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ABSTRACT 
 
Air pollution is well known for its adverse effects on human health. Among all air contaminants, 

particulate matter is one of the most studied because of its effect on the cardiovascular and 

respiratory system. Almost the entire global population is exposed daily to an unhealthy level of 

these contaminants and most of the exposure comes from the indoor setting where we spend a 

large portion of our daily time. The link between particulate matter exposure and human disease 

is still not fully understood, although inflammation is commonly observed after exposure to 

particulate matter. For that reason, investigating how the upper respiratory microbiome responds 

to particulate matter exposure is critical. These microorganisms that inhabit our upper airways play 

a crucial role in the homeostasis of the immune system and defend against external environmental 

stimuli. Furthermore, inflammation is also correlated with the activation of human endogenous 

retroviral elements integrated in our genome, the HERV genes. These genes regulate essential 

processes, and their dysregulation is associated with various inflammatory and immune-related 

diseases. 

The aim of this project is to investigate the effects of indoor Total Suspended Particles (TSP) on 

the upper respiratory microbiome and the methylation levels of HERV genes. Additionally, this 

study aims to examine whether the microbiome can influence the effect that indoor TSP has on 

HERV methylation. To achieve this aim, we recruited 34 healthy office workers from the 

University of Milan and the University of Como. We monitored them and their workplaces for six 

weeks total, three weeks during the winter and three weeks during the summer. At the end of every 

week, we collected both environmental and biological samples. The TSP samples were collected 

using an active filter-based technique. The biological samples included anterior nares and 

nasopharynx swabs to evaluate the upper respiratory microbiome, and buccal brushes to measure 

the HERV methylation.  

The first part of the project analyzed the environmental samples collected in the two seasons. The 

indoor and outdoor TSP concentrations were calculated gravimetrically. Then, we used the DNA 

extracted from the TSP collected on cellulose ester filters to characterize the TSP microbiome 

through whole genome shotgun (WGS) sequencing. We observed differences between the outdoor 

and the indoor TSP in both concentration and microbiome composition. The differences in 

microbiome composition we observed were probably influenced by the presence of plants, 

animals, and human activity in the environment.  
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The second part of the project characterized the anterior nares microbiome in healthy subjects and 

described the seasonal variation in this microbiome using both 16S rRNA and whole genome 

shotgun (WGS) sequencing. Specifically, we compared the anterior nares microbiome with the 

nasopharynx microbiome, and we analyzed how the indoor TSP exposure affected them. We 

observed significant differences between the two seasons in both microbiome diversity and 

composition in the anterior nares samples. The winter samples were enriched in Moraxella species 

(Moraxella catarrhalis and Moraxella nonliquefaciens) and the diversity was lower. The 

microbiome of the anterior nares was similar in taxa composition to the nasopharynx microbiome. 

They were both mostly dominated by gram-positive bacteria. However, the nasopharynx 

microbiome reported a higher diversity, and enrichment in Staphylococcus aureus, while the 

anterior nares microbiome had a high abundance of Corynebacterium, Cutibacterium acnes, and 

Staphylococcus epidermidis. In both microbiomes, we observed that the indoor TSP exposure 

affects commensal gram-positive bacteria such as Corynebacterium accolens and Streptococcus 

pneumoniae. Consistent with in vitro studies, an increase in Staphylococcus aureus relative 

abundance was identified in response to TSP exposure. Finally, we observed positive correlations 

in the abundance of some respiratory bacteria found in both TSP and human samples. 

The third part of the project examined the impact of indoor TSP exposure and the microbiome on 

HERV methylation, investigating whether the upper respiratory microbiome can modulate the 

effect of this pollutant on HERV genes. Indoor TSP exposure alone did not affect the DNA 

methylation of the HERV genes studied. However, the upper respiratory microbiome was 

associated with changes in methylation of HERV-K. Furthermore, in our analysis of the interaction 

between indoor TSP exposure and the microbiome on HERV methylation, we identified that at 

low abundance of Cutibacterium acnes and Actinomyces naeslundii, indoor TSP exposure is 

associated with increased methylation of HERV-W. This HERV sequence was previously found 

to be hypermethylated in response to air pollution exposure.  

In conclusion, this evidence indicates that indoor TSP exposure directly affects the respiratory 

microbiome, and consequentially the methylation of HERV-K and HERV-W.  
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1. AIR POLLUTION 
 
The World Health Organization (WHO) describes air pollution as the contamination of the 

environment by any chemical, physical or biological agent that modifies the natural characteristics 

of the atmosphere. The WHO sets the guidelines for each air pollutant as a tool for the management 

of air quality (Table 1). However, almost the entire global population is exposed to unhealthy 

concentrations of air pollutants (www.who.int/health-topics/air-pollution#tab=tab_1). Most air 

pollution is generated through large-scale human activities, and can be classified into six main 

types of pollutants: particle pollution (also known as particulate matter), ground-level ozone (O3), 

carbon monoxide (CO), sulfur oxides (SOx), nitrogen oxides (NOx), and lead (Pb) (Manisalidis et 

al., 2020), Figure 1. 

 

Table 1. The WHO air quality guidelines for air contaminants 

Air pollutant Threshold 

NO2 
25 μg/m3 (1-day mean) 

10 μg/m3 (annual mean) 

PM10 
45 μg/ m3 (1-day mean) 

15 μg/m3 (annual mean) 

PM2.5 
15 μg/m3 (1-day mean) 

5 μg/m3 (annual mean) 

SO2 40 μg/ m3 (1-day mean) 

O3 100 μg/ m3 (daily 8h mean) 

CO 4 mg/ m3 (1-day mean) 

Pb 0.5 μg/ m3 (annual mean) 

 

Particulate matter (PM) is composed of inhalable particles composed of sulfate, nitrates, ammonia, 

sodium chloride, black carbon, dust, or water. PM comes from human activities as well as natural 

sources, and its particles are classified based on the size of their aerodynamic diameter. The PM 

with the smallest diameter (of less than 0.10 μm) are called ultrafine particles, while the biggest 

with a diameter (less than 100 μm) are called Total Suspended Particles (TSP). Ground-level ozone 

(O3) is the main component of smog. It is produced by photochemical reactions between other air 

http://www.who.int/health-topics/air-pollution#tab=tab_1
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pollutants such as carbon monoxide and nitrogen oxides that are released into the environment by 

vehicles and industrial activity.  Carbon monoxide (CO) is an odorless gas produced by partial 

combustion of carbon compounds (i.e., wood, coal, kerosene). One of the main sources of CO is 

motor vehicles. Among the sulfur oxides, the most studied is sulfur dioxide (SO2) which is a gas 

derived from the combustion of fossil fuels from industrial activities and domestic heating. 

