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Abstract.
The interpretation of pulsar rotational glitches, the sudden increase in spin

frequency of neutron stars, is a half-century-old challenge. The common view is
that glitches are driven by the dynamics of the stellar interior, and connect in
particular to the interactions between a large-scale neutron superfluid and the
other stellar components. This thesis is corroborated by observational data of
glitches and the post-glitch response seen in pulsars’ rotation, which often involves
very long timescales, from months to years. As such, glitch observables combined
with consistent models incorporating the rich physics of neutron stars – from the
lattice structure of their crust to the equation of state for matter beyond nuclear
densities – can be very powerful at placing limits on, and reduce uncertainties
of, the internal properties. This review summarises glitch observations, current
data, and recent analyses, and connects them to the underlying mechanisms and
microphysical parameters in the context of the most advanced theoretical glitch
models to date.
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1. Introduction

1.1. Historical overview

Straight after the neutron particle was discovered
in 1932, theoretical speculations about neutron stars
began [1, 2, 3]. The confirmation of their existence
did not, however, come until 1967 when the first
pulsar was discovered, followed promptly by the
detection of three more such sources [4]. Thereafter
the population of observed pulsars quickly increased;
today we know of over 3000 neutron stars detected
at various wavelengths, from the radio band up to
high energies such as TeV γ-rays [5]. Pulsar emission
appears modulated by the star’s rotational frequency
ν = Ω/(2π) (where Ω is the angular velocity), which is
remarkably stable and allows for microsecond precision
in the measurement of the pulsed signal [6].

When, in November 1968, the source PSR
J0534+2200 was discovered in the Crab Nebula, its
period was pinned down to be P = 1/ν = 33.09
ms. Such a short spin period is difficult to explain
if the source were a pulsating white dwarf, which
gave confidence that pulsars are rotating, magnetised,
neutron stars; as proposed by Gold [7]. A few weeks
later the period of the Crab pulsar was found to be
slowly but steadily increasing [8], providing enough
energy to power its surrounding nebula. This secular
spin-down was observed in other pulsars [9] and fitted
in with the theoretical interpretation of these sources.

But then, between February 24 and March 3,
1969, something unexpected happened. The source
PSR B0833−45, associated with the Vela supernova
remnant, sped up, its period decreasing by 134 ns, and
then resumed its spindown at a higher rate than before
[10, 11]. Pulse intensity did not seem to vary before or
after the spin-up [10]. It was immediately appreciated
that this event could be connected to the internal
physics of neutron stars and driven by the relatively
high spindown rate of the Vela pulsar, meaning the
Crab pulsar would also be a good candidate to display
such features [11]. Indeed, in September of the same
year, the Crab pulsar also spun-up, although by a much
smaller amount [12].

The intriguing phenomenon, nowadays called a
pulsar glitch, caught the attention of many researchers
who soon investigated various hypotheses for its origin.
A natural explanation that was originally considered
as the cause of either the spin-up or the change in
spindown rate was a change ∆I in stellar moment
of inertia I. Under the standard model for pulsar
spindown, the relative change |∆I|/I would lead to
fractional changes in frequency |∆ν|/ν and its rate of
change |∆ν̇/ν̇| of similar order of magnitude – this is
not observed, therefore a decrease of moment of inertia
∆I cannot explain both. Several mechanisms were

proposed. For example, mass ejection could lead to
the spin-up [10]; alternatively the spin-up itself could
be due to some small contraction [11] together with
an increase in the braking torque [10]. B. Durney
explored the possibility of mass accretion that then
leads to contraction (and, interestingly, this is likely
the first model that suggests neutron star masses
could be inferred from pulsar glitches) [13]. Other
early ideas included collision with a smaller body
[14], expulsion of plasmoids from the magnetosphere
[15], differential rotation of a fluid star and transfer
(by mixing) of angular momentum from the core to
the outer layers, due to instability-driven changes in
composition gradients [16].

A promising idea was put forward by M.
Ruderman in 1969. He realised that the crust of a
neutron star will become solid soon after its birth [17]
and so the star will be ‘frozen’ in an oblate shape
according to its, then higher, rotation rate; in this state
the crust is relaxed (unstressed). As the star spins
down, the deviation between the crust’s relaxed state
and the equilibrium one corresponding to its present-
time rotation rate will grow, resulting in an increasing
stress to the crust lattice. Eventually, a starquake will
take place that relaxes the stress and decreases the
moment of inertia, giving rise to an observed spin-up
of the pulsar [18]. The early calculations suggested
this could lead to a glitch size close to that observed
in Vela pulsar. However, as Ruderman recognised,
the fact that a glitch was already seen within the
first year of observations could be problematic, as
such starquakes should be rare events [18]. Indeed,
subsequent observations of more glitches of the Vela
pulsar revealed that a standalone starquake model
cannot explain their frequency and size.

Following the starquake conception, Baym,
Pethick, Pines and Ruderman presented a very insight-
ful model that offered an explanation for the glitch
change in spindown rate, which leads to a recovery of
the glitch spin-up on long timescales. The idea built
on the realisation by Migdal [19], and Ginzburg and
Kirzhnits [20], that the neutrons inside the star will be
in a superfluid state, having essentially zero viscosity.
The star can thus be viewed as consisting of two com-
ponents: one comprising the crust and charged par-
ticles which can be assumed uniformly rotating, the
other being the neutron superfluid that can have a dif-
ferent rotational velocity. The two interact via a weak
mutual friction force that couples them together on
long timescales [21]. At a glitch, whilst the charged
component quickly follows the spin-up of the crust (be
it due to a starquake or other mechanism), the neu-
tron superfluid responds slowly, on the characteristic
timescale of the mutual friction, and temporarily dis-
engages from the rest of the star. This gives rise to



Pulsar glitches 3

the glitch change in spindown rate, since the external
torque (assumed constant) now acts on a reduced ef-
fective moment of inertia. A slow relaxation towards
the pre-glitch rotational state is expected as the super-
fluid couples back, and is indeed commonly detected.
The observed relaxation timescales range from days to
months, which is hard to reconcile with normal viscous
processes, but will be the natural result of the presence
of a weakly coupled superfluid. As the authors noted,
“the event [the Vela glitch] can be taken as evidence
that the interior of the pulsar is a superfluid” [21].

The above mechanism remains the prevailing
model for the observable relaxation following pulsar
glitches. In addition to the post-glitch response, the
superfluid can also be invoked as the origin of the
spin-up itself. Central to this picture is the presence
and dynamics of microscopic neutron vortices (detailed
in Section 2). Such vortices can form in otherwise
irrotational superfluids and each of them carries a
discrete amount of circulation. A superfluid can then
sustain a rotation rate that scales with the density
of vortices permeating it. In a decelerating system
such as the spinning-down neutron star, vortices must
move out of the superfluid for its angular velocity to
reduce. However, this might not be possible in certain
regions where continuous vortex flow is impeded by
their interaction with normal matter. For example, in
the inner crust of neutron stars the co-existence of the
neutron superfluid with the solid lattice provides a way
to “pin” quantised vortices in place [22]. As the crust
spins down, the superfluid – unable to expel pinned
vortices – can maintain a faster rotation rate which
will decrease in a non-continuous fashion via vortex
creep, in analogy to what is seen in superconductors
[23, 24]. Glitches will arise when a large group of
vortices collectively unpins and migrates outwards,
rapidly transferring stored angular momentum from
the superfluid to the crust which then spins up [25].
A yet open question within this picture is what drives
the great number of vortices, Nv ∼ 1013, required to
produce a large Vela glitch, to unpin simultaneously
and move over many pinning sites, to annihilate at the
edge of the superfluid. Several possibilities have been
suggested, including crustquake-triggered unpinning,
fluid instabilities and, more recently, vortex avalanches
which will allow a small scale perturbation to grow to a
large-scale unpinning event [26]. As will be covered in
the following, this process of vortex avalanches appears
sufficient to explain both the size and frequency of
observed glitches, but could also operate alongside
other glitch triggers.

1.2. Present-day overview

As more pulsars are being discovered and observed
frequently enough to follow their rotation accurately
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Figure 1. The total number of reported glitches as a function
of their occurrence epoch, from 1969 until early 2021. The effect
of targeted glitch searches such as the ones carried out using
the Jodrell Bank Observatory [27] and Parkes Observatory [28]
pulsar timing datasets is evident between Modified Julian Dates
(MJD) ∼ 50000 − 56000 and highlights the importance of such
comprehensive analyses.

over long timescales, the number of detected glitches
has grown rapidly (figure 1). By early 2022, the
number of reported glitches approached 700, identified
in over 200 different pulsars. Although a simple
estimate implies only about ∼ 10% of neutron stars
display glitches, it needs to be stressed that the real
fraction of “glitching” pulsars could be significantly
higher as glitches are generally infrequent events
and only a small number of sources have been
monitored closely over the years. In fact, despite
their perceived rarity, glitches have been observed
in many different classes of neutron stars such as
in slowly rotating magnetars (young neutron stars
with characteristic magnetic fields B & 1013 −
1015G, whose activity is powered by magnetic, rather
than rotational, energy), rapidly-rotating millisecond
pulsars, accreting sources in binary systems, slowly-
rotating old pulsars, and are a very common feature
among young (age < 105 yr), rotationally-powered,
pulsars. Ongoing and forthcoming pulsar timing
campaigns, such as monitoring at the Jodrell Bank
Observatory, the CSIRO Parkes Observatory, and the
CHIME, MeerKAT, and UTMOST projects, which aim
to closely follow the rotation of many hundreds of
pulsars, will improve the estimates of glitch prevalence
in the pulsar population.

The typical properties of a glitch are first and
foremost the size of the observed spin-up, ∆ν, and
the change ∆ν̇ in spindown rate that accompanies
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it in most cases. The majority of inferred glitch
sizes fall between 10−4 and 50 µHz. When a change
∆ν̇ is observed, it usually has a relative size ∆ν̇/ν̇
that is orders of magnitude greater than the relative
change in spin frequency ∆ν/ν. For a large Vela-
like glitch, typical values would be ∆ν/ν ∼ 10−6

whilst ∆ν̇/ν̇ ∼ 10−3. For most pulsars these changes
appear instantaneous within the accuracy of the data,
although there are a few instances for which the glitch
rise has been partially resolved in time (Section 5.3).

Post-glitch response is highly diverse between
pulsars as well as for different glitches of the same
object [29, 30, 31]. In some cases there appears to
be no evolution towards the pre-glitch state, with the
glitch changes persisting over time. Most often, partial
recovery is observed which can be characterised either
by one or multiple exponential terms, and/or a change
in the second frequency derivative ν̈ (Section 5.4).
The recovery can be on very long timescales (months
to several years) and might be interrupted by future
glitches. An assortment of glitches exemplifying the
variety of the post-glitch behaviour can be found in
figure 6.

Whilst a lack of detectable emission changes
seems to characterise the majority of glitches, and
is considered affirmation of their internal origin, the
situation is different in pulsars with high inferred
magnetic fields and most notably in magnetars.
Glitches in such neutron stars sometimes coincide with
radiative outbursts or more subtle magnetospheric
changes. The latest observations however provide
indications that the pulsar magnetosphere might also
be involved even in pulsars with moderate magnetic
field strengths (Section 6).

This review focuses on the observational attributes
of glitches and highlights examples of the information
they carry about the underlying mechanism and the
physical properties of neutron stars. It does not aim
to be exhaustive in the discussion of theoretical models
(a recent review of glitch models can be found in [26]).
Instead, Section 2 contains some general ideas common
to most models and introduces the key parameters
that enter in the description of the internal superfluid
dynamics, which are frequently used to tie observable
properties to the microphysics. Theoretical details of
specific aspects are discussed along their observable
consequences in subsequent sections.

Pulsar observations, glitch detection and charac-
terisation are presented in Section 3. Section 4 is
about the properties of the most basic glitch param-
eters, such as their size and temporal distribution, and
their possible interpretation. The different stages of
the glitch phenomenon, from the fast rise to the long
post-glitch recoveries, are considered in Section 5 to-
gether with the information they carry about the un-

derlying microphysical mechanisms and internal stellar
structure. Possible connections between glitches and
radiative changes in ordinary pulsars as well as mag-
netars are summarised in Section 6. Finally, the impact
of glitches on the long-term evolution of neutron stars
is discussed in Section 7, followed by a brief summary
and outlook in Section 8.

2. The multicomponent neutron star model

The expected structure of the interior of mature
neutron stars is illustrated in figure 2. Non-accreting
pulsars will be considered, under the assumption that
matter is in its ground state. Underneath a very
thin envelope of light elements such as hydrogen and
helium, we can identify the outer crust region in
the density range 106 g cm−3 − 1011 g cm−3. It is
composed of relativistic electrons and fully ionised,
heavy, nuclei. Electron capture by the nuclei becomes
possible for densities > 107 g cm−3, resulting in an
increasing neutron fraction inside the nuclei as density
grows. Neutrons drip out of the nuclei beyond a density
∼ 4 × 1011 g cm−3. This neutron drip density denotes
the transition to the inner crust region, in which a
fluid of unbound neutrons coexists with the nuclei and
ultrarelativistic electrons. For temperatures lower than
T ∼ 109 − 1010 K, the nuclei in these two outer layers
will form a solid. Microscopically, the equilibrium state
of this solid is expected to be a body centred cubic
lattice, but history-dependent deformations can appear
and the exact properties of the lattice are an open
research question (see [32] for details on the outer and
inner crust layers).

As densities approach the saturation density of
symmetrical nuclear matter ρ0 = 2.8 × 1014 g cm−3,
nuclei dissolve. The outer core of the star begins,
at a density around 0.5ρ0. This stellar part consists
of a fluid mixture of neutrons, and a much smaller
fraction of protons and electrons (as well as muons in
higher densities). At even higher densities (& 2ρ0),
extrapolations from the physics of the states of matter
familiar to us become more uncertain. This inner core
section, of relevance to the most massive neutron stars
whose central densities can reach 5 − 10ρ0, possibly
contains hyperons and other hadrons (e.g. mesons), or
even deconfined quarks.

In the inner crust and core areas, and at
low enough temperatures, the long-range attractive
component of the nucleon-nucleon interaction will
result in the formation of bound neutron pairs. At
densities pertinent to the inner crust, neutrons will
form pairs of zero total spin (singlet state, 1S0). In
the outer core, close to the crust-core boundary, this
state is expected to give place to pairing in the triplet
state (total pair spin of 1). A characteristic of the
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Figure 2. Neutron star composition and possible sites of vortex
pinning. The outer crust and inner crust are each expected to
be a few hundred meters thick. Superfluid neutron vortices in
the inner crust interact with, and can “pin” to, the lattice of
nuclei. This is shown in schematic form at the top right corner of
the figure, for a vortex (in blue colour) immersed in the lattice.
The extent of the outer core region is typically ∼ 4 km, but
may be the entire core for some equations of state and neutron
star masses. In this region neutron vortices will interact with
magnetic fluxtubes if the protons form a type II superconductor
(bottom right insert). The inner core is estimated to be ∼ 5 km
in radius and reaches densities of the order 1015 g cm−3. The
composition and state of matter in this central part is uncertain.

paired system is the existence of an energy gap: a
minimum energy is required to create a fermionic
excitation from the ground state, since a pair has to
be broken. Because of this non-zero pairing gap, below
a critical temperature the neutrons are superfluid:
they can flow without dissipation as scatterings which
lead to ordinary viscosity are being suppressed. This
transition to the superfluid state will start very early
in the life of a neutron star, as the critical temperature
can be as high as ∼ 1010 K in some densities. For
pulsar ages ∼ 10 kyr the bulk of the inner crust and
core neutrons will be superfluid. Protons in the stellar
core will also bind in pairs and form a superconductor,
characterised by non-dissipative current flows.

The neutron superfluid lies at the heart of
the most successful efforts to date at explaining
glitches, which assume a star comprising of three basic
components: the “normal” matter, which includes the
solid crust and any elements coupled to it on short
dynamical timescales (with respect to typical glitch
timescales), a superfluid region that acts as an angular
momentum reservoir and drives the spin-up, and the
superfluid neutrons that respond to the glitch (the last

two components do not necessarily correspond to two
distinct physical regions).

The normal component typically contains the
crustal ions and electrons, charged particles of the
core (e.g. electrons, muons, protons – even if the
latter are superconducting), and any non-superfluid
neutrons. On the dynamical timescales of interest
for glitches the normal component rotates as a rigid
body, with its constituents strongly coupled (mainly
electromagnetically) and its rotation rate Ωc can be
identified from the observed spin frequency ν of the
crust as Ωc = 2πν. On the other hand, the superfluid
can sustain differential rotation dependent on its local
coupling to the other components, which – as will be
detailed hereinafter – can be very weak in some layers.
The total angular momentum of the neutron star can
thus be written as

L = IcΩc +

∫
Ωs(r)dIs , (1)

where Ic and dIs(r) are the moments of inertia of
the normal component and of a superfluid element
at location r, respectively, and Ωs(r) the superfluid
angular velocity. The total angular momentum loss
rate L̇ is dictated by the external torque Nsd:

L̇ = L̇c + L̇s = Nsd . (2)

In essence, glitch models assume an exchange of
angular momentum from part of the hidden superfluid
to the observed normal component (that is, from the
second to the first term in the right-hand side of (1)),
whilst the total L is conserved because the effect of
Nsd is negligible on timescales of seconds or hours
as those involved in the glitch spin-up. The induced
change in relative angular velocities causes a drop in
|L̇s|, which then gradually grows back towards its pre-
glitch levels. This affects the evolution of |L̇c| = Ic|Ω̇c|
via equation (2) and is observed as the glitch recovery.
This behaviour is explained by the way the quantity
Ωs, and its time evolution that defines L̇s, connect to
the distribution and moving of neutron vortices which
is the focus of the upcoming section.

2.1. Superfluid vorticity and rotational dynamics

Rotation of the superfluid is realised by the appearance
of a large number of vortices which carry a quantised
amount of circulation whilst the bulk of the superfluid
remains irrotational, as depicted in figure 3. The
vortex core – of radius comparable to the superfluid
coherence length (∼ 102 fm) – comprises normal
matter. Outside the vortex core, the superfluid
circulates around each vortex line with a velocity
that falls as 1/r with distance r from the vortex
core axis. In neutron stars, where superfluidity arises
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Figure 3. Left: Vortices will form and support the rotation of a superfluid when the angular velocity Ω of its container exceeds
a critical value. Right: zooming in on a pair of vortices. Superfluid velocity vs around a vortex line scales inversely proportional
to the distance from the vortex axis. The presence of many vortices (assumed straight in this illustration) gives rise to an average
vs (which is in the ϕ direction in this case where Ω = Ωêz). Under deceleration of the container, the vortex velocity vv (otherwise
following the superflow) acquires a non-zero radial component vrv . The induced outwards vortex motion decreases the total angular
momentum of the superfluid, as described in the text.

because of neutron pairs, the quantum of circulation
is κ = h/(2mn) ≈ 1.978 × 10−3 cm2 s−1 with h
Planck’s constant and mn the bare neutron mass.
For simplicity, we will hereafter always assume singly-
quantised vortices, which are generally expected to
be the lowest energy state in the crust and probably
the entire core of neutron stars. Multiply quantized
vortices are possible and could lead to observable
differences, but are potentially unstable.

The local rotation rate Ωs of the superfluid is
determined by averaging over the microscopic scale
circulation induced by individual vortices. Ωs therefore
depends on the density of vortices nv; were the
superfluid to follow rigid rotation, the areal density
of vortices would come from the Onsager-Feynman
relationship (by equating the fluid circulation to that
carried by Nv total vortices):

κnv = 2Ωs . (3)

Indicatively, taking Ωs = Ωc the total number of
vortices should be Nv ∼ 1017 − 1018 in a fast pulsar
such as the Crab.

Any changes in the superfluid rotation rate must
come from adjustments to its vortex density. Because
the normal component of the star is slowing down,
the superfluid momentarily finds itself with a higher

rotation rate than the normal component. A lag
in rotational velocities develops, ω(r) = Ωs(r) − Ωc,
between the normal component and the superfluid –
and consequently, between the normal component and
vortices, which would normally follow the superfluid
flow. Unlike the bulk of the superfluid, however,
vortices can interact with the normal component
(details on the nature of these interactions can be found
in Section 5.1), and so the lag between the two gives
rise to forces that act on the vortices. Due to the effect
of these forces a velocity difference develops between
vortices and the superfluid flow, which in turn results in
the appearance of a ‘lift’ (Magnus) force which makes
vortices move outwards. This dissipative vortex motion
mediates the exchange of angular momentum between
the superfluid and the normal component. It is in this
way that a non-zero Ω̇s is induced and the superfluid
can follow, at least partially, the spin-down of the
normal component.

In regions where excess vorticity is removed in
an unrestricted manner, the normal and superfluid
components essentially spin down together (Ω̇s = Ω̇c),
maintaining an equilibrium lag ωeq. The superfluid
responds (in the sense that ωeq is restored) to changes
in the rotation of the normal component Ωc on short
timescales if the two are strongly coupled, or longer
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timescales if coupling is weaker.
There are regions, though, where vortex motion

is counteracted by pinning forces. Pinning arises
because there are energetically favourable positions
for a neutron vortex to be in, as will be detailed in
Section 2.3. For example, in the inner crust it might
be preferable for the vortex core to coincide with (or
exclude) the proton clusters (nuclei) of the lattice. In
the neutron star core, pinning can occur as a result of
the interaction between a magnetised neutron vortex
and the superconducting proton vortices (see figure 2).
Whichever the exact pinning mechanism, if strong it
poses an impediment to the vortex flow which limits
|Ω̇|s < |Ω̇|c. In these regions then, as Ωc decreases
due to the spin-down, the lag ω = Ωs − Ωc grows
over time and so does the relative velocity between
the superfluid and pinned vortices (forced to co-rotate
with their pinning sites). This results in an increasing
Magnus force exerted on them:

fM = ρsκ× (vs − vL) (4)

per unit vortex length, where vs and vL are the
velocities of superfluid and vortex line respectively, ρs

the superfluid mass density and κ has modulus κ and
points along the vortex axis. When the lag reaches a
threshold ωcr, calculated by balancing the Magnus and
pinning forces per unit vortex length, vortices unpin.
Therefore ωcr places a maximum on the excess angular
momentum that can be stored in a given superfluid
region. Fast unpinning on a large scale, i.e. a vortex
avalanche, will rapidly transfer some of the excess
angular momentum to the crust, causing a glitch.

Whilst ω < ωcr, vortex lines in pinning regions
can still move between pinning potentials because of
thermal fluctuations (when vortex thermal energy ex-
ceeds the pinning barrier) and quantum tunnelling.
At finite temperatures this creep process is presumed
to depend on temperature via a Boltzmann factor
exp(−Ef

p/kBT ), where the activation energy Ef
p is the

free energy associated with overcoming the potential,
kB the Boltzmann constant, and T the temperature,
in equivalence with the flux creep theory developed for
superconductors [33, 34]. Although creep is stochastic
and consists of discrete vortex motion, collectively it
contributes to a continuous Ω̇s. In the absence of a lag
ω, vortices are equally likely to move to any direction –
and thus there is no net vortex current – but as the lag
increases the activation energy becomes lower for vor-
tices moving radially outwards than inwards due to the
Magnus force. This renders Ω̇s < 0 possible even if pin-
ning is strong. Creep rate is expected to be very slow
for small ω but plays a greater role as the rotational lag
gets close to its critical value ωcr. We will consider vor-
tex creep in more detail in Section 5.2, where we show
how it can be included in hydrodynamical models as a

non-linear form of the mutual friction interaction, the
basics of which we discuss next.

2.2. Vortex-mediated mutual friction

In mature, cold, neutron stars, excitations of the
neutron superfluid can, at first approximation, be
ignored. The main coupling between the normal and
superfluid components is then via their respective
interactions with the vortices. Thus the resulting
force between the two components (which defines
Ω̇s) will depend on the microphysical mechanisms
on a vortex level, as well as spatial and temporal
characteristics. A convenient description of this
coupling borrows from the theory of terrestrial
superfluidity and has the form of a mutual friction
that acts on the two components [35, 36]. This
is a long-wavelength approach that does not fully
capture the physics at the microscopic vortex scale,
but rather uses phenomenological parameters which
must be determined from experiments or simulations
of vortex motion. Nevertheless it offers a powerful tool
to carry out coarse-grained hydrodynamical studies, on
scales on which resolving individual vortices would be
unfeasible.

In general, one assumes that dissipative forces on
the vortices can phenomenologically be expressed as a
drag force that is linear in the difference of velocities
between the vortex and the normal component:

fd = R(vc − vL) (5)

with vc the velocity of the normal component and
R the drag coefficient. The drag force leads to
vortex motion with respect to the superfluid and to
the aforementioned Magnus effect. Neglecting the
minuscule vortex inertia, the forces in equations (4)
and (5) must be balanced, which allows us to eliminate
vL in (5) and arrive at the mutual friction force per unit
length on a vortex:

f LMF = ρs
D2

1 +D2
κ× (vs − vc) (6)

+
ρs

κ

D

1 +D2
κ× [κ× (vs − vc)]

where we have defined a dimensionless parameter
D = R/(ρκ). In terms of vortex motion, the
drag force introduces a component of the vortex
velocity perpendicular to the superfluid flow, and
the trajectories can be parametrized in terms of a
dissipation angle [37] θD = tan−1D, such that for
D = 0 one has θD = 0 and the vortex flows with the
superfluid.

The same force as in (6) should be acting on the
neutron superfluid (and an equal but opposite force on
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the normal fluid) per unit volume, which can be found
by multiplying f LMF with the total vortex line length
per unit volume.

