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Bioorthogonal catalysis via transition metal catalysts (TMCs) enables the generation of 

therapeutics locally through chemical reactions not accessible by biological systems. This 

localization can enhance the efficacy of anticancer treatment while minimizing off-target effects. 

The encapsulation of TMCs into nanomaterials generates “nanozymes” to activate imaging and 

therapeutic agents. Here, we report the use of cationic bioorthogonal nanozymes to create 

localized “drug factories” for cancer therapy in vivo. These nanozymes remained present at the 

tumor site at least seven days after a single injection due to the interactions between cationic 

surface ligands and negatively charged cell membranes and tissue components. The prodrug 

was then administered systemically, and the nanozymes continuously converted the non-toxic 

molecules into active drugs locally. This strategy substantially reduced the tumor growth in an 

aggressive breast cancer model, with significantly reduced liver damage compared to traditional 

chemotherapy.
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1. Introduction

Local administration of chemotherapeutics enhances their anticancer efficacy by increasing 

the drug dose at the tumor site, which reduces off-target effects that occur with systemic 

administration. 1, 2 The direct injection of chemotherapeutics at the tumor site is commonly 

used, however, this method can be limited by the diffusion and rapid clearance of drugs 

from the injection site.3 Implanted reservoirs can be used to provide controlled localized 

drug delivery, however, immune rejection and fibrosis around the implants are challenges for 

therapeutic application.4, 5
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Nanostructured drug release systems offer a versatile alternative for the localized release of 

therapeutics, creating “drug reservoirs” directly at the target site. 6–14 The slow diffusion of 

drug molecules from the depot enables a constant supply of therapeutics, minimizing side 

effects arising from systematic drug dosing.3, 15

Bioorthogonal catalysis is an emerging tool that can extend the concept of drug reservoirs 

to “drug factories” using chemical reactions that cannot be carried out by natural 

enzymes.16–19 Bioorthogonal transformations enable the localized and sustained generation 

of imaging and therapeutic agents.20–23 Transition metal catalysts (TMCs) are excellent 

candidates for the bioorthogonal activation of prodrugs, 24–27 offering high versatility and 

reactivity. 28–38 However, the direct use of free TMCs in living systems is challenging due to 

the lack of water solubility,39,40 catalyst deactivation by biomolecules,41 and cytotoxicity of 

the free metals.18

Encapsulating TMCs into nanomaterials yields bioorthogonal ‘nanozymes’ that enhance the 

solubility, stability, and biocompatibility of the catalysts.20, 42–47 Additionally, encapsulation 

extends the useful lifetime of catalysts in complex bioenvironments.40 Moreover, through 

appropriate engineering of the nanoscaffold, nanozymes can be localized at therapeutically 

important targets.33, 36, 48–51 Researchers have recently demonstrated the efficacy of the 

bioorthogonal approach by using nanostructures to distribute catalyst sites in the tumor and 

performing the drug activation in situ. 52–56

We hypothesized that nanozymes with cationic surfaces would localize at injection sites, 

providing in situ generation of therapeutic (Figure 1). Nanozymes were fabricated through 

the encapsulation of TMCs into the monolayer of a cationic-functionalized gold nanoparticle 

to provide protection of the catalyst and adherence to tissue at the tumor site (Scheme 

1). The resulting nanozymes 57,58 demonstrated prolonged catalytic activity over seven 

days. Consequently, a single dose of nanozyme enabled intratumoral uncaging of propargyl-

protected imaging pro-fluorophores and prodrugs over an extended time (Scheme 1b). These 

nanozymes remained localized at the injection site in the tumor, activating systemically 

injected pro-fluorophores and prodrugs. Active drugs and dyes spread from this site 

throughout the entire tumoral area, with limited spreading to the surrounding healthy tissue 

(Figure 1). Localized generation of chemotherapeutic 5-fluorouracil (5FU) from a caged 

prodrug provided essentially identical therapeutic efficacy to systemically-administered 5-

FU. Significantly, no liver damage was observed with the localized generation of 5FU, 

in sharp contrast to the damage observed with systemic administration of the free drug. 

Taken together, nanozyme-based local generation of chemotherapeutic 5-FU efficiently 

treats aggressive breast cancer, without the acute hepatoxicity observed in traditional 

chemotherapy.