Nitrogen dioxide (NO2), is a strong oxidant gas produced by high temperature combustion of fuels. 

NO2 is an important O3 precursor. Finally, lead (Pb) and lead particulate compounds are mostly 

found in dust and come from several home products such as ceramics, pipes, and cosmetics 

(www.who.int/teams/environment-climate-change-and-health/air-quality-and-health/health-

impacts/types-of-pollutants).  

 

 
Figure 1. List of the main air pollutants: ground-level ozone, carbon monoxide, sulfur oxides, nitrogen oxides, lead, 

and particulate matter. 

 

http://www.who.int/teams/environment-climate-change-and-health/air-quality-and-health/health-impacts/types-of-pollutants
http://www.who.int/teams/environment-climate-change-and-health/air-quality-and-health/health-impacts/types-of-pollutants
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All these pollutants affect humans in different ways and exposure to them is associated with about 

7 million premature deaths annually. Most of these pollutants are associated with cardiovascular 

and respiratory diseases, but they can also impact pregnancy and child development. Their effects 

on human health can be both indirect and direct (Bezirtzoglou et al., 2011; Palacio et al., 2023).  

Indirectly, air pollution is strictly correlated with climate change, which is associated with a higher 

incidence of several infectious diseases across the world (Bezirtzoglou et al., 2011; Peden, 2024). 

On the other hand, exposure to air pollutants also directly affects human health because pollution 

compounds cause inflammation. Numerous studies have shown that both short and long-term 

exposure to air pollution is associated with different symptoms including headache, asthma 

exacerbation, and hospitalization for cardiac dysfunction (Palacio et al., 2023). 

 

 
Figure 2. Summary of the health impact of the primary air pollutants on human health retrieved from the European 

Environment Agency (EEA) at www.eea.europa.eu and the World Health Organization (WHO) at www.who.int.  The 

image was created on BioRender.com.  

http://www.eea.europa.eu/
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2. PARTICULATE MATTER IN INDOOR SPACE 
 
We are constantly exposed to air pollutants in both outdoor and indoor settings. Because people 

usually spend most of their time, about 80% - 90% of the day, in indoor spaces (i.e., home, school, 

office, gyms), indoor exposure is recognized as an important risk factor that involves populations 

from low-income to high-income countries (Bennitt et al., 2021; Li et al., 2023; Peixoto et al., 

2023; Jinze Wang et al., 2023). Outdoor exposure can influence the indoor air quality (outdoor 

infiltrations). This is usually estimated using the ratio of pollutant concentrations in indoor and 

outdoor air (I/O ratio). However, the correlation is not so strong because other factors influence 

the concentrations of indoor pollutants, like internal emissions (Jinze Wang et al., 2023; Zhang et 

al., 2005). Among air pollutants, PM is one of the most studied for its effects on human health, 

especially in small sizes (PM2.5 and PM10). However, there are few epidemiological studies on the 

effects of indoor PM on human health compared to the large number of studies on the outdoor 

exposure (Jinze Wang et al., 2023). The Environmental Protection Agency (EPA) summarizes the 

main sources of indoor PM in cooking and cleaning activities; combustion (i.e., candles, use of 

fireplaces, smoking); biological contaminants (i.e., pets, plants, mold, human skin flakes); printers 

and copiers (i.e., laser-jet printers, 3D printers); and chemical reactions. In addition, other activities 

that involve using wood, metal or glues can generate indoor particulate matter such as hobby and 

craft activities (https://www.epa.gov/indoor-air-quality-iaq/sources-indoor-particulate-matter-

pm). Besides these factors, the levels of indoor PM can be affected by other factors like the outdoor 

infiltrations and the types of ventilation systems used, Figure 3. Currently, studies on PM indoor 

exposure are mostly focused on schools and households (Baumgartner et al., 2011; Clark et al., 

2013; Kalisa et al., 2023; Young et al., 2019), and as described in the previous paragraph, these 

pollutants seem mostly associated with cardiovascular and respiratory disease (Manisalidis et al., 

2020). 

 

https://www.epa.gov/indoor-air-quality-iaq/sources-indoor-particulate-matter-pm
https://www.epa.gov/indoor-air-quality-iaq/sources-indoor-particulate-matter-pm
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Figure 3. Summarizes all the main sources of indoor particulate matter (PM): cooking, cleaning, combustion, 

biological contaminants (i.e., mold and bacteria), printers, chemical reactions, and outdoor infiltrations. The image 

can be found at www.epa.gov/iaq. 
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3. UPPER RESPIRATORY MICROBIOME 
 
The human upper respiratory tract (URT) includes an anterior nares, nasal cavity, sinuses, 

nasopharynx, and a larynx (Figure 4). The URT is an important interface between the internal and 

external environment, and performs the vital functions of conditioning inspired air, providing local 

defense, and filtering inhaled particulate matter and gasses (Sahin-Yilmaz and Naclerio, 2011). 

The differences in oxygen levels, temperature, humidity, pH, nutrients, and chemical factors in the 

URT create several ecological niches where communities of microorganisms live in a symbiotic 

relationship with humans. These communities vary in taxa abundance and composition, due to 

specific characteristics of each niche (Kumpitsch et al., 2019).  High-throughput sequencing 

methods have made it possible to study these microbial communities using the information 

collected in their genomes. Studies focusing on the analysis of microbial communities through 

sequencing data are known as microbiome studies, and the microorganisms that live together in a 

specific environment are known as microbiome (de Steenhuijsen Piters et al., 2015; Lloyd-Price 

et al., 2017). The human microbiome, in addition to performing the specific function based on its 

location (i.e., gut, nasopharynx, oral, skin), also contributes to the homeostasis of the host immune 

system (Hou et al., 2022). 