The above description holds in the absence of
pinning. For completely pinned vortices fd = 0, since
vc = vL, and the Magnus force should instead be
balanced by the pinning force. If pinning is weaker,
so that at any given time there is some ‘free’ vorticity
which moves under the drag (e.g. creep current),
equation (6) may still be a valid approximation as long
as the vortex segment is not well within a pinning
potential. In the opposite case the force balance
equation should also take into account the pinning
force at the location of the vortex and the mutual
friction form will be different from (6). In the partial
pinning regime, care should be taken when translating
f LMF to fluid force per unit volume as now only the
‘free’ total vortex length experiences the drag force.
This can, for example, be introduced by re-scaling the
mutual friction coefficient by the fraction of free over
total vortex length γfv(r, t) [38, 39].

To connect to macroscopic quantities, such as
a local angular velocity Ωs for the superfluid and
the coupling between the two components, and hence
to the observable parameters, appropriate averaging
over length-scales that involve many vortices must be
performed (the typical inter-vortex spacing is dv ∼[
103(Ωs/1 Hz)

]−1/2
cm). We present here, as a starting

point, a special case where Newtonian treatment and
a collection of assumptions lead to simple dynamical
equations; other situations, for example the case of
superfluid turbulence [40], will be considered later in
connection to the observations.

Relaxing the rigid-body rotation constraint for the
superfluid, but maintaining the view that vortices will
be straight and parallel over the length-scale of interest,
equation (3) can be replaced with a more realistic
solution for the areal vortex density in the context of
neutron stars:

κnv = 2 [Ωs + εn(Ωc − Ωs)] +$
∂

∂$
[Ωs + εn(Ωc − Ωs)]

(7)
where $ is the cylindrical radius (taking Ω of
all components to be along the z-axis). Whilst
the last term accounts for potential differential
rotation in the superfluid, another significant difference
from equation (3) is allowing non-zero entrainment
(Andreev-Bashkin effect) between the neutrons and
the normal component. Although the nature of
entrainment in the crust and core of neutron stars is
different (as will be discussed in the following), the
result is that currents of both constituents feed into
their respective momenta, as reflected in the terms with
the neutron entrainment coefficient εn in (7).

Under the same assumption of straight, aligned

vortices, the mutual friction per unit fluid volume FMF

is simply nvf
L

MF:

FMF = κnvρs
D2

1 +D2
κ̂× (vs − vc) (8)

+ κnvρs
D

1 +D2
κ̂× [κ̂× (vs − vc)]

with κ̂ = κ/κ and nv as in (7) assuming no pinning.
For laminar flows of the two fluids, orthogonal to the
vortex axes, we first note that κ̂ × [κ̂× (vs − vc)] =
−(vs − vc), and so, in a sense, we can identify the
first, non-dissipative, term of (8) with an equivalent
Magnus effect, whilst the dissipative second term takes
the form of a drag linear in the velocity difference.
Habitually, the dimensionless, dissipative, mutual
friction coefficient is defined in the literature as:

B ≡ D/(1 +D2) . (9)

Using the above form for the mutual friction we
can arrive (e.g. by taking the curl of the Euler
equations for the two fluids, see also [41]), at the
equations of motion:

(1− εn)Ω̇s + εnΩ̇c =
κnvρsB
ρs

(Ωc − Ωs) (10)

Ω̇c = − 1

(1− εp − εn)

κnvρsB
ρc

(Ωc − Ωs) + F
′

sd/ρc

where we have used the fact that the entrainment
coefficients εn and εp obey ρsεn = ρcεp. The above
furthermore assumes – besides zero pinning – that the
only other force is the external spindown F

′

sd that acts
on the normal component; we ignore, for example,
elastic forces in the solid crust.

With the more stringent condition of rigid-body
rotation for the normal component, we identify its
moment of inertia

Ic =

∫
ρc(r)$2dV

and assuming constant moments of inertia in (1),
equations (10) can be used to express the angular
momentum evolution of the whole system, which now
reads

IcΩ̇c +

∫
1

(1− εp − εn)
κnv B (Ωc−Ωs)ρs$

2dV = Nsd.

(11)
In the above, εp, εn, nv, B, Ωs and of course ρs are all
functions of r inside the star.

In general, the coupling between the two
components will not be linear in their rotational lag
ω = Ωs − Ωc. For instance, its form will differ if
vortices form a tangle, and even in (11) both nv and
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B can be functions of ω. The replacement B → γfvB
discussed for the case of partial pinning means that
now the coupling strength depends also on the lag,
as γfv increases with increasing ω. Furthermore, the
drag coefficient itself can vary depending on the vortex
velocity [42].

The full non-linear form of the mutual friction will
modulate the superfluid response and we examine it in
the context of its effect on the observed timescales and
form of post-glitch recovery in Section 5. It is useful,
however, to first consider the simpler case where all
other factors in (11) are not lag-dependent: then (11)
is linear in ω = −(Ωc−Ωs) and it becomes transparent
how it can lead to quasi-exponential relaxation as a
response to the lag change that happens at a glitch. In
return, for glitches where such exponential signatures
are observed, the associated timescales can be used to
constrain internal properties such as B(r). Taking a
single, rigidly rotating, superfluid component Is, zero
entrainment and ignoring the external torque, we can
use the equations (10) to write an evolution equation
for the lag ω:

ω̇ = −2ΩsB
(
Is + Ic
Ic

)
ω . (12)

Making the reasonable assumption that ω � Ωs, so
that we can ignore variations of Ωs during the glitch, we
see that given an initial lag ω0, the solution to (12) is an
exponential relaxation, of the form ω = ω0 exp (−t/τc),
with a characteristic timescale:

τc ∼
Ic

Is + Ic

1

2ΩsB
. (13)

Note that this is the dynamical timescale on which the
two macroscopic components of the star recouple, and
thus depends on the corresponding moments of inertia.
It should not be confused with the (microscopic)
timescale on which the vortex array couples to the
normal components (e.g. in the lattice, or flux tubes
and electrons in the core), which, as we shall see in the
following, can be obtained directly from microphysical
calculations and is used to determine the mutual
friction parameter B [43].

It is also easy to see how the simplest three-
component model would work, schematically illus-
trated in figure 4, in which glitches are driven by
a region of the superfluid (of moment of inertia Igl)
which is decoupled, or at least very weakly coupled,
due to strong pinning. Taking the extreme case where
γfv = 0 for the Igl component (and again ignoring en-

trainment), we have from (10) that Ω̇ gl
s = 0. At the

other extreme, we assume that the rest of the super-
fluid, I r

s , is more strongly coupled and has reached
its equilibrium lag so that Ω̇ r

s = Ω̇pre
c before the

glitch. While these components spin down together

timeglitch epoch

An
gu

la
r v

el
oc

ity
Ω

        ωeq

pinned superfluid

responding superfluid

observed (crust)

Figure 4. A sketch of a rudimentary three-component glitch
model (see text for details). Amplitudes not in scale; for clarity
we use arbitrary vertical offsets so that curves appear separate.
The pinned superfluid region Igl (red, top, line) stores angular
momentum between glitches, that is then transferred to the
normal component (black, bottom, line) abruptly during the
glitch. Co-rotation of the two once the spin-up is completed is
possible, but not necessarily achieved. The lag in the superfluid
component I r

s , which was spinning down together with the crust
before the glitch (blue, middle, line), reduces from its equilibrium
value. Consequently I r

s decouples at the glitch; its re-coupling
drives the observed post-glitch relaxation.

as (Ic + I r
s )Ω̇pre

c = Nsd, the lag builds up in the Igl

region until pinning fails under the increasing Magnus
force. Then catastrophic unpinning of vortices takes
place and Igl couples quickly to Ic. On such a short
timescale the effect of the external torque can be ne-
glected in (10) and thus conservation of total angu-
lar momentum means Ωc increases. Once the spin-up
phase is over, vortices have re-pinned and Igl is again
decoupled. The regions of I r

s that couple to Ic on a
longer timescale than the glitch rise end up with a lo-
cal ω < ωeq, and accordingly in these regions post-

glitch |Ω̇ r
s | < |Ω̇c|. Thus, assuming Nsd constant, it

follows that |Ω̇post
c | > |Ω̇pre

c | (this is the observed glitch
spindown rate change, ∆Ω̇c < 0) which then recovers
according to (11).

2.3. Vortex pinning

Superfluid-driven glitch models rely on the existence
of one or multiple regions within the star where vortex
pinning occurs and bears a growing rotational lag until
the glitch is triggered. Studying the exact pinning
properties is important in order to determine the
possible sizes and frequency of glitches, as well as
to investigate vortex motion and the evolution of Ω̇s

between glitches.
In the inner crust, pinning can result from the

interaction between a vortex and a proton cluster
(ion) of the lattice. This interaction has two main
contributions: the one arising from the velocity field of
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the vortex line, and that of the change in condensation
energy (i.e. the energy gain due to pairing, which
is density dependent). Therefore the pinning energy
per pinning site (i.e. the energy difference between
configurations where a single ion is inside or outside the
vortex core) depends on the difference in kinetic energy
between the two configurations, and the cost involved
with destroying superfluidity in the vortex core, related
to the pairing gap of the nuclei and that of the neutron
superfluid. The latter also defines the coherence length
of the superfluid and thus the size ratio between a
vortex core and nucleus. Another factor to consider
in pinning energy is the deformation of the lattice, if
nuclei can be slightly displaced due to their interaction
with the vortex. Vortices are, however, macroscopic
objects and so to understand the effect of pinning on
the dynamical evolution the relevant quantity is not
the force per pinning site but force per vortex length.
Even if the pinning energy is large, the overall pinning
force on the vortex can be very weak when averaged
over many pinning sites along the vortex length and
considering the lattice periodicities and orientation
[44].

There are two calculations of importance to
glitches. The first is the maximum pinning force on
a vortex segment, which will define the maximum lag
(vs − vc) that can develop before the vortex unpins
due to the Magnus force (analogous in a sense to static
friction). The second is the short-range force acting
on a vortex as it moves through the pinning potentials
of the lattice, which enters in the vortex equation of
motion via the mutual friction term.

As far as the maximum pinning force in the crust
is concerned, there are still significant computational
uncertainties regarding even its sign (i.e. whether
the force is attractive or repulsive). Recent static
calculations, based on energy minimisation arguments
and averaging over vortex configurations, obtain an
attractive force throughout most of the crust [45].
On the other hand, three dimensional dynamical
simulations (in the time-dependent superfluid local
density approximation) recover a repulsive interaction
when simulating the interaction between a vortex
and a pinning centre [46], as do quantum mechanical
calculations of the interaction, which also take into
account shell-effects in the nuclei [47, 48]. Although
there is general agreement on the overall magnitude
of the maximum pinning force (expected to be of the
order of 1018 dyn/cm), which is independent of the
sign, and sufficient to explain large glitches, more work
is clearly needed to understand vortex pinning in a
realistic lattice.

Simulations of vortex motion in a lattice have
been performed in two dimensions, to model mutual
friction [49, 50]. While in these calculations the

interaction between a single vortex and a nucleus is
needed as an input, they allow one to extract robust
prescriptions to model the fraction of free vortices
close to the unpinning threshold, and recover standard
mutual friction expressions [50]. The behaviour close
to unpinning is of particular interest, as in this case a
significant number of vortices are free. Depending on
the physical conditions this can lead to either a steady
outward creep of vorticity and Ω̇s < 0, or to vortices
knocking each other on, leading to avalanches and a
spasmodic spindown. However, to fully understand the
impact of the additional degrees of freedom and vortex
rigidity, three dimensional simulations will be needed.

Vortex pinning can also arise in the core of neutron
stars, where the proton fluid is expected to be in a
type-II superconducting state (although regions of type
I superconductivity may also exist at high densities
[43]). In a type-II superconductor the magnetic flux
is quantised into proton vortices called fluxtubes.
The neutron vortices also become magnetised due to
entrainment between neutrons and protons (see Section
5.1). In this case it is energetically favourable for
vortices and fluxtubes to overlap [51, 52], reducing the
condensation and magnetic interaction energies (see
[53] for a review). If vortices pin to fluxtubes, this can
significantly increase the angular momentum available
to exchange in a glitch, as one is also tapping the
moment of inertia of the core [54]. Pinning to fluxtubes
can strongly affect the mutual friction force and the
response of the star to a glitch, as we shall see in
the following [55, 56, 57, 58, 59]. Interactions between
vortices and fluxtubes also contribute to the magnetic
field evolution, as magnetic flux is ‘pushed’ out by the
vortices [60, 61], or if fluxtubes force vortices to form
bundles [62].

2.4. Glitch triggers

In most current models the transfer of angular
momentum at a glitch is explained by previously
pinned vortices being set free, moving, and their
density reducing. This in turn assumes the existence
of a trigger mechanism that causes unpinning of a
large number of vortices, Nv & 1011 [63], on the short
timescales of days or even seconds associated with the
glitch spin-up (Section 5.3). The maximum lag ωcr

that vortex pinning can sustain sets an upper limit for
the size of glitches that can be powered this way. In
practice however, the size of the glitch will depend on
the lag that has been built up by the time the glitch
is triggered, which need not be ωcr. There is still no
consensus on the exact trigger mechanism for glitches,
and in fact it has been suggested that several may be
acting, even in the same pulsar.

Crustquakes were one of the first trigger mecha-
nisms to be proposed [18], and in some early models
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the glitch was entirely attributed to the release of stress
in the crust and subsequent change in moment of in-
ertia. Whilst the latter hypothesis cannot explain the
glitch activity of many pulsars [26, 64], crustquakes
may play a role in triggering glitches by leading to vor-
tex unpinning during the crust failing event, and have
been suggested to be occurring in the Crab pulsar.

Another idea is that large scale unpinning is
caused by vortex knock on, that is, few vortices
unpin due to a local fluctuation, and as they move
they trigger further unpinning, like falling dominoes.
Quantum dynamical simulations of vortices in a
rotating trap show that it is indeed possible for
vortices to knock-on each other, essentially “colliding”
with their nearest neighbours, forcing them to unpin
due to the increased velocity field in their vicinity,
and causing “avalanches” [65, 66]. This means that
global stresses caused by the spin-down are released
locally by nearest neighbour interactions, leading to
a self-organised critical system and scale invariance,
a point discussed further in Section 4.4 in relation
to the statistical properties of glitches, such as their
size distribution. It is important to point out that
such simulations are carried out in a regime which
is appropriate for laboratory experiments with Bose
Einstein Condensates, but not necessarily for the
neutron star problem, and the number of vortices
simulated is several orders of magnitude less than what
would be needed to simulate a glitch. Furthermore
the calculations are not carried out in full 3D, thus
not allowing for additional degrees of freedom which
may allow vortices to creep out more freely by bending
around pinning sites, rather than being forced to obey
the kind of stick-slip dynamics observed in current
models. Nevertheless, despite the caveats that must be
addressed by future work, the mechanism is promising,
and scaling up the results of current simulations allows
to make predictions for glitch size and waiting time
distributions to compare with observations [67, 68],
which are presented in Section 4.

Avalanches are not, however, the only way that
large-scale vortex unpinning can occur in a superfluid.
The extra degrees of freedom allow for a number of
additional instabilities with respect to a normal fluid,
which can lead to both classical (hydrodynamical) and
quantum turbulence over a vast range of scales [69, 70].
Transitions between a laminar and turbulent regime
may trigger a glitch [71, 72], and also impact on the
post-glitch recovery [73].

Even from this rather brief general summary, it
will already be clear that glitch physics is a complex
problem that ranges over the microphysics of transport
properties, through the mesoscopic dynamics of vortex
lines, and up to macroscopic hydrodynamics. With a

multitude of inherent uncertainties, it is not feasible
to build reliable glitch models on purely theoretical
grounds. Instead, the subject has developed and
continues to develop in concert with careful analysis
of the growing observational data for glitches, and the
layout of this review aims to reflect this. Laying the
groundwork for this, the next section begins with a
detailed description of pulsar timing and the detection
of glitches.

3. Pulsar timing and glitch observations

The majority of pulsars are discovered and followed
in the radio wavelengths, typically using single large
parabolic antennae (of diameters 30 m or greater) or
arrays of smaller antennae. However, neutron stars
emit in many wavelengths and an increasing number
of them are detected at higher frequencies, making
monitoring by X-ray or gamma-ray instruments aboard
satellites feasible. High-energy observations of pulsed
emission are especially important for radio-quiet
pulsars, or pulsars that are too faint in the radio and
demand long observing times.

Observations can reveal the rotational evolution
by a technique called pulsar timing, which tracks the
neutron star revolution turn by turn. We outline below
the basic data reduction process and the observational
procedures used to identify and characterise glitches.

3.1. Pulse arrival times and pulsar monitoring
programs

The rotation of a pulsar can be studied by recording
the arrival times of its pulses at the telescope and –
assuming the time between consecutive pulses is the
pulsar spin period – connecting them to a model of the
rotational phase [74, 75]. To start with, data from a
relatively long observing session can be used to detect
the precise periodicity. This is done either directly, or
by Fourier transforming the data [76, 77]. The recorded
time series is then folded at the rotation period to
superimpose the light curves and create an average
pulse profile. Regular monitoring sessions, which can
be separated by days or weeks, are also designed to
produce mean pulse profiles but are normally shorter –
for example tens of minutes for typical radio telescopes
or a few hours for X-ray timing observations, or even
days for gamma rays [78, 79]. A time of arrival (ToA)
of a fiducial point of rotational phase is calculated for
each average pulse profile.

Times of arrival are found by cross-correlating
the observed mean pulse profiles with a standard
profile (usually a high signal-to-noise pulse profile
obtained from a long observation) representative of the
particular pulsar. The measured ToA will typically
correspond to the arrival time of the pulse closest to
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the middle of the observation stretch. For a given
observing system, the observation length needed to
achieve the desired accuracy for the ToA depends
primarily on the pulsed flux density, but also on
the pulse shape and its stability. Indicatively (but
depending on specifications of the observing system
and the pulsar considered), integrating over a few
minutes of observations from a large, single-dish, radio
telescope is enough to obtain precision at the 10−3P
level. Before these ToAs are standardized for use in
a timing model, a number of effects must be taken
into account. The ToAs are barycentred, that is,
corrected for the Earth’s motion (taking the location
of the observing site also into account) by shifting
the arrival time to what it would have been at the
barycentre of the Solar System, which is used as an
inertial frame of reference. Timing corrections include
propagation dispersive effects, the Rømer delay to
account for the difference in light travel time, and
two general relativistic effects: the Shapiro delay (to
account for spacetime curvature) and the Einstein
delay (to account for time dilation).

There are several pulsar monitoring programs –
with varying capabilities, scientific targets, duration,
and scheduling – which produce regular ToAs and
contribute to glitch studies. One of the first
campaigns started in the early 70’s at the Jodrell
Bank Observatory (JBO) in the UK, and by today has
provided nearly five decades of timing data for some
pulsars. The JBO dataset includes almost continuous,
daily, observations of the Crab pulsar [63, 80], and
more than two decades of observations of over 500
pulsars [81, 82, 27]. Other observatories started
some time later and can already offer 15-30 years of
timing data; a prominent example is the Parkes radio
telescope in Australia (e.g. [83, 84, 85]), which follows
∼ 200 pulsars and has also been used for important
pulsar surveys. Decades of pulsar monitoring and
glitch searches have also been carried out with the
Nanshan 25-m radio telescope at Urumqi in China (e.g.
[86, 87]) and at the Pushchino Observatory in Russia
(e.g. [88, 89]). A decades-long campaign to observe the
Vela pulsar has been carried out at the Mount Pleasant
Radio Observatory (Hobart, Australia), which involves
years of daily monitoring [90, 91, 92]. Most recent
initiatives are also very important, as they offer not
only an increase in the volume of data available
but often also better precision observations. They
include, amongst others, the timing program carried
out in India with the Ooty Radio Telescope and the
upgraded Giant Metrewave Radio Telescope (uGMRT)
[93]; UTMOST in Australia [94]; the Thousand-
Pulsar-Array project of MeerKAT in South Africa
[95]; and CHIME in Canada [96, 97]. Finally, great
contributions in long-term timing of X-ray pulsars and

magnetars were achieved with the RXTE satellite (e.g.
[98, 99, 100]) and, more recently, with NICER (e.g.
[101]), as well as with the Fermi LAT (e.g. [78, 102])
for γ-ray pulsars. Most of the above programs produce
weekly to monthly ToAs and only very few may commit
to higher ToA cadences for some pulsars (like for
example JBO, UTMOST and CHIME).

3.2. Timing model

A timing model describes the rotation of a pulsar
by comparing the observed ToAs with their expected
rotational phases for a given set of astrometric and
rotational parameters. The evolution of the rotational
phase can be calculated from a Taylor series expansion
using reference values of the pulsar frequency ν = 1/P
and its time derivatives at t0:

φ(t) = φ0 + ν0(t− t0) +
ν̇0

2
(t− t0)2 +

ν̈0

6
(t− t0)3 + . . . ,

(14)
where φ0 is an arbitrary phase reference. Other
parameters, for example the pulsar proper motion or
its orbital motion, if relevant, can also enter the timing
model. φ(t) will increase by exactly one unit at every
full rotation if the reference rotational parameters are
correct, and should return an integer at the time of
any observed ToA if t0 is chosen as one particular
ToA. Under the above definition, the angular velocity
of the pulsar is Ωc = 2π dφ/dt. Deviations from
the assumed timing model are expressed as timing
residuals, i.e. the difference between the observed and
expected rotational phases, typically multiplied by the
pulse period P to convert to time units. By minimising
the timing residuals, updated rotational parameters
can be obtained. Depending on the pulsar and the
time span of the observations, it is typically enough to
include only the first two (frequency ν and spindown
rate ν̇) terms in equation (14), and sometimes ν̈, in
order to obtain small residuals scattered around zero.

However, when the effect of the secular spin-
down described by the timing model is subtracted,
the timing residuals often exhibit continuous, low-level
fluctuations known as timing noise. Timing noise is
more prominent in young pulsars [74, 83, 103] but is
present for most, if not all, pulsars [82, 104], including
millisecond pulsars which show the lowest levels of
noise [105, 106]. Although timing noise mostly gives
rise to smooth and somewhat slow irregularities in
the residuals (in contrast with glitches which typically
present a sharp change), it can have a faster component
that presents as discontinuities of the frequency and/or
the spindown rate. This kind of timing noise can be
confused with glitches of small amplitude, especially
when the cadence of observations is low [107, 104, 92].
Moreover, the presence of timing noise can compromise
the accuracy by which glitch recoveries can be studied.
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3.3. The glitch signature

When a given dataset contains a glitch, a timing model
with constant reference ν0 and ν̇0, as in (14), will not
provide an adequate description of all the ToAs. This
is depicted in panel (a) of figure 5, where such a model
is unable to describe well the rotation over the full time
interval because of the presence of a glitch, which can
be noticed as a sharp cusp. The positive and then
negative slope of the residuals, before and after the
glitch respectively, indicate that the ν0 value obtained
from the fitting procedure is higher, and then lower,
than the actual spin frequency of the pulsar at those
times. Similar signatures can be seen in figure 7, where
a single, basic, timing model is used to produce timing
residuals of a longer dataset containing three glitches.

If the timing model is optimised using only the
ToAs before the glitch, the glitch signature will appear
as a linear increase of the residuals |φ(t)| with time
(panel (b) of figure 5). Because the residuals are
defined as data−model, the trend is towards negative
values, i.e. post-glitch ToAs arrive earlier than
expected. Most glitches involve a spindown rate
change, ∆ν̇ < 0, in addition to the change in frequency,
∆ν > 0. When that is the case, the residuals’ evolution
after the glitch will progressively resemble more a
quadratic curve, as seen in panel (b) of figure 5. The
actual changes in frequency and spindown rate for this
glitch are shown in the last two panels of the same
figure.

After a glitch, the evolution of the spindown
rate (and consequently, of the spin frequency) often
continues at a different rate ν̈ than before the
glitch. Commonly, some recovery towards the pre-
glitch rotational parameters is observed, as revealed
in the two lowest panels of figure 5 which present the
frequency residuals (panel (c)) with respect to the pre-
glitch timing model, and the evolution of the spin-down
rate ν̇ (panel (d)). Similar plots for glitches, large and
small, in other pulsars are shown in figure 6, which
includes some representative examples of common,
as well as more unusual, signatures of post-glitch
recoveries. For many glitches the recovery process can
be approximated by a combination of exponentially
decaying terms and/or a linear decrease of |∆ν̇| (see
the top row of glitch examples in figure 6, and Section
5.4 for an in-depth discussion and interpretation of
these features). It is thus practical to model the phase
residuals attributed to the glitch as:

φg = ∆φg + ∆νp(t− tg) +
1

2
∆ν̇p(t− tg)2 + (15)

+
1

6
∆ν̈p(t− tg)3 +

∑
i

∆νdi
τdi

(1− e−(t−tg)/τdi ) ,

which set in for t ≥ tg, with tg the inferred glitch epoch,
in addition to the pre-glitch evolution of equation (14).

0.1

0.0

0.1

Ti
m

in
g 

Re
sid

ua
ls 

(s
) (a)

0.4

0.3

0.2

0.1

0.0

Ti
m

in
g 

Re
sid

ua
ls 

(s
) (b)

0

2

4

 (
Hz

)

(c)

100 50 0 50 100
Days from glitch 

3755

3750

3745

3740

3735

  (
10

13
 H

zs
1 ) (d)

Figure 5. A glitch in the Crab pulsar (tg = MJD 53067.1) with
∆ν = 6.37µHz and ∆ν̇ = −23.02× 10−13 Hz s−1. The data was
collected by the 42-ft telescope at Jodrell Bank observatory and
presented in [27]. (a) Timing residuals relative to a single timing
model fitted to the full interval. (b) Timing residuals relative
to a timing model fitted to pre-glitch data only. (c) Frequency
residuals with respect to the pre-glitch timing solution. (d) The
evolution of the spin-down rate. In all cases the rotational model
is that of equation (14) using two frequency derivatives. The
gradual post-glitch relaxation is evident in the last two panels.