2. Materials and methods

2.1 Encapsulation of catalysts into the monolayer of AuNPs

The palladium catalyst (0.8 mg) was dissolved in 1 mL 1:1 (v/v) acetone/tetrahydrofuran 

(THF) solution and added to 13 mL aqueous solution containing ~1 μM TTMA-NPs. The 

solution was filtered by a 0.22 μm PES syringe filter and applied to a centrifugation filter 

Zhang et al. Page 3

J Control Release. Author manuscript; available in PMC 2024 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



with a 10k molecular cut-off to remove the excess catalyst, with filtration repeated eight 

times to obtain the nanozyme solution. The concentration of nanozymes was determined by 

the absorbance at 506 nm.

2.2 Pro-Rho activation in living cells by nanozymes

HeLa cells were seeded in confocal dishes at 80k per dish 12 h prior to experiments. 

During the experiments, cells were treated with 2mL cell culture media containing 300 nM 

nanozymes for 24 h, followed by four times washing to fully remove the excess nanozymes. 

Fresh media containing 50 μM pro-Rho was added directly (mentioned as day1), or after 

another 24 h incubation (day 2), or after another 48 h incubation (day 3). Cell only and 50 

μM pro-Rho only were used as negative controls. One day later, cells were stained using 

Hoechst 33342, washed by PBS, and imaged under Nikon A1 spectral detector confocal 

microscope (A1SP) using 40x lens. Green channel, excitation = 488 nm and emission = BP 

505−530 nm; blue channel, excitation = 402 nm and emission = BP 450−465 nm (BP = 

band-pass).

After confocal imaging, cells were harvested and resuspended in PBS for flow cytometry 

analysis on FACS LSR II (BD Biosciences). Cells suspensions were analyzed under the 

same parameter setting, and 10,000 events were analyzed for each sample.

2.3 Intracellular pro-5FU activation

Cells (HeLa or HepG2) were seeded in 96 well plates at the density of 7k per well one 

day prior to experiments. Then, cells were treated with 500nM nanozymes for 24 h. On the 

next day, cells were washed with PBS four times and incubated with 0, 10, 50, 100, 200, 

and 500 μM pro-5FU for 72 h. The same concentration of pro-5FU and 5FU was used as 

negative control and positive control, respectively. Afterward, cells were washed with PBS 

three times to fully remove the dead cells. Cell viability was determined by the Alamar Blue 

assay.

2.4 Animal care

All animal experiments were conducted according to the animal protocol (#182) approved 

by the Institutional Animal Care and Use Committee (IACUC) at the University of 

Massachusetts Amherst. Female BALB/c mice (at least 6-week-old) were purchased from 

the Jackson Laboratory (Bar Harbor, ME) and housed in controlled climates (22 ± 2 °C 

temperature, 12 h light/dark daily cycle) with free access to food and water. All mice were 

allowed to rest for at least one week in the animal facilities before any procedure was 

performed.

2.5 In vivo and ex vivo imaging of pro-HCA activation

4T1 cells (10μL, 100k) were transplanted to the mammary fat pad of the BALB/c mice. 

The tumor size was monitored by a caliper. Tumor volume (mm3) was calculated by the 

following equation: (long diameter × short diameter2)/2. When the tumor size reached ~ 

200 mm3, nanozymes (4 μM) in 50 μL PBS or PBS alone (negative control) were injected 

into the tumor. On the next day, 100 μL of 200 μM pro-HCA in body-temperature PBS 

was injected through the tail vein. 24 h later, mice were shaved and imaged by IVIS using 
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fluorescence pair at 710 nm (excitation) and 760 nm (emission). Afterward, mice were 

euthanized with CO2. Blood and major organs (tumor, liver, spleen, heart, lung, brain, and 

kidneys) were collected and imaged by IVIS using fluorescence pair at 710 nm (excitation) 

and 760 nm (emission).

2.6 In vivo anticancer therapy by nanozymes

4T1 cells (10μL, 100k) were transplanted to the mammary fat pad of the BALB/c 

mice. When the tumor size reached ~ 100 mm3, mice were randomly divided into 5 

groups. Nanozymes (4μM) in 50 μL PBS or PBS alone (negative control) were injected 

intratumorally on day 0. 5FU (5mg/kg, positive control), pro-5FU (25mg/kg), or PBS 

(negative control) were injected on day 1, day 3, and day 5. Mouse body weight and tumor 

volume were recorded in a blind fashion on day 0 and days 2–10. Mice were euthanized 

with CO2 when the tumor volume was over 1000 mm3. After sacrificing the mice, blood 

was collected for the liver panel assay, while tumors were weighed by an electric balance. 