 
Figure 4. Description of the main components of the upper respiratory tract, from the most external part: anterior 

nares, nasal cavity, frontal sinus, nasopharynx, and larynx. The image was created on BioRender.com. 
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For many years, healthy human lungs were considered sterile, and the respiratory microbiome was 

not a subject of study. However, today we know the lungs have a microbiome and this microbiome 

is influenced by the upper respiratory microbiome (Dickson and Huffnagle, 2015). In newborns 

the upper respiratory microbiome has a low complexity and is very similar to the skin or the 

maternal vaginal microbiome (Biesbroek et al., 2014). The main genera that are found in the nares 

and nasopharyngeal microbiome of infants are Moraxella, Staphylococcus, Haemophilus, 

Dolosigranulum, and Corynebacterium. Even if the genera found in the respiratory tract are the 

same in all infants, their abundance can be affected by several factors such as birth mode, 

vaccination, feeding type, antibiotics and infections (Man et al., 2017). In adults, the microbiome 

gets more complex with age, and we observe that the upper respiratory microbiome is more diverse 

compared to the children microbiome. Additionally, a child’s microbiome is more dense (higher 

bacterial load), (Kumpitsch et al., 2019). Lastly, the microbiome composition in each respiratory 

site is deeply influenced by the physiological characteristic of that site (Figure 5). 

 

 
Figure 5. The physiological differences along the respiratory tract influence the respiratory microbiome composition. 

Image from Man et al., 2017. 

 

The adult anterior nares microbiome is usually enriched in Actinobacteria and can be generally 

classified in one of four “microbial types” which are characterized by the predominance of either 

Corynebacterium, Cutibacterium, Moraxella or Staphylococcus. Among these microbial types, the 

Cutibacterium and the Corynebacterium seem to be more ‘tolerant’ to other genera, while the 

Moraxella type seems the least tolerant to other genera (de Steenhuijsen Piters et al., 2015). In 
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addition, it seems that the microbial types dominated by Moraxella are less common than the others 

(De Boeck et al., 2017). The nasopharynx microbiome of healthy adults shows a high similarity 

with the microbiome of the anterior nares in bacteria composition. Most of the bacteria identified 

in the nasopharynx microbiome are Gram-positive aerobes, such as Staphylococcus, 

Dolosigranulum, Corynebacterium, and Cutibacterium (de Steenhuijsen Piters et al., 2015). 

However, a smaller percentage of healthy people can have a Moraxella-dominated microbiome, a 

gram-negative bacterium, and the most abundant Moraxella species described in the respiratory 

microbiome are Moraxella nonliquefaciens and Moraxella catarrhalis (De Boeck et al., 2017). In 

both sites, anterior nares and nasopharynx, a disruption of the microbiome is associated with 

several disease like chronic obstructive pulmonary disease (COPD), asthma, chronic 

rhinosinusitis, and respiratory infections (Elgamal et al., 2021; Hou et al., 2022), Figure 6. 

 

 

 
 
Figure 6. The respiratory microbiome plays an important role in human health and disease. Disruption in these 

microbial communities, also known as dysbiosis, is associated with several diseases, including respiratory infections 

(such as coronaviruses and influenza virus), asthma, allergy, rhinitis, cystic fibrosis, chronic obstructive pulmonary 

disease (COPD), and lung cancer. The image was created on BioRender.com. 
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4. PARTICULATE MATTER AND RESPIRATORY MICROBIOME 
 
The human upper respiratory microbiome has an important role in the host’s health, but it is 

constantly challenged by the external environment. Several environmental factors have been 

associated with alterations in microbiome like smoke exposure, and air pollution (Charlson et al., 

2010; Elgamal et al., 2021; Hassoun et al., 2015; Mariani et al., 2021, 2018; Phipps et al., 2010). 

As a consequence of air pollution exposure, an increase of oxidative stress, inflammation, 

epithelium damage, and immune dysregulation have all been observed in the respiratory tract; 

These alterations lead to microbiome dysbiosis and pathogen colonization (Xue et al., 2020). These 

relationships between the respiratory microbiome and air pollution seem bidirectional because air 

pollutants affect the microbiome, and the microbiome affects air pollutants. For example, the 

microbiome can enable air pollutant biotransformation; however, the mechanisms underneath 

these interactions are still unclear (Hamidou Soumana and Carlsten, 2021). Among environmental 

factors, the association between particulate matter exposure and the upper respiratory microbiome 

is one of the least studied. The few studies identified are summarized in Table 2. Although the 

number of studies is modest, all of them suggest that this type of exposure can affect the 

microbiome (Vieceli et al., 2023). Specifically, they suggest that particulate matter exposure is 

associated with a decrease in microbial diversity. Common commensal bacteria, that are primarily 

gram-positive aerobic, such as Corynebacterium seem to be negatively correlated with the 

particulate matter exposure. On the other hand, some gram-negative bacteria species, such as 

Moraxella and Haemophilus, seem positively correlated with this pollutant (Mariani et al., 2021; 

Padhye et al., 2021; Qin et al., 2019; Zhao et al., 2022, 2020).   
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Table 2. Summary of papers focused on particulate matter exposure and the upper respiratory 

microbiome of adults* 

Author, 
year 

Country Sample N subjects Population details Results 

(Padhye et al., 

2021) 
US Nasal swab 122 

Patients with chronic 

rhinosinusitis and 

healthy controls 

PM2.5 associated with 

decreased abundance 

of Corynebacterium 

(Qin et al., 

2019) 
China 

Pharyngeal 

swab 
83 

Workers from a 

farmer’s market 

Increased abundance 

of Moraxella 

catarrhalis, 

Haemophilus 

influenzae and 

Staphylococcus 

(Mariani et 

al., 2018) 
Italy Nasal swab 40 Healthy adults 

PM10 and PM2.5 

increased abundance 

of Moraxella, 

decreased abundance 

of Corynebacterium, 

Actinomyces, 

Dermabacter, 

Micrococcus, 

Pasteurella and 

Streptococcus 

(Zhao et al., 

2020) 
China Oropharyngeal 22 Asthmatic adults 

PM2.5 correlation with 

Cupriavidus and 

Acinetobacter 

(Zhao et al., 

2022) 
China Nasal swab 8 College students 

PM2.5 positive 

correlation with 

Acidobactereia, 

Gemmatimonadetes, 

Symbiobacterium 

*reference (Vieceli et al., 2023) 
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5. HUMAN ENDOGENOUS RETROVIRUSES (HERVs) 
 
Human endogenous retroviruses (HERVs) are viral elements that persist within the human genome 

and are derived from ancient retroviral infections in germline cells (Dopkins and Nixon, 2023). 

