the solution can be stacked for concurrent prediction. For example, suppose
A stacks the multiple columns of estimated coefficient vectors [G1,...,ac] € RPXY then the
prediction can be computed as Y = XA. For classification applications, an one-hot encoding
can be adopted for learning and the winner-take-all technique can be used to predict the outcome
from the multi-category responses. As the outputs do not depend on each other, the extensions
for the primal and the dual forms are straightforward.

Theorem 3. Given the data {x;,y;}, i =1,...,.M, l =1,...,C where ©; = [x; 1, - ,zip|T
and y;; are respectively the regressors and the response for the ith observation of the lth output.

Consider the linear regression model X A with parameter matriz A = [, . .., o] € RP*C and
regressor matriz X = [z, ,xp)”. Suppose XTX is of full rank. Then, under the limiting
case of ¢, — 0 and for k > 1, &, ..., Q¢ that satisfies

Ak ok — 2) <) xT
(33) o = ?dlag{|al| }+X'X) X'y, 1=1,...,C,
minimizes

(34) (vi — Xau)" (y1 — Xau) + Apof,
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for each target-parameter pair {y;,oq}, | = 1,...,C, y; € RM, «a; € RP when the matriz
(Ak diag{|oy|°* =2} + XTX) is invertible. This happens for sure as soon as

Ak
35 22 max (Jay|®P) < min (eig;(XTX)).
(35) 5o (o (70) < min | (eig(X7X)
Proof: Since thel =1,...,C outputs are independent of each other, the regression for estimat-
ing each oy, [ = 1,...,C can be performed independently. Hence the result. |

Theorem 4. Consider the under-determined systems y; = Xaoy, | = 1,...,C, where y; € RM
is the given target vector for each output, X € RM*D js the regressor matriz and o € RP is
the parameter vector, with number of samples M < D regressor dimensions. Assume XX and

1
X|XT1°% are of full rank for certain k > 1. Then for that k > 1 and under the limiting case
of €, — 0, the stationary point given by

(36) & = sgn(0)o|XT (XXT) ' x0* Y i

where

(31) o = [XTITT XXy

minimaizes

(38) oyl subject to y; = Xey, 1=1,...,C.

Proof: Sincethel =1,...,C outputs do not depend on each other, the regression for estimating
each aj, I = 1,...,C can be performed independently. Hence the result. |

3.5. Variance Analysis. In this subsection, we analyze the variance of the estimate and observe
the essential properties. We shall work on the single output case only since the multiple outputs
case is a direct stacking of the single output case. Assume the data is generated according to
y = Xa + € with X € RMXP o ¢ RP where € is a zero mean noise with covariance matric
C. For the over-determined case, we have M > D. Suppose the estimation is initialized by ay,
then the expectation of & is

1
Ela] = E <>\2kdiag{ao\°(k—2)}+XTX> XT(Xa+e)

1
_ <”‘C diag{|a0|°(k_2)}+XTX> X Xa

2
(39) # o, YVbk>1,1>0.
This shows that the estimation is biased for the ranges of our working k values and A val-
ues. For the special case when A = 0, we have an unbiased ols estimation since E[&] =

B[(XTX) "' X (Xa+¢)| = F|(X"X) "' X Xa| = a.

For the under-determined system where M < D, the expectation of estimate is

1
°%—1
)

o1 o1 771
0= |XT\ k-1 [X\XT| k—1:| (Xa +€),
(40) £ .
The inequality holds because the rank of

Ela] = E |sgn(0)o|X7 (XX7) " x0°k 1)

_1
°%—1

. o(k — 1)
‘XT (xx7) 7' x {yXT\%il [X\Xﬂ"ﬁ} ' Xa}

is at most M (due to (XXT)fl) which is smaller than D. The above analyses for the over- and
the under-determined cases show that both the estimates are biased, and this is consistent with
the compressed estimation where some ideal parameters have been suppressed.



DETERMINISTIC BRIDGE REGRESSION FOR COMPRESSIVE CLASSIFICATION 11

For variance of the over-determined case, we have

El(& — Ela])(a - E[&))"]

Ak -1 Ak -1 T
=F <2 diag{|o|** ~ 2)}+XTX> XTe <2 diag{|axo|°* ~ 2)}+XTX> XTe

—1 7] -1
= | (% dinsflaal"*~2)4x7X) X | Elee’] [<A2kdiag{|aol°(’“‘2)}+XTX> XT]

-1 7 -1 17
(41) = (A;“diag{yao"(k?)}erTX) x| c <)\2kdiag{|ao|°(k2)}+XTX> XT] .

When k = 2, it reduces to ridge regression where standard analysis applies. For other k values,
the situation becomes complicated.