The terms with index p denote persisting changes that
do not appear to recover in the duration of the dataset
(e.g. as in the glitch of PSR B2334+61 shown in figure
6), whilst the last term captures any changes that
show exponential decay on characteristic timescales
τdi

(visible after several glitches in figure 6, e.g. in
PSR B0833-45, and also in the Crab glitch of figure 5).

For most pulsars, observations before and after the
glitch can be days, even weeks, apart, which results
in ambiguity in the exact epoch tg when the glitch
occurred. Typically this is constrained by demanding
phase continuity through the spin-up (∆φg = 0),
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Figure 6. Examples of the diverse glitch phenomenology, from six different pulsars. Glitch epochs are denoted with dashed, grey,
vertical lines. Top panels of each subplot: Frequency residuals with respect to a quadratic model fitted to frequency data between
the start of the plot and the epoch of the first shown glitch. Bottom panels: The time evolution of ν̇. Both frequency and frequency
derivative data were calculated via fits of a rotational model (where ν and ν̇ can vary, whilst ν̈ is fixed) to small segments of data
containing at least 10 ToAs and covering 50 to 500 d, depending on the pulsar. Note that while the time span for all windows is
3000 d, the one for PSR B0833−45 (the Vela pulsar) is only 550 d, and the one for PSR J1119−6127 is 3500 d. Three of the five
glitches shown in the subplots at the top row are large, with ∆ν well above 15µHz, and exhibit typical persistent steps ∆ν̇p < 0.
Note the particular recovery curve exhibited by PSR J2229+6114 in comparison to the more typical exponential-like recoveries seen
in the other two pulsars. A late phase of linear (in ν̇) post-glitch recovery is clear after the second glitch shown for Vela. The glitches
shown in the bottom subplots are smaller. The behaviour of PSR J1119−6127 is particularly interesting because of the atypical
positive persistent steps ∆ν̇p > 0, clearly visible after the second glitch shown. The recoveries of the other two pulsars are more
obscured by timing noise. These glitches were published by [27, 108, 109, 92] and the data used here come in its majority from
observations carried out at the Jodrell Bank Observatory in the UK, but also by the Parkes and Hobart radio telescopes in Australia
(for PSR J1119−6127 and Vela, respectively).
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however, especially for large glitches, pulse count can
be lost and multiple solutions exist in the interval
bracketing the glitch. Commonly, an epoch within
the observational gap is used as the glitch epoch
(typically the midpoint) and the term ∆φg, which
has no physical meaning, is added to emulate phase
continuity through the glitch. For the opposite, much
rarer, occasions when the glitch happens during an
observing session, the uncertainty of the glitch epoch
could be significantly reduced if the pulsar is bright,
though it may still be larger than several pulsar
rotations. Such observations might allow for the spin-
up timescale to be resolved, or at least constrained, in
which case the glitch model in (15) must include a term
describing the glitch rise. This is usually also modelled
as an exponential [109, 91, 110, 111].

Time differentiation of φg provides the evolution
of the spin frequency residuals after the glitch, and
a second differentiation provides the evolution of the
spindown rate residuals. These are residuals relative
to the pre-glitch model in (14). The instantaneous
changes at the glitch (t = tg) are

∆ν = ∆νp +
∑
i

∆νdi (16)

∆ν̇ = ∆ν̇p −
∑
i

∆νdi

τdi

. (17)

The change in the second derivative at t = tg can be
calculated in the same way, but is rarely quoted. A
persistent change ∆ν̈p is sometimes included in the
model and reported, usually for large glitches and
models that include exponential recoveries. Positive
and negative values for this term have been measured
for different glitches in the same pulsar (e.g. [28]). This
is contrary to what is usually observed for the other
two persistent changes, which tend to be ∆νp > 0
for standard large glitches and ∆ν̇p < 0 for the vast
majority of glitches [112, 113, 28].

3.4. Glitch detection

In typical timing residuals, what is usually visible is
the continuous fluctuation caused by timing noise. If
the data contain a glitch, a sharp feature like the ones
in figures 5(a) and 7 might be striking out amongst the
noise.

Generally speaking, the threshold for detecting a
glitch will depend on its amplitude, especially relative
to the intrinsic timing noise levels, the cadence of
the observations, and the uncertainties on the derived
ToAs [114, 27, 63, 115]. For example, short-term (say
comparable to the observing cadence) timing noise can
obscure the detection of small glitches; or low cadence
observations can make it very hard to distinguish a
small glitch from the noise, even if the noise levels are
low and the fluctuations timescale long. On the other

hand, large glitches (like those in the high end of the
overall size distribution, see figure 10 in Section 4),
are easy to detect because their signatures dominate
the timing residuals for over hundreds of days. Even
somewhat smaller glitches (∆ν/ν > 10−9) are usually
easy to detect visually in most datasets [114, 27].

At the largest glitch events, and unless cadence
of ToAs is very high, the phase coherence implied by
the modelling of ToAs prior to the glitch can be lost,
thereby making the phases of the post-glitch ToAs
ambiguous (see examples in [28]). This happens when
the step in frequency, and therefore the drift of the
residuals, is so large that one or more rotations could
be unaccounted between the post-glitch observations.
The higher the observing cadence is after the glitch, the
larger the glitch has to be for this problem to arise. In
some cases, finding the new frequency after the glitch
can be difficult, and both low cadence ToAs or ToAs
taken at too-regular time intervals can lead to wrong
results [116].

For a given ToA cadence and precision, there is
a glitch size below which the identification of glitches
becomes uncertain, mainly because their signatures
can be confused with noise [114, 63, 115, 92]. In fact,
because of this, the detection of very small glitches
has progressed slowly. Before Janssen & Stappers
(2006) [114], who reported several very small glitches in
regular radio pulsars, the only small glitch known was
one in a millisecond pulsar, which was detected easily
thanks to the pulsar’s intrinsic rotational stability
[117]. The incompleteness of the observed glitch
sample at lower magnitudes poses a problem when
trying to model the glitch rate, size distribution,
and waiting times (i.e. the time intervals between
consecutive glitches) distribution, thereby restricting
the capacity of the observations to constrain physical
models, for example about the trigger mechanism.

Espinoza et al. (2014) [63] explored the limiting
factors in identifying the standard glitch signature
presented in figure 5(b) and defined a minimum
detectable size ∆ν depending on timing noise, ToA
accuracy and temporal density, as well as on the
change ∆ν̇ < 0 that might accompany the glitch. The
latter becomes important when the ratio ∆ν/∆ν̇ is
comparable to or smaller than the typical time interval
between ToAs, because then residuals grow to positive
values in a short time compared to the observing
cadence – the glitch can be mistaken for a change
in ∆ν̇ alone, or even a spin-down instead of a spin-
up. They also developed an automated technique to
search for glitches in large datasets, which has been
applied to observations of the Crab and Vela pulsars,
as will be detailed below [63, 92]. These studies
focused on short time intervals (10-20 d) following a
(potential) glitch and did not consider possible quasi-
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Figure 7. Three small glitches (epochs denoted by the dashed lines) in the rotation of PSR B1737−30, as seen in the timing
residuals with respect to a model that uses ν, ν̇ and ν̈ (fitted over the time interval shown). The more gradual variations of the
residuals that can be seen before the epoch of the first glitch are likely caused by timing noise. The data was obtained by the Jodrell
Bank Observatory and has been presented in [27].

exponential recoveries. This approximation is valid
provided τdi

is long compared to the examined time
window so that the effect of decaying terms can be
absorbed in ∆ν̇p. Whilst including decaying transients
makes detectability limits less trivial, the characteristic
exponential signature can actually help to distinguish
small glitches from timing noise. The results confirmed
(and quantified) the importance of monitoring pulsars
frequently if the aim is to use observations to discover
glitches.

Methods to detect glitches automatically face
similar challenges as their visual counterparts but,
once a set of rules has been defined, they have the
benefit of being impartial. In the presence of noise, the
identification of small glitches becomes a problem of
probability assignment [115], hence automatic methods
to find glitches become desirable. There are two,
connected but distinguishable, kinds of automated
methods. First, there are real-time glitch detection
algorithms, as part of an observatory real-time data
analysis (e.g. [118]). Their main objective is to
infer the presence of a glitch from the smallest
possible number of ToAs after the event, in order to
make quick decisions with respect to additional (up-
coming) observations such as multi-frequency follow
up, increased monitoring etc. Secondly, there are
algorithms intended for use on existing data with the
aim of performing an as-exhaustive-as-possible search
for glitches [63, 115]. So far, however, the vast majority
of known glitches have been discovered either because
they are visible in an inspection of the timing residuals
or because trying to adjust a simple rotational model
to the data fails.

The automated search technique which has been
so far used on archival timing data of the Crab and

Vela pulsars [63, 92] tests for the presence of a glitch
after every available ToA by using standard fitting
techniques and considering data 10-20 d around the
epoch of the possible glitch. A glitch was defined as
a step ∆ν > 0 that could occur simultaneously with a
step ∆ν̇ ≤ 0, without exponential recoveries (only the
second and third terms in (15)). Other timing events
such as “antiglitches” (that is ∆ν < 0 and ∆ν̇ ≥ 0) as
well as the case of ∆ν = 0 but ∆ν̇ 6= 0 were also
included in the search [92]. The method has been
applied to high cadence data (1 day between ToAs on
average) for the Crab [63] and Vela [92] pulsars. The
results included several glitches, both those known and
some newly discovered, as well as a large population of
smaller irregularities (glitch-like, antiglitch-like and ν̇-
noise). These irregularities have different properties
(e.g. size distribution [63]) and appear disconnected
from the standard glitch population of these pulsars.
This finding suggests that the truncation of the glitch
size distribution towards small amplitudes might not
only be an effect of observational biases, as previously
thought, but a real feature of the glitch mechanism as
well.

A different automated method [115] uses a hidden
Markov model to infer the pulse frequency evolution
on relevant time scales (such as those determined by
timing noise and glitches), and aims at distinguishing
glitches from timing noise by comparing the Bayes
factor of models with and without a glitch. The
method was tested on simulated ToA data, in which
glitches were introduced as instantaneous changes in ν
and ν̇, whilst the underlying rotational model involves
one frequency derivative and a stochastic part to
simulate timing noise. The detector has also been
applied on real timing data and can be used to put
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upper limits in the glitch size detection threshold [85],
which is important for understanding the glitch sample
completeness.

While these methods process ToAs to search for
glitches, observations in gamma rays (and perhaps
in X rays too) can be explored for glitches directly,
without the need to create ToAs [119]. This is possible
by exploiting the effectively continuous capture of
photons provided by instruments like the Fermi-LAT,
which survey the whole sky every few hours [120]. A
rotational phase is assigned to each photon using a
model like the one in equation (14). If the model is
correct, the majority of the photons will align and
distribute on a range of phases which is determined
by the pulse shape. But if a glitch was present in
the data, there will be a sudden misalignment of the
photons, followed by a linear drift (just like figure 5(b),
see [78]).

3.5. Glitch parameterization

The spin-up amplitude, that is the glitch size ∆ν,
as well as any changes ∆ν̇ and ∆ν̈ associated with
the glitch, can be deduced by extrapolating the
rotational parameters of a pre- and post-glitch timing
model to the inferred glitch epoch tg and taking their
difference. This is a local approach for which use
of relatively short pre- and post-glitch datasets is
required, covering about 100-200 days or less (to avoid
significant contamination from timing noise) [121, 27].
For longer time intervals the simple spin-down model
might not suffice to describe the data adequately.
If the glitch-induced changes show some recovery,
the rotational model for the post-glitch observations
will include decaying terms like those in (15) and
the analysis must involve enough post-glitch data to
faithfully capture those terms. In general, when trying
to characterise the glitch recovery, long post-glitch
intervals must be used – ideally the entire post-glitch
data available.

This method of measuring glitch parameters is
implemented with the widely used software package
tempo2 [122], in which the timing model is defined as
the sum of a pre-glitch model and a glitch contribution,
as in equations (14) and (15) respectively. The software
can fit for a model which includes several glitches in
a long data set, and allows all, or a selected sub-
set, of parameters to be varied to minimize the phase
residuals. Traditionally, the glitch epoch tg had to be
pre-defined by the user.

As discussed in Section 3.3, it is often the
case that tg cannot be accurately determined from
the observations; this introduces uncertainties in the
inferred glitch parameters, including the main glitch
parameter ∆ν [100], and can become the dominant
source of error for all measured parameters if the

observational gap surrounding the glitch is large [28].
Such extra uncertainties are not taken into account
by the standard tempo2 software and are often
not reported in glitch measurements found in the
literature; quoted 1σ errors generally underestimate
the true uncertainties. When decaying terms are
considered, several fitting algorithms require starting
values for the timescales τdi , which need to be carefully
chosen in order to achieve convergence (e.g. [28]).
When modelling a long dataset with a single model
(that can contain one or more glitches) timing noise
becomes important and can affect the results if it is
not accounted for.

Glitch parameter inference has traditionally
been done using weighted least-square minimization
methods as in tempo2 [122], but other pulsar timing
analysis software, or extensions, such as enterprise
[123], which use more efficient methods to explore
the parameter space and may offer more realistic
uncertainties, are becoming increasingly popular (e.g.
[111]). Bayesian approaches are gaining ground for
estimation of the likelihood of the fitted models. As
an example, the software package temponest uses
Bayesian inference and nested sampling to explore the
parameter space and assess the likelihood of tested
solutions [124] (or see [107, 83, 104, 116] for the use
of temponest on glitches). Both enterprise and
temponest allow the timing model (which might
include glitches and their recoveries) to be adjusted
simultaneously with other parameters, such as those
used to model timing noise or changes in the pulse
shape, including ones describing stochastic processes
[125, 111]. This allows the determination of a timing
model that incorporates glitches, their recoveries,
timing noise, and any other factors known to affect
the rotation (e.g. [107, 111]), and can be used on very
long datasets. An important advantage of packages
like temponest is that they facilitate comparison of
different models based on their Bayesian evidence.

Characterising the glitch recoveries presents
various challenges and results can be ambiguous. First,
whilst the standard fitted model of equation (15) might
be adequately capturing the main behaviour after most
glitches (i.e. returns ‘flat’ residuals scattered around
zero), other times there are clearly remaining features
in the residuals which could be unmodelled timing
noise but could also be an unaccounted part of the
post-glitch recovery. The elongated-S shape seen in
the ν̇ curve after the first glitch of PSR J2229+6114
in figure 6 is potentially one such example. Secondly,
data do not always allow the distinction between
models that include different combinations of terms
(in their nature and/or number) in (15). Scarcity
of post-glitch data or the occurrence of a new glitch
are two of the top limiting factors when it comes
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to differentiating recovery models [126, 108]. Last,
different functional forms for the recovery are rarely
tested against equation (15), even though they might
also be physically motivated and in some cases describe
observations equally well [127, 73].

When fitting exponentially decaying terms, it is
often necessary to first produce secondary data like
ν(t) or ν̇(t) which are calculated by fitting (14) to short
subsections of the ToA data. Then these can be used to
access the likely timescales τdi involved in the recovery,
which serve as starting values for the fitting process of
the ToA dataset [28, 128]. Algorithms that are better
suited to explore broad multidimensional parameter
spaces and are designed to perform one overall fit to a
long dataset might offer a better approach. Whichever
the method, rapidly decaying terms are hard or often
impossible to detect due to paucity of data. If a
short-term recovery took place but was missed by
observations, the inferred ∆ν and |∆ν̇| at the glitch
epoch are underestimating the real glitch impact. On
the other hand, recoveries on long timescales and
persistent changes can be hard to quantify unless there
is good ToA coverage for an extended period of time
(which can be many years), without interruption from
a subsequent glitch. The effect that the length of
the post-glitch dataset has on the inferred recovery
parameters means that earlier results, using restricted
post-glitch data, should be considered preliminary and
preferably be reviewed when more data accumulates
[112, 27].

3.6. Ordinary glitches, anti-glitches and slow glitches

A rapid, positive, change in frequency is the minimum
requirement for a timing feature to classify as a
potential glitch. For ∼ 70% of detected glitches
a change ∆ν̇ has also been measured, which was
∆ν̇ < 0 in about 80% of the cases according to the
Jodrell Bank Glitch catalogue (http://www.jb.man.
ac.uk/pulsar/glitches.html, [27]). The glitches
for which a ∆ν̇ > 0 is inferred are generally small
(∆ν < 10µHz), and it is unclear if their properties
are otherwise different from those of ordinary glitches.
In the presence of timing noise, measurements of ∆ν̇
carry more uncertainty, an effect which could explain
at least part of the anomalous ∆ν̇ > 0 findings.

The vast majority of sharp frequency changes
observed in pulsars are events for which ∆ν > 0. The
lack of observed events with the opposite signature
(“anti-glitches”, where ∆ν < 0) is not a result of
observational bias, as these would have been detected
in the same way – either by visual inspection of
timing residuals or automated methods. Only a few
negative frequency changes have been reported, in two
magnetars [129, 130, 131, 132, 133] and two accreting
pulsars [134, 135].

Magnetars in general show a more complex timing
behaviour compared to rotationally-powered pulsars
(see Section 6.2), which is not restricted to the display
of anti-glitches. One detected spin-down event was
interpreted as a microglitch [129], which are small
irregularities showing as either spin-up or spin-down,
of comparable amplitudes and numbers, known to
populate pulsar rotation – possibly as part of their
timing noise, as mentioned already for the Crab and
Vela pulsar [29, 63, 92]. Glitches and anti-glitches in
the magnetar 1E 2259+586 have indeed very similar
amplitudes [98]. Note that there may be more
∆ν < 0 events in other magnetars, but are harder
to confirm [136, 137]. Magnetars exhibit in general
stronger timing noise than ordinary pulsars, which
can be confused for small glitches and anti-glitches
[92], especially when the cadence of the observations
is not very high, as is in fact the case for most
magnetars. Hence it is possible that at least some of
the reported magnetar anti-glitches are due to timing
noise, and likely of magnetospheric origin. Radiative
changes are sometimes, but not always, observed to
coincide with such events (e.g. [130], see Section
6.2). Alternatively, anti-glitches could be driven by the
evolution of the internal magnetic field [138, 139] or by
processes related to the neutron superfluid similarly to
ordinary glitches [140].

Glitches and anti-glitches in accreting pulsars
might not be unexpected given their relatively high
|ν̇| ∼ 10−11 Hz s−1. A result of torques exerted by the
accretion process, ν̇ may be either positive or negative
and can remain stable for years [141]. There is a small
number (< 10) of sudden ν changes reported (some
with less certainty than others) for a handful of such
neutron stars [142, 143, 134, 144, 135]. Observed sizes
are |∆ν| > 1µHz but the relatively low cadence of
timing observations could hinder detection of smaller
events. No radiative counterparts have been found
associated with the rotational events. The few anti-
glitches among those events were seen in the rotation
of two sources that are spinning up due to accretion
(ν̇ > 0) [134, 135], which led to the suggestion that
they are caused by a similar mechanism to the one
operating in standard spinning-down pulsars [141, 135].
Indeed, simulations of pinned vortices in a spinning-
up container show that inward-travelling avalanches
(leading to ∆ν < 0 jumps, i.e. anti-glitches) will occur
by the same process of vortex unpinning and knock-on
effects as for normal glitches [145].

While the glitches and anti-glitches discussed
above involve steps ∆ν that are unresolved to the
accuracy of the data (constrained to occur in tens
of seconds in one case), there is a type of rotational
feature in which the spin frequency increases gradually
over hundreds of days (compared to predictions of

http://www.jb.man.ac.uk/pulsar/glitches.html
http://www.jb.man.ac.uk/pulsar/glitches.html
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the preceding timing solution). These are sometimes
called slow glitches and follow a rapid, sometimes
unresolved in time, decrease of the spin-down rate
(hence the apparent frequency increase) [146, 28, 147].
Although slow glitches have been reported for at least
7 pulsars (e.g. [147]), in the three most studied pulsars
with regards to this (PSRs B0919+06, B1642−03,
and B1822−09, [148, 149, 146]), it was found that
the events are part of a quasi periodic modulation
of the phase residuals. Such a quasi-periodicity is
not uncommon among pulsars [82, 150]. Furthermore,
the timing modulation of PSR B1822−09 appears to
be caused by switching between states of different
spindown rate, and these ν̇ switches correlate with
observed changes of the pulse profile [150]. Pulse
profile changes have been reported for other slow-
glitching pulsars too [147]. All this suggests that slow
glitches are produced by ν̇ changes, possibly connected
to the magnetospheric torque, and belong to the kind of
irregularities that fall under the umbrella term timing
noise instead of relating to the mechanism responsible
for standard glitches [151, 150, 28]. They should also
not be confused with glitches for which part of the rise
has been resolved and present an extended period of
spinning-up (Section 5.3) as both the timescales and,
significantly, the accompanying ν̇ evolution, are very
different.

4. Glitch magnitudes (∆ν, ∆ν̇) and interglitch
waiting times

With nearly 600 glitches detected to date, and many
pulsars showing multiple glitches, it is possible to
study statistically their overall properties. Several
important trends have emerged as the examined glitch
sample grows [152, 153, 27, 154]. In this section we
will present the properties of the general population,
focusing on the glitch rate, the instantaneous changes
∆ν and ∆ν̇, interglitch waiting times, and glitch
activity (which is defined as the accumulated effect of
glitches in a given pulsar over the years), as well as
some results for frequently glitching pulsars and those
of particular interest. The relation between these basic
observables and physical parameters of glitch models
will be discussed, with insights gained on aspects such
as the extent and location of the superfluid reservoir
or the glitch trigger highlighted.

4.1. Glitch rate of occurrence

Most glitches have been seen in the rotation of
ordinary, isolated pulsars (which is the largest
population of observed neutron stars). Only two
glitches have been detected in millisecond pulsars
(MSPs, [117, 155]), despite extensive monitoring
campaigns of 60 or more MSPs as part of the effort

to use them to detect gravitational waves [156]. The
reason for this could be that their typical spin-down
rates are too low to drive frequent glitches [157], but
could also be related to the fact that these objects are
usually recycled pulsars hence a much older population
compared to the standard glitching pulsars. Glitches
appear common to magnetars [158, 98], and have also
been reported in Rotating Radio Transients (RRATs,
[159]) and Compact Central Objects (CCOs, [160]).
The CCO 1E 1207.4−5209 has a very low spin-down
rate but showed rotational irregularities attributable to
two small glitches. Such activity is up to 7 times larger
than what is expected from extrapolation of the trend
defined by the general pulsar population [160]. CCO’s
have rather weak surface magnetic fields in general,
but some of their properties could be explained by
the emergence of a stronger field buried under the
surface [161, 162]. On the other hand, the RRAT
PSR 1819−1458 has a fairly large surface magnetic
field (∼ 5 × 1013 G) and is one of the two pulsars
that have exhibited a recovery with ∆ν̇p > 0; the
other one being the high magnetic field, magnetar-like
PSR J1119−6127 whose two glitches with ∆ν̇p > 0
are shown in figure 6 [108, 163]. Magnetars often
show bursting activity and unusual rotational evolution
associated with glitches. Therefore all these three
families of neutron stars present uncommon glitch
properties, likely associated with their magnetic fields
(see also Section 6.2).

Glitches are generally rare events, though their
average occurrence rate varies widely from pulsar to
pulsar. In some glitching neutron stars consecutive
spin-ups are sometimes just a few days to months
apart, yet in others only a single glitch has been
detected despite decades of observations. The great
majority of pulsars have never been observed to glitch,
even though they have a similar distribution of total
observing time spans as for glitching pulsars. The
fraction of glitching pulsars is smaller when calculated
only over the population of neutron stars observed for
less than ∼ 10 years, as expected.

An average glitch rate for a given pulsar is defined
as

rg =
number of detected glitches

total observing time
(18)

where the denominator is the total observing time over
which ToAs are dense enough to allow detection of
glitches beyond a certain size. Usually rg can only
be approximated because of the difficulty in assessing
how complete the glitch sample for a given pulsar
and observing period is. Furthermore, the glitch rate
is variable over time for many sources, therefore rg

misrepresents the true nature of their glitch activity
(see middle and bottom panels in figure 8 for two
examples). Only for some pulsars are the time intervals
between glitches rather regular, corresponding to a
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Figure 8. The temporal distribution (shown with vertical bars) and size of glitches (the length of the bars, in logarithmic scale)
up to MJD 59000 in three pulsars that have frequent glitches. Grey shaded areas represent time intervals for which observations
were not available. Top panel: the Vela pulsar, showing mostly large glitches at remarkably regular time intervals, maintaining an
approximately constant glitch rate rg for over five decades. Middle panel: PSR B1737−30 (J1740−3015) has a high glitch rate that
varies on relatively short (order 103 days) timescales. The average rg would have been under/overestimated if observations covered
only a few years around a period of lower/higher activity. Bottom panel: The Crab pulsar, whose glitch rate also varies with time.
The lack of glitches around MJD 43000-46000 is in part due to scarcer monitoring, but very frequent observations began at MJD
∼46300 and the sample is believed to be mostly complete from then onward. The clustering of glitches between MJD 50000–54000,
which is preceded and followed by a period of less activity, is at odds with a random distribution of interglitch time intervals [80].

somewhat constant rate over the years of observations.
The Vela pulsar is such an example, as shown in the
upper panel of figure 8.

For some of the most frequently glitching pulsars,
the distributions of interglitch waiting times can be
modelled as an exponential, consistent with a random
Poissonian process ([67], Section 4.3). If that is the
case then the underlying constant Poisson rate (i.e. the
average number of glitches per time) can be estimated
for pulsars with multiple glitches after sufficiently large
total observing times. The Crab pulsar however,
whose rotation is being followed since its discovery
and with particularly high observing cadence since

mid-1980s, casts doubt on the homogeneous (constant-
rate) Poisson process hypothesis. For about 11 years,
between 1995 and 2006, it displayed a significantly
increased activity (bottom panel of figure 8) [80]. This
could indicate a time-varying Poisson rate if glitches
are independent events, or clustering due to correlated
events as in the case of earthquakes where the principal
event(s) is surrounded by pre- and after-shocks [164].
Such clustering might also be expected if glitches are
triggered by vortex avalanches as will be discussed in
the following.