The integration of HERVs into the human genome probably took place more than 100 million 

years ago and it is estimated that they represent about 8% of the human genome (Mazúrová and 

Kabát, 2023). In healthy individuals, HERVs are involved in immune responses and 

developmental processes, such as the formation of syncytiotrophoblasts and tissue differentiations 

(Dopkins and Nixon, 2023; Jichang Wang et al., 2023). It seems that no HERVs are able to 

replicate and that they are dormant in our genome. However, a recent study suggested that HERV 

becomes active in the aging process (Liu et al., 2023). HERVs can either be classified into three 

main classes based on their homologies to retroviruses (Class I or gamma/epsilon-like; Class II or 

beta-like; Class III or spuma-like),  or into 31 families based on structural characteristics (Belshaw 

et al., 2005; Vargiu et al., 2016). Even if HERVs can be classified in different ways, they share 

some characteristics. For example, they have two long terminal repeats (LTR) that act as 

promoters. These regions are usually methylated which means that these DNA regions have a 

methyl group in their cytosines that repress gene activation. However, HERVs gene can be 

demethylated by external stimuli and then activated (Reddam et al., 2023), Figure 7.  

 
Figure 7. The methylation of HERV genes regulates their activation. External stimuli, such as aging, air pollution and 

hormonal changing, can demethylate their promoters and activate them. Their activation is usually associated with 

inflammation (Reddam et al., 2023). The image was created on BioRender.com. 
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HERV genes are closely related with immune response and for this reason these genes are 

associated with several human diseases (i.e., cancer, multiple sclerosis, rheumatoid arthritis, 

COVID-19), (Rangel et al., 2022). It seems that inflammation can activate HERV genes, and 

HERV genes are involved in innate and adaptative immune response. In addition, because air 

pollutions is often associated with global DNA hypomethylation, some studies have suggested that 

there might be a link between air pollution, HERVs activation, and inflammation (Byun et al., 

2013; Reddam et al., 2023).  
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AIM OF THE PROJECT 
 
This project aims to describe the effects of indoor Total Suspended Particles (TSP) on bacteria and 

viruses in the human respiratory tract using sequencing and methylation data. To achieve this goal, 

we recruited healthy volunteers in their workplace, and we divided the study into the following 

parts: Section 1 - Analysis of TSP exposure through an active sampling method and 

characterization of the microbiome associated with TSP by metagenomics analysis; Section 2 - 

Association between the respiratory microbiota, using both 16S rRNA and shotgun sequencing 

data, and the TSP data obtained in Section 1; Section 3 - Analysis of how the microbiome and 

TSP exposure influence DNA methylation of endogenous retrovirus genes (HERVs). 

 

SECTION 1 

Evaluation of TSP exposure and characterization of its microbiome 
 

- Quantification of TSP exposure among different seasons and workplaces 
 

- Characterization of TSP indoor microbiome 
 

- Comparison of indoor and outdoor TSP microbiome 

 

SECTION 2 

The upper respiratory tract microbiome and the effects of the indoor TSP exposure 
 

-  Anterior nares microbiome of healthy subjects and its seasonal variations 
 

-  Comparison of anterior nares and nasopharynx microbiome in healthy subjects 
 

- Upper respiratory microbiome and its association with indoor TSP  

 

SECTION 3 

Analysis of indoor TSP exposure and respiratory microbiome on HERV methylation 
 

- Quantification of HERV sequences methylation and its association with the TSP exposure 
 

- Interaction analysis: TSP exposure, microbiome, and DNA methylation 
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Figure 8. Overview of the study aims. Each circle describes a distinct section of the project, each section is defined 

by a specific aim. The first section analyzes the biological composition (microbiome) of indoor and outdoor TSP 

samples. The second section explores the association between indoor TSP exposure and the human upper respiratory 

microbiome. The last section investigates the relationship among indoor TSP exposure, respiratory microbiome and 

HERV methylation. 

 

 

 

 

 

 

 

 

 

NOTE: 

Some of the results presented in this thesis, specifically in Section 1 and Section 2, will be 

submitted in peer-reviewed journals as articles.  
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SECTION 1 
 

 

Evaluation of TSP exposure and characterization 
of its microbiome 
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1.1 SUMMARY 
 
The particulate matter (PM) is well known for its potential adverse effects on human health. 

Among the effects on health is the alteration of the human respiratory system through 

inflammation. In this scenario, the respiratory microbiome has an important role because it is 

closely associated with the respiratory system immunity and homeostasis (Panumasvivat et al., 

2023). Two recent studies suggest that exposure to particulate matter can cause changes in the 

respiratory microbiota of healthy subjects with consequential activation of inflammation (Mariani 

et al., 2018; Rylance et al., 2016). However, the studies on particulate matter and respiratory 

microbiome are limited to the smaller fractions (PM2.5 and PM10) and none of them considered the 

Total Suspended Particles (TSP) that tend to deposit on the upper respiratory tract. In addition, the 

physical and chemical composition of particulate matter has been widely studied, but only a few 

studies have focused on the microbiota associated with these particles (Qin et al., 2020; Zhou et 

al., 2021). Consequently, the biological composition of these particles is mostly unknown and 

limited to PM2.5 and PM10. This section aims to describe the microbiome of indoor and outdoor 

TSP. We first evaluated the indoor and outdoor TSP levels in participant workplaces using a filter-

based technique. Then, the DNA samples collected in these filters were characterized by whole 

genome shotgun (WGS) sequencing. 

 
1.2 MATERIAL AND METHODS 
 
Volunteer healthy subjects employed at the University of Milan and the University of Insubria 

Como were enrolled in the study in their workplace over 6 weeks. Specifically, recruited subjects 

were split into 3 population sub-groups (G1, G2, G3) and the TSP exposure of each sub-group was 

monitored in winter (November – March) and summer (May – July) for 3 consecutive weeks per 

season. Eligibility criteria included: age between 20-65 years old with no known chronic disease 

(e.g., cancer or asthma), no infectious disease at the time of enrollment and during the 3 weeks 

before the enrollment, working no less than 10 hours per week, and with more than 2 days per 

week spent in the office. Each participant was requested to fill out two different questionnaires. 

The first questionnaire contained all the general information about the subjects (i.e., gender, 

weight, height, age, type of job, smoking habits), the second was a weekly questionnaire to obtain 

relevant information about each monitoring week (i.e., number of cigarettes smoked, type of mask 

worn at work, number of hours spent using the mask, number of days in the office). After filling 
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out the weekly questionnaire, both biological and environmental samples were collected. 