For the under-determined case, it is difficult to simplify E[(& — E[&])(& — E[&])”] due to the
nonlinearity incurred by the absolute exponent. However, when k = 2, it also reduces to the
minimum norm solution case where standard analysis applies. Again, for other k£ values, the
situation becomes complicated.

3.6. Algorithm. The algorithm for the proposed proximal bridge regression can be readily
implemented following the pseudo-code below. The pipeline of the algorithm is shown in Fig. 3.
Here, both the over- and under-determined cases have been included according to the shape of the
regression matrix. In the algorithm, Y denotes the packed target matrix given by [y1,...,y¢]
and the estimated parameters are packed as A = [&1,...,&p]. The initialization for A in
the primal solution has been based on the ordinary least squares (ols) solution. For numerical
stability under practical considerations, all the inverse terms have included regularization.

Algorithm 1: p-bridge

Inputs: input samples X € RM*P from the training set, label matrix Y € RM*¢,
proximal-norm value k£ and regularization factor .
if M < D then
if Kk =2 then
P =X7;
else
P = X751
end
© = P[XP + M| 71Y;
A =sgn(0) o |XT(XXT + A1)~ X @K1
else
A = (XTX + D) XTY;
if k£ <2 then
for j < 0to 4 do

1
°%—1
)

A -1
A(j—l—l) = (XTX + %diagﬂA(j)]O(k_Q)}) XTY;

end

A = A(5)
else

A = A(O)
end
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Under-determined System

Yes
O = P[XP +AI]"'Y
—> - o
A = sgn(@)o|X" (XXT+AD) ' X@ ¢ V|

Yes No P= IXT|°ﬁ
X and Y A

A e R 1o\ o T |A = A
No @ Agjon=(XTX+ L diag(1A"42)) XTY =

Yes

o~}

]

»
5

No A=Ag

A = XTX +aD)'XTY (= k<2?
Over-determined System

F1GURE 3. Pipeline of the algorithm

4. CASE STUDIES

In this section, we perform some empirical studies under the Matlab platform on a real-world
data set and a simulated data set namely, the prostate cancer data, the Exclusive-OR (XOR)
problem. Our goal here is to observe the behavior of the proposed method comparing with state-
of-the-arts. For the prostate cancer data and the XOR problem, both the coefficient profiles and
the estimation results will be observed.

As a representative example for over-determined systems, the prostate cancer data from [34],
which has been used by [16, 5, 22] as a benchmark example, is adopted to learn a linear regression
model based on 67 training samples. This data set has a continuous response with 8 input
variables. These inputs together with an intercept term give rise to 9 estimation coefficients for
the linear regression model and this forms an over-determined regression system. On the other
hand, as a representative example for under-determined systems, a 3rd-order polynomial model
given by

2 2 3 3 2 2
(42) p(x1,22) = ag + @121 + @aZa + azr] + auxs + asx1x9 + ATy + arh + agTiTe + Ax1X,

is deployed to learn the well-known XOR problem with four training data samples. The inputs to
the XOR problem are (x1,z2) € {(0,1),(2,1),(1,0),(1,2)} with their corresponding target out-
puts given by y € {0,0,1, 1}, respectively. The system formed by learning the XOR data using
the polynomial model constitutes an under-determined system since the number of parametric
coefficients (ay, ..., ag) is larger than the four learning samples. A total of 200 test samples for
this XOR problem has been generated for mapping evaluation. These test samples have been
generated by a bivariate Gaussian random number generator with centers located at the four
training points, each center corresponds to 50 samples with an identity covariance matrix scaled
by 0.3. The responses of these test data follow the labels of the four centers respectively.

4.1. Over-determined system: prostate cancer example. Coefficient Profile: The
profile of each coefficient estimate is observed with respect to variation of shrinkage settings
following [16, 5, 22]. We shall first show the coefficient profile for the well-known ridge regression
according to [16] for immediate reference. Fig. 4 shows the ridge coefficient estimates plotted
as function of df(\) = tr[X(XTX + AXI)~!XT], the effective degrees of freedom implied by the
penalty A (see [16], Section 3.4).

As one of our interests here is to check the compression capability of the primal p-bridge
regression in Theorem 1, we shall observe the coefficient estimation at & = 1 and compare it
with that of the well-known the least absolute shrinkage and selection operator (lasso) [5] (see
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Primal ridge regression: k = 2
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FIGURE 4. Profiles of ridge coefficients for the over-determined system: prostate
cancer example.