Keeping in mind these limitations, it is useful
to examine how rg varies in the pulsar population
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Figure 9. Histogram (in a logarithmic scale) of |ν̇| values for
898 pulsars whose rotation has been searched for glitches [157].
Marked in red are the 137 pulsars in the sample for which glitches
have been found. The percentage of pulsars seen to glitch in
each bin decreases with decreasing |ν̇|. Data kindly provided by
J.R. Fuentes.

as a whole. The trend that is revealed this way is
a decrease of rg with decreasing spin-down rate |ν̇|,
as well as with increasing characteristic age τch =
−ν/(2ν̇) [152, 27]. Currently, to the best of our
knowledge, pulsar B0410+69 is the radio source with
the lowest spin-down rate (ν̇ ' −5 × 10−16 s−2)
ever seen to glitch. At the other extreme, the vast
majority of very high |ν̇| pulsars (|ν̇| & 10−11 s−2)
have displayed glitches, as seen in figure 9. The
pulsar with the highest glitch rate, PSR J0537−6910
(with over 3 glitches per year) [100], has the second
highest |ν̇| known. Although rg might be more strongly
underestimated for older pulsars, with low spin-down
rate, as these tend to show mostly small glitches
which are harder to detect, this effect alone cannot
explain the observed correlation between rg and |ν̇|
(and anti-correlation with τch). The existence of such
a correlation is also supported by theoretical glitch
models. The two commonly invoked mechanisms for
glitch triggers, the unpinning/avalanches of vortices
and (spin-down driven) crustquakes, will be occurring
at a rate that depends on the external driver, in this
case the magnetospheric torque that sets the average
|ν̇|.

4.2. The changes in frequency and spindown rate

The measured changes in pulsar frequency at the
moment of a glitch cover a very broad range of sizes,
from about 10−5 to few tens of µHz, or, put in relative
sizes, 10−12 . ∆ν/ν . 6 × 10−4. The distribution
of glitch sizes, displayed in the first panel of figure
10, appears bi-modal (or multi-modal) [157, 165].
Using a sample of over 500 glitches, the resulting ∆ν
distribution in logarithmic space can be described as
a mixture of two Gaussian components. Small and
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Figure 10. The distribution of glitch amplitudes ∆ν (upper
panel) and |∆ν̇| (lower panel, data shown only for glitches where
∆ν̇ < 0) in logarithmic scales. Uncertainties are calculated as√
N , where N is the number of elements in each bin. Glitch

parameters were retrieved from the online Jodrell Bank Glitch
Catalogue [27].

intermediate size glitches make up the first, wide,
component, with mean 0.032µHz, whilst a second,
narrow, component includes the largest events and has
a mean of 18µHz [154]. The peak at large glitch
sizes (& 10µHz), which are sometimes called “giant”
glitches, is produced mainly by a modest subset of
pulsars, typically young objects of characteristic age
similar to the Vela pulsar (∼ 104 yr) [27, 28, 157].
Currently, about 20% of glitching pulsars have shown
at least one large glitch. The bi-modality of the ∆ν
distribution is interesting from a theoretical point of
view, as it suggests differences in the processes at work
in “giant” glitches compared to smaller ones. It has
been proposed that the glitch trigger might differ in
those two cases; another possibility is that the response
of the superfluid varies with glitch size, leading to an
amplification of large glitches and the second peak in
the distribution. We come back to this point in the
following, when we discuss how large spin-ups might
proceed faster and result in decoupling of a larger
fraction of the star.
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Observational biases and timing noise affect
mostly the lower end of the ∆ν distribution (Section
3.4) but pose greater limitations on the accuracy of
∆ν̇ measurements. The ∆ν̇ distribution also presents
bi-modality (figure 10, lower panel), likely a result of
an apparent correlation between frequency changes ∆ν
and spindown rate changes ∆ν̇, as seen in figure 11.

The (physical) significance of the observed ∆ν-
∆ν̇ correlation is hard to address because several
systematic biases might be at work, especially for
glitches of small amplitude where the correlation
appears tighter. As pointed out in Section 3, glitches
with small ∆ν/∆ν̇ ratio, and in the absence of
clear exponential-like recoveries, can be confused with
changes in ∆ν̇ alone, or even spin-down rather than
spin-up events, and not get classified as glitches.
Low cadence of ToAs exaggerates this effect, as
demonstrated by the long-dashed limiting line in
figure 11, for which monthly ToAs are considered.
Fortunately a very large percentage of pulsars known
to glitch are monitored more closely (for example every
10-15 days), but there is probably still a contribution
of this bias to the observed ∆ν-∆ν̇ relation. Perhaps
of more relevance to the trend in figure 11, the ToA
error or timing noise will place an upper bound to the
resolved parameter space, which is exemplified by the
dotted line for a ToA uncertainty or RMS of the timing
residuals (whichever is greater) of 100 µs. Additionally,
small changes in ν̇ are intrinsically hard to detect in the
presence of timing noise, which most likely results in an
under-population of the lower part of figure 11. Whilst
this bias exists irrespectively of the ∆ν amplitude, it
likely affects mostly small glitches, as large events tend
to have detectable spin-down changes. All these issues
must be quantitatively factored in – which is not trivial
as limits vary from pulsar to pulsar but also in time –
to verify whether a real ∆ν-∆ν̇ correlation is present
for the glitch population as a whole.

It is more straight forward to examine the ∆ν-
∆ν̇ relation on a case-by-case basis. We present
an example of four individual pulsars with multiple
glitches in figure 12. Glitches where ∆ν̇ has not been
measured or was found to be ∆ν̇ ≥ 0 have been
excluded. For the Crab pulsar (bottom left panel of
figure 12), which is generally monitored very frequently
and whose ToA errors are relatively small (see figure
2 in [63]), the correlation between glitch parameters
seems genuine and is also apparent when one uses the
persistent changes in spindown rate ∆ν̇p instead of
the instantaneous ones. Using ten such measurements
(calculated after the short-term exponential recovery
was over), an approximately linear relationship can be
fitted as

|∆ν̇p| = 7× 10−8 ∆ν Hz/s (19)

where ∆ν is measured in Hz [80].
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Figure 11. |∆ν̇| versus ∆ν in logarithmic scales for glitches
where the former has been measured negative. There is an
apparent positive correlation between the two parameters, to
which contributions from observational biases should not be
ignored. The indicative effect of two limiting factors is presented
with the two straight lines (following [63]). The long-dashed line
represents the repercussion of infrequent observations. When
the ToA cadence is once per month or lower, glitches with
parameters in the space above that line might not be picked
up as such. The dotted line, which becomes important for
smaller events, places an upper limit to the glitch parameters
that can be probed when either the timing residuals RMS or
ToAs’ uncertainties are on average 100µs or greater. See text
for a detailed discussion.

In general, glitch parameters ∆ν and ∆ν̇ are
calculated by extrapolating the pre- and post-glitch
timing solutions to the inferred glitch epoch tg, since
it is rare for a glitch to occur during observations.
Measured parameters can thus deviate from their true
value; whether they will be under- or over-estimates
depends on several factors like the offset of tg from
the exact glitch moment and the accuracy of fitted
timing models. Often though, especially when the
true epoch is well constrained and the glitch model
includes only steps in ν and ν̇, glitch parameters
∆ν and ∆ν̇ might be regarded as lower limits for
their true counterparts. This is because, with current
observing setups, sampling of ToAs is not frequent
enough to allow the detection of fast-decaying changes
most of the time, for most pulsars. Such changes
have, however, been seen in some instances [153, 109],
with timescales from minutes to few days, and might
be a widespread feature of glitches. Nonetheless, the
inferred amplitudes ∆ν and ∆ν̇ place constraints on
the moment of inertia of the superfluid components
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Figure 12. |∆ν̇| versus ∆ν in logarithmic scales, for those glitches where the former has been measured and ∆ν̇ < 0, in four selected
pulsars including the Crab (bottom left) and Vela (bottom right) pulsars.

that contribute to the glitch, as well as the coupling
timescales of the superfluid, and can be ultimately used
to study the structure of neutron stars. One of the
earlier examples of this comes from application of the
vortex creep model to Vela glitches [166], leading to
deductions for its mass and equation of state [167].

A first insight comes from the changes ∆ν̇ in
the spin-down rate. It can be assumed that in
pulsars without observed emission changes close to
the glitch, the external torque Nsd did not vary on
short timescales, except for its dependence on the spin
frequency. For example, in the standard form for a
rotating magnetic dipole in vacuum:

Nsd = −B
2
⊥R

6
?

6c3
Ω3

c , (20)

where R? the stellar radius, B⊥ = Bp sinαB with Bp

the polar dipole magnetic field component, αB the
inclination angle, i.e. its angle to the rotational axis,
and Ωc = 2πν. Then, with the additional assumption
that there was no change in the actual moment of
inertia of the star at the moment of a glitch – which

might not be the case if, for example, a crustquake was
involved in the process – we can obtain the limit

Id
Ic
≥ ν̇post − ν̇pre

ν̇post
, (21)

where ν̇pre
c is the spin-down rate immediately before

the glitch and ν̇post
c is after the glitch and at time tpost

so that νpost < νpre. Whilst Ic is the moment of inertia
that was strongly coupled before the glitch (comprising
both the normal component and any superfluid regions
that were spinning down with it), Id represents the
moment of inertia that decoupled due to the lag change
at the glitch and has not yet had time to recouple by
time tpost. Typically, ∆ν̇/ν̇ ≈ Id/Ic ∼ 10−3; only a
small fraction of the interior superfluid.

Another constraint arises when considering the
changes ∆ν in the spin frequency, which serves
as a proxy of the angular momentum imparted
from the glitch-driving superfluid component to the
crust. Limits on the physical quantities involved
are by necessity model-dependent; nonetheless useful
information can be gained and demonstrate the
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huge potential glitch studies have in progressing our
understanding of dense matter physics.

The starting point is angular momentum conserva-
tion (for simplicity we will first assume distinct, rigidly
rotating, components but the same arguments hold
when this assumption is relaxed). If the glitch is driven
by a superfluid region of moment of inertia Igl which
has spun down on average by δΩs

gl due to vortex unpin-
ning, then angular momentum IglδΩ

s
gl has been trans-

ferred to the crust and any other components tightly
coupled to it. We denote the moment of inertia of the
stellar component that accelerates at the glitch as Iα.
The extent of this part of the star that initially spins
up depends on the interplay of the various coupling
times and the glitch rise timescale. A larger fraction
of the star catches up with the spin-up if this happens
gradually, and vice-versa. By angular momentum con-
servation, Iα∆Ωin = Igl|δΩs

gl|, where ∆Ωin is the initial
spin-up magnitude. We stress again that observation-
ally inferred ‘instantaneous’ ∆ν at the glitch epoch can
be an underestimate of the actual change of the crust’s
spin frequency in the presence of short-lived transients.
In other words, when replacing ∆Ωin = 2π∆ν we take
Iα to represent all regions that couple on timescales
shorter than the observational resolution of each glitch.
The observed spin-up size is then

∆ν =
Igl

Iα

|δΩs
gl|

2π
. (22)

The reduction in superfluid velocity δΩs
gl is unknown.

Under the assumption though that the lag might vanish
at a glitch but does not reverse in the region Igl, δΩ

s
gl

is limited to a maximum by the critical lag ωcr for
unpinning.

Several approaches have been followed to translate
(22) to information about the stellar structure and
the microphysical parameters that enter the glitch
problem. One such method, which relies mostly on
observational data rather than theoretical estimates
of ωcr, is using a parameter called the glitch activity
[152]. The activity parameter A can be related to the
rate of angular momentum transfer to the observed
component due to glitches, L̇gl, and is calculated by
considering the cumulative spin-up of the crust over
the years of observations Tobs:

A =
1

Tobs

∑
i

∆νi (23)

with the index i accounting for all glitches the pulsar
displayed during Tobs. For pulsars with spindown rate
10−14 Hz s−1 < |ν̇| < 10−10.5 Hz s−1, glitch activity
increases with increasing |ν̇|, with an average ratio
A/|ν̇| ∼ 1.2%–1.8%. This is the fraction of spindown
that has been ‘reversed’ because of glitches in a given
pulsar [153, 27, 157, 154]. There is an observational
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Figure 13. The accumulated glitch spin-up over 52 years of
observations of the Vela pulsar (red); and over 21 years of
observations of PSR J0537−6910 (blue). For the latter there
is a period of 5.7 years in which no observations are available.
The regularity of the glitches in these neutron stars allows an
average glitch activity A to be approximated by the slope of the
curves.

bias at play that could explain why pulsars with
smaller spindown rates fail to follow this trend: the
glitch rate falls quickly with decreasing |ν̇| and so
finite observational spans Tobs could underestimate the
activity in this category. As evident from (23), the
activity of a pulsar is dominated by its largest glitches:
for the calculation of A, a long total observing time
span is more important than the sensitivity of the
observations to small glitch detection. On the other
extreme, the Crab pulsar and B0540-69 have among
the highest |ν̇| but display low activity compared to
expectations of the above scaling.

By definition, A is sensitive to the period over
which there are observations geared to find glitches,
and will not be constant if calculated over different
periods of time for pulsars with irregular time intervals
between glitches and diverse glitch sizes ∆ν. There
are, however, some pulsars with regular glitch activity:
their glitches have a characteristic size and interglitch
waiting time (details on these distributions follow in
Section 4.3). For the sources where these conditions
are met, and provided there are many glitches detected,
an average A can be well defined and calculated with
reasonable accuracy; it is the slope of a linear fit
in a graph as in figure 13. Owing to their special
characteristics, the same few neutron stars can be used
to relate the observed activity to a constraint for the
internal parameters in equation (22), which in turn can
be used to infer their bulk properties such as their mass
given an equation of state as discussed below.
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In the pulsars with regular activity, glitches
not only have a characteristic (typically large) size
and recurring time, they are also rather similar in
their recovering behaviour. It is thus a reasonable
assumption that both Iα and the product IglδΩ

s
gl do

not vary much from glitch to glitch. An average rate
of angular momentum transfer to the component Iα
will then be L̇gl = Iα2πA. Moreover, the fact that the
waiting times are alike means that the lags building up
during the interglitch intervals are also comparable, as
the average spindown rate does not change much on
such timescales. Assuming therefore that glitches are
always triggered close to a specific value of the lag, e.g.
when ωcr is reached, the reductions δΩgl (and thus Igl)
must also be varying little between glitches. The rate
that the component Igl stores angular momentum is

limited by Igl2πν̇ and so L̇gl . Igl2π〈|ν̇|〉, where 〈|ν̇|〉 is
the average spindown rate in the course of observations
Tobs. It follows that

Igl

Iα
&
A
〈|ν̇|〉

. (24)

For the Vela pulsar Igl/Iα turns out to be close to 1.5%
[168], and similar numbers close to 1% and up to 2% are
obtained for other pulsars which present the regularity
that validates this approach, and enough glitches to
reliably estimate A [169]. Most of these pulsars have
a characteristic age similar to Vela, around 104 yrs,
except PSR J0537−6910 which is somewhat younger
(∼ 5×103 yrs) and has a relatively small inferred ratio
Igl/Iα ∼ 9× 10−3 [100].

The fact that the moments of inertia ratio Igl/Iα
is about 1% lent support to the idea that glitches
originate in the inner crust of the neutron star which,
if Iα is close to the total moment of inertia Itot,
indeed would amount to a similar percent. As reviewed
in Section 2.3, vortices are expected to pin to the
ion lattice thus the crustal superfluid can remain
decoupled on long timescales. It is also possible for the
core superfluid to be strongly coupled to the normal
component (see Section 5.1 for the microphysical
mechanism), validating the assumption Iα ' Itot.
This argument does not, however, account for the
entrainment effect in the inner crust which can have
an important impact on the dynamics. The unbound
neutrons that form the inner crust superfluid might not
experience a frictional force, but nonetheless they are
not absolutely free to flow as they are Bragg reflected
by the ions of the crustal lattice [170]. This non-
dissipative mechanism essentially reduces the angular
momentum reservoir available for glitches, as it couples
the two components so that Ω̇s is never zero, even
in the idealised scenario of perfect vortex pinning.
The angular momentum of the superfluid depends
not only on Ωs but also on Ωc (see equations (7)

and (10)). Using the band theory of solids, it has
been shown that entrainment can be very strong in
the inner crust, especially at baryon densities around
0.02−0.03 fm−3 [171]. This will considerably limit the
effectively decoupled moment of inertia of the crust
that can contribute to Igl [172]. The right-hand-side of
equation (24) is increased by a factor (1− εn).

The upper end of theoretical expectations for
entrainment [171] implies a moments of inertia ratio
as high as ∼10%, uncomfortably large to identify with
the crustal moment of inertia for most equations of
state and a canonical neutron star mass around 1.5
solar masses [172, 173]. Confining Igl to the inner crust
superfluid would imply a thick crust for the pulsars
under consideration, which in general, for a given
equation of state, translates to small stellar masses,
sometimes unrealistically so, or to particularly stiff
equations of state (resulting in larger radii). At the
moment there are multiple unknown factors entering
the problem, which leaves several conceivable solutions
to this tension (see for example [174] for an exploration
of the different effects using a Skyrme model). Each
route can offer valuable information to be reaped
when progress narrows down the possibilities. Given
the uncertainties in the equation of state and the
sensitivity of the crustal moment of inertia to the
transition pressure from the core to the crust, strong
entrainment could still be consistent with crust-driven
glitches [175, 176]. Different calculations of the
entrainment coefficient produce a more modest effect
[177, 178], which is easier to accommodate.

A third possibility is that a fraction of the core is
not tightly coupled to the crust, therefore Iα is smaller
than what is typically assumed. The fast coupling
mechanism between the core superfluid and the normal
component is attributed to the electron scattering off
magnetised vortex cores (details in Section 5.1) [179].
The nature of the protons (normal, type-I or type-
II superconducting), of vorticity in the 3P2 channel
[180], the existence of more exotic condensates in the
inner core of the star, or even a magnetically-decoupled
region because of the magnetic field’s topology [181]
are all factors that affect the exact profile of coupling
timescales in the core, and thus Iα. Information on this
can also come from observations of the glitch recovery
phase ([182], Section 5.4).

Last, part of the core might be so weakly coupled
that it contributes to the glitch reservoir: Igl can
involve both the crust and core, or even be located
in the core alone. This requires a mechanism for
vortex pinning in the core, with the interaction of
type-II proton fluxtubes and vortices being the natural
candidate as discussed in Section 2.3. Strong pinning
throughout the core raises the question why glitch ∆ν
is not, at least occasionally, much larger than what we
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observe. A possible answer lies in the dependence of
the pinning efficiency to the magnetic field topology;
geometrical arguments indicate that the toroidal field
region is the best candidate for strong pinning to occur
[41]. This region has a spatially confined extent in the
core that varies with the total (interior) magnetic field
strength. Early results suggest that the mixed toroidal-
poloidal field region might reside only in the crust for
internal field intensities below ∼ 1013 G [183, 184].
Even if pinning to fluxtubes does not result in the core
region to act as angular momentum reservoir, it can
still raise the coupling timescales locally, reducing Iα
and contributing to the observed recoveries [185]. In
fact, analysis of a large Vela glitch which was observed
in 2016, indicates that both last factors are at play (Iα
being lower and Igl having contributions from the core)
[186]. We discuss this point further in Section 5.

Considering a scenario where glitches are driven
by the singlet-state superfluid alone, a varying fraction
of the outer core would supplement the crustal
superfluid depending on the pairing gap (in some
theoretical profiles, 1S0 pairing occurs only at inner
crust densities, in others it extends to the outer
core). The exact superfluid moment of inertia in this
state will also depend on the internal temperature
of the star with respect to the critical temperature
for superfluidity. A range of pairing profiles and
equations of state, combined with glitch activity
measurements of nine pulsars for which internal
temperature estimates can be made (either from
surface temperature measurements, when available, or
simulations of minimal cooling in combination with
information on the pulsar’s age) was explored in [169],
who found that, in the case of the pairing profile
of [187], the singlet-state superfluid can provide the
required moment of inertia Igl in (24) to explain glitch
observations given the entrainment parameters in [171].
On the basis of this idea, glitches can be a powerful
test of nuclear physics predictions: by adopting an
equation of state, the results can be translated into a
mass estimate for these pulsars, information otherwise
inaccessible for individual neutron stars [169].

Another way to calculate the extent of the angular
momentum reservoir requires a density profile for the
critical lag ωcr for unpinning, which limits δΩsgl in
(22) and thus returns a maximum glitch size for a
given moments of inertia ratio Igl/Iα. A worked-out
example of this has been presented in the context of the
“snowplow” glitch model [188] using the mesoscopic
pinning force calculations of [45] in order to obtain
estimates of upper bounds for glitching pulsar masses
[189, 190]. In this model, vortices pin only to the crust
but extend through the core whose moment of inertia
contributes to glitches – the hypothesis being that
vortices can continuously thread the singlet and triplet

superfluid state, and no layer of normal neutron matter
exists beyond neutron drip densities. The maximum of
the pinning force per vortex line is achieved in the inner
crust, for vortices fully immersed in it. It is assumed
that weakly-pinned vortices further in unpin, move out,
and re-pin in the strong pinning region (hence the
name, since vortices pile-up there as if pushed by a
snowplow). Once the Magnus force exceeds even the
maximum of the pinning force, all the accumulated
vorticity is released, leading to a glitch [188]. An
idealised scenario that maximises glitch impact is that
all regions reach their critical lag and then the reservoir
is fully depleted at the glitch, i.e. the average lag
goes to zero. This allows one to obtain a strict upper
limit on the amount of angular momentum that can
be exchanged during a glitch which, once the pinning
model and equation of state are fixed, depends only
on the mass of the star. By comparing to data of
the largest glitch measured in a pulsar, one can thus
obtain a (model-dependent) upper limit on the mass
of the star. Any larger glitches observed in the future
by the same pulsar would lower this upper limit, as
the angular momentum available in the reservoir is
inversely proportional to the mass of the star. A note
of caution is due, as currently published limits based
on this method rest on the assumption that published
glitch sizes ∆ν always underestimate the true glitch
size; this is however not universally reliable. Reported
∆ν are calculated by extrapolating the post-glitch
timing solution back to the (inferred) glitch epoch:
depending on the model fitted to the recovery of each
glitch in question and its accuracy, it is even possible to
overestimate the true glitch size (leading, incorrectly,
to a lower inferred maximum mass).

4.3. Glitch sizes and interglitch waiting times of
individual pulsars

Besides population-wide studies, it is constructive to
examine the glitch properties of each neutron star
separately: as already apparent in figures 8 and 12,
the distribution of glitch sizes and interglitch time
intervals in individual pulsars varies. Analysis of these
distributions for most glitching pulsars is challenging
because of restricted sample size, nonetheless some first
conclusions can be drawn for the sources with & 10
recorded glitches.

First, the Vela pulsar (top panel in figure 14)
and PSR J0537−6910 present a relatively narrow
distribution in glitch amplitudes ∆ν, dominated by
large glitches (peak around 15 − 20µHz), that can be
modelled as a Gaussian [100, 191, 92]. Their waiting
times distribution, that is, the time interval between
successive glitches, also shows some normality. Other
potential candidates for this category do exist, for
example pulsars J1420-6048, J1801-2451, and J1803-
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Figure 14. Histograms of glitch sizes ∆ν presented in a
logarithmic scale for the same three pulsars as in figure 8. Top
panel: Glitch sizes of the Vela pulsar are best described by a
Gaussian ∆ν distribution which peaks at large, ∆ν ∼ 10 µHz,
amplitudes. Middle panel: PSR B1737−30 (J1740−3015) has
a broad ∆ν distribution, consistent with a power-law. Bottom
panel: the Crab pulsar size distribution can be modelled as a
Log-normal distribution or a power-law.

2137, but more glitches need to be observed from these
pulsars before a statistically sound conclusion about
their glitching nature can be reached.

On the other hand, the rest of pulsars with
sufficiently “large” glitch sample have size distributions
that are generally best-fitted with a log-normal
distribution or a power-law. A prominent example is
the Crab pulsar (bottom panel in figure 14), whose size
distribution is best-fitted with a log-normal [63, 191],
but can also be described with a bounded power-law,

with index ∼ 1.36 [63, 192]. The probability of glitches
with sizes below ∼ 10−2 µHz seems to rapidly decrease,
but not purely as a result of observational bias as
the Crab pulsar is regularly monitored and glitch-like
irregularities of smaller amplitudes can be, and have
been, detected [63]. Other examples of pulsars with
non-Gaussian size distributions are PSR J1341−6220
(possibly log-normal, although see below), J0631+1036
and B1737−30 (power-laws, middle panel in figure 14)
[191, 68]. The waiting times distribution of pulsars in
this category can be well represented by an exponential
distribution [67, 68].

It is worth noting here that whilst the ∆ν
distributions must be complete above a certain
detection threshold, and thus can be interpreted as
long as this limitation on its lower end is taken into
account, the waiting times distribution is much more
sensitive to the completeness of the sample. Possibly
undetected small glitches between larger, recorded,
events can considerably change the inferred waiting
times. This effect is, fortunately, unlikely to be greatly
important for pulsars that are monitored sufficiently
often.