Specifically, we collected from each participant an anterior nares swab (both winter and summer 

seasons) and a nasopharynx swab (only summer season). In addition, a buccal brush sample was 

collected from a random group of subjects (only winter season). Finally, each week Total 

Suspended Particle (TSP) samples were collected on cellulose ester filters in each office and 

outside the buildings where the participants worked (Figure 9).  

This study was approved by the Ethics Committee of the University of Milan (approval number 

24/22), in agreement with the principles of the Helsinki Declaration. All participants signed a 

written informed consent. 

 

 

Figure 9. Sampling timeline of the study. Healthy subjects were enrolled in their offices for six weeks. Throughout 

each week, biological samples were collected. Total suspended particles (TSP) samples were collected each week in 

the summer season. 

 
1.2.1 Total Suspended Particles (TSP): collection and mass measurements 
 
The TSP exposure was monitored inside the offices of each participant (indoor TSP) and outside 

the buildings where they work (outdoor TSP). A total of 17 offices located in 4 different workplace 

buildings were included in the study. All the buildings are in Lombardy (Northern Italy), two in 

the city of Milan and two in the city of Como. The two buildings at the University of Insubria 

(Como) are modern buildings of recent construction (10-20 years old), located in the urban area of 

the city, at a distance of about 3 km from the city center. A busy main road and a secondary street 
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surround the university. Moreover, in one building the selected offices (67% of the total 

monitoring rooms in Como) are located at the basement level, with only a forced mechanical 

HVAC system (no operable windows), whereas in the other university building, the office rooms 

(33% of the total, on the first and second floors) are characterized by the presence of a hybrid 

ventilation system (natural ventilation and mechanical HVAC system). In Milan, the offices tested 

are located within a large university hospital in the city center, within a limited traffic zone that 

prohibits or limits the circulation of vehicles based on their Euro Standards. Most of the Milanese 

offices (84%) are on the first, second and third floors of an old hospital pavilion (about 60 years 

old); the remaining two offices (16%) are in a historical building of more than 100 years old. All 

the offices in Milan have natural ventilation, with windows that are not well maintained. A heating 

and/or cooling manual system was available in most of the offices. The monitoring campaign was 

split into three independent monitoring groups, two in Milan (R1 and R2) and one in Como (R3), 

(Figure 10). The labels R1, R2, and R3 indicate the TSP exposure of group G1, G2, and G3, 

respectively. 

 

 
Figure 10. Location of sampling sites: A. the geographic locations of the two cities involved in the study are indicated 

with a blue circle (Milan) and a green circle (Como); B. Monitoring sites in Milan are highlighted with blue circles; 

C. Monitoring sites in Como are highlighted with green circles. The maps are retrieved from Google Maps (www. 

google.com/maps). 
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The TSP was collected weekly through an active sampling method using a filter-based technique 

from Monday morning to Friday afternoon (8 hours per day). Specifically, we used a low-flow air 

SKC sampling pump attached to a filter cassette (SKC inc.) and a 37-mm, 0.8 µm mixed cellulose 

esters (MCE) membrane filter (Omega, SKC Inc.). For the indoor sampling, the filter cassette was 

placed in the center of each room, not closer than 1 m to the wall and away from ventilation 

channels and heating sources, at the height of the breathing zone of seated occupants, i.e., 

approximately 110 cm from the floor (Figure 11). Each office building had two outdoor sites 

sampled, chosen to be as close as possible to the offices (i.e. < 300 m away) to obtain the best 

possible estimates of TSP outdoor concentration and composition. For both indoor and outdoor 

monitoring, the sampling pumps were set at a flow ranging from 2 to 4 L/min. The TSP mass of 

each filter was determined gravimetrically, weighing the filter at specified constant conditions 

before and after sampling. Before the weighing, each filter was conditioned at constant temperature 

(20°C ± 1°C) and relative humidity (50% ±5%) values, in a controlled environment (SCC 400L 

Climatic Cabinet, Sartorius, Varedo (MB), Italy) and an electrical C-shaped ionizer (HAUG 

GmbH & CO. KG, Germany) was used to eliminate electrostatic charges present on the filter 

surface. After this step, each filter was weighed three times using a micro-balance (GIBERTINI 

1000, Novate, Milan, Italy). The same procedure was repeated after each sampling to determine 

the TSP mass. Two laboratory blanks were always weighed under the same conditions to verify 

possible anomalies in the weighing room conditioning. The average blank filter masses were then 

used to correct the filter mass results for each test. After the mass measurements, the filters were 

stored at -80ºC. The outdoor exposure was estimated using the mean of the two measurements 

performed in each building every week. A Wilcoxon rank-sum test was used to analyze the 

difference in TSP concentration between the two seasons (winter and summer) and between the 

two different locations (Milan and Como), while a Kendall correlation analysis was performed to 

check if the two types of exposures (indoor and outdoor) were correlated. These analyses were 

performed using R software v 4.2.1. 
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Figure 11. Active sampling method for total suspended particles (TSP) using a low-flow air sampling pump connected 

to a filter cassette. 

 
1.2.2 Total Suspended Particles (TSP): DNA extraction and sequencing 
 
In the summer, at the end of the monitoring campaign, we extracted the DNA from the filters 

collected using the NucleoSpin cfDNA XS kit (Macherey-Nagel). Each filter was put in Petri 

dishes and shaken for 2 hours with 1 mL of PBS to facilitate the release of the collected particulate 

material from the filter substrate. In addition, clean filters were put in Petri dishes at the same 

condition as negative controls for the DNA extraction step. After 2 hours, 240 µl of PBS was used 

for DNA extraction following manufacturer guidelines, then the samples were quantified using the 

Qubit dsDNA High Sensitivity Assay kit (Invitrogen). DNA extracted from the filters was 

sequenced by whole genome shotgun (WGS) sequencing. The sequencing pair-end library was 

prepared using the NexteraXT DNA library preparation kit (Illumina) following the 

manufacturer’s protocol. To purify the library, we used the Agencourt AMPure XP beads 

(Beckman Coulter, Inc.). Therefore, we quantified the library using the Qubit dsDNA High 

Sensitivity Assay kit (Invitrogen), while the average fragment length was determined using a High 

Sensitivity D1000 ScreenTape Assay (Agilent). During the library preparation, we included one 

negative control for library reagents and one negative control from the DNA extraction step. 

Finally, samples were added to create one equimolar pool for the sequencing. At this point, the 
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sequencing pool was quantified and sequenced on the Illumina Novaseq 6000 S2 in one single run 

(sequence length 150 bp, paired-end). 