[35] for the library codes in Matlab). Fig. 5 shows the coefficient profile of primal p-bridge
regression at k = 1 and that of lasso. This plot shows much resemblance of shrinkage behaviors
between p-bridge and lasso for several coefficients, particularly for that of ‘lcp’, ‘age’ and ‘gleason’
which shrunk to zero with a similar order of sequence when lowering the df (raising the \)
value. However, for p-bridge regression, the coefficients of ‘pggd5’, ‘lweight’, ‘svi’, and ‘lcavol’
do not appear to reach zero sequentially as that of lasso. Moreover, for p-bridge regression, the
coefficient of ‘pggd5’ does not terminate together with that of ‘Ibph’ as in the case of lasso.

Primal p-ridge regression: k =1

‘Trace Plot of Coefficients Fit by Lasso
of

0.8 08! . .
06 /"Ca"ol 06 —————|cavol
/ 1
% 0.4 04r SVL?“E
8 0.2 *'*;:::1&9| t
‘;,O—_, 0.2 phg
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: 02 e
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(a) primal p-bridge at k =1 (b) lasso

FIGURE 5. Profiles of primal p-bridge (at k& = 1) and lasso coefficients for the
over-determined system: prostate cancer example.

Prediction results: The prediction results of p-bridge is compared with several state-of-
art methods namely, the ordinary least squares regression (ols) [15, 16], the ridge regression
(ridge) [15, 16], the lasso [5], the elastic-net [22], and the bridge [36]. Table 1 shows the results
of the best chosen models obtained from tenfold cross-validation based on the 67 training ob-
servations. The mean-squared errors (MSE) between the estimated output and the measured
output of the compared methods are reported based on the 30 test samples. These results show
comparable performance of the primal p-bridge with those of the well-known state-of-the-arts.
The estimated coefficients are shown in Table 2 for each method. Here we note that the chosen
models are not sparse in favor of the cross-validated MSE.
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TABLE 1. Prostate example: test mean squared error (MSE) and variables (ex-

cluding the intercept) selected

KAR-ANN TOH, G. MOLTENI, AND ZHIPING LIN

Method Tuned Parameter(s) Test MSE | Variables selected
ols - 0.520 (0.174) All
ridge regression A=1 0.516 (0.175) All
lasso at (Alpha = 1) Lambda = 0.02 0.483 (0.160) | (1,2,3,4,5,6,8)
elastic-net Lambda = 0.06, Alpha = 0.11 | 0.492 (0.164) (1,2,3,4,5,6,8)
bridge A=2 k=1 0.491 (0.164) | (1,2,3,4,5,6,8)
p-bridge A=2 k=1 0.494 (0.167) | (1,2,3,4,5,6,8)

TABLE 2. Prostate example: estimated coefficients for the chosen setting based
cross-validation on the training set

Predictor ols | ridge lasso | elastic-net | p-bridge at k = 1 | p-bridge
0. intcpt 2.452 | 2.416 | 2.467 2.466 2.452 2.452
1. lcavol 0.716 0.690 0.624 0.590 0.637 0.637
2. lweight 0.293 0.292 0.250 0.254 0.256 0.256
3. age -0.143 | -0.135 | -0.095 -0.102 -0.106 -0.106
4. lbph 0.212 | 0.210 | 0.189 0.197 0.193 0.193
5. svi 0.310 | 0.304 | 0.262 0.274 0.274 0.274
6. lcp -0.289 | -0.256 | -0.161 -0.157 -0.196 -0.196
7. gleason | -0.021 | -0.011 0 0 -0.000 -0.000
8. pgegdb 0.277 | 0.258 | 0.186 0.199 0.206 0.206

4.2. Under-determined system: the XOR problem. Coefficient Profile: The under-
determined formulation in Theorem 2 (p-bridge regression in dual form) is applied to learn the
XOR problem for coefficient profiling since there are more coefficients than training samples.
Fig. 6 shows the coefficient profiles of dual p-bridge and lasso. This plot shows a highly sparse
estimation for p-bridge at low k-value (k = 1.05) comparing with lasso. Particularly, when the
shrinkage penalty is low (at small A\ value), p-bridge suppresses all coefficients except those of
23 and 3 whereas lasso emphasizes the coefficients of z; and z2 more than that of 23 and z3
while suppressing all other coefficients. Fig. 7(a) shows that for the range 1.05 < k < 1.1, p-
bridge suppresses most of the coefficients except for the coefficients of 23 and z3 even at A = 0.
The effect of sparseness begins to vanish after £ > 1.1 as seen from Fig. 7(b). The decision
boundaries for both the dual p-bridge regression and the lasso in Fig. 8 show much resemblance
in view of the high contribution of the coefficients of 23 and z3.

Dual p-bridge regression: variation of A at k = 1.05 5
—X
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(a) dual p-bridge

Lambda

(b) lasso

FIGURE 6. Profiles of dual p-bridge and lasso coefficients for the under-
determined XOR problem.