Some pulsars with multiple glitches do not seem
to fit well in either category. PSR J1341-6220 is
potentially such a source, where although waiting
times are broadly consistent with an exponential
distribution, both sizes and waiting times distributions
show a weak peak and there is a moderate excess of
large glitches (compared to power-law expectations).
In all such pulsars their glitching nature might become
clear when more glitches are detected, but it cannot
be yet excluded that a mixture model might be more
appropriate. This could be perhaps the case if there
are two mechanisms at play, giving rise to glitches of
different properties: a population with a characteristic
scale and a population with a broader range of (usually
smaller) sizes. The scenario of two glitch populations
has also been investigated for its possible effect on
the inferred correlation between glitch parameters
(∆ν, ∆ν̇) and forward or backwards waiting times
[100, 191] which is considered below.

Both the size and waiting time distributions
provide input and constraints on proposed glitch
models. One aspect of the mechanism particularly
illuminated by these analyses is the glitch trigger. The
conjecture that glitches are driven by a build-up –
deplete – repeat process in a fixed region that acts as
the angular momentum reservoir until the same critical
lag is always reached is not in accordance with the wide
size and waiting times distributions observed.

In general, glitch sizes do not correlate with the
time since the preceding event (with which stress
will scale, e.g. the lag ω that is built between
glitches) as could have been expected if glitches
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Figure 15. The time interval until the following glitch versus
the size ∆ν of the preceding glitch, for 56 glitches in PSR
J0537−6910 as reported in [100, 101, 194]. The dashed line is a
linear regression model forced to pass by the origin.

depleted the entire reservoir of angular momentum
(and assuming the same moment of inertia of superfluid
takes part in each event). By contrast, a strong
positive correlation between glitch size ∆ν and the
time until the next glitch ∆Tf has been established
for the pulsar J0537−6910 [193, 100], as manifested
in figure 15. This correlation favours a threshold-
regulated process as the glitch trigger – it takes longer
to reach the threshold after a larger ∆ν glitch –
whilst glitches do not necessarily deplete the available
reservoir. Non depletion means glitch sizes can be
larger than expected from the lag built since the last
event (as they can draw from residual lag), or smaller if
they release only some of the lag accumulated. This is
in accordance with observations of J0537−6910 ([100],
interpreted by a simple superfluid model) and explains
the lack of correlation between waiting times and size
of following glitch, but leaves the question why the ∆ν–
∆Tf correlation is not seen in other pulsars. A similar,
albeit weaker, trend is observed in few more pulsars
[191] but not even the Vela, despite being the only
other source with sizes and times distributions best
fitted by Gaussians, presents a clear correlation.

The possibility that the lack of observed ∆ν–
∆Tf correlation is because of undetected glitches
is disfavoured for the Crab pulsar, whose frequent
monitoring allows discovery of very small events
[63]. For even smaller glitches, the ∆ν–∆Tf
correlation would imply respectively small following
time intervals. Missing those events will lead to
only slight overestimation of the interglitch intervals,

insufficient to completely obscure the inference of the
underlying correlation (the same argument most likely
holds for the Vela pulsar as well). Simulations of
glitches with power-law distributed sizes ∆ν show that
the incompleteness of the glitch sample below a certain
cut-off worsens the inferred correlation, but the effect
is important only when the power-law is steep [191].

Another possibility which we mentioned earlier
is that there are two populations of glitches: one
consisting mostly of large events that are threshold-
driven (and therefore will have correlated ∆ν–∆Tf ),
and a set of smaller events occurring stochastically.
This idea has been explored for the 8 pulsars with
the largest glitch samples as of 2018 (including
J0537−6910); results for most pulsars were mixed
or inconclusive. For the Vela pulsar the correlation
improves when glitches below ∆ν ∼ 2µHz are
excluded [191], but remains weak compared to that of
J0537−6910.

Another correlation has also been observed in
J0537−6910, between the interglitch waiting time and
the change |∆ν̇| of the following glitch [193]. Later
studies, using a nearly twofold sample of glitches,
found less strong evidence for this correlation but
confirmed the trend when the smallest glitches (5 out
of 45) were excluded from the analysis [100]. Such
a correlation could relate to the superfluid that is
available to decouple (causing ∆ν̇ < 0) at each glitch.
Longer waiting times will allow more of the decoupled
superfluid to reach its steady-state before the next
event is triggered, permitting for larger |∆ν̇| at the
next event. It might also hint at a different superfluid
response depending on glitch size, something that can
be explained by the non-linear dependence of the
mutual friction on the lag ω [195]. This is covered
along other data correlations and trends relating to
the post-glitch recoveries in Section 5.

4.4. Glitch triggers and meta-models

The statistics presented above, while far from
exhaustive given the still low number of glitches
observed from many pulsars, can however be used to
try to obtain constraints on proposed glitch models
and in particular the nature of the trigger mechanism.
The observation that, for several pulsars, the size and
waiting time distributions lack a characteristic scale
is suggestive of a scale-invariant process at work [67].
Crustquakes could be such a process if there is an
analogy to several geological phenomena, but scale
invariance can also arise from the other promising
glitch trigger mechanism: vortex unpinning and knock-
on effects which lead to vortex avalanches. In fact,
simulations of quantum vortices in a spinning down
container (obtained by solving the Gross-Pitaevskii
equations) have shown that avalanches take place
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and indeed result in powerlaw distributions for glitch
sizes and exponential ones for waiting times [65,
66]. Nevertheless, scaling up these simulations, which
typically model ≈ 103 vortices, to a realistic setup
for pulsars by including ∼ 1013 vortices is technically
unfeasible. One has to rely on large scale models,
that include some aspects of the microphysics, while
allowing for local stresses to be released and/or
accumulated in a stochastic manner [196, 197].

Testing each individual model against observa-
tions and understanding the impact of its underlying
set of assumptions is prohibitive, however, so-called
meta-models can be introduced. These are models that
incorporate the features of a number of popular glitch
models, yet remain agnostic about the details of the
microphysics. Two such meta-models have been devel-
oped [198, 199]. One considers mechanisms that can
trigger a glitch stochastically as a critical value is ap-
proached (such as in the vortex avalanche model, in
which avalanches are more likely to occur if the system
is close to ωcr). The other meta-model considers mech-
anisms in which the glitch is triggered at a given thresh-
old, e.g. when ωcr is reached (or the elastic limit of the
crust exceeded, for crustquake models), but the system
approaches this threshold in a ‘noisy’ manner. The
meta-models allow to predict a number of quantities
of physical interest, which can be compared to current
and future observations. Of main interest is whether
a model can explain the roughly two classes of proba-
bility density functions (PDFs) for the glitch size and
waiting time distributions seen in individual pulsars:
the first with exponentially distributed waiting times,
and monotonically decreasing, scale-invariant (possibly
power-law distributed in some cases) size distributions,
and the second with unimodal distributions for both
sizes and waiting times, i.e. Vela-like behaviour. Be-
sides PDFs, the phenomenological meta-models can be
used to predict waiting time and size cross-correlations,
and also auto-correlations, making concrete and falsi-
fiable predictions about long-term glitch statistics.

The first meta-model assumes a state-dependent
Poisson process [198]. Stress accumulates in a
deterministic fashion (driven by the external spin-
down torque) in-between glitches, but glitches are
triggered stochastically via a Poisson process whose
rate increases with the stress. The instantaneous glitch
rate λ(t) is thus a function of the stress, quantified by
a single variable X(t), which in the case of superfluid-
driven glitches is taken to be the spatially averaged lag
between the superfluid component and rigid crust. A
phenomenological prescription was adopted where

λ(X) = λ0(1−X/Xcr)
−1 , (25)

with λ0 a reference rate, andXcr the maximum lag that
the pinning force can support, but it was found that the

specific functional form for the rate has little impact
on the long-term statistics as long as it encodes two
main physical expectations of glitch models: (1) λ(t)
increases monotonically with X and (2) λ(t) diverges
at X = Xcr (i.e. glitches become increasingly more
likely as the critical lag at which all vortices unpin is
approached) [198]. The lag evolves according to:

X(t) = X(0) +
Nsdt

Ic
−
N(t)∑
i=1

∆X(i) , (26)

where X(0) is an arbitrary initial condition, Nsd is
the spin-down torque, Ic the moment of inertia of
the normal component, N(t) the number of glitches
that have occurred up to time t, and ∆X(i) is the
change in lag at the i-th glitch. The change ∆X(i)

is governed statistically by a conditional distribution
η(∆X|Xp), which depends on the lag immediately
before the glitch Xp. The model remains agnostic
of the physics governing η, and can describe a
number of prescriptions. For example Gross-Pitaevskii
simulations suggest a power-law for η if vortex
avalanches are the dominant glitch trigger mechanism
(but the picture is similar for crust quakes) [65, 66].
A number of alternative functional forms, in particular
uni-modal distributions that predict typical scales for
the glitch, as expected e.g. by models built around
the snowplow paradigm [188], have also been explored
[200]. Whilst η encodes the microphysical distribution
of changes in the lag in the superfluid of moment of
inertia Igl, which is not directly observable, it can be
connected to the long term distribution of glitch sizes
∆ν by demanding angular momentum conservation at
each event

∆Xi = −2π(Ic + Igl)∆ν
(i)

Igl
, (27)

and evolving X through a simple Monte Carlo
automaton as follows [198]. A random waiting time ∆t
given the current lag is extracted from the distribution:

p[∆t|X(t)] = λ

[
X(t) +

Nsd∆t

Ic

]
× (28)

exp

{
−
∫ t+∆t

t

dt
′
λ[X(t

′
)]

}
.

The lag is updated to account for the spin-down during
the time ∆t and a random size ∆X is picked from η,
and subtracted from the lag. The change in observable
frequency is calculated, and the procedure repeated.

In general the model can be analysed in terms of
two dimensionless variables that control the dynamics:
X̃ = X/Xcr, the dimensionless stress, and α =
(IcXcrλ0)/Nsd which encodes how rapidly the system
is driven. For large values of α the system is slowly
driven, and when powerlaw and unimodal distributions



Pulsar glitches 30

are considered for η then the size distributions are
approximately scale-invariant (although not exactly
power-laws for unimodal η distributions) [198, 200].
Current observations do not yet allow us to distinguish
between the different forms, but future data may make
this possible, especially in combination with other
constraints on cross and auto-correlations, as will be
discussed in the following.

For small values of α, on the other hand, the
system is rapidly driven and typically has time to
climb close to the critical lag before a glitch is
triggered. Small glitches will be followed by short
∆Tf before the next one is triggered, whilst larger
events will statistically precede longer waiting times
therefore, even though avalanches are uncorrelated,
a strong correlation between size and waiting time
until the next glitch will emerge. Note that whilst
this matches observations of the rapidly spinning-down
PSR J0537−6910, the other high |ν̇| candidate for this
behaviour is the Crab pulsar, which does not display
a ∆ν-∆Tf correlation. To overcome this challenge
requires Xcr to vary between these pulsars. If η
is unimodal, it also leads to unimodal distributions
in the size and waiting time glitch distributions.
Weak correlations are also predicted between size
and waiting time from the previous glitch (∆Tb),
and auto-correlations in the size and waiting time
distributions are also predicted but depend strongly
on the physical input for η. As more data is collected,
observations of such correlations and auto-correlations
in the pulsar population may thus be used to constrain
the physical input of the models [201]. The effect
of a history-dependent rate η has also been studied
[202], corresponding to the generally accepted picture
of how pulsar glitches occur, i.e. vortices pin and
unpin in an inhomogeneous pinning landscape, where
the unpinning is governed by the evolution of the
local thresholds of pinning sites as a function of
time. Interestingly the model predicts aftershocks
for large glitches, which are not observed (although
given the scarcity of data, we may not have yet
observed large, system resetting, glitches) and cross-
correlations between sizes and waiting times, which are
provisionally inconsistent with observations.

A different kind of studied meta-model is one
where glitches are the result of a Brownian stress
accumulation process [199]. In this case glitches are
not triggered stochastically, but instead happen when
a certain threshold is reached (as predicted e.g. for
glitches triggered by fluid instabilities [69]). The
evolution of the stress driving the system to that
threshold is, though, stochastic following a Brownian
process. These fluctuations in the stress might be
connected to precursor events, such as the one possibly
seen prior to the Vela 2016 glitch [110]. The stress

evolves according to the Langevin equations:

dX(t)

dt
= ξ + σdBwn(t) , (29)

where ξ is a drift coefficient (which models the external
driving due to the spindown torque) and σd the
diffusion coefficient, with Bwn(t) a white noise process
with zero mean and unit variance [199]. A dimensional
parameter can be defined as

µ = ξXcr/σ
2
d , (30)

with Xcr the critical lag at which the glitch is triggered,
releasing an amount of stress ∆X which is once again
drawn from a distribution η.

Contrary to the state-dependent Poisson process
model, the Brownian model predicts no size and
waiting time autocorrelations, and no cross correlation
between size and ∆Tb. If any such quantity is
determined to be non-zero for a pulsar, it would rule
out this meta-model.

Thus, over time and with additional observations,
we expect to be able to use sample properties like the
distribution of sizes and waiting times, as well as their
cross-correlations and auto-correlations, to falsify one
or both meta-models, and to place constraints on the
microphysical inputs, such as η. This would shed light
on the physics acting in the star, and reveal whether
the same mechanism is indeed acting in all glitching
pulsars, or not [203].

Whilst this kind of meta-models are powerful tools
to describe the long-term statistics of glitching pulsars,
they do not fully encode the hydrodynamical coupling
between the fluids in the star. For example glitches are
treated as impulsive events with sizes determined from
angular momentum conservation (giving essentially
the asymptotic size of a glitch) and short term
transients cannot be determined. A first attempt at
addressing this is the development of a meta-model
in which glitches are triggered stochastically but then
the system is evolved following the multifluid equations
[204]. Input avalanche sizes, as well as the strength of
the mutual friction coupling by which they evolve, were
drawn from underlying powerlaw distributions. The
resulting glitch size distributions will differ significantly
from power-laws, and present a lower size cutoff – such
as the one observed in the Crab pulsar [63]. The
cut-off appears because events in which only a small
number of vortices unpin will appear in the data as
gradual changes instead of displaying the standard
glitch signature (see also [39] for an in-depth discussion
on the effect of glitch size on the shape of the glitch
recovery in this framework). Furthermore, when a
realistic non-linear form is used for the mutual friction
between the superfluid and the crust in the strong
coupling regime (as will be described subsequently), it
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can qualitatively change the response of the star to a
glitch [195]. For small glitches, the transfer of angular
momentum will be slow enough for the core to remain
coupled. In large events, where vortex velocity will
be high, the spin-up will be faster (see Section 5.1)
and part of the core might decouple: Iα in equation
(22) will be smaller, leading to an even larger observed
∆ν. This can create an excess of larger glitches and
a bimodal size distribution, such as the one observed
from the overall pulsar population.

5. The stages of a glitch

In this section we discuss the particulars of the
individual stages of observed glitches and their
theoretical implications. The first stage of a glitch is
the spin-up phase. For the vast majority of glitches,
this phase is not temporally resolved by observations
and can be very fast: less than a minute for large Vela
glitches. The next stage is the post-glitch response.
Whilst some glitches appear only as steps in ν, without
appreciable changes in ν̇ and ν̈, most will be followed
by a period of rotational evolution that differs from
the pre-glitch one and can last for up to many years.
This stage can present considerable complexity and
remarkable variation from glitch to glitch, as can be
seen in figure 6. Nonetheless, several phases can
be recognised in the post-glitch response, the most
common of which are illustrated in figure 18.

The observed timescales, as well as the functional
form of the post-glitch response, have a high value
as probes of the neutron star’s internal state and
dominant processes. On that account, we start by
looking in some more detail at the underlying physics
(Sections 5.1 and 5.2), before discussing insights gained
by observations of the glitch rise (Section 5.3) and the
rich phenomenology of post-glitch relaxation (Section
5.4).

5.1. Interactions between neutron stars’ constituents

The great range of timescales involved in the glitch
phenomenon can be understood in terms of the various
microphysical mechanisms by which the constituents
of neutron stars interact and couple to each other.
In what follows we outline the most important ones
together with order of magnitude estimates for the
resulting timescales ‡.

The charged particles of the core (including the
protons if they are not superconducting) respond to
the spin-up of the crust either by (low frequency)
hydromagnetic waves or the formation of an Ekman
layer at the crust-core boundary. The timescales will

‡ Exact formulae can be found in the referenced articles, see also
[43] for a recent review.

be of the order of few to some tens of seconds for typical
pulsar parameters ([205], see also [206] and [181] for
a more detailed discussion and the effects of proton
superconductivity and the magnetic field topology, as
well as [179] for some considerations on the coupling of
type-II superconducting protons). If neutrons are also
normal, strong-interaction scattering between protons
and neutrons brings them to rotational equilibrium
almost instantaneously. If both protons and neutrons
are superfluid, and without considering vortices, this
coupling timescale becomes extremely large.

In general, the temperature T in the core of
mature neutron stars will be well below the local
critical temperature for superfluidity, so that not
only neutrons are superfluid but also the contribution
to coupling from scattering off neutron superfluid
quasiparticles (excitations) becomes negligible. The
dominant coupling mechanism is scattering involving
the (normal) vortex cores.

The scattering of electrons from the thermal
excitations in the normal vortex core (magnetic-dipole
interaction) is relevant to both the inner crust and
core of neutron stars. The relaxation timescale of this
process strongly depends on the pairing gap, and thus
can vary from very short to year-long with location
within the star [207]. Whilst in the inner crust the
superfluid will be in the singlet-state (neutron pairs
have zero spin and orbital angular momentum), in
the stellar core a 3P2 phase appears. In this state,
and in the case of non-superconducting protons, the
vortex acquires a magnetic field of the order 1011 G
as a result of the neutron magnetic moment. This
provides additional coupling via the interaction of
electrons with the vortex magnetic field; this coupling
timescale between the vortex lattice and the electron
‘fluid’ scales as ∼ 1.3 × 108kfχ

2/3∆−1
n ν−1 s where kf

the neutron Fermi wavenumber in fm−1, the neutron
pairing gap ∆n is in MeV, and χ is the electron fraction
[208]. This timescale is relatively long (∼ weeks) for
typical pulsar parameters and becomes relevant only
for very cold, roughly colder than 107 K, neutron star
cores, for which (thermal) vortex core excitations will
be negligible. Under the same assumption of normal
protons and for realistic internal temperatures, the
strong interaction between protons and vortex core
excitations will provide the most efficient coupling,
leading to very short timescales (typically under a
pulsar period) [209].

In the case, however, of proton superconductivity
in the core, the Andreev-Bashkin entrainment effect
arises due to the long-range part of the strong
interaction. It introduces a dissipationless coupling,
in which neutrons “drag” along protons as they move
(and vice-versa). This results in an induced current
of protons around neutron vortices which sources a
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much stronger (nearly 1015 G) magnetic field along
the vortex axis – the exact magnetic flux carried by the
neutron vortex will vary across the star as it depends on
the entrainment parameters. The coupling timescale
between vortices and electrons is then greatly reduced
to the order of seconds for typical pulsar parameters
[179], rendering the contribution of this mechanism to
mutual friction the most important.

A magnetised neutron vortex will also interact
with the proton vortices that carry the magnetic flux
in a type-II superconducting region (fluxtubes). This
interaction can potentially lead to pinning (Section 2.3)
and decoupling of the core, at least partially, but once
a large enough lag has developed for the Magnus force
to exceed the pinning force, vortices will cut through
fluxtubes – a highly dissipative process, leading to
strong mutual friction [210]. In fact such form of
mutual friction may also efficiently damp modes of
oscillation of a neutron star, for example leading to
an effective saturation amplitude for the r-modes [211]
and explaining the lack of observed gravitational wave
emission associated with such modes in the neutron
stars in Low Mass X-ray Binaries [212, 213].

A transition to type I superconductivity is
expected for densities exceeding 3 × 1014 g cm−3,
relevant for the inner core of neutron stars. The
coexistence of a type-I superconductor with the
neutron superfluid and vortices has not been studied
yet in detail, mainly due to the unknown distribution,
scale and shape of the non-superconducting regions in
which the magnetic field will be confined. In the case
in which the neutron vortices carry co-linear normal
proton domains, however, the mutual friction coupling
timescale can be calculated and is of the order of
minutes [214].

In the inner crust vortices are immersed in the
ion lattice. Dislocation of the crustal nuclei due to
their interaction (pinning) with vortices can create
a charge distribution around a vortex, allowing for
Coulomb scattering of electrons, but early calculations
indicate this mechanism will not dominate the coupling
timescale [215] over the magnetic-dipole interaction.
A moving vortex though will excite and couple to
phonons in the lattice; the coupling will be relatively
weak but is not highly sensitive to temperature, in
contrast to processes relying on vortex core excitations,
and can be in the correct range of tens of days
observed in post-glitch recoveries [216]. The motion
of a vortex through the pinning potential will also
excite kelvons – quantised Kelvin modes on the vortex
itself – which will interact with the lattice [217]. The
resulting dissipation depends on the velocity of the
vortex [217, 42]. In regions where vortices pin and
a lag ω builds up, the vortex velocity can be high
when it unpins (and is limited by the maximum ωcr

for unpinning, see Section 2). Very strong coupling
can then occur, with timescales of order of seconds,
which can explain the fast rise of glitches as seen in
the Vela pulsar [109] (see Section 5.3).

5.2. The superfluid response

Following the assumption of a linear drag force acting
on vortices as in Section 2.2, the above microphysical
estimates of the coupling timescales, for instance
between the vortex lattice and the electron fluid or
ion crystal, would enter the problem via the parameter
R (equation (5)), or equivalently the dimensionless
mutual friction parameter B (equation (9)).

In order to make connections to observations,
these timescales should be converted to the dynamical
timescales for the coupling between the macroscopic
components of the star (which include the inertia
of all constituents that relax to co-rotation). The
short coupling timescales between the charged particles
compared to the time resolution of observations
and glitch recovery timescales, typically allows their
treatment as a large-scale charge-neutral fluid. As
discussed in Section 2, the most basic model of a
superfluid neutron star is thus that of a system of
two fluids: a neutron condensate with total moment of
inertia Is, and the ‘normal’ fluid with moment of inertia
Ic, described by the equations (10). In these equations,
the mutual friction coefficient B encodes the strength of
the coupling and can be derived from the microphysical
timescales (e.g. the electron-vortex interactions) τMF

as:

B =
1

2ΩsτMF
. (31)

The dynamical timescale for the response of the
superfluid is then given by equation (13), which we
recall here:

τc ≈
(

Ic
Is + Ic

)
1

2ΩsB
. (32)

This expression neglects, for the sake of clarity,
entrainment and any external torques, and Ωs is the
initial angular velocity of the neutron fluid (see Section
2.2). We recall that the other assumptions going into
equation (13) and the estimate of B were (i) that we
can work in Newtonian gravity, (ii) that the flow is
laminar, and (iii) that the response of the system is
linear [218]. We now examine the consequences of these
assumptions in a little more detail.

The first issue to consider is the effect of modelling
the star in general relativity. The multifluid equations
in Section 2 can be cast in a general relativistic form
and have been studied by several authors (see [219]
for a review). In particular it was shown early on
that the vortex geometry can be affected significantly
by the curvature of the spacetime [220], which will
affect, among others, the glitch spin-up timescale.
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Modelling the star as two rigid components with vortex
pinning occurring throughout the star, the relativistic
coupling timescale can differ from the Newtonian one
significantly (by factors of up to 40%), depending on
the equation of state of dense matter [221].

The analysis can be somewhat simplified if one
considers pinning only in the crust of the neutron
star. In this case many of the metric functions can
be approximated in terms of their value in a thin
outer shell. Following this procedure the difference
between the relativistic coupling timescale, τGR, and
the Newtonian estimate in (32), τc, can be expressed
as a function of the stellar compactness only [222].
Explicitly, in units where G = c = 1:

τGR
τc

=

(
1− 2M

R?

)−1/2(
1− 2I

R3
?

)−1

, (33)

where M is the mass, R? the radius and I the
moment of inertia of the star. By using the universal
relations of [223] to express I in terms of the
relativistic compactness C = M/R?, one can obtain
a relation which depends only on C and is, to a good
approximation, independent of the equation of state.
This can be seen in figure 16, from which it is clear
that the relativistic correction can be sizable (even a
factor 2 or more) for the most compact stars.

Figure 16. The relativistic factor τGR/τc as a function of
compactness C = M/R? of the star, plotted both for a number
of realistic equations of state, as in [222], and using the universal
relation obtained from (33). The relativistic estimate of the
timescale can be significantly longer than the Newtonian one
for the most compact stars.

Apart from the Newtonian approximation, the
other main assumption that goes into (32) is that the
equation for the response of the fluid is linear in the lag
between the angular velocities of the components ω, i.e.
that, assuming that all components are rotating around
a common axis ẑ, the dissipative mutual friction force

FMFẑ can be written in the form

FMF ∝
ω

τMF
, (34)

with τMF the (constant) microphysical coupling
timescale. This could be an acceptable approximation
in some limiting cases, nevertheless it is not expected
to hold in general (see e.g. [224, 217, 42, 195]). More
broadly, one has that

FMF ∝ f(ω) , (35)

where now f is a general function of ω.
The derivation of equation (13) in Section 2.2

assumes a constant number of free vortices (encoded
in B via the free vortex fraction γfv). Whilst for
small deviations from the steady-state, FMF could be
expanded and approximated as linear in ω, this might
not be the case for a pinned superfluid when large
deviations from the steady-state can arise. Consider,
for example, the steady-state case in which most
regions of pinned vorticity are subcritical, i.e. are close
to the critical threshold for the unpinning of vortices, so
that any excess vorticity is expelled either by discreet
avalanches [66] or vortex creep [224]. The effect of
a glitch on these regions will be to move the system
away from the threshold for unpinning, thus shutting
down vortex motion. In the absence of free vortices the
mutual friction vanishes, but as the normal fluid spins
down, increasing the lag ω again and pushing it closer
to the unpinning threshold, the fraction of free vortices
γfv will start to increase.