 

1.2.3 Bioinformatics and Statistical analysis 
 
The reads obtained from the WGS sequencing were demultiplexed using Bcl2fastq (v 2.20) and 

then trimmed using fastp (v 0.20.1) (Chen et al., 2018). Taxonomy was assigned using Kraken (v 

2.1.2) and Bracken (v 2.5) (Lu et al., 2017; Wood and Salzberg, 2014). Host reads are filtered from 

the FASTQs by removing any reads mapping to a reference host genome using Bowtie (v 2.4.2) 

(Langmead et al., 2009). The processed reads were given a taxonomic assignment using a database 

consisting of human, bacteria, fungi, archaea, and viral RefSeq databases along with the 

EuPathDB46 database. Reads identified as human were removed using KrakenTools (v 1.2) for 

downstream analyses. The Decontam R package (v 1.18) was used to identify contaminants from 

all samples in the dataset using as reference two types of negative controls (DNA extraction and 

library preparation) (Davis et al., 2018). The alpha (a) diversity was calculated using the Shannon 

Index, Chao1 and Observe species metrics; the beta (ß) diversity using the Bray-curtis matrix. To 

calculate and analyze both the alpha and beta diversities we used the following R packages: 

phyloseq (v 1.42), and MicrobiotaProcess (v 1.10) using the default settings (McMurdie and 

Holmes, 2013; Xu et al., 2023). The non-parametric paired t-test was used to analyze the difference 

in alpha diversity among groups, and the Spearman correlation test was performed to test the 

correlation between the alpha diversity and the TSP concentration. The difference in beta diversity 

was analyzed with the Analysis of Similarities (ANOSIM) and the permutational multivariate 

analysis of variance (PERMANOVA) with 999 permutations using adonis2. The taxonomy 

composition was described using microViz (v 0.10) and phylosmith (v. 1.0.6). Finally, we used the 

Analysis of Compositions of Microbiomes with Bias Correction (ANCOM-BC) package (v. 1.6.4) 

to analyze observed taxa relative abundance, resistome (MEGARes), and KEGG pathways 

corrected for the three independent monitoring groups (R1, R2, and R3) (Lin and Peddada, 2020). 

The ANCOM-BC was performed using the default settings, and the mean difference (W) was 

considered significant when a p-value < 0.05 and FDR < 0.10 were reached. The bioinformatic 

pipeline is summarized in Figure 12. All statistical analyses were performed with R software, v 

4.2.1. 
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Figure 12. The bioinformatic pipeline used to analyze the TSP metagenomic data consisted of several steps. First, the 

sequencing data were cleaned and trimmed using fastq. Then, taxonomic assignment was carried out using Kraken. 

The operational taxonomic unit (OTU) table obtained from kraken was adjusted using Bracken, then the diversity 

analysis was performed using Phyloseq and Microbiota Process (blue boxes). For pathway analysis (green box) we 

used KEGG orthology genes, and for the resistome analysis (yellow box) the MEGARes database was used to identify 

antimicrobial resistance genes. All counts tables obtained in the previous steps were analyzed using ANCOM-BC. 
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1.3  RESULTS 
 
1.3.1 Quantification of TSP exposure among different seasons and cities 
 
By the end of the monitoring campaign, we had sampled 17 offices in the winter and 13 in the 

summer. Overall, the indoor TSP concentrations were lower than the corresponding outdoor ones, 

as described by the Indoor/outdoor (I/O) ratio that was mostly < 1, Supplemental Table 1. The 

indoor concentration of TSP did not a show significant difference between winter (Median = 29.2; 

Q1 - Q3 = 23.37 – 38.85) and summer (Median = 29.9; Q1 - Q3 = 17.08 – 38.13). However, the 

Wilcoxon test reported a slightly significant seasonal difference in indoor TSP concentration in 

the offices of the second group (R2, the second subgroup of Milan), where the average indoor 

concentration was higher in the winter (median = 35.8 µg/m3 [Q1-Q3 = 32.3 - 45.3 µg/m3]) 

compared to the summer (median = 33.4 µg/m3 [Q1-Q3 = 27.5 - 34.9 µg/m3]). In addition, we 

observed that the offices in the most recent buildings and with forced mechanical HVAC systems 

(R3, the subgroup of Como) have the lowest indoor TSP concentrations, Figure 13-14. Indeed, 

when we compared the indoor TSP exposure between Milan and Como, the TSP concentration 

was significantly higher in Milan for both seasons (winter, p-value < 0.001; summer, p-value < 

0.001) as described in Table 3.  

Conversely, the outdoor TSP concentration seems affected by the season. The concentration was 

estimated for 4 buildings, and the winter had higher concentrations (Median = 54.6; Q1 - Q3 = 

41.75 – 69.14) compared to the summer (Median = 43.3; Q1 - Q3 = 36.52 – 50.41, Figure 13). In 

both seasons Milan reported higher levels of outdoor TSP compared with Como as described in 

Table 3. Finally, no correlation was found between the concentration of indoor and outdoor TSP. 

However, we observed some positive correlations in winter at the second recruitment (R2, tau = 

0.5, p-value = 0.002) and in summer at the second and third recruitments (R2, tau = 0.6, p-value = 

0.001; R3, tau = 0.5, p-value < 0.001, Supplemental Figure 1). As expected, we found differences 

in outdoor TSP exposure between the two seasons, with indoor TSP exposure only partially 

explained by these outdoor variations. 
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Table 3. TSP levels during the winter and the summer recruitments 

TSP Winter 

Median (Q1 – Q3) 

Summer 

Median (Q1 – Q3) 

P-value 

(Wilcoxon test) 

Indoor exposure    

All 29.2 (23.4 – 38.9) 29.9 (17.1 – 38.1) 0.6 

City    

Milan 37.9 (28.3 – 47.5) 37.8 (33.4 – 41.8) 0.8 

Como 18.8 (10.3 - 27.9) 16.4 (13.8 – 22.2) 0.8 

 

Monitoring campaign 

   

R1 (Milan) 37.9 (28.1 - 44.1) 41.1 (39.7 - 46.9) 0.2 

R2 (Milan) 35.8 (32.3 - 45.3) 33.4 (27.5 - 34.9) 0.04* 

R3 (Como) 18.8 (10.3 - 27.9) 15.7 (13.8 - 22.3) 0.7 

    