Prediction results: Table 3 shows the results of chosen models based on training the four
observations. The mean-squared errors between the estimated and the generated outputs of
the compared methods are reported based on the 200 test observations. These results show
comparable mapping performance of the dual p-bridge with that of the state-of-the-arts. Here
we note that the bridge [36] did not consider the under-determined case and encountered the
problem of matrix inverse. The estimated coefficients as seen from Table 4 show sparseness for
lasso at Lambda = 0.1 (Alpha = 1) and dual p-bridge at £ = 1.05 and A = 30.
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Dl%l p-bridge regression: variation of k € [1.05,1.10] at A =0
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FIGURE 7. Profiles of dual p-bridge coefficients (by variation of k values at A = 0)
for the under-determined XOR problem.
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FIGURE 8. Decision contours of dual p-bridge and lasso.

TABLE 3. XOR: test mean squared error (MSE) and variables (ay,...,aq) se-
lected based on the four training points

Method Tuned Parameter(s) Test MSE | Variables selected
ols - 0.513 (0.089) All
ridge regression A=6 0.503 (0.047) | (0,1,2,3,4,6,7,8,9)
lasso* - 0.225 (0.011) (0,6,7)
lasso at (Alpha = 1) Lambda = 0 0.799 (0.189) | (0,1,2,3,4,6,7,8,9)

elastic-net

Lambda = 0, Alpha = 0.01

0.799 (0.189)

(0,1,2,3,4,6,7,8,9)

bridge (problem with matrix inverse) - -
p-bridge at (k = 1.05) 2 =30 0.504 (0.040) ©,7)
p-bridge A=0 k=2 0.513 (0.089) All

lasso*: lasso at Alpha = 1 and Lambda = 0.1.

TABLE 4. XOR: estimated coefficients for the chosen setting based on the four
training points (parameters within parenthesis have been prefixed, parameters
without parenthesis have been determined based on training MSE)

State-of-arts Proposed p-bridge regression
Predictor ols | ridge | lasso | elastic-net | (k=1.05) A=30 | k=2, A=0
0. intcpt 0.288 | 0.200 | 0.500 0.644 0.000 0.288
1.z 0.554 | 0.040 0 0.002 0.000 0.554
2. x2 -0.329 | -0.040 0 -0.002 -0.000 -0.329
3. :E? 0.316 | -0.038 0 0.760 0.000 0.316
4. a:% -0.154 | 0.038 0 -0.914 -0.000 -0.154
5. T1x2 -0.063 | -0.000 0 0.000 0.000 -0.063
6. mi’ -0.159 | -0.071 | -0.034 0.406 -0.050 -0.159
7. mg 0.195 | 0.071 | 0.034 0.272 0.054 0.195
8. m%xz -0.301 | -0.051 0 -0.179 -0.000 -0.301
9. iElﬂ?% 0.111 | 0.051 0 0.460 0.000 0.111

15

lasso: at Al and LO.1.

5. EXPERIMENTS

In this section, we conduct experiments on physical data to observe the applicability of the
proposed solution on data of significant size. Firstly, the NIPS 2003 challenge data sets [37]
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are experimented to observe the estimation and prediction behaviors of the proposed p-bridge
solution on data sets of relatively high dimension. Subsequently, we visualize the compression
behavior of p-bridge along with handwritten digits recognition based on two benchmark data
sets namely, the Optdigit [39, 40] data set and the MNIST data set [41, 42].

5.1. NIPS Data sets. The NIPS 2003 challenge data sets consist of both under- and over-
determined scenarios for binary classification. According to [37], the task of the Arcene data
set is to distinguish between cancer and normal patterns based on continuous input mass-
spectrometric data. The task of Dexter is to filter texts about “corporate acquisitions” based
on sparse continuous input variables. The task of Dorothea is to predict which compounds bind
to Thrombin based on sparse binary input variables. The task of Gisette is to discriminate
between two confusable handwritten digits, namely the digit four and the digit nine, based
on sparse continuous input variables. The task of Madelon is to classify random data based
on sparse binary input variables. Table 5 summarizes these data sets in terms of their data
dimensions and sample sizes for training, validation and testing.