Afterward, tumors were kept in liquid nitrogen for further LA-ICP-MS analysis.

2.7 LA-ICP-MS imaging

LA-ICP-MS images of 197Au, 106Pd, 66Zn, and 57Fe were acquired on a CETAC LSX-213 

G2 laser ablation system coupled with a Perkin Elmer NexION 300x ICP-MS instrument. 

The following laser parameters were used: 50 μm spot size, 19 μm/s scan rate, 3.65 J laser 

energy, 10 Hz laser frequency, and a 10 s shutter delay. The helium carrier gas from the laser 

ablation system was set to 0.6 L/min.

2.8 LA-ICP-MS image processing

LA-ICP-MS images were reconstructed, analyzed, and segmented using a custom Python 

script RecSegImage-LA, that is freely available at GitHub (https://github.com/Vachet-Lab/

RecSegImage-LA).59 Images were rendered and overlayed using ImageJ.

3. Results and discussion

3.1 Design and synthesis of nanozymes

The nanoparticle scaffolds used in this study were comprised of an ultrasmall (2 

nm) gold core functionalized with a monolayer featuring positively charged thioalkyl 

tetra(ethylene glycol) trimethylammonium ligands (TTMA, Scheme 1a, synthesis in 

supporting information Figure S1–3). The design of the ligands contains three key 

components: 1）a hydrophobic alkyl chain to stabilize the nanoparticles and encapsulate 

the catalyst molecules shown to provide nanoparticles stable in cells,60 2) a tetra (ethylene 

glycol) spacer to improve water solubility and biocompatibility, 3) a quaternary ammonium 

terminal group to enhance cell uptake and tumor retention.61–63 The resulting nanoparticle 

(TTMA-NP) has low immunogenicity in vivo.64–66

Nanozymes (TTMA-NZ) were generated by encapsulating a palladium catalyst into 

the monolayer of AuNPs through the hydrophobic interaction via nanoprecipitation. 

A palladium ferrocene catalyst Pd(dppf)Cl2 ([1,1′-bis(diphenylphosphino)ferrocene] 

dichloropalladium (II), Scheme 1a) was chosen because of its hydrophobicity and high 
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catalytic activity. 67 Transmission electron microscopy (TEM) images and the dynamic light 

scattering (DLS) of TTMA-NP and TTMA-NZ indicated no aggregation after catalyst 

encapsulation (Figure 1 b–e). Inductively-coupled plasma mass spectrometry (ICP-MS: 
106Pd and 197Au) verified the presence of Pd in the nanozyme and quantified an average of 

28 Pd catalyst molecules per nanozyme (Table S1).

The catalytic activity of TTMA-NZ was quantified by the activation of the non-fluorescent 

pro-dyes (Figure 2) in phosphate-buffered saline (PBS, pH=7.4). Rhodamine 110 (Rho) 

and near-infrared hemicyanine (HCA)68 dyes were caged using a propargyl carbamate 

group to yield non-fluorescent pro-rhodamine (pro-Rho) and pro-hemicyanine (pro-HCA), 

respectively (synthesis in supporting information Figure S4–9). Fluorescence generation 

occurred immediately after the addition of TTMA-NZ to the pro-dye solution, while 

negative controls showed no detectable fluorescence change (Figure 2).

3.2 In vitro catalytic activity and stability of nanozymes

We next studied the catalytic activity of TTMA-NZ in live cells. Nanozymes showed 

minimal toxicity to HeLa cells at concentrations up to 800 nM (Figure S10). The cellular 

uptake of TTMA-NZ was measured by tracking 106Pd and 197Au with ICP-MS at different 

time points. The uptake of Au and Pd showed a time-dependent increase over the tested 

period, indicating the efficient cell internalization of these positively charged nanozymes 

(Figure S11).