In general γfv will depend non-linearly on the
lag ω, and on the parameters of the system, such as
density, pinning force and temperature. Simulations
of vortex motion in pinning potentials show that γfv

can be modelled as a sigmoid (an S-shaped curve) [50],
and that for the particular case of a periodic pinning
potential, can be approximated with an analytic
formula:

γfv ≈
[
(2 +

√
2)

(
ω

ωcr
− 1√

2

)]1/2

, (36)

where beyond ωcr (corresponding to the maximum of
the pinning force) all vortices are free.

Similarly, in the thermal creep model, in which
vortices unpin and ‘creep’ out due to thermal
excitations, the fraction of free vortices sensitively
depends on the lag ω as well as the temperature. This
can be modelled in terms of a function

f(ω) = C sinh(ω/ω̃c) , (37)

where C and ω̃c are constants that depend on
temperature, pinning energy, vortex density and the
external spindown torque [224]. For ω/ω̃c � 1 one has
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sinh(ω/ω̃c) ≈ ω/ω̃c, and the above expression reduces
to a linear model (although see [225] for a discussion of
why the linear regime may not be realised in pulsars).
If one is not in the linear limit, the solution to the full
non-linear equations of motion (and observed response)
is no longer an exponential, but rather takes the form
of a Fermi function, so that the post-glitch spin-down
rate of the crust evolves as:

Ω̇c =
Nsd

Ic
− Is
Ic

Nsd

I
F (38)

where Nsd is the external spin-down torque and F a
function of time of the form:

F = 1− 1

1 + [exp(to/τnl)− 1] exp(−t/τnl)
(39)

with non-linear coupling timescales to = I∆Ω/|Nsd|
and τnl = (kBT/Ep)(ωcrI/|Nsd|), Ep the pinning
energy, and ∆Ω the perturbation (glitch) size.

More generally the mutual friction strength is
expected to depend on vortex velocity, so that a
realistic model which includes both phonon and kelvon
modes for the response of the crust, will naturally
be non linear [195] and not give rise to a clearly
exponential relaxation. Furthermore, in the presence of
strong pinning, vortex accumulation regions can form
and the simple approximation for the vortex density
nv ≈ 2Ωs will be no longer valid (Section 2). In
this case one has nv = nv(Ωs, ∂Ωs/∂$) with $ the
cylindrical radius (assuming, for now, straight vortices
and a laminar flow), and the equations of motion take
the form of a Burgers equation [226] with propagating
solutions, i.e. unpinned vortex ‘fronts’ which can
propagate as avalanches, and also give rise to glitch
precursors (see also Section 5.3).

The final assumption in equation (32) is that
the flow is laminar, and the vortices straight. In a
pulsar, however, both standard hydrodynamical and
superfluid quantum turbulence may be excited [69, 71,
70]. The vortex array will be disrupted, leading to a
polarized tangle and a different functional form of the
mutual friction. In this sense, turbulence is a particular
form of non-linear lag dependence of the response. In
the case ω � Ωs, which is generally valid in neutron
star interiors, the mutual friction may be decomposed,
formally, as a sum of terms due to straight vortices,
which carry the circulation, and a part due to vortex
rings [73]:

FMF = Ls 〈f〉s + Lr 〈f〉r , (40)

where Ls is the length of straight vortices in a fluid
element, Lr the length of vortex rings, and the brackets
indicate an average of the local force per unit length
f taken over the straight vortices (superscript s) and
rings (superscript r). Essentially this corresponds to

adding an extra term to the mutual friction, which has
the same form as the standard Gorter Mellink mutual
friction considered in the study of isotropic turbulence
in laboratory superfluids [227]. The dependence of the
total mutual friction force on the lag ω and on the
microphysical mutual friction timescale τMF is thus:

f(ω) ∝ αT
ω

τMF
+ β

(
ω

τMF

)3

, (41)

where the coefficients αT and β depend on the rotation
rate of the superfluid Ωs [228, 73].

Having presented the theoretical assumptions
underlying calculations of the coupling functional form
and timescales in superfluid neutron star interiors,
we now examine the different observed stages of the
glitch spin-up and following recovery and the kind of
constraints they can put on glitch models.

5.3. The glitch rise

At the typical observational resolution, glitches appear
as discontinuous changes in ν and ν̇. By the time
the first post-glitch observations are carried out,
any superfluid component that reacts at a shorter
timescale has caught up with the spin-up of the normal
component. This means that in most cases it is not
possible to use observations to probe the fast processes
involved in the early glitch stages.

Fortunately, a few pulsars are being monitored
frequently enough that their glitches have now been
caught in the act; this has provided us with invaluable
information both about the timescale of the spin-up
(related to the glitch driving mechanism) and the very
early relaxation, as angular momentum is being shared
between stellar components (believed to be related to
the faster coupling of all, or most, of the core super-
fluid). Additionally, the two pulsars for which con-
straining the rise timescale has been possible, the Vela
pulsar and the Crab pulsar, present a very different
picture.

Vela pulsar
The Vela pulsar (PSR J0835-4510) emits in the ra-
dio band and from mid-IR all the way up to > 50
GeV γ-rays. It is the brightest pulsar in the Southern
radio sky and has been a target of intense monitor-
ing since its discovery in 1968 [229]. Nearly continu-
ous monitoring over decades has allowed the detection
of many glitches including three large events that oc-
curred during high time-resolution observations. The
first such glitch had a magnitude of ∼ 3.5 × 10−5 Hz
and occurred in 2000. It was seen by the 14 m diame-
ter antenna at the Mount Pleasant Radio Observatory,
which had a parallel single-pulse observing system. Be-
sides 2-min integrated pulse profiles, 10-sec folded data
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were constructed using the single pulses. For the pe-
riod around the glitch, the single-pulse data were also
recorded and maintained in storage. These observa-
tions led to two very important results [109]. First,
they placed a strong upper limit in the acceleration
timescale of the crust: the glitch rise time τrise was
confined to under 40 seconds. Secondly, they revealed
a fast decaying ∆νd component, associated with an
exponential relaxation timescale of ≈ 70 s, on which
we focus in the next section. Emission properties ap-
peared unaltered around the glitch epoch: the profile
shape, intensity or polarization in the radio showed no
changes before or after the glitch [109], and a campaign
to detect changes in the X-rays found no pulse profile or
flux changes between observations taken 3 and 35 days
post-glitch [230]. In 2004 another large (∼ 2×10−5 Hz)
glitch was captured by the same telescope, for which
a similar constraint for the spin-up timescale (< 30 s)
was obtained [90]. A third glitch whose initial phase
was observed by the Mount Pleasant Radio Observa-
tory, this time with a 26 m telescope, took place in
2016. The frequency evolution around this glitch is
displayed in figure 17. It is possible that the spin-
up was preceded by a enhancement of the spin-down
rate for some tens of seconds before the inferred glitch
epoch [110]. The spin-up itself was again undetectable
and a tighter limit of τrise ≤ 12.6 s was put on the rise
timescale [91, 110].
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Figure 17. Spin frequency evolution of the Vela pulsar over
1.12 hours and across the large glitch of 2016. We plot ∆ν =
ν − 11.186433306 Hz, using the Mount Pleasant ToAs made
available by [91]. Each frequency data point is calculated from
a timing fit to 1800 ToAs (equivalent to approximately 161 s) in
which only ν was varied and ν̇ = 0, using a moving window with
a stride of 17.3 s.

Under the assumption that the angular momen-
tum of the glitch-driving region is of the order of few
percent of the total moment of inertia of the star, i.e.

Igl ≈ 0.01(Is + Ic), then a simple analysis of (32) re-
veals that B & 1/(2Ωsτrise) in the Igl region. Using the
constraint for τrise of the Vela 2016 glitch, and taking
Ωs ≈ Ω ≈ 70 rad/s, leads to B & 10−4. This is con-
sistent with strong coupling due to kelvon excitations
in the crust, or vortex/flux tube cutting in the core of
the neutron star, and still marginally consistent with
electron scattering off vortex cores also in the core of
the star. On such short timescales, however, the re-
gions of the star that are coupled on a longer timescale
(e.g. regions of the outer core, or in the crust where
phonon excitations provide the main source of coupling
[231]) can decouple from the spin-evolution, and a care-
ful analysis of the density dependence of mutual fric-
tion and of the moments of inertia involved in the glitch
is necessary to obtain quantitative constraints.

Crab pulsar
The Crab pulsar has been also extensively monitored
from the radio band to high energies and timing of its
pulses is regularly performed by a plethora of observa-
tories and instruments. One of the most comprehensive
sets of Crab timing data comes from the Jodrell Bank
Observatory, at which daily observations of the Crab
pulsar have been carried out over many years (since
1984) [80]. Recent twice-daily ToAs can reach a high
time resolution; shorter timescales can also be probed
by integrating around 30 mins of observations to obtain
somewhat less precise, but denser ToAs [111].

Frequent observations made possible the temporal
resolution of part of the spin-up for six of the
Crab’s largest glitches. These glitches began with an
unresolved change in spin frequency, ∆νinst, just like
in the aforementioned Vela glitches (and as is the case
for most observed glitches, although for most pulsars
scarce ToA coverage must be factored in). Remarkably
though, following this initial step, the pulsar kept
spinning up for about one day, before the standard
recovery process took over in the timing residuals.

The first such event was observed in 1989 [232].
The initial, unresolved, change in frequency was
∆νinst ' 1.85 µHz and was completed in less than 2.5
hours. The spin frequency then gradually continued to
rise by about 0.7 µHz for around 19 hours. The other
partially-resolved glitches happened in 1996 (preceded
by an enhanced slow down of the pulsar for around
20 days), 2004, 2011, 2017 and 2019 and had similar
behaviour, with the rise times for the delayed spin-up
spanning from about 12 hours to nearly 2 days, and the
subsequent recoveries having characteristic timescales
about 1 to 3 weeks long [112, 233, 192, 111]. All these
events are amongst the largest Crab glitches in terms
of ∆ν amplitudes, the 2017 glitch being the greatest
observed so far with ∆ν ∼ 14 µHz.

Potentially of relevance due to a similar timescale
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is the observation that several small glitches of the
Crab pulsar (which lack the delayed rise component)
present a deviation from the exponential-like decay
that can be described as a gradual rise of the frequency
over ∼ 1 day. These “secondary” spin-ups take place
20 to 40 days after the typical glitch, which led to sug-
gestions they are a form of aftershocks [112], although
a timing noise origin cannot be excluded.

The difference between the rise in glitches of the
Crab and Vela pulsars is quite striking, and it is natural
to investigate whether the same process can cause these
two kinds of behaviour, or whether their glitches have a
different origin. Concerning the latter possibility, it has
been proposed that crust quakes play a fundamental
role in triggering glitches in the Crab pulsar [234]. The
idea is that stresses built up in the crust, also due to
pinning [235], and are released by a crust breaking
event. One suggested model assumes that the crust
will fracture into plates, which move closer to the
rotational axis carrying with them a large number of
pinned vortices [236]. Besides some initial unpinning
responsible for the fast rise, the inward movement
of vortices leads to an accelerated creep rate and an
increased spin-down of the superfluid, corresponding
(due to angular momentum conservation) to the
observed extended spin-up of the normal component.
Comparison of the model with observations shows that
approximately 103 plates with typical length-scales ≈
10 m, must move inwards, each carrying ∼ 1011 pinned
vortices. It is not, however, addressed whether it is
realistic for vortices to remain pinned to the moving
plates; additionally, molecular dynamics simulations
(although performed on a smaller scale) suggest that
in the extreme conditions of pressure and gravity that
characterize a neutron star, the crust will not fracture,
but simply fail [237]. Future simulations of crustal
pinning and stress release will be necessary to test
whether such a scenario is possible.

The alternative has also been explored: that
whilst the glitch mechanism is the same for both the
Crab and Vela pulsar, internal conditions are different,
for example due to the different age of the star, the
strength of potential pinning in the core, or the fact
that the glitch-driving superfluid Igl is in a different
stellar region. A more gradual rise can be naturally
obtained if the dependence of the mutual friction on ω
is non-linear [195]. The behaviour can differ depending
on the fraction γpin of pinned vortices. Similarly,
if the interaction of neutron vortices and fluxtubes
leads to pinning involving a large number of fluxtubes,
then a gradual rise can occur. If on the other hand
vortices pin only to a small number of fluxtubes, the
result can be a more rapid glitch rise [58]. On the
premise that glitches are caused by sudden heating –

which facilitates unpinning and leads to an increased
creep rate – the internal temperature controls the
observed signature [238]. For the same input energy
the relative change in temperature will be smaller,
and the resulting spin-up slower, for the young (and
presumably hotter) Crab pulsar than in Vela. A two-
phased rise is predicted, with the extended rise due to
the diffusion of the heat pulse taking about one day for
Crab-like parameters, as indeed observed [239].

In models which include vortex accumulation, e.g.
in a sheet at the edge of the strong pinning crustal
region [188], a dependence of the vortex areal density
nv on derivatives of the lag ω with respect to the
cylindrical radius $ arises [231]:

nv ∝
∂ω

∂$
, (42)

which, as mentioned earlier, leads to an evolution
equation for the lag of the form:

∂ω

∂t
≈ $Bω ∂ω

∂$
. (43)

The solutions of this equation are outward travelling
waves, and the timescale it takes for the wave to
cross the glitch region and re-establish equilibrium
is the timescale on which the delayed rise occurs.
Furthermore the additional non-linear terms can also
give rise, in particular cases, to glitch precursors, such
as the one observed in the Vela 2016 glitch [226].

The above model can be applied to both the Crab
and Vela pulsar observations to understand their origin
[240]. Assuming the unpinning region is in the inner
crust, and solving for typical parameters of the Crab
glitches with delayed rise, allows one to estimate a
mutual friction parameter B ≈ 10−5. This is in good
agreement with estimates of mutual friction due to
phonon coupling in the inner crust. A much lower value
of B ≈ 10−7 would be necessary to explain observations
if the unpinning region is located in the core. Such
weak mutual friction is not predicted for the core by
most models [43] – it could, however, be consistent with
a large number of pinned core vortices, as discussed
previously [58]. Applying the same model to the Vela
pulsar, the absence of a delayed rise implies B & 0.1 if
the glitch is triggered in the crust, which would be an
extreme value for kelvon mutual friction. If the glitch
is triggered in the core however, one has B ≈ 10−3,
which is more consistent with expectations if mutual
friction is due to electron scattering off vortex cores.

These models thus suggest a core origin for Vela
glitches, and show that the same process can lead to
the kind of delayed rise observed in the Crab pulsar
if its glitches occur in the inner crust, or if there is
strong vortex-fluxtube pinning in its core. Whilst more
work and future observations are necessary in order
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to distinguish between the possible scenarios for the
Crab pulsar and pin down the location of its glitch
driving region Igl, the notion of core-driven glitches for
the Vela pulsar is further supported by the constraints
on Igl/Iα presented in Section 4.2, which are obtained
with a completely independent method.

5.4. Post-glitch response

The rotational evolution following glitches provides the
strongest observed signature of superfluid dynamics
and can be a distinguishing characteristic of glitches
compared to other timing irregularities. At the same
time, it presents an extremely diverse phenomenology,
not just from pulsar to pulsar but also for glitches of the
same neutron star (as shown in figure 6), pointing to
the complexity of the underlying mechanism. A sketch
of post-glitch recovery can be found in figure 18, where
the main attributes are introduced. These features
are not always present and can appear in different
combinations. Furthermore, not all glitches are
accompanied by measurable increases in ν̇ (although
most large ones are).

The textbook post-glitch evolution is a partial
recovery of the main parameters ν and ν̇ which can
be modelled by one or more exponential terms, as in
equation (15). Such exponential relaxation presents
after both large and small glitches, with a vast range
of characteristic timescales (from minutes to years)
among neutron stars. An example of this behaviour
can be seen in figure 5, in panel (d): the spin-
down ν̇ decreases abruptly at the glitch epoch and
then relaxes towards its pre-glitch value in a quasi-
exponential way, leaving a persisting change ∆ν̇p < 0.
As a result, the spin frequency (panel (c)) decays quasi-
exponentially after its initial abrupt change at the
glitch, and eventually falls below the prediction of the
pre-glitch solution.

In those pulsars where glitch activity appears
rather regular, such as the Vela pulsar [29], glitches
typically show a similar set of relaxation timescales
(characteristic of each pulsar). Following the
exponential relaxation, the evolution might continue
with a quasi-linear increase in ν̇ (decreasing spindown
rate |ν̇|, at an approximately constant ν̈ rate);
other times, this linear recovery is all that can be
discerned observationally, most likely because the
exponential phase cannot be resolved rather than due
to a true absence of it [100]. It is worth noting
that it is not always possible to differentiate in the
data between an exponential decay with very long
timescale (O(103) days) and a quasi-linear decay, and
whenever the interglitch interval is long enough to
allow deduction of ν̈ at different post-glitch periods,
there is some evolution – usually a decreasing ν̈ –
during the quasi-linear phase (e.g. [241] for the case

of PSR J0537−6910).
It is often the case that glitch-induced shifts in

the rotational parameters persist until the next event
takes place, or until the end of the dataset. In some
cases the change in ν̇ shows little to no relaxation (and
so eventually the pulsar rotates slower than it would
have if not for the glitch), in yet others ∆ν̇ ≈ 0 and so
the glitch spin-up does not recover at all. The lack of
recovery is more common among older pulsars, which
also tend to undergo smaller glitches than younger
neutron stars [126, 27]. Much of the variety observed
in post-glitch recoveries can be understood within the
standard picture of glitches, as a result of different
stellar regions involved and an interplay between their
respective coupling timescales [39].

A parameter often quoted in the literature is
the glitch recovery fraction (often called healing
parameter) Q ≡ ∆νd/∆ν, that is, the fraction of the
glitch amplitude that recovers exponentially. Whilst
high values of Q are observed after both small and large
glitches, low Q values – of the order of few percent –
are typical of large (giant) glitches [28]. A collective
distribution of measured Q values using data from the
ATNF glitch catalogue § shows some bi-modality, with
a lower broad peak around 10−2 and a high narrow
peak of Q . 1; many of these high Q measurements
concern glitches of the Crab pulsar [28, 85].

Atypical glitch recoveries are sometimes seen,
mainly after small and intermediate size glitches as well
as in highly-magnetised neutron stars and magnetars
(Section 6.2). For example, the measured change in
ν̇ at the glitch epoch is positive for nearly 15% of
known glitches. Such ∆ν̇ > 0 measurements are not
predicted by the simpler superfluid models. Usually
however these values are small, sometimes consistent
with being zero given their uncertainties, and may
be reflecting timing noise instead of the response to
the glitch (and as discussed earlier in Section 3, some
of those recorded events might not be glitches at
all). An example of such a “glitch”, where an initial
unresolved ∆ν > 0 was followed by a continuous
increase in frequency relative to the pre-event solution
(∆ν̇ > 0), was observed in the relatively old (∼ 107 yr)
PSR J0147+5922 [31]; the same study presents timing
residuals for several pulsars, showing most of the kinds
of post-glitch evolution discussed above.

In the Crab pulsar, the post-glitch evolution of ν̇
following its largest glitches is better described when
an asymptotic exponential term is included (increasing
|ν̇|), along the common decaying terms. Essentially,
the post-glitch behaviour is as follows: the spin-down
rate |ν̇| increases at the glitch as it is common (after
τrise, if resolved). Then there is an observed partial

§ www.atnf.csiro.au/research/pulsar/psrcat/glitchTbl.

html
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www.atnf.csiro.au/research/pulsar/psrcat/glitchTbl.html
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Figure 18. A sketch of the various components observed in pulsar glitch recoveries (time progresses to the right, and we recall that
ν̇ < 0 therefore lower values indicate faster spin-down). A very fast decay with characteristic timescale of ∼ 1 min has been observed
in three Vela pulsar glitches. In many pulsars post-glitch recovery can be characterised by a single or multiple exponentially decaying
terms, on various timescales (usually 10 − 100 days). In a subset of pulsars the evolution of ν̇ proceeds with a nearly constant ν̈.
Glitches often leave persisting offsets in the spin frequency and/or the spin-down rate.

recovery of this transient, i.e. |ν̇| decreases, which
dominates the residuals for the first ∼ 100 days after
the glitch. This recovery is not complete and leaves a
negative ν̇ offset which grows quasi-exponentially over
time (a |ν̇| increasing term). This last term has a long
characteristic timescale of ∼ 320 d [80]. So far this
feature appears unique to large glitches of the Crab
pulsar; future observations will hopefully bring more
information about its prevalence.

Other atypical examples include recovery that
results in a net decrease in spindown rate (∆ν̇p >
0) as opposed to the usual persistent increase seen
after most glitches. At least two glitches have shown
this behaviour, one in the rotationally-powered pulsar
J1119−6127 [108] and one in the Rotating Radio
Transient (RRAT) J1819-1458 [159]. As both these
neutron stars have high inferred magnetic fields and
radio emission changes associated with those glitches,
they will be discussed separately in Section 6.2.

After this brief overview of observed post-glitch
recoveries, each attribute depicted in figure 18 is ex-
amined below.

Shortest-term transients
A rapidly decaying term has been discerned following
the three Vela glitches for which high-resolution ob-
servations were available. It was first detected after
the 2000 glitch and its associated timescale was esti-
mated around 70 s [109]. The same feature was iden-
tified again in the 2004 giant glitch, when a big frac-

tion of the initial spin-up decayed on a timescale of
∼ 60 s [90]. Similarly, in the 2016, a large component
∆νd ∼ 18 µHz decayed on a ∼ 50 s timescale [91, 110].

Both the upper limits on the glitch rise time
and the rapid components of the post-glitch recovery
suggest that part of the core does not remain coupled
during the glitch. From the rise timescale τrise . 12.6
s we have already estimated Bgl & 10−4 (Section 5.3)
in the glitch driving region Igl. Any superfluid region
of the core with B . 10−4 will be coupled on a longer
timescale, as τ ∝ 1/B, therefore cannot follow the spin-
up and its response can be associated with the short-
term recovery observed [231]. As an example consider
a region of the core, denoted by the index ‘m’, with
an average Bm ' 5 × 10−5. The associated coupling
timescale τm is of the order of a minute. Before the
glitch, the component Im will have had ample time to
couple to the spindown of the normal component so
that Ω̇s,m = Ω̇c. The equilibrium lag between the two
will be ωeq,m ' 10−8 rad/s, calculated from (3) and
parameters appropriate for the Vela pulsar. During the
glitch, however, this superfluid cannot keep up with the
spin-up of the normal component, since τrise < τm. The
glitch change, ∆Ωc ≈ 10−4 for large Vela glitches, is
greater than ωeq,m, so that immediately after the spin-
up, the lag of this region is inverted. This is sometimes
called an “overshoot” (as post-glitch Ωc “overshoots”
the local Ωs,m), and the subsequent recoupling of
this region on τm gives rise to the observed minute-
timescale components of the recovery. Unfortunately,
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the amplitude ∆νm
d of this fast decaying component of

the recovery is not well constrained from observations.
If we assume that 2/3 of the initial ∆ν decays on a
50 − 70 s timescale, which is roughly consistent with
the findings from the 2004 and 2016 glitches, then

Im
Ic
' ∆νm

d

∆ν −∆νm
d

≈ 2 . (44)

A full analysis of this scenario, allowing for
differential rotation of the superfluid component, has
been carried out with realistic equations of state and
including strong crustal entrainment [182]. It has been
shown that even in this case, where a notable part of
the core decouples during the glitch (as suggested by
(44), a crust-confined Igl region cannot reproduce the
glitch sizes seen in Vela if its mass is greater than 1M�.

This can also be seen with a simplified three
component model, with three components Ic, Igl and
Ir
s as discussed in Section 2. Fitting such a model to

the Vela 2016 glitch data allows one to constrain the
average mutual friction parameter for the region of the
core that decouples to indeed be in the range [186]:

Br
s ≈ 2.8× 105 — 6.3× 105 . (45)

The situation is less clear cut for the glitch driving
region, as the inferred value of B depends on
entrainment, and therefore on whether one assumes
the region to be in the crust or core. Assuming for
now that the glitch is triggered in the crust, one has:

Bgl ≈ 2.4× 10−3 — 0.7 , (46)

using the entrainment values calculated by [171]. This
estimate is in agreement with results obtained by
contrasting the 2016 glitch observations to a model
that uses a density profile Bcrust(r) for kelvon mutual
friction in the crust based on realistic microphysical
parameters (but without considering entrainment, and
assuming a uniform Bcore) [242]. However, despite
the values of the mutual friction coefficients being
consistent with the expectations for kelvon mutual
friction in the crust, a crustal origin for the glitch is
not fully compatible with the data. First of all, the
above solution is not unique. If entrainment is weak
(for example in the case of an amorphous crustal lattice
[243]), or if the glitch driving region is assumed to
extend into the core, then one has

Bgl ≈ 5.6× 10−4 — 0.17 , (47)

which widens the possible range to that expected for
electron scattering mutual friction in the core [179].
Secondly, and crucially, fitting for the relative moment
of inertia x2 = Igl/Itot of the angular momentum
reservoir (still with the same three component model
[186] and the data of the 2016 Vela glitch), reveals that,

even in the absence of entrainment, Igl cannot be in the
crust alone. This can be seen in figure 19, where the
value of x2 (the relative moment of inertia of the glitch
triggering region) is compared to the moment of inertia
available in the crust. It is clear that for all values of
the stellar mass the crustal moment of inertia is not
sufficient.

Figure 19. Relative moment of inertia of the superfluid
triggering the glitch (x2) and of the total superfluid including
the fraction of inertia of the reacting superfluid (x1), compared
to the moment of inertia available in the star for several stellar
masses calculated with the SLy4 equation of state [244]. The
horizontal lines are the results of the fits for x2 and (x1 + x2)
to the Vela 2016 glitch by [186], with full lines indicating the
case without entrainment, the dotted lines including realistic
entrainment in the crust. The red vertical line indicates the
crust/core transition, with the inset zooming into this region for
clarity.