Outdoor exposure    

All 54.6 (41.8 – 69.1) 43.3 (36.5 – 50.4) 0.001* 

City    

Milan 54.6 (36.4 – 89.9) 50.4 (49.7 – 56.3) 0.01* 

Como 43.2 (41.7 – 59.4) 36.5 (29.3 – 43.3) > 0.001* 

 

Monitoring campaign 

   

R1 (Milan) 36.4 (36.1 - 69.1) 50.3 (49.7 - 50.4) 0.7 

R2 (Milan) 89.9 (54.6 - 91.0) 56.3 (30.2 - 63.5) 0.001* 

R3 (Como) 43.2 (41.7 – 59.4) 36.5 (29.3 – 43.3) > 0.001* 
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Figure 13. Comparison of the indoor and outdoor TSP concentration (µg/m3) between winter (blue boxplots) and 

summer (yellow boxplots) seasons in the three groups: two in Milan (R1 and R2) and one in Como (R3). 
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Figure 14. The indoor TSP concentration (µg/m3) in each office among two seasons: winter (blue boxplots) and 

summer (yellow boxplots). The R1 and R2 are the offices located in Milan, the R3 are the offices located in Como. 

  

R1 R2 R3

25

50

75

OFFICES

TS
P 

IN
D

O
O

R
 (µ

g/
m

3)

Season
Summer

Winter

INDOOR TSP IN EACH OFFICE



 34 

1.3.2 Description of TSP indoor microbiome 
 
The mean concentration of DNA extracted from indoor filters was 32.35 ng/μL (sd = 15.9). After 

sequencing, we excluded from the analysis samples with sequencing depth less than 100,000 reads. 

We obtained 37 samples of indoor TSP collected from the 13 offices monitored during the summer 

season (median sequencing depth = 385,900, range = 103,408 – 1,566,178); 22 samples from 

Milan and 15 samples from Como. The number of samples analyzed for each office is reported in 

Supplemental Table 2. The alpha diversity was higher in the indoor TSP samples from Milan 

(Shannon Index, Median = 6.5; Q1 - Q3 = 5.3 - 6.7) compared to the alpha diversity in the indoor 

TSP samples from Como (Shannon Index, Median = 5.6; Q1- Q3 = 5.5 – 6.0, Figure 15A). 

Specifically, the R1 showed higher alpha diversity compared to the others (R2, R3; Figure 15B). 

These differences in alpha diversity were also observed with Chao1 and Observed species metrics 

(Supplemental Figure 2). We also found that the office alpha diversity was positively correlated 

with the indoor TSP concentrations (Spearman correlation test, rho = 0.7, p-value < 0.001). There 

was a difference in beta diversity between the two cities (ANOSIM, R = 0.1, p-value = 0.05) and 

this difference explained about 6% of the total (PERMANOVA, Bray-curtis p-value = 0.005). The 

difference in beta diversity explained by the three groups was about 11% (PERMANOVA, p-value 

< 0.001), Figure 16. In the OTU table, 79% of the species identified were Bacteria. The top 15 

most abundant bacteria across all the samples from the two cities (Como and Milan) are reported 

in Figure 17A. Most of them are bacteria found in soil, dust or in plants (i.e., Xanthomonas 

campestris and Clavibacter michiganensis), but some of them are also found in human skin and 

can be pathogens for immunocompromised people (i.e., Micrococcus luteus, Paracoccus yeei, 

Staphylococcus aureus and Kocuria rosea). Some of these bacteria were already described in 

airborne samples, such as Micrococcus lutes, Kocuria sp., and Paracoccus yeei (Kooken et al., 

2012; Madsen et al., 2023). The second major taxon in our OTU table was Virus (16%); the top 

10 viruses (genus level) across the two cities are described in Figure 17B. Most of the viruses 

identified are from the Caudoviricetes class (Pahexavirus, Saikungvirus, Agricanvirus, 

Delepquintavirus, Derbicusvirus, Anayavirus) which are the most ubiquitous bacteriophages in 

the environment (Zhu et al., 2022). Some of these bacteriophages (Delepquintavirus, Agricanvirus, 

and Derbicusvirus) are found in bacteria that live in soil and plants such as Erwinia sp. and 

Stenotrophomonas maltophilia was one of the top 15 bacteria. Pahexavirus bacteriophages are 

found in commensal human bacteria, mostly from Propionibacterium sp. 
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Figure 15. Boxplots showing the alpha diversity in indoor TSP samples. The dots represent the alpha diversity of each 

sample, the y axis indicates the alpha diversity estimated using the Shannon Index. (A) Comparison of the alpha 

diversity of samples from Milan and Como. (B) Comparison of alpha diversity among the three different groups (R1, 

R2, R3). In both plots, Milan samples are in light blue color and Como samples in green. These images were generated 

using MicrobiotaProcess (v 1.10). 
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Figure 16. Principal coordinate analysis (PCoA) was conducted using the Bray-Curtis distance matrix to analyze the 

microbiota of indoor TSP samples. The y-axis and x-axis represent the two main coordinate axes. The A plot shows 

the samples clustered by city, while in the B plot the samples are clustered R1, R2, R3. In both plots, the light blue 

color indicates the TSP samples collected in Milan, the green indicates the indoor TSP samples collected in Como. 

These images were generated using MicrobiotaProcess (v 1.10). 
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Figure 17. The barplots describe the most abundant taxa found across all the indoor TSP samples collected from 

Como (left) and from Milan (right). In Panel A: the top 15 bacteria species. Panel B: top 10 virus genera, the y axis 

indicates the relative abundance of each genus. In both plots, “Others” indicates the species out of the top taxa. These 

images were generated using MicrobiotaProcess (v 1.10) and microViz (v 0.10). 
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1.3.3 Comparison of outdoor and indoor TSP microbiome  
 
The mean concentration of DNA extracted from outdoor filters was 26.2 ng/μL (sd = 12.3). After 

sequencing, we excluded from the analysis samples with sequencing depth less than 100,000 reads. 