TABLE 5. NIPS Feature Selection Challenge Data Sets

Dataset Domain Type 7# Feat. | # Train | # Valid. | # Test
Arcene Mass spec. Dense 10000 100 100 700
Dexter Text categ. Sparse 20000 300 300 2000
Dorothea | Drug discov. | Sp. bin. | 100000 800 350 800
Gisette Digit recog. Dense 5000 6000 1000 6500
Madelon | Artifical data | Dense 500 2000 600 1800

(i) Comparison setup and protocol. Similar to that in the section of case study, the state-
of-the-art methods included in this experimental study are the ordinary least squares regression
(ols, [15, 16]), the ridge regression (ridge, [15, 16]), the lasso, [5], and the elastic-net ([22]).
As the bridge [36] did not consider the under-determined case and encountered the problem
of matrix inverse in most datasets, it is not included for comparison. The platform for this
evaluation has been based on Python 3.9.7 running on an Intel i7 CPU of 2.8GHz with 16GB of
RAM. In view of the stability in handling both the over- and the under-determined systems, the
ols has been implemented based on numpy’s pseudoinverse function (numpy.linalg.pinv) for
computation of the weight coefficients estimate (i.e., using a = pinv(X)@y). The ridge regres-
sion has utilized sklearn.linear model.Ridge function. The elastic-net has been implemented
using sklearn.linear model.MultiTaskElasticNet. In this function, the lasso corresponds
to setting 11_ratio = 1 (where 11_ratio is the mixing value that controls the relative balance
between ¢3and ¢ penalties), and the elastic-net corresponds to setting 0 < 11_ratio < 1. The
parameter alpha in MultiTaskElasticNet controls the overall strength of the penalty term
which is composed of the ¢; and ¢ penalties mixture. Hence, for lasso the only tuning parame-
ter is the strength of constraint alpha > 0 (with 11 ratio fixed at 1) while for elastic-net the
tuning parameters are alpha > 0 and 11 ratio € (0,1). Finally, parallel to lasso and elastic-net,
we have included two versions of our proposed p-bridge in this study. The respective versions
are p-bridge at k = 1.05 which tunes only A and p-bridge which tunes both A and k value. Here
we note that there is fundamental difference between the k value of p-bridge, which corresponds
to the norm value itself, and 11_ratio of lasso which mixes between ¢; and ¢ norms.

As the test labels of these data sets are not released to the public, we shall use the validation
set to test the classification prediction. Except for ols, the hyper-parameters A, k, alpha and
11 ratio for the above methods have been determined based on a twofold cross-validation
utilizing only the training set. These cross-validated hyper-parameters are subsequently utilized
to retrain each method based on the entire training set for test prediction utilizing the unseen
validation set. For tuning the hyper-parameters, the utilized search ranges are 11_ratio € [0.01,
0.1:0.1:1], alpha, A € [0:0.1:1, 2:1:10, 20:10:100, 200:100:1000] and % € [1:0.1:2].

(ii) Results and observation. Accuracy: The results in terms of the average classification
prediction accuracy obtained from 20 runs of evaluation using different training-test partitions
are shown in Fig. 9. The error bars in the plot indicate the maximum and the minimum values.
The average value with standard deviation in brackets are also marked above each bar. The
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classification prediction accuracy is the fraction of samples with their category being correctly
predicted. These results show that p-bridge with full tuning capability (i.e., with both A and
k adjustable) has good prediction accuracy relative to that of the state-of-arts in all data sets
while p-bridge at k = 1.05 shows inferior performance for the Arcene and the Dexter data sets.
The lasso also shows under-performed predictions for these two data sets of under-determined
systems even though these results are better than that of p-bridge at £ = 1.05. The elastic-
net shows relatively under-performed prediction only for the Dexter data set. Attributed to
the utilization of the stable sklearn library and the pseudoinverse implementation, the ridge
and the ols are observed to have good prediction accuracy over all data sets. It is observed
that for p-bridge, the chosen k-values for these five data sets based on training validation are
respectively 1.7, 1.9, 1.7, 1.9 and 1.05. These results show that the Gaussian prior (at k = 2)
might not give the best fit in each case and p-bridge provides the alternatives. The additional
degree of freedom provided by tuning the k values on top of the penalty A term plays a part
in determining a suitable model in face of data diversity. In terms of statistical significance
concerning multiple algorithms on multiple data sets, Fig. 10 shows the Nemenyi test plot [38]
in terms of the ranking of the six compared classifiers. This result shows that p-bridge ranks
among the top two performers. However, there is no statistical significance among the compared
algorithms since all the rankings fall within the critical value. While the performance is about
the same as the top performer in average ranking, the advantage of our proposed method is the
compression beyond the fo-norm penalty offered by these compared algorithms.
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FIGURE 9. Average classification test accuracies with error bars indicating the
maximum and the minimum values. The numbers on top of each bar indicate
the average value and the standard deviation in brackets.
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FI1GURE 10. Statistical Nemenyi average rank plot where CD indicates the crit-
ical distance value. A lower value indicates a higher/better rank.
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Sparseness of estimated coefficients: The estimated regression weight coefficients (sorted
in ascending order) for each method on each data set are plotted in Fig. 11. These results show
that the ols and the ridge have the densest estimation while the lasso and the elastic-net have
the sparest estimation among the compared methods. The p-bridge at k = 1.05 shows sparser
estimation than that of the p-bridge with tuned k and A values for all data sets. The p-bridge
at k = 1.05 show similar sparseness of estimation with lasso only for the Dexter data set, while
lasso show the sparest estimation for the remaining data sets.
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FiGURE 11. Sorted weight coefficients for each data set