The growing support to the idea that at least
part of the angular momentum reservoir for the large
glitches in Vela must extend beyond the inner crust,
motivates further investigation to potential vortex
pinning in the core. A three-component model
including both a pinned and a free core superfluid
has been developed [58], in which the mutual friction
strength depends strongly on the number Np of proton
fluxtubes to which neutron vortices can pin [57, 59]. As
outlined in Section 5.3, for low values of Np the spin-up
is rapid; and additionally, a fast decay is present. A
lower limit can be set on the moment of inertia of the
free superfluid If as:

If
I
≥ 1− ∆νpt

∆ν
(48)

where ∆νpt = ∆ν −∆νm
d is the change in ν after any

initial rapid (on timescales from seconds to minutes)
decay has finished and ∆ν is the instantaneous glitch
size. On the other hand, if Np is larger than a critical
threshold, the rise is much more gradual and the
rapid decay absent, resembling the early glitch phase
observed in Crab glitches.



Pulsar glitches 40

A number of independent models, based on the
multifluid formalism, thus point to the core of the neu-
tron star playing a role in the large glitches of the Vela
pulsar, and possibly other glitches. More refined mod-
els of core pinning, and vortex-fluxtube interactions
are, however, necessary to investigate this issue fully.
In particular, many models rely on toroidal compo-
nents of the magnetic field in the interior to provide
the pinning region and the angular momentum reser-
voir [245]. Realistic equilibrium models for magnetic
fields in superconducting neutron stars, however, sug-
gest that the toroidal field is entirely confined to the
crust of the star for magnetic field intensities like the
ones expected in regular pulsars [183, 184]. Additional
theoretical work is required to understand if this sce-
nario is viable.

Exponential-like relaxation on intermediate
timescales
Whilst the very fast relaxation is hard to observe with-
out dedicated timing campaigns for selected, bright,
targets (like the nearly continuous, high resolution,
Vela monitoring), quasi-exponential recoveries on vari-
ous longer timescales are seen in many pulsars – mainly
in the younger glitching sources.

Usually a single exponential term is used in (15),
and fitted timescales τd range from a few up to several
hundred days. However it must be noted that there
is observational bias (and degeneracy) in both the
number of decaying terms that are fitted for and the
resulting timescales. A low density of available ToAs
disfavours the detection of relatively fast timescales;
for typical ToA spacing of 2 to 4 weeks, recoveries
with τd . 30 days can be missed. Another factor is
the length of post-glitch interval examined, which can
sometimes be too short to reveal any relaxation that
occurs on timescales of months to years. Additionally,
exponential timescales comparable to or longer than
the time interval until the next glitch (or the time span
examined, if shorter than the interglitch interval) can
sometimes offer a similarly adequate description of the
data as a ∆ν̈ term. Resolving this ambiguity is hard for
most datasets. In glitches for which a second decaying
term has been included in the timing model, often one
component has timescale τd,1 between a few days up
to about two weeks, whilst the second component has
a longer timescale of the order τd,2 ∼ 100 d.

Relatively fast decays (τd < 2 weeks) are not
commonly seen in older pulsars, although in many
cases the observing cadence would have allowed their
detection. There are hints for a positive correlation
between τd and the pulsar’s characteristic age [31, 28].
This trend can be explained within the theoretical
framework of Section 2. From equation (32), and
noting that Ωs cannot be very different than Ωc,

an inverse scaling of τd with the pulsar’s frequency
ν = Ωc/2π is expected. At the same time, the
characteristic age of glitching pulsars anti-correlates
with ν, especially when high-magnetic field (B &
1013 G) neutron stars are excluded. Therefore the
observed trend could simply reflect the fact that
components will re-couple faster in a more rapidly
rotating pulsar. Possibly it can also be amplified by
the fact that younger pulsars have higher |ν̇|, therefore
the rotational lag is restored faster after the glitch.

As already noted, the Crab pulsar displays a high
recovery fraction Q . 1, with an almost complete
decay of the initial ∆ν within the first month after the
glitch. Typical timescales, obtained from fitting (15)
including two exponential terms, are τd,1 =2–4 d and
τd,2 =10–20 d [112]. Contrary to ν, the spin-down rate
does not show a complete recovery but instead there
are persisting changes ∆ν̇p that appear to correlate
with the glitch size (see Section 4.2); moreover on three
occasions (all large glitches rather isolated in time from
other events) the asymptotic decrease in ν̇ described
earlier was observed [80].

In the Vela pulsar several recovery timescales are
identified which are similar between its large glitches,
as can be seen in figure 20. Besides the very fast,
τd,1 ∼ 1 minute, decay, another rapid decay happens
on τd,2 ∼ 0.5 d [109, 90]. For the 2000 and 2004 glitches
additional components included a τd,3 ∼2–3 d and
τd,4 ∼20–30 d. Following the 2016 glitch, timescales
τd,2 ∼ 1 d [246], τd,3 ∼5–6 d [91, 246] and τd,4 ∼ 32 d
[93] have been reported, consistent with the findings for
previous glitches. Note that for this glitch no study has
modelled all four relaxing components simultaneously
as they use different observations (with different time
resolution and ToA cadence) and varying lengths of the
post-glitch time span were fitted for.

The multiple exponential components of the re-
laxation were interpreted early on within the vortex
creep model as the signature of different regions in
the linearly coupled regime responding to the glitch on
their own intrinsic timescale [247, 166]. The need to fit
multiple exponentials, with vastly different timescales,
thus suggests that the spatial dependence of the mutual
friction coefficients and pinning forces have a strong in-
fluence on the shape of the recovery, as shown also by
simulations that allow for a radial dependence of these
quantities [242] and differential rotation [231, 39]. Of
course a one to one correspondence between observ-
ably inferred relaxing components and physically dis-
tinct stellar layers ignores both the physical complexity
of the problem, as well as the uncertainties associated
with the data fits (e.g. that two different descriptive
timing models might fit observations equally well) .
Nonetheless, the longer timescales of the order of 100
days or greater, typically seen in post-glitch recoveries,
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are indicative of the response of superfluid regions of
low effective B ∼ 10−9, close to the lower estimates
for coupling to phonon excitations [216, 44]. Very slow
re-coupling timescales can characterise crustal pinning
regions, for which the fraction of free vortices can be
small when the local lag is far from its critical value for
unpinning (recall that the effective B entering equation
(32) connects to the microphysical B0 as B = γfvB0).

Once the exponential-like decaying components
fade away, many pulsars still display persisting changes
in their rotation (mainly a ∆ν̇p < 0). In some sources,
like the Vela pulsar and other neutron stars which
show similar glitching behaviour, dominated by large
(∆ν & 10 µHz) events, the longer term recovery con-
sists of an approximately linear (ν̈ ≈const) evolution
of ν̇ (preceded or not by distinguishable exponential
components, see figures 18 and 20). Neither this quasi-
linear evolution nor the persisting changes can be ex-
plained by the response of linearly coupled regions, as
these would eventually lead to a full recovery of semi-
exponential form. In the following we consider these
two features in turn and discuss their theoretical im-
plications. Before that, however, we caution again that
there is often ambiguity in the post-glitch recovery re-
sults obtained from data fits. Different combinations
of parameters in equation (15) often lead to equally
good descriptions of the ToAs (some examples can be
found in [126] and [108]). It is particularly difficult to
exclude an exponential (or expansion in a basis of expo-
nentials) with very long characteristic timescale (com-
parable or greater to the interglitch interval) based on
the observational data; nonetheless such a functional
form is in general not favoured over a simpler linear
(in ν̇) evolution [100, 84]. The choice of functional
parametrization of the recovery affects also the inferred
persisting changes following a glitch. For example, a
study of 21 years of rotation of the Vela pulsar which
included 8 glitches, concluded that their recoveries can
be described by two common exponential characteris-
tic timescales of τd,1 ' 25 and τd,2 ' 1300 d (shorter
timescales will be missed because of scarce, approxi-
mately monthly, ToAs used in that study) [107]. In
this case, due to the presence of the τd,2 ' 1300 d term,
the extrapolated recovery fraction Q will be larger than
previously thought (for models that do not include the
long-timescale exponential but only shorter decaying
terms and a ν̈ term instead), leading to considerably
smaller inferred persisting changes ∆νp.

The quasi-linear ν̇(t) recovery phase
The phase of quasi-linear ν̇ recovery is typically char-
acterised by an interglitch ν̈ig which is larger than the
prediction of equation (20) for dipole braking, and of-
ten has a similar, but not always the same, value when

48000 49000 50000 51000 52000
MJD (Days)

15850

15800

15750

15700

15650

15600

15550

 (1
0

15
 H

z s
1 )

Figure 20. The ν̇ evolution of the Vela pulsar over nearly 13
years (data from [92] and [248]). The epochs of the seven glitches
detected during this period are marked with blue vertical lines
at the top of the plot. For most glitches the initial recovery
is characterised by a few exponential-like decaying components,
then a phase with approximately constant, high, ν̈ig follows until
the next glitch.

measured in different interglitch intervals of the same
pulsar. These attributes can be noticed in figure 20,
which includes several Vela glitches. In general, mea-
surements of ν̈ are rather sensitive to timing noise and
so fluctuations appear when ν̈ig is measured over dif-
ferent time spans of the interglitch interval, but overall
a constant ν̈ig value provides a good description of the
residuals after the exponential components have been
subtracted and up to the epoch of the subsequent glitch
(in pulsars with multiple glitches).

In PSR J0537−6910 there are hints for a
monotonic decrease of ν̈ig as a function of post-
glitch time [241], but the shortness of interglitch time
intervals (∼ 100 days on average) and density of ToAs
impede a more refined analysis. Nonetheless, a linear
ν̇ evolution provides an adequate fit [100], and even
when including an exponential component following
each glitch, a high ν̈ig is still required by the data [249].

Using a sample of 32 glitching pulsars for which
the slope ν̈ig of the linear decay can be measured (of
which some were found to be negative), a correlation
is seen between |ν̈ig| and |ν̇| [28]. For the same sample,
it was also found that the quantity (ν̈ig − ν̈n=3) is
nearly proportional to |ν̇|/ 〈∆T 〉, where ν̈n=3 is the
expected value according to equation (20), and 〈∆T 〉
is the average interglitch interval. Another correlation
was retrieved, this time for a sample of 16 pulsars,
between ν̈ig and |∆ν̇|/∆Tig, where ∆ν̇ the change
at the previous glitch and ∆Tig ≡ ∆Tf the time
interval until the next event [85]. By definition ν̈ig =
[ν̇(t2)− ν̇(t1)] /∆Tig, where ν̇(t1) the spin-down rate
after the preceding glitch (having subtracted any ∆ν̇d

decaying terms, if present) and ν̇(t2) the spin-down
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rate right before the subsequent glitch. Therefore
the above correlation implies that the amount of
∆ν̇1,2 = ν̇(t2) − ν̇(t1) that recovers linearly until the
next glitch correlates with its initial change, |∆ν̇|, and
consequently, with the glitch size ∆ν as we have seen
that ∆ν and |∆ν̇| also appear to correlate (though
this should be accessed on a pulsar-to-pulsar basis,
see Section 4.2). It should also be noted that an
anti-correlation between measured ν̈ig and ∆Tig could
perhaps be expected (and indeed is weakly observed in
the aforementioned sample of 16 pulsars [85]) if ν̈ig(t)
decreases over the course of the interglitch interval, as
has been suggested for PSR J0537−6910 [241, 101].

This phase of the recovery has been attributed
to the response of non-linearly coupled regions. In
the framework of vortex creep, following the model
of [224], it has been shown that the response of the
non-linear region will be the sum of Fermi functions
(equation (39)) that will appear as a constant ν̈ig

[250]. The existence of regions that respond in this
step-like manner has found support in observations
of Vela post-glitch recoveries [127]. Furthermore, the
observed relationship between ν̈ig and |∆ν̇|/∆Tig can
naturally arise within this phenomenological model
[251, 85]. Under the assumption that a glitch is
triggered when the lag ω – reduced by ∆ω at the
glitch – has been restored in each and every region,
which also means all regions have re-coupled and the
recovery is complete and over at the epoch of the next
glitch, the model can be used to estimate the epoch of
a following glitch [250]. Comparison to observations of
the Vela pulsar, although encouraging, unfortunately
shows little predictive power for targeted observations.
Discrepancies of observed versus predicted glitch
epochs are on average over 4 months (and up to nearly
2 years) [250]. To lessen these discrepancies, large
permanent shifts in ν̇, of the order ∆ν̇p ∼ 2 × 10−3ν̇,
have to be assumed to concur with some of Vela’s
glitches [250].

Another situation where non-linear coupling
might manifest is that of superfluid turbulence [40].
The development of turbulence in regions that respond
passively to a glitch has been considered as another
possible explanation for the quasi-linear recoveries of
Vela-like glitches [73]. As vortices are pinned in these
regions, vortex rings can be nucleated at pinning sites,
adding vortex length to the fluid, and modifying the
functional form of the coupling, as in equation (41). In
this case one no longer has an exponential recovery, but
rather a power-law form for the ν̇(t) evolution which
can be approximated as linear on the timescales of
interest. The value of ν̈ig in this case depends on the
initial value of the lag at the time of the glitch, which
is unfortunately not probed by observations. Under
the assumption, however, that a larger lag builds up

the longer the waiting time to the glitch has been, the
model suggests that a correlation of the form

ν̈ig ∝ ∆T 2
− , (49)

should be present between the measured ν̈ig for the
linear post-glitch response and ∆T−, the waiting time
since the previous glitch. Data from PSR J0537−6910
and the Vela pulsar are consistent with such a corre-
lation, and future observations will be able to confirm
whether the relation holds [73]. Furthermore, the tur-
bulent model can be used to fit the long term recoveries
of Vela glitches, as seen in figure 21, where both the
turbulent and laminar (linear) model are compared to
the data. It is clear that the exponential solution to
the laminar model is a poor fit, as weak mutual friction
cannot reproduce the slope of ν̇(t), while stronger val-
ues lead to a clearly exponential trend. The turbulent
model, on the other hand, fits very well the quasi-linear
part of the recoveries, with reasonable physical param-
eters for the crust.

Persistent post-glitch changes
Timing solutions of glitches according to (15) often in-
clude persistent changes in the timing parameters (ν,
ν̇, and ν̈). For example, the low recovery fractions Q
generally observed indicate that the presence of ∆νp is
not uncommon. It is often unclear if these are perma-
nent changes or could be part of an ongoing recovery
that is interrupted by another glitch or extends be-
yond the end of the data span. As the right choice
of descriptive model is not always strongly constrained
by observations, results for persistent changes can also
be model-dependent – like in the earlier example for
Vela’s inferred ∆νp, which are greater for a linear-
ν̇ evolution compared to a long-timescale exponential
[107]. Commonly reported are persisting changes in the
spin-down rate, like the ∆ν̇p of the Crab pulsar which
are generally between 10−14 – 10−12 s−2. In pulsars
where linear-ν̇ decay is seen, its slope ν̈ig can change
between consecutive interglitch intervals, implying a
∆ν̈p; this can for example account for what is observed
in PSR J0537−6910 [100]. Whilst ∆ν̈p is generally un-
derstood to stem from the superfluid response to the
glitch, the changes ∆ν̇p are often interpreted as perma-
nent. Because of their magnitude, ∆ν̇p terms cannot
be attributed to actual changes in the total stellar mo-
ment of inertia (e.g. a crustquake) as this would have
left a large, permanent, imprint to the spin frequency
as well, which is not observed. They can, however, re-
sult from an, either permanent or long-lived, change
in the effective moment of inertia of the star – that is,
the moment of inertia that is slowing down under the
external torque – if there is progressive decoupling of
the superfluid [100]. For example, this could happen
in a sporadic manner due to formation of new strong
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Figure 21. Recoveries of the Vela 1975 (left) and 1996 (right) glitches compared to the turbulent (green dashed curves) and laminar
(red curves) models. Blue circles are the observed, normalised, difference in frequency ν̇ with respect to the longterm spindown ν̇0
for long times ∆t after the glitch (excluding the short term transients). The turbulent model provides a good fit for reasonable
values of B in the crust. A more detailed discussion of the setup and the parameters can be found in [73].

pinning regions in the event of a crustquake that led
to lattice deformation simultaneously with the glitch
[252]. A varying external torque could also be the cause
of observed ∆ν̇p changes; if (20) holds, a gain in mag-
netic dipole moment is required to explain ∆ν̇p < 0,
arising for example from a change in inclination angle
αB (see e.g. [253]). Such variations might have ob-
servable consequences to the magnetospheric emission
(the behaviour of which around the time of glitches
is discussed in the following) and could potentially be
confirmed or ruled out with future observations.

The analyses presented in this section most
often make the explicit or implicit assumption that,
throughout the several glitch stages, the external
torque acting on the star remains constant. Whilst this
is a reasonable first approximation for the majority of
neutron stars, based on the typically radiatively-quiet
nature of glitches, it might not always be the case.
The next section summarises some of the observational
evidence, as well as hints, for magnetospheric activity
around glitches, and very briefly touches upon their
implications for glitch models.

6. Glitches and radiative changes

The general view that all glitches are radiatively quiet
events, for which only the interior dynamics play a role
whilst the magnetosphere is not altered, shifted when
the first observations of magnetars came along. In
these neutron stars, which present activity powered by
magnetic rather than rotational energy, glitches often
occur at the time of high-energy outbursts. Glitches
in high-magnetic field pulsars, whether these appear
predominantly as magnetars or as rotationally-powered

pulsars, deserve a dedicated discussion (Section 6.2).
There is, nonetheless, growing evidence that the
whole system of neutron star-magnetosphere should be
considered when trying to understand glitches, even for
typical radio pulsars.

6.1. Glitches and emission changes in regular,
rotationally-powered, pulsars

Although pulsars with modest inferred magnetic field
intensities do not show dramatic emission changes
associated with glitches, more subtle changes have been
connected with their timing activity. For the majority
of pulsars, observations surrounding the glitch might
be several days before and after the glitch epoch; as a
result, short-lived variations related to the glitch would
be missed. Moreover, integrated pulse profiles will
smear out any transient features at the single pulse
level. Once again though, the nearby and well-studied
Vela pulsar offers some insights.

Detailed studies of single pulses from the Vela
pulsar are possible as it is nearby and radio-bright.
The pulsed signal shows fluctuations in intensity and
profile, in the form of microstructure, transient time-
clustering of bright pulses and sporadic giant micro-
pulses: a highly-polarised, very bright component
leading the main pulse [254, 255, 256, 257, 258]. The X-
ray lightcurve shape and radio ToAs appear correlated
on a pulse-to-pulse analysis [259]. Brighter radio pulses
tend to arrive earlier than the average pulse profile
[260], and it was found that earlier radio ToAs also
associate with significantly higher X-ray flux density
in the main X-ray peak [259]. After a large glitch
in 2010 [261], the emission rate of bright radio pulses
(defined as 5 times brighter than the average pulse)
was seen to increase [257]. An intense monitoring
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campaign using the Mt Pleasant 26 m radio telescope
(at 1376 MHz observing frequency) produced single-
pulse and 10 s-folded data that span several months
and coincided with two glitch-like irregularities, in
2014 and 2015‖. Both of these timing events appear
associated with emission changes. At the epoch of
the first, smallest, glitch-like event, the rate of bright
pulses increases (after a rather quiet period) whilst no
significant variation of the pulse width is observed.
At the second, largest event, the width abruptly
reduces whilst the rate of bright pulses does not change
considerably [262]. Emission changes were also found
around the 2016 giant glitch, timing observations of
which have been already discussed in Section 5.3.
Seconds before the inferred glitch epoch, an unusually
broad pulse was detected, followed by a null (missing
pulse) and then two pulses with below-average linear
polarisation. Twenty pulses after the null, a series
of pulses with increased mean and smaller variance of
timing residuals started, which lasted for 29 rotations
through the inferred epoch for the glitch. Surrounding
the null, a 3σ decrease in pulse peak flux density was
also observed, lasting about 2 minutes [91]. Nulls
are not unusual in pulsars. By analysing other days
from the same dataset, the same study found that
approximately one every 77,700 pulses has a flux
density below the detection threshold, and calculated
a probability of 5×10−4 for a null to occur in the time
window where the phenomena just described occurred.

There is less information about possible emission
changes around the epochs of the Crab pulsar glitches
in the radio band and other wavelengths. X-ray
observations – typically with low time resolution
– do not reveal any changes in integrated profile
nor spectrum, and there are only very weak hints
for a slight decrease in flux after large glitches,
statistically consistent with zero variation [263, 264,
265]. Measurements of soft X-ray polarisation
fraction showed a decrease following the 2019 Crab
glitch compared to pre-glitch values, which is likely
associated with the pulsar and not the nebula. The
significance of the variation can be established only
for periods after the first 30 days post-glitch (making
it hard to confidently infer an association), and
the polarisation fraction recovers on a timescale of
about 100 days post-glitch [266, 267]. Indications
for a changing magnetic field have also come from
long-term studies of the radio pulse profile, which
display an evolution as increasing rotational separation
between pulse components (most prominent between
the interpulse and main pulse) and decreasing flux

‖ These two events are much smaller than typical Vela glitches
(4 nHz and ∼750 nHz respectively), with timing residuals
consistent with that of another population of rotational features
seen in this pulsar [92]. It is as yet unclear if they belong to the
standard glitch population.

density ratio between components and main pulse.
However, this evolution appears secular, cumulative
over about two decades, without signs of recovery,
hence it might be unrelated to the glitch activity [268].

Connections between glitches and magnetospheric
activity have also been drawn for pulsars with less
stable pulse profile properties. One such category
is state-switching pulsars, ones for which the pulse
profile has two or more distinct states and alternates
between them. The different states sometimes appear
to correspond to different spin-down rates. For
example, pulse width or intensity ratio between
pulse components was found to correlate with timing
variations, and in particular the inferred spin-down
rate, for six state-switching pulsars, making for the
first time a connection between timing noise and
magnetospheric conditions [150]. One of these pulsars,
J0742-2822, rapidly switches between two modes of
emission (and also displays intermediate states in
some profiles) that mostly differ in the emission at
the central part of the profile. The rate of mode-
switching has been varying over the years [150]. A
shape parameter has been defined as the ratio between
the intensity of the first and second pulse component
at 1369 MHz, close to 1 for one mode whilst less than 1
for the mode with increased central part emission. The
timing residuals, and in particular the spindown rate
ν̇, show quasiperiodicity of about 100 days. Between
2007 and 2009, the fluctuations in shape parameter did
not strongly correlate with ν̇. The situation changed
when a glitch of moderate size took place in 2009:
beyond the glitch epoch, and persisting for at least
1000 days, a much stronger correlation between the
shape parameter and ν̇ was established [269].

A small glitch (∆ν ∼ 12 nHz) with a large
change in spin-down rate, ∆ν̇/ν̇ ∼ 67 × 10−3

and an unusual decrease in |ν̈| was reported for
J2037+3621, a relatively old (∼ 2 Myr) pulsar [270].
This timing event coincides with a mode change,
where the newly emerged state shows a decrease in
pulse width compared to the previous, stable, state
[150]. The pulsar continued switching between a
more narrow pulse profile and a wider one, both
with decreased intensity ratio between leading and
main components compared to the original state [270].
Another example of possibly glitch-associated emission
switch is PSR J2021+4026, a radio-quiet γ−ray pulsar
which displayed sudden radiative changes above 100
MeV, simultaneously with a timing irregularity that
could be the result of a glitch. In 2011, around MJD
55850, a sudden increase in |ν̇| occurred, of relative
size ∼ 38× 10−3, on the upper end of observed glitch-
related changes. A spin-up has not been detected but
cannot be entirely ruled out. The rotational change
coincided with a sudden decrease in flux by about
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17% and significant changes in pulse profile [271]. The
new state persisted for approximately 3 years and then
both emission and spindown rate recovered over a few
months to their previous state [272].

6.2. Glitches in high magnetic field pulsars and
magnetars

The connection between glitches and emission changes
becomes clearer for neutron stars with high inferred
magnetic field intensities. The component of the
surface magnetic field perpendicular to the pulsar’s
rotational axis can be calculated by assuming that
the observed spin-down is entirely due to magnetic
dipole radiation (equation (20)). Possibly better
approximations are available, see for example [273], but
pulsar inclination angles are largely unknown. Hence
equation (20) is broadly used to get a rough estimate
of the magnetic dipole field intensity B at the pulsar’s
surface, which is easily done by measuring ν and ν̇ via
pulsar timing. MSPs are the pulsars with the weakest
inferred B known, with values that accumulate just
above 108 G but can reach up to ∼ 1010 G. For the
common pulsar population, estimated B values range
between 1010 and 1013 G, whilst magnetars exhibit
the strongest fields known, with intensities over 1013–
1014 G in general.

Magnetars undergo outbursts in which their X-
ray and soft γ-ray luminosity can exceed the available
rotational power. Supported by the inferred high
values for the surface dipole component of their
magnetic field, the common stance is that the energy
required for the observed activity comes from their
magnetic energy reservoirs. Whilst the total energy
release during short X-ray bursts and the most rare
bright flares depends on certain assumptions, for
example about how isotropic the emission is, typical
estimates place the energy outputs at 1040–1041 erg and
up to 1045–1046 erg respectively. On the other hand,
the rotational energy reservoir will be
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whilst the energy due to the magnetic field
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where B̄ is the volume-averaged magnetic field.
Comparing the two expressions above, we see that the
main free energy reservoir for magnetar activity must
be their magnetic field rather than their rotation.