The capability of nanozymes to perform bioorthogonal catalysis was determined by the 

intracellular uncaging of non-fluorescent pro-Rho to generate fluorescent Rho. HeLa cells 

were incubated with 300 nM nanozyme for 24 h, followed by washing four times with 

PBS, a protocol shown to fully remove non-internalized nanoparticles.69 Pro-Rho (50 

μM) was administered after 1, 2, and 3 days (timeline in Figure 3a), and then incubated 

for an additional 24 h. Confocal images indicated that TTMA-NZ successfully activated 

pro-Rho in cells and maintained efficient catalysis over each of the incubation periods 

(Figure 3b–c). Flow cytometry analysis (Figure 3d) showed consistency in the fluorescence 

activation, confirming the retention of intracellular TTMA-NZ activity over a prolonged 

time. Consistent results were observed with TTMA-NZ uncaging of pro-HCA, indicating 

the utility of this pro-fluorophore for the in vivo imaging studies below (Figure S12).

3.3 Intracellular drug activation by nanozymes

The ability of nanozymes to activate a caged analog of 5-fluorouracil (5FU) was next 

demonstrated. 5FU is a highly effective chemotherapeutic, 70 however, side effects of 5FU, 

specifically liver damage,71,72 can severely impact the overall health and recovery from 

cancer therapy.73 The pro-5FU was synthesized by blocking the pharmacophore with a 

propargyl group (synthesis in supporting info, Figure S13 and S14), 40,74 resulting in an over 

100-fold reduction in toxicity relative to 5FU (Figure S15). In the presence of nanozymes, 

the propargyl bond is cleaved, generating the active drug 5FU (Figure 4a). HeLa cells were 

pre-treated with TTMA-NZ for 24 h, followed by washing four times to fully remove 

non-internalized nanozymes.69 Cells were then incubated with pro-5FU (0–500 μM) for 

72 hours. Finally, the cell viability was determined using an Alamar Blue assay. Efficient 
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cell killing was found for cells treated with a combination of nanozymes and pro-5FU, 

providing efficacy comparable to free 5FU treatment (Figure 4b). As expected, pro-5FU 
alone showed little toxicity to cancer cells. Comparable results were obtained when we 

applied experiments to liver cancer HepG2 cells (Figure S16) and murine breast cancer 4T1 

cells (Figure 5c).

3.4 Stability and catalytic activity of nanozymes in vivo

Localization and stability are key metrics for in vivo activity, and were determined through 

intratumoral injection of nanozymes into a 4T1 orthotopic mouse model. This cancer model 

was established by orthotopically transplanting triple-negative 4T1 murine breast cancer 

cells into the mammary pad to mimic a native cancer environment.75 The mice were 

sacrificed ten days after the injection. The biodistribution of nanozymes as a function of 

surface charge was investigated using ICP-MS, tracking both gold and palladium. The 

cationic nanozyme exhibited greater retention at the tumor site compared to zwitterionic and 

anionic nanozymes (Figure S17). The excised tumor was then cryo-sectioned into adjacent 

slices for imaging analysis (Figure 5a).76 Optical imaging (Figure S18) and hematoxylin 

and eosin (H&E) staining provided the area and shape of the sectioned tumor slice (Figure 

5b). The adjacent slice was then analyzed using laser ablation inductively coupled plasma 

imaging (LA-ICP-MS) to image the distribution of Au from the nanoparticle core and Pd 

from the catalysts encapsulated in the ligand monolayer. The signal of Au obtained by 

LA-ICP-MS (Figure 5c and Figure S19) co-localized with the signal of Pd (Figure 5d, e), 

indicating that the core and catalyst remained co-localized at the site of injection for at least 

ten days. The durability can be attributed to the protection of the catalyst by the metal and 

anchorage of the cationic particle to the tissue at the injection site.

3.5 In vivo imaging studies

We next performed in vivo imaging of nanozyme activity through the uncaging of pro-HCA 
by nanozymes. After the 4T1 tumor grew to ~200 mm3, TTMA-NZ (50 μL of 4 μM) was 

injected intratumorally. For the imaging study, 100 μL of a 200 μM solution of pro-HCA 
was injected through the tail vein 24 h after nanozyme injection (Figure 6a). The mice were 

shaved 24 h after pro-HCA administration for in vivo imaging and then sacrificed for ex 
vivo imaging. The fluorescence signal was distributed through the entire tumor (Figure 6b, 

c, and Figure S20), indicating that the nanozymes maintained their catalytic activity in living 

animals. The observed fluorescence was limited to the tumor tissue, indicating the successful 

localized activation of the pro-fluorophore by TTMA-NZ. The results indicate efficient 

product diffusion throughout the tumoral tissue without affecting the surrounding healthy 

tissue. Pro-HCA alone, as expected, exhibited no fluorescence anywhere in the body and 

organs.