Training processing time: The training CPU processing time for each method is shown in
Table 6. Due to the utilization of the computational intensive (but more stable) pseudoinverse
in the ols, the fastest training CPU processing time goes to ridge as it has four data sets clocking
the lowest processing time. Comparing p-bridge and elastic-net, it shows faster processing time
in three data sets (Arcene, Dexter and Gisette) but slower processing time in two data sets
(Dorthea and Madelon). The trend is similar for comparing between p-bridge at £ = 1.05 and
lasso. Here, we note that our implementation of the p-bridge has been based on the algorithm
shown in section 3.6 without optimization of codes.
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TABLE 6. Training CPU time in seconds

Method Arcene | Dexter | Dorothea | Gisette | Madelon
ols 0.125 1.000 24.297 157.578 0.313
ridge 0.063 | 0.109 3.391 10.922 0.016
lasso 3.500 1.250 1.297 106.234 0.063
elastic-net 2.266 3.625 2.531 108.594 0.125
p-bridge at k£ = 1.05 0.125 0.969 14.984 100.875 0.313
p-bridge 0.172 1.047 16.547 97.375 0.313

Summarizing the experiments on the NIPS data sets, in terms of the prediction accuracy,
the good performance relative to state-of-arts on all data sets shows the capability of the p-
bridge to balance between the constraint weightage (A) and the k-value which is related to the
underlying /,-norm prior. The sparseness of estimation for p-bridge is seen to be controlled
by the A and k values. For under-determined systems, the accuracy of prediction appears to
be much affected by the k values close to 1. In terms of training processing time, the current
implementation of p-bridge shows faster processing speed than that of elastic-net in three data
sets but slower processing speed in two data sets. These results show competing prediction
accuracy and processing time with the state-of-the-arts.

5.2. Recognition of Handwritten Digits. The goal of this experiment is to observe the
stretching behavior of p-bridge for prediction between the £1-norm and the fo-norm minimization
of the parameter vector, particularly for data sets with large regions of empty background as a
form of multicollinearity.

The first database is for optical recognition of handwritten digits (abbreviated as Optdigit)
where it was collected based on a total of 43 people [39, 40]. The original 32x32 bitmaps were
divided into non-overlapping blocks of 4x4 where the number of on pixels were counted within
each block. This generated an input matrix of 8 x8 where each element was an integer within the
range [0, 16]. The dimensionality is thus reduced from 32x32 to 8x8. Each of the 10 numerical
digits constitutes a category for recognition. The total number of 5620 samples are divided
equally into two sets for training and testing in our experiment. The left panel of Fig. 12 shows
some samples of the reduced resolution image taken from the training set (upper two rows) and
the testing set (bottom two rows). The second database is the MNIST data set of handwritten
digits [41, 42] which is a popular benchmark for algorithmic study and experimental comparison.
This data set contains a training set of 60,000 samples and a testing set of 10,000 samples where
each sample image is of 28 x 28 pixels resolution. Similar to the Optdigit, the MNIST data set
has an output of 10 class labels. The right panel of Fig. 12 shows some training (upper two
rows) and testing (lower two rows) sample images from the MNIST data set.

MEWMEE EHEBEEER
SRCEFRENT
HMEIEHHMNDN BAEBA
HNAEHERE GBEHMER

FIGURE 12. Samples of Optdigit (left panel) and MNIST (right panel) data sets.
Samples shown in the upper two rows are taken from the training set and samples
shown in the bottom two rows are taken from the test set.

(i) Experimental Setup. The input images of the two data sets of handwritten digits are
mapped to the polynomial space for discrimination beyond linear decision. For the Optdigit
data set, each image (8x8 pixels) is pooled at various sizes and reshaped into a row vector
before expanded by a full polynomial of second order to generate the input features (1x2145
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including the bias term) for regression. This data set for Optdigit is divided equally with each of
the training and test matrices of 2810%x2145 size. For the MNIST data set, a reduced polynomial
[43] of third order has been applied to the pooled vector to generate the feature vector (1x22661
including the bias term). The training matrix is of 60,000x22661 size and the test matrix is of
10,000x 22661 size for MNIST.

Both the over-determined and the under-determined settings of p-bridge will be evaluated.
For the over-determined setting, the entire training matrix is utilized for training. For the under-
determined setting, only 10 samples (1 sample for each of the 10 digits) are utilized for training
for both the databases. This is known as one-shot learning in the community of computer vision.
For both the over- and under-determined cases, the entire test set is utilized for evaluation.