Most magnetars were discovered through serendip-
itous detection of very bright¶, millisecond-scale X-ray

¶ 1034-1035 erg s−1 in the 2-10 keV band

flares, which are abundant during outburst episodes
[274, 275]. In many cases the enhanced emission and
flaring X-ray activity will decay slowly after a few
weeks or months, resulting in luminosities that can be
up to two orders of magnitude weaker after 1-2 yr. The
quiescent X-ray luminosity of these magnetars is often
too low and would require very long integration times
for regular observations to be carried out. Only a hand-
ful of sources are bright enough during quiescence to be
systematically monitored. In one of the most valuable
studies to date concerning magnetar rotational evolu-
tion, 16 years of observations from five magnetars were
investigated [98]. It was found that magnetars can be
remarkably unstable rotators, and they can enter peri-
ods of enhanced levels of timing noise which are some-
times related to the X-ray outbursts. Furthermore, all
five sources displayed glitches, some of which are in
close temporal proximity to X-ray bursting activity.

The association of some glitches with X-ray flares
is unequivocal (e.g. [98]). Nonetheless, while it appears
that most X-ray emission changes – like pulse profile
variations, flux enhancement, and bursts – can be
associated with some sort of timing anomaly (either
glitches or spin-down rate changes), not all glitches are
accompanied by enhanced emission; and there are some
magnetars for which no radiative changes have been
observed in proximity to any of their glitches [276]. It
is unclear what the causal relationship between the two
phenomena is, but a possibility is that a crustal failure
event can be the connection between the two. Besides
spin-down driven crustquakes like those discussed for
regular pulsars, a magnetar’s crust is expected to fail
under the substantial magnetic stresses that build up
as a result of the evolution of their strong magnetic
fields [277]. During such an event, vortex unpinning
can occur either directly because of the crustal motion
[278], or indirectly as the result of heating (thermally
exciting vortices over their pinning barrier, see e.g.
[239]). Thus crustal failure could both trigger a glitch
and generate the magnetospheric conditions required
to produce bursts (e.g. by twisting of magnetic field
lines which are anchored to the crust [279]). The
aforementioned study of five magnetars concluded that
about 20-30% of glitches and timing anomalies can be
associated with radiative changes ([98], also [280]), and
that the size (or any other property) of the glitches
is irrelevant with respect to the presence or lack of a
radiative counterpart. However, later studies using an
extended dataset, found a possible tendency for events
related to X-ray outbursts to involve larger frequency
changes [280]. No differences between the timing
events that are associated with emission changes and
those which are not has been found.

When the glitch activity of magnetars is compared
to that of the pulsar population (as defined in equation
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(23)), it falls precisely at the level expected by their
spin-down rates [158, 157]. For normal pulsars, glitch
activity does not seem to depend on the inferred
surface magnetic field [157]. Glitch sizes ∆ν of
magnetars are not exceptional [280], but in line with
expectations for their ν̇ values, and it is only when
considering ∆ν/ν values that magnetar glitches appear
particularly large because of their low spin frequencies.
The modest ∆ν of magnetars can also be explained by
the fact that they are young neutron stars and the
decay of their high magnetic fields provides a powerful
heating source, potentially preventing large lags ω from
building up. This is because, in hotter stars, the large
thermal energy lowers the effective pinning barrier
vortices must overcome in order to unpin. Therefore
Ω̇s can be greater than in a cooler object. The post-
glitch recovery can involve large ∆ν̇ changes which can
be understood within the standard picture since re-
coupling timescales (equation (32)) scale inversely with
spin frequency and magnetars are slow rotators [39].
Nonetheless, at least for those glitches that coincide
with outbursts, the approximation of a constant
external torque is no longer valid and the contribution
of a changing magnetosphere must be accounted for
when examining the post-glitch evolution. The effect
of the evolving external torque on the spin-down can be
non-trivial and last for timescales comparable to those
typical of post-glitch recoveries (e.g. [281]).

The rotation of magnetars has historically been
characterised by long periods P = 1/ν, in the
range 2-10 s, and very high period derivatives Ṗ >
10−12, which are rather extreme in comparison to
the rotational parameters of other pulsars and imply
very high dipole magnetic field strengths as already
mentioned [282]. The few magnetars that have smaller
period derivatives, hence low inferred B intensity,
in the range of standard pulsar values, have been
explained in the magnetar model as powered by
intense toroidal magnetic field components that would
reside under the surface [283, 284]. Interestingly, the
two rotation-powered pulsars with the highest period
derivatives (Ṗ = 4− 7× 10−12), and with some of the
highest magnetic fields (B = 4.1 − 4.9 × 1013 Gauss),
displayed large glitches accompanied by magnetar-like
high energy outbursts after years of normal pulsar
behaviour. Both are very young (τch < 2 kyr), like
some magnetars, but have periods ∼ 0.3 s, which
is shorter than the periods of all magnetars. The
glitches in these high-B pulsars have some unique
characteristics, as is described next.

In May 2006 the Rossi X-ray Timing Explorer
(RXTE) detected four short bursts (< 0.1 s) coming
from the direction of PSR J1846−0258 [285]. This
radio-quiet, X-ray rotation-powered pulsar had been
discovered in 2000 [286] and since then never exhibited

such behaviour. Analysis of Chandra observations
showed that the X-ray spectrum became softer and its
(unabsorbed) flux increased by a factor of ∼ 6 [287].
The pulsed X-ray flux, as recorded by RXTE, suddenly
increased and slowly decayed to normal values in
approximately two months [285, 287, 288]. The
radiative outburst remarkably resembled magnetar
behaviour. Moreover, together with the unusual
radiative activity, there was a large glitch (∆ν =
12µHz [289]) and the rotation became less stable after
the event [288, 289]. This was the first time that a
rotation-powered pulsar showed magnetar-like activity,
thereby connecting the magnetar phenomenology –
including their glitches – with that of high magnetic
field pulsars.

Whilst the 2006 PSR J1846−0258 glitch had a
size common among Vela-like pulsars, it is unusual
for young pulsars (τch . 5 kyr) to exhibit such large
glitches (e.g. [27]). However, the main peculiarity of
that glitch was that it involved a very large recovery
fraction Q = 9. The exponential recovery time-scale
was found to be τd = 127 d, and a large persisting
shift in spindown rate meant that the net effect of
the glitch (after the transient recovery) was a very
large reduction of ν (∆νp = −95µHz) [289]. Only
magnetars had shown such peculiar recoveries at the
time. Additionally, once the rotation became more
stable and the emission was back to normal, the
braking index n = νν̈/ν̇2 (see Section 7) which for
this pulsar had been clearly established at n = 2.65,
was measured to have a lower value n = 2.19 (a
17% reduction [290, 291]). Braking index changes
are commonly observed when n is calculated using
inter-glitch ν̈ig values in Vela-like pulsars or in PSR
J0537−6910 [85, 108], but are not very common among
very young pulsars such as the Crab or J0540−6919
[80, 99]. A change of n for PSR J1846−0258 was
not observed after a previous, smaller, glitch [292].
More recently, after 14 years of calm following the
first detected burst, the source was again seen to
enter a period of activity in which the pulsed fraction
increased, the spin-down rate was enhanced and a new
glitch of similar size took place [293].

PSR J1119−6127 is a pulsar very similar to
J1846−0258 in terms of rotational parameters (hence
their inferred magnetic fields are very similar too),
including a well determined braking index n = 2.684
[113]. However, this pulsar is not only detected in X-
rays but also in the radio, and it has been monitored
for more than two decades with the Parkes radio
telescope. The radio pulse profile is normally stable
and single peaked, but it became double peaked in one
out of 332 analysed observations, spanning ∼ 12 yr
[113]. It was also shown that data from the next
observing session (at the same observing frequency
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of 1400 MHz) contained bright and short bursts of
emission which were present only in some of the pulsar
rotations (hence not necessarily visible in the average
pulse profile). These observations happened to be the
first ones available after a large (∆ν = 13µHz) glitch
that occurred in 2007, and became the first evidence
for radio radiative changes associated with a glitch in
a rotation powered pulsar. No irregularities in the
emission were detected in the available observations
that followed a (smaller) glitch back in 2004.

Nonetheless, both the 2004 and 2007 glitches
exhibited similar anomalous recoveries which can be
seen in the last subplot of figure 6. After those glitches,
the rotation converged (quasi-exponentially) to spin-
down rates considerably smaller than the predictions
of the pre-glitch models. In other words, these glitches
had ∆ν̇p > 0, which is contrary to what is observed in
other pulsars (including PSR J1846−0258). The only
other pulsar that has shown a glitch with ∆ν̇p > 0
is the Rotating Radio Transient (RRAT, [294, 159])
PSR J1819−1458, which is also a high-B pulsar (B =
5 × 1013 G). RRATs are neutron stars characterised
by only emitting sporadic, bright and short bursts of
radio waves that track the rotation of the star; just like
the transient emission observed in PSR J1119−6127
after its 2007 glitch. Despite the overshoot of ν̇, PSR
J1119−6127 had also ∆νp < 0, thus Q & 1, similarly
to the 2006 glitch in PSR J1846−0258. Moreover, the
braking index after the 2007 glitch changed too. A
15% reduction was measured by [108] when using a
model like equation (15) with one exponential term.
But the authors showed that the data was equally well
fitted by a model without a persistent change ∆ν̈p and
with two exponential terms. In this last fit the second
exponential term had a negative ∆νd2

< 0 and a rather
long characteristic timescale τ2 ' 2300 d, which would
imply eventually a return of the braking index to pre-
glitch values.

While the anomalous glitch recoveries can be
attributed to superfluid dynamics ([108, 295]), the
temporal association of the 2007 glitch with radio
emission changes, as well as the high inferred B
value for this pulsar, led to the suggestion that
magnetospheric effects could be contributing to the
timing behaviour, analogous to what is seen in
magnetars [108]. Unfortunately observations at high
energies were not available around the 2007 glitch to
confirm the existence of magnetar-like emission, but
eventually an X-ray outburst was detected in 2016,
classifying the pulsar as a transient magnetar. The
short, bright, X-ray bursts were associated with a flux
increase by a factor of nearly 200, spectral hardening,
and a large glitch (∆ν = 14µHz) accompanied by a
spin-down change comparable to the one seen in 2007
[163]. Interestingly, the radio emission flux decreased

to undetectable levels at the time of the outburst
[296]. By the time the radio emission was restored,
about 10 days later [297], it exhibited a different,
double peaked profile at 1400 MHz [298]. Changes were
also reported at 2.3 and 8.3 GHz observing frequencies
[299]). The glitch exhibited a peculiar recovery which
did not resemble the ones observed after the 2004
and 2007 glitches. This time the spin-down rate
took considerable time to increase (unlike in previous
glitches, where ∆ν̇ appeared instantaneous) and there
was not an obvious overshoot in ν̇ (see figure in [300]).
It was claimed that the recovery could not be fitted by
an exponential function as in equation (15) [301] and
the whole event was compared to the activity of the
magnetar XTE J1810−197 [300].

The magnetospheric conditions and activity of
magnetars can have a strong impact on the spin-
down torque. For example, the crust is expected
to shear under magnetic stresses [302, 303], twisting
the magnetic field lines; this is found to result in
an enhanced spindown [304] and can cause short-
lived, large ∆ν̇ < 0 changes which can appear as
anti-glitches [279], like those described in Section 3.6.
Such effects must be accounted for together with
the superfluid response when trying to explain the
recoveries of glitches in magnetars and high magnetic
field pulsars. Besides the mechanical motion of a
failing crust, heating during magnetar activity could
also lead to vortex unpinning, triggering a glitch
[238] and altering the response of the superfluid. To
fully understand magnetar glitches most likely will
require advanced magneto-thermoplastic simulations
(see e.g. [305] for a 1-D model), eventually including
the neutron component and coupling to the rotational
evolution equations. Crucial to this progress will be
input from timing of magnetars, and especially of high-
magnetic field radio pulsars whose rotation can be
followed closely.

7. Impact of glitches on pulsar long-term
rotational evolution

Glitches introduce lasting changes in the rotation of
pulsars and their accumulated effect can affect the
longer-term rotational evolution of neutron stars.

The persisting fractional changes ∆νp/ν of the
frequency are generally small, but as discussed in
Section 4.2 a series of glitches over time Tobs can reverse
∼ 1% of the secular spin-down in most pulsars, with
the possible exception of some very young neutron stars
with high spin-down rates, such as the Crab pulsar and
PSR J0540−6919, for which this amounts to less than
0.01% [157].

Recovering the properties of the underlying spin-
down mechanism is critical to understanding how



Pulsar glitches 48

pulsars operate but can be difficult in the presence of
glitches. The post-glitch relaxation(s) can dominate
the spin evolution for periods comparable to or
exceeding the duration of the observing span – which
is often years or even decades, and it is unclear when
the process is completed so that measured parameters
(ν, ν̇, ν̈) cease to contain glitch-induced contributions.

A parameter often used to characterise the
rotational energy losses that cause the secular spin-
down ν̇ and dictate the long-term evolution is the
braking index n. This assumes a form Ω̇c ∝ −Ωnc and
can therefore be directly calculated from observations
as n = νν̈/ν̇2 if the proportionality factor is to a
good approximation constant over the time period of
observations. Indicatively, expectations for the value
of the braking index are n = 3 for magnetic-dipole
braking (equation (20)), n = 5 for gravitational wave
emission from the mass quadrupole mode, n = 7 for
gravitational wave emission from an r-mode, and n = 1
if losses due to a pulsar wind dominate. A changing
magnetic moment or/and a varying effective (coupled)
moment of inertia will also affect the value of the
braking index [306, 248].

Whenever ν̈ has been quantified for large samples
of pulsars, its absolute value is generally orders of
magnitude larger than the expected |ν̈n=3| for magnetic
dipole braking (equation (20)) and approximately half
of the measured values are negative [81]. Such values
are not reflective of the underlying braking mechanism
and are considered as artifacts of timing noise and
potentially of glitching activity [251]. The scatter and
magnitude of inferred braking indices greatly increases
for pulsar characteristic ages τch & 106 yr [81] and
a positive correlation between |n| and τch has been
reported to hold for pulsars with τch & 105 yr [307].
Whilst for these older objects similar numbers of
n > 0 and n < 0 are observed, this is not true for
younger (. 105 yr) neutron stars. For this group, the
aforementioned correlation is not observed, values of
n are mostly positive, and their modulus is smaller
– though usually still n > 3 [307, 84]. Additionally,
in very young pulsars (τch < 104 yr), a long-term ν̈
is more likely to be steady and robust enough to be
detected over the effects of timing noise, making such n
measurements more reliable to represent the rotational
long-term evolution. As these younger neutron stars
are the same population for which glitches are most
frequent (Section 4.1), it is important to understand
the exact impact of glitches on inferred n values.

The post-glitch recovery is typically associated
with large values of the braking index. During the
initial post-glitch phase, when there is usually rapid,
quasi-exponential, evolution of ν̇, it is not meaningful
to think in terms of n. In pulsars which show the linear
ν̇-recovery, ν̇(t) has a steep positive slope which does

not seem to flatten before the next glitch arrives (see
Section 5.4 and the example of the Vela pulsar in figure
20). This phase is characterised by large, positive,
inter-glitch braking indices nig. For example nig ' 40
for the Vela pulsar and nig ' 25 for PSR J1803-2137
[248].

In known glitching pulsars like the above, nig

cannot be confused with its long-term value. It has
been speculated though that high (n > 3) measured
braking indices of other pulsars can also be the result
of a glitch, one that went undetected, for example
if it occurred before the start of observations. In
a sample of 19 pulsars where the favoured timing
model (which incorporated a timing noise component)
included a ν̈ term, over half of the sources had inferred
n values greater than 10 [84]. The possibility of a
long-τd (> 1000 days) exponential signature from an
earlier glitch was explored, but found no support in
the data. The effects of the quasi-linear recovery with
high ν̈ig cannot, however, be distinguished from a high
underlying, intrinsic, ν̈. Hence the view that some
of these n > 10 values are the result of unobserved
glitches remains tenable. The correlation of glitch rate
with spin-down rate (Section 4.1) can be used to inform
on the likelihood of the presence of a glitch within a
certain time interval before observations began.

Another impact of glitches comes from the
cumulative effect of the persistent ν̇ changes, that
can have fractional amplitudes ∆ν̇p/ν̇ as high as ∼
10−3. Overall they will decrease the inferred ν̈ when
this is obtained directly from timing measurements
of long (glitch-containing) intervals, without the use
of corrections related to glitch models and possible
∆ν̇p shifts. Indeed, it has been found that pulsars
with regular large glitches (Vela-like) evolve with
particularly low long-term braking indices neff . 2
[248]. These are the effective braking indices for
the specific pulsars: whilst they do not necessarily
correspond to the value of n for the underlying braking
mechanism, they nonetheless represent the rotational
evolution of these pulsars during their recorded history
(usually . 30 yr) [248, 85]. The Vela pulsar and
PSR J0537−6910 are clear examples of this behaviour,
as their long-term trends have been studied over
periods of times that involve more than 10 glitches. In
the particular case of PSR J0537−6910, the inferred
neff is not just under 3 but actually negative [193, 100,
101], which has been ascribed to its extraordinarily
frequent glitches. Interestingly, other glitching pulsars
which have glitch activities as expected (that is, as high
as & 1% of ν̇), despite exhibiting mostly small glitches,
also appear to evolve with low long-term ν̈ values that
imply neff . 2 [248, 191]. Even for the Crab pulsar,
which does not follow the glitch activity trend, a period
of increased glitch activity resulted in a decrease of
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its inferred braking index, from 2.5 to ∼ 2.3 [80],
thereby strengthening the argument for the rotational
long-term effect of glitches (and in particular, ∆ν̇p).
For some neutron stars that are infrequently observed,
undetected glitches that leave ∆ν̇p < 0 changes can
mimic an n < 0 trend, perhaps explaining some of the
anomalous n measurements [251].

Glitches not only directly impact the rotational
state of neutron stars, but can affect other aspects
of their evolution such as the thermal one and that
of the magnetic field. Dissipation during the glitch
will result in heating, as will crust failure if that
is what initiates some of the events, leading to a
potentially different signature in the thermal spectrum
of a star following a glitch, depending on the trigger
[239]. Furthermore, heating due to mutual friction
dissipation as vortices migrate outwards may explain
why many millisecond radio pulsars are hotter than
their age would predict [308, 309]. More speculatively,
pinning of vortices to fluxtubes can tie the magnetic
evolution to the rotational one [60, 61], leading to
magnetic flux-expulsion and decay of the magnetic field
as vortices move out.

8. Concluding remarks

Years before neutron stars were discovered, it was
expected on theoretical grounds that these objects
should host superfluid components. It must, however,
have seemed unlikely that there would ever be a way to
probe the detailed interior dynamics and structure of
a kind of star which was minuscule, dark, and distant.
Glitches provide us with this opportunity.

The last decade has seen many observational
advances related to glitches, such as a great increase in
the overall number of reported events (from searches
both in archival and new data, figure 1) which led to a
better understanding of their properties [157, 191, 68],
detailed analyses of the rotational history of selected
glitching pulsars [80, 100, 92], and the discovery of a
possible emission disturbance associated with a Vela
glitch [91], to name a few. The development of
new algorithms which aim to identify and characterise
glitches (Section 3.4), and the close monitoring of
hundreds of sources by current and upcoming facilities,
is expected to generate larger, consistently measured
glitch samples (whose completeness can been assessed)
for even more pulsars. The possible association of
emission variability with glitches (or glitch precursors)
in regular pulsars [91], as well as its link to timing noise
[150], offers another promising area of future research.

The considerable progress and research output
based on the nearly continuous (and of high temporal
resolution) timing of the Crab and Vela pulsars under-
lines the importance of dedicated timing campaigns,

which are designed to probe glitch aspects that are
not accessible via regular timing programs. The lat-
ter are essential to uncover the prevalence of glitches
in the pulsar population, the dependence of glitch rate
and activity on pulsar parameters, and to increase the
glitch sample for statistical studies. But only very close
monitoring can provide information on a range of valu-
able features, such as the small glitches’ activity, subtle
short-lived magnetospheric changes related to glitches,
and a rigorous tracking of glitch rises and recoveries on
all relevant timescales.

Further gains may also come from gravitational
wave observations, as glitch induced asymmetries can
couple to the gravitational field and lead to a possibly
observable signal [310, 311, 312, 313, 314, 315, 316,
317]. Searches have been carried out in LIGO and
Virgo data following glitches in the Vela and Crab
[318, 319], and in other pulsars that glitched during
the third observational run of the detectors [320].
No signals have been detected to date, but future
searches will continue to target glitching pulsars and,
as the sensitivity of the instruments improves, have
the potential to provide new input on the glitch
mechanism.

At the same time, on the theoretical side, hy-
drodynamical models based on a multifluid formalism
[219, 321] are becoming more established. Aided by
calculations and simulations that aim to better under-
stand pinning and unpinning of vortices [322, 50, 57],
such models can provide a solid framework to inter-
pret phenomenology and connect it naturally to the
physical parameters governing the interior dynamics.
Generating the appropriate microphysical inputs is a
challenging task: while progress has been made on un-
derstanding the dynamics of individual vortices in a
pinning potential, accurate modelling requires 3D sim-
ulations of a large numbers of vortices in the pinning
landscape of the inner crust, and possibly in the pres-
ence of magnetic fluxtubes in the core. A way forward
is likely to come from the development of sub-grid pre-
scriptions to build a bridge between microscopic vortex
dynamics simulations and large scale hydrodynamics.
This will allow for the inclusion of fluid effects in meta-
models, and help constrain the glitch trigger mecha-
nism from observations. Comparison with terrestrial
superfluid experiments always remains instructive, and
can guide progress in less explored, but likely impor-
tant, directions, like the role of superfluid turbulence.
A further step for most models discussed here will be
relaxing the assumption of rigid body rotation of the
normal component, as Ekman pumping (e.g. at the
crust-core boundary) could play a role in post-glitch
recoveries [323].

The observational and theoretical developments
described above have already improved our under-



Pulsar glitches 50

standing of the glitch process in recent years. The
principal postulation of an internal origin for glitches
holds up against new observations and more advanced
simulations and microphysical input, as does the no-
tion that the response of the neutron superfluid inte-
rior is responsible for the post-glitch recoveries on long
timescales.

In order to explain the inferred spin-down rate
changes and relaxation on timescales of several days
or longer, a small fraction of the superfluid (order
0.1% of the total moment of inertia) must decouple
from the observed crust at a glitch. A much greater
fraction might decouple initially, including part of the
superfluid core, as evidenced by high time resolution
observations of fast and large spin-ups in the Vela
pulsar followed by a rapid decay in the first minutes
post-glitch.

A superfluid angular momentum reservoir that
amounts to ∼ 1–2% of the moment of inertia of
the ‘normal’ component that has spun-up is needed
to drive the glitch itself. Calculations of the
maximum pinning force between vortices and the ion
lattice suggest that it is strong enough to sustain
the required velocity differences between components.
However, the entrainment effect in the crust might
actually couple the superfluid neutrons to the normal
component strongly enough that a large lag cannot
develop between glitches. Furthermore the latest
data challenge the hypothesis that glitches are a
purely crustal phenomenon. Observations of individual
glitches in the Vela and Crab pulsar strongly suggest
that at least part of the core superfluid must be
involved, possibly indicating that vortices are pinned
to fluxtubes in this region.

Implicated in glitches is the collective unpinning
of a very large number of vortices, the exact cause
of which remains unknown. Nonetheless, statistical
glitch studies over the whole pulsar population
can help discern its nature. Whilst some pulsars
exhibit regularity in their glitch behaviour (having a
characteristic glitch size and similar interglitch waiting
times), and at least in one instance a strong correlation
between glitch size and time until the next event is seen
- implying some threshold-regulated process, several
other pulsars show properties of a scale invariant
process behind the glitch trigger. The latter suggests
that vortex-vortex interactions can lead to vortex
avalanches: the rapid release of pinned vortices which
move together and transport angular momentum to the
crust.

There have been proof of principle studies that
show how glitch observations can be used to constrain
the mass and equation of state of neutron stars,
and determine whether quantum turbulence is being
excited in the pinned superfluid. Nevertheless,

much of the detailed glitch physics remains work in
progress, and more research is necessary to make fully
quantitative predictions.

With the wealth of already available data and the
prospect of more from existing, as well as future, ob-
serving programs, it is essential for theoretical and ob-
servational efforts to move forward in tandem; each
side is able to provide insights that inform the devel-
opment of the other and will allow us to build a clearer
picture of the physics of the neutron stars’ extreme
conditions.
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B M, Bechtol K, Bédérède D, Bellardi F, Bellazzini
R, Berenji B, Bignami G F, Bisello D, Bissaldi E,
Blandford R D, Bloom E D, Bogart J R, Bonamente
E, Bonnell J, Borgland A W, Bouvier A, Bregeon J,
Brez A, Brigida M, Bruel P, Burnett T H, Busetto G,
Caliandro G A, Cameron R A, Caraveo P A, Carius
S, Carlson P, Casandjian J M, Cavazzuti E, Ceccanti
M, Cecchi C, Charles E, Chekhtman A, Cheung C C,
Chiang J, Chipaux R, Cillis A N, Ciprini S, Claus
R, Cohen-Tanugi J, Condamoor S, Conrad J, Corbet
R, Corucci L, Costamante L, Cutini S, Davis D S,
Decotigny D, DeKlotz M, Dermer C D, de Angelis A,
Digel S W, do Couto e Silva E, Drell P S, Dubois
R, Dumora D, Edmonds Y, Fabiani D, Farnier C,
Favuzzi C, Flath D L, Fleury P, Focke W B, Funk S,
Fusco P, Gargano F, Gasparrini D, Gehrels N, Gentit
F X, Germani S, Giebels B, Giglietto N, Giommi P,
Giordano F, Glanzman T, Godfrey G, Grenier I A,
Grondin M H, Grove J E, Guillemot L, Guiriec S,
Haller G, Harding A K, Hart P A, Hays E, Healey S E,
Hirayama M, Hjalmarsdotter L, Horn R, Hughes R E,
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