3.6 In vivo anticancer treatment

We next evaluated the in vivo anticancer efficiency of pro-5FU activation using TTMA-
NZ. Tumor-bearing mice (tumor size ~100 mm3) were randomly divided into five groups 

that were then independently treated with (1) TTMA-NZ+pro-5FU, (2) TTMA-NZ, (3) 

pro-5FU, (4) 5FU, and (5) PBS. The nanozymes were injected intratumorally only once 
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on day 0, while pro-5FU or 5FU were injected intravenously on day 1, day 3, and day 

5 for each of the testing groups (Figure 7a). No significant weight loss was observed 

for any group, indicating the absence of acute physiological effects. (Figure S21). Tumor 

volume was measured by a caliper and quantified in a blinded experiment. Notably, TTMA-
NZ+pro-5FU treatment successfully reduced the tumor growth by 40% by volume and by 

weight compared to the PBS control group. Significantly, the efficacy of nanozyme-based 

drug therapy was comparable to that of the free drug group (Figure 7a and b), with 

both demonstrating good efficacy against the highly invasive 4T1 tumor. As expected, the 

treatment of pro-5FU alone and TTMA-NZ alone showed no significant difference with 

respect to the untreated group (Figure 7a, b, and Figure S22).

The liver is responsible for 90% of 5FU metabolism,71 and hepatic damage is the most 

common side effect of 5FU-based chemotherapy.73 During liver injury, the enzyme aspartate 

transaminase (AST) is released from the liver into the bloodstream, with the level of AST 

reflecting liver injury.77 Mice treated with 5FU expressed a much higher level of AST 

(Figure 7c) compared to the control groups, indicating the presence of 5FU-induced liver 

damage. The mice that received TTMA-NZ+pro-5FU, however, exhibited no significant 

increase in AST relative to the negative control groups. This decrease in a key off-target 

effect is indicative of more directed and less harmful chemotherapy strategies driven by 

nanozyme-mediate bioorthogonal chemistry.

4. Conclusion

In this work, bioorthogonal nanozymes were used to provide efficient in situ generation 

of chemotherapeutics. These nanozymes provided tumor reduction equally effective to 

the free drug with substantially reduced off-target liver damage. This nanozyme strategy 

encapsulates transition metal catalysts into the monolayer of cationic gold nanoparticles. 

Surface engineering of the nanozyme provides long-term attachment to the intratumoral 

site of injection. The effective encapsulation of the TMCs in the monolayer scaffold of 

the nanozymes maintained high catalytic activity after injection. A single injection of 

nanozyme provided efficient intratumoral uncaging of systemically-administered non-toxic 

prodrugs into anticancer drugs. The anti-tumor efficacy of the nanozyme regimen is 

comparable to that observed using the systemically-administered drug. Significantly, the 

nanozyme treatment produced substantially less liver damage than the free therapeutic. 

Our obtained results show the potential of bioorthogonal nanocatalysis for the generation 

of therapeutically active agents. Furthermore, the modularity of the system allows for 

the development of stimuli-responsive and tumor-targeting nanozymes for the creation 

of “smart” treatment strategies. In addition to direct treatment of tumors, this approach 

can potentially be adapted for adjuvant therapy after surgical resection to prevent cancer 

recurrence.78
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• Sustained release of chemotherapeutics at tumor sites using nanomaterials 

enhances drug efficacy and reduces side effects.

• Bioorthogonal nanozymes provide “drug factories” which generate 

therapeutics in situ

• through chemical reactions unattainable by bioprocesses.

• Surface-engineered cationic nanozymes adhere to tissue over ten days in vivo.

• Bioorthogonal nanozymes continually activate anticancer drugs from the 

inactive precursor, inhibiting tumor growth with negligible side effects.
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Figure 1. 
(a) Schematic presentation of localized therapy through in situ drug activation by 

bioorthogonal nanozymes (TTMA-NZ). (b) Transmission electron microscopy (TEM) 

image of thioalkyl tetra(ethylene glycol) trimethylammonium functionalized gold 

nanoparticles (TTMA-NP). (c) TEM image of nanozyme TTMA-NZ after encapsulation. 