(ii) Results and Observation. Over-determined case: Fig. 13 shows the test accuracies
of the over-determined p-bridge for various k-values in {1.1,1.2,...,2.0} for both the databases.
Alongside, the test accuracies for MultiTaskElasticNet is plotted at different mixing values
of 11 ratio in {1.0,0.9...,0.3,0.2,0.001} for Optdigit and MNIST, both at alpha=0.1. Here,
11 ratio=1 indicates the lasso setting and 11 ratio< 1 indicates an elastic-net setting with
11 _ratioa— 0 approaches the fo-norm estimation. For both databases, the results show devi-
ation from that of fo-norm estimation when the k-values move away from 2.0 for p-bridge and
when 11 _ratio values move away from 0. The deviation behaviors for p-bridge and elastic-net
are apparently different. The p-bridge shows relatively stable prediction with a marginally up-
trend whereas the elastic-net shows a deterioration trend when moving away from the f3-norm
estimation. The peak performance for p-bridge shows a 99.15% accuracy at k = 1.3 for Optdigit
and a 97.01% accuracy at k = 1.7,1.9 for MNIST. For elastic-net, the mixing of fo-norm estima-
tion with /1-norm estimation appears to cause significant deterioration of prediction accuracy
for these two data sets.
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FIGURE 13. Accuracy results for the over-determined estimation. The asterisk
(*) marks the highest accuracy achieved.

Under-determined case: Fig. 14 shows the accuracies of prediction by the p-bridge and
elastic-net under the under-determined (single-shot learning) scenario. These accuracies are
plotted over variation of the k-values and the 11 _ratio-values respectively. Here, the prediction
accuracy appears to degrade for both the p-bridge and the lasso for most cases when the esti-
mations are moved away from the /y-norm formulation (kK = 2 and 11_ratio — 0). However,
the prediction accuracy of p-bridge peaks at £k = 1.90 and surpasses that based on the f-norm
for both the databases.

Estimated coefficients: Here, we study the estimated coefficients of p-bridge and compare
them with those of lasso using the MNIST database under the over-determined setting. In order
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FIGURE 14. Accuracy results for the under-determined estimation (one-shot
learning). The asterisk (*) marks the highest accuracy achieved.

to observe the importance of each pixel in the estimation process, a weighting coefficient is tied
to each pixel for the estimation. This gives rise to a linear regression model with 28 x 28 + 1
parameters and 10 sets of weight coefficients corresponding to the one-hot encoded target digits.
The lasso is set at (11_ratio=1, alpha=0.01) and the p-bridge is set at (k = 1, A = 10). Fig. 15
shows the heatmap of the learned coefficient values for each of the 10 digits. In general, these
heatmaps show sparseness of the coefficients due to the ¢ penalized learning for both lasso and
p-bridge. In terms of the emphasized pixels with high absolute coefficient values, both lasso
and p-bridge show similar locations, for both the positively emphasized (darker box) and the
negatively emphasized (brighter box) pixels with variations. However, the value ranges of the
coefficients differ for lasso and p-bridge. The lasso shows a lower prediction accuracy (82.5%)
than that of the p-bridge (86.1%).
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FIGURE 15. The estimated coefficients for each digit.

In order to observe which are the informative pixels responsible for discrimination, we plot
the sum of training images and its logarithmic form plus the logarithm of the sum of absolute
estimated coefficients corresponding to each of the pixels in Fig. 16. The main reason to plot in
logarithmic form is to reveal near zero values which are not visible in the original plot. These
images show close correspondence between the logarithm of sum of training images (the plot at
top right) and that of the estimated coefficients (the plot at bottom right) of p-bridge. This
results shows all the informative pixels of the image have been utilized by p-bridge. As for lasso,
not all informative pixels have been utilized due to its crisp variable selection mechanism.

Summarizing the experiments for Optdigit and MNIST, both the over- and the under-deter-
mined cases show peaking of prediction accuracy beyond k = 2 (¢2-norm regression) for p-bridge.
This reveals the importance to move away from the Gaussian prior.
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FiGure 16. MNIST: The top two panels are heatmaps of the sum of training
images (left) and its logarithmic (right) images. The bottom two panels are the
heatmaps of the logarithm of sum of absolute coefficients for lasso (left) and p-
bridge (right).

5.3. Summary of Results and Observations. NIPS data sets: In this set of experiments
on binary classification, we have observed the estimation and prediction behaviors of p-bridge on
real-world and artificial data sets of large dimension at under-determined (Arcene, Dexter, and
Dorothea) and over-determined (Gisette and Madelon) settings. The results and observations
are summarized as follows:

e Prediction accuracy: under various data situations, the p-bridge with adjustable A (strength
of constraints) and k-value (related to the ¢,-norm value) shows consistent and competing
prediction accuracy relative to state-of-the-art methods namely, ols, ridge, lasso and elastic-
net. For p-bridge at k& = 1.05 (high compressive setting), the prediction accuracy shows a
compromised performance for some of the under-determined cases due to the heavy bias
introduced with many regressors being suppressed.

e Sparseness of coefficients: in general, the p-bridge shows comparable sparseness of estimated
coefficients relative to that of elastic-net but lower sparseness comparing to that of lasso.
For under-determined systems, the p-bridge at k = 1.05 achieves comparable sparseness of
estimated coefficients by trading off the prediction accuracy.

e Training processing time: while the implemented p-bridge in Python was not code optimized,
its training processing time shows competing processing speed with that of sklearn library’s
MultiTaskElasticNet except for the Dorothea and Madelon data sets.

Recognition of handwritten digits: In this set of experiments on multi-category classifica-
tion based on multiple outputs formulation, the behavior of p-bridge is summarized as follows:

e Prediction accuracy: for the over-determined setting, the p-bridge shows relatively stable
prediction over various k values with peak accuracy away from that at k& = 2. This shows
the inferiority of the Gaussian prior in these cases. For the under-determined setting, the p-
bridge shows a decreasing prediction trend of accuracy with respect to lowering of k values.
This can be interpreted as a trading off of accuracy with a higher sparseness of estimation.
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e Sparseness of coeflicients: an interesting observation from Fig. 16 is the high agreement of
the zero-value coeflicients with the background regions of the summed digits for p-bridge.
Moreover, the emphasized coefficients (for both positive and negative values) are seen to
fall on unique regions for each digit in Fig. 15.

6. DISCUSSION

The proposed solution to the proximal bridge regression has been primarily motivated by the
time consuming iterative search and convergence issue of those existing means. The solution has
been formulated according to the two arising scenarios of over- and under-determined systems
in practice. Capitalized on the better conditioning of matrix inversion among the two available
options from the over- and under-determined cases, the solution for the under-determined system
can be suitable for handling small sample size problems. The derivation of the solution has been
based upon a smooth approximation of the absolute function by a differentiable surrogate.
For the over-determined case, it turns out that the solution in primal form coincides with one
derived based on a different cost function that utilized a local quadratic approximation as the
regularization term. Although the solution comes in a recursion form, it turns out to affect only
the regulation term. This can be utilized as a hyperparameter for generalizaton tuning. While
the primal solution form works with inclusion of £ = 1, the dual solution form works for k& > 1.
An analysis for the primal and the dual solutions shows that both estimates are biased, and this
is consistent with the compressed estimation where some ideal parameters can be suppressed.

The solutions of the primal and dual forms have been extended to solve problems with multiple
outputs. An algorithm that packs the two analytic solutions for multiple outputs under a single
estimation framework has been constructed. Capitalized on the common covariance, estimation
of the solution to multiple outputs can be packed in single matrix form. The simulated case
studies verified the profiles of variables compression. The experiments on real and synthetic
data sets of high dimension and large number of samples demonstrate the usefulness of the
implementation. In terms of training processing times, the computation could be heavy due to
the inversion of the covariance matrix. This is particular true for problems with large feature
dimension and large sample size. In terms of prediction accuracy, the p-bridge shows relatively
stable prediction over various k values with peak accuracy away from that at k& = 2 under the
over-determined setting. For the under-determined setting, the p-bridge shows a decreasing
prediction trend of accuracy with respect to lowering of k£ values. This can be interpreted as a
trading off of accuracy with a higher sparseness of estimation. The visualization of parameters
for digits recognition shows high agreement of the zero-value coefficients with the background
regions of the summed digits.

7. CONCLUSION

Dealing with convergence in iterative search is a challenging task in penalized learning, and
the issue of small sample size learning has not been adequately addressed in bridge regression.
In this work, we derive an analytic solution for bridge regression based on an approximation to
the £,-norm to address the solution search problem. The solution is presented in primal form
for over-determined systems and in dual form for under-determined systems. Due to better con-
ditioning of the matrix inversion among the two available options, the dual form is particularly
useful for small sample size learning. We extend these solution forms to problems with multiple
outputs. Both the primal and dual estimations are shown to be biased as some coefficients
are suppressed in the penalty formulation. We implement an algorithm that combines the two
solution forms into one framework for recognition applications. Several numerical examples and
experiments on real-world datasets demonstrate the usefulness of our algorithm for compres-
sive applications. Specifically, our estimation allows trading off accuracy for higher sparseness
of coeflicients. Visualization of parameters for digit recognition reveals a linkage between the
estimated coefficients and informative pixels.
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