Scale bar = 20 nm. (d) Dynamic light scattering of TTMA-NP and TTMA-NZ. (e) Zeta 

potential of TTMA-NP and TTMA-NZ. Each bar represents the average of three replicates, 

and the error bar represented the standard deviation.
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Figure 2. 
The catalytic activity of nanozymes (TTMA-NZ) in PBS solution. Structure and kinetic 

study of (a) pro-Rho (10 μM) and (b) pro-HCA (10 μM) activation by TTMA-NZ (300 

nM) in phosphate-buffered saline (PBS, pH=7.4) at 37 °C. Experiments were performed in 

triplicate, error bars represented the standard deviation.
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Figure 3. 
Nanozyme Pro-Rho activation in living cells. (a) Timeline of intracellular pro-Rho 
activation. (b) Confocal images of cells treated with a 50 μM solution of pro-Rho at 

different time points after TTMA-NZ administration. The nucleus was stained by Hoechst 

33342. Scale bar = 50 μm. Nanozymes showed prolonged catalytic activity in living cells. 

(c) Quantification of intracellular fluorescence intensity of the confocal images by ImageJ 

software. Error bars represent standard deviation. Statistical significance was determined by 

a two-tailed Student’s t-test. ***= p < 0.001. n.s. = not significant. (d) Flow cytometry of the 

cells. The result confirmed the stability of the nanozyme catalyst, with no change in activity 

observed after three days of incubation.

Zhang et al. Page 17

J Control Release. Author manuscript; available in PMC 2024 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Intracellular drug generation by nanozymes. (a) Nontoxic pro-5FU was uncaged to 

chemotherapeutic 5FU by nanozymes. (b and c) Cell viability of HeLa cells (b) and 4T1 

cells (c) after pro-5FU (from 0 to 500 μM) activation by TTMA-NZ (500nM for HeLa 

and 300nM for 4T1) for 72h. Cells treated with pro-5FU were used as the negative control, 

showing non-toxicity to cells. Experiments were performed in triplicate; error bars represent 

the standard deviation.
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Figure 5. 
Representative optical and laser ablation inductively coupled plasma imaging (LA-ICP-MS) 

of nanozyme-injected breast tumor after 10 days. (a) Workflow of LA-ICP-MS and H&E 

imaging to establish nanozyme localization. (b) Histological image of the adjacent tissue 

section. Reconstructed LA-ICP-MS image at 50 μm resolution of (c) gold, (d) palladium, 

and (d) overlay. The essentially complete co-localization of Au and Pd is consistent with 

long-term nanozyme stability.
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Figure 6. 
In vivo and ex vivo imaging of nanozyme near-infrared pro-dye activation. (a) Workflow of 

in vivo imaging by pro-HCA activation using nanozymes. (b and c) The activation of pro-
HCA by nanozymes on tumor-bearing mice in vivo (b) and ex vivo (c) was demonstrated 

using an IVIS system. Selected organs were (from the left) blood, tumor, liver, spleen, heart, 

lung, brain, and kidney. The activation of the fluorophore is observed within the tumor 

tissue.
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Figure 7. In vivo cancer therapy using nanozymes.
(a) Change in average tumor size of experimental group and control groups. Nanozymes 

were injected intratumorally once on day 0 (red triangle), and pro-5FU was injected 

intravenously on day 1, 3, and 5 (blue triangle). (b) Final tumor mass after the treatment. (c). 
The blood of tumor-bearing mice was analyzed for liver damage (aspartate aminotransferase 

(AST) activity assay). 5FU-treated mice showed a significantly higher AST level compared 

to the control groups and TTMA-NZ+pro-5FU, indicating the presence of liver damage. 

Nanozyme-based therapy, on the other hand, avoided the off-target effect of conventional 

chemotherapy. For (a), (b) and (c), data were means ± SD, n=6. Statistical significance 

was determined by a two-tailed Student’s t-test. **= p < 0.01, ***= p < 0.001. n.s. = not 

significant.
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Scheme 1. 
Structure of nanozymes, substrates, and products. (a). Structure of the nanoparticle 

(TTMA-NP) and nanozyme (TTMA-NZ). (b). Chemical structures of substrates and 

products. Rhodamine (Rho), hemicyanine (HCA), and 5-fluorouracil (5FU) were caged 

with propargyl groups to form non-fluorescent (pro-Rho and pro-HCA) and non-toxic 

(pro-5FU) substrates. Substrates are converted to fluorescent and therapeutic products by 

bioorthogonal nanozymes.
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