We analyzed 14 outdoor TSP samples (median sequencing depth = 299,543, range = 128,280 – 

2,198,650), Supplemental Table 3. The top 15 bacterial species identified across all the outdoor 

samples are described in Figure 18A. Some of these bacteria were seen in the indoor samples, 

such as Micrococcus luteus, Kocuria rhizophila, Staphylococcus aureus, Kocuria rosea, and 

Nocardiodes sp S5. The top 10 viruses (genus level) across the two cities are described in Figure 

18B. As seen for the indoor samples, most of the viruses identified in the outdoor samples are from 

the Caudoviricetes class: Pahexavirus, Anayavirus, Andhravirus, Fromanvirus, Pamexvirus, 

Dexdertvirus, and Mosigvirus. Besides the bacteriophages described in the indoor TSP 

(Pahexavirus and Anayavirus), we identified the following top 10 genera: Staphylococcus phages 

(Andhravirus) associated with Staphylococcus aureus, a common member of the upper-respiratory 

microbiota; Pseudomonas phages (Pamexvirus) found in Pseudomonas aeruginosa, a bacterium 

that can cause disease in plants and humans; and Gordonia phages (Dexdertvirus) found in 

Gordonia terrae, a bacterium isolated from soil.  

When we compared the 37 TSP indoor samples collected in the office with the 14 TSP outdoor 

samples, we did not observe a significant difference in alpha diversity (Wilcoxon test, p-value = 

0.2). However, the beta diversity was significantly different between the two groups (ANOSIM, 

R = 0.25, p-value = 0.01), and it explains about the 4% of the diversity (PERMANOVA, p-value 

= 0.01), Figure 19. In addition, we also observed differences in microbiota composition (Table 

4). The abundance of several Micrococcus and Paracoccus species (e.g., Micrococcus luteus, 

Micrococcus yunnanensis, Micrococcus sp. KBS0714, Paracoccus contaminans, Paracoccus yeei, 

Paracoccus sanguinis, Paracoccus sp. MC1862) was higher in the indoor TSP samples compared 

to the outdoor, also the relative abundance of Moraxella osloensis and Corynebacterium 

diphtheriae were higher in the indoor samples. The only species more abundant in the outdoor 

samples was Pantoea agglomerans a bacterium commonly found in plants. We did not observe a 

difference in virus abundance at the genus level because the Pahexavirus was the dominant genus 

in both sample types. When we analyzed all the pathways (N of pathways = 432, range of reads 

assigned = 372,214 – 3,276) through ANCOM-BC analysis, the differences between the two types 

of exposures were plant and yeast pathways that enriched in the outdoor samples compared to the 
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indoor. These include Flavone and flavonol biosynthesis (lfc = 0.9, p-value < 0.001, FDR < 0.001), 

cell cycle – yeast (lfc = 0.6, p-value = 0.02, FDR = 0.07), and mitophagy – yeast (lfc = 0.6, p-value 

= 0.02, FDR = 0.08). Finally, when we analyzed the antimicrobial resistance profile in both indoor 

and outdoor TSP samples, we did not find significant differences. Both indoor and outdoor TSP 

samples contained broad spectrum antibiotic resistance genes (i.e., tetracyclines). The top 20 

antimicrobial chemical classes identified in our samples are shown in Figure 20. The Lead 

resistance, quaternary ammonium compounds [QACs] resistance, Trimethoprim, Zinc resistance 

were only in indoor TSP samples and the Nucleosides, Pactamycin, and Sodium resistance were 

found only in outdoor TSP samples. All these results suggested that the TSP microbiome reflects 

the complexity of the environment.  

 

Table 4. ANCOM-BC analysis on bacterial abundance in outdoor and indoor TSP samples 

Species Log-fold change 

(TSP outdoor) 
 

FDR 

Moraxella osloensis -1.53 0.01 

Micrococcus luteus -0.56 0.10 

Paracoccus contaminans -1.41 0.02 

Paracoccus yeei -1.72 0.01 

Paracoccus sanguinis -1.71 0.01 

Micrococcus yunnanensis -1.27 0.07 

Paracoccus sp. MC1862 -1.73 0.01 

Micrococcus sp. KBS0714 -1.46 0.01 

Corynebacterium diphtheriae -1.77 0.01 

Pantoea agglomerans 0.88 0.02 
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Figure 18. The barplots describe the most abundant taxa found across all outdoor TSP samples from Como (left) and 

from Milan (right). In panel A: the top 15 bacterial species. In panel B: the top 10 virus genera, the y axis indicates 

the relative abundance of each genus. In both plots, “Others” indicates the species out of the top taxa. These images 

were generated using MicrobiotaProcess (v 1.10) and microViz (v 0.10).  
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Figure 19. The plot shows the difference in beta diversity (Bray-Curtis) between the TSP indoor samples (grey stars) 

and the TSP outdoor samples (green squares). This plot was generated using MicrobiotaProcess (v 1.10). 

  



 42 

 

 
 

Figure 20. The top 20 antimicrobial chemical classes identified in both outdoor and indoor TSP samples using shotgun 

sequencing data and the MEGARes (v3.0) database. Each row represents a distinct class, and the color indicates the 

abundance in each sample. The abundance was centered log-ratio (CLR) transformed. This plot was generated using 

microViz (v 0.10). 
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1.4  DISCUSSION 
 
Air particulate matter is widely studied for its adverse effects on human health, but few studies 

have analyzed the microbiome associated with these particles. The particulate matter microbiota 

was characterized only in a few cities located in China (Beijing and Urumqi) and Italy (Milan), 

and these studies focused on outdoor exposure of PM10 or PM2.5 (Bertolini et al., 2013; Cao et al., 

2014; Gou et al., 2016; Qin et al., 2020). In this section, we analyzed both the concentration and 

the microbiome of indoor and outdoor TSP samples collected weekly over 3 weeks in Milan and 

Como. 

 

When we analyzed the concentration of TSP between the two seasons, we obtained different results 

based on the type of exposure. The indoor TSP concentrations did not differ between the two 

seasons, while the outdoor TSP concentrations were higher in winter compared to summer. Only 

the first group (R1) did not report a significant difference, probably due to the occurrence of intense 

rainy events that caused a sharp decrease in the measured TSP levels. Our analysis also suggested 

that the outdoor TSP variations only partially influenced indoor exposure, as indicated by the 

absence of correlations between the indoor and outdoor levels. As it is well documented, the PM 

concentration levels in an indoor environment are influenced by multiple variables (Li et al., 2017). 

In addition, the measured indoor TSP concentrations were lower than the corresponding outdoor 

ones, with indoor/outdoor (I/O) ratios <1. The lowest I/O ratios (on average ~ 0.2 and 0.4 during 

winter and summer, respectively) were observed for the basement offices in Como (R3) which 

were characterized by very low indoor TSP levels, probably because of the general building 

characteristics (building of recent construction, without operable windows and served by a 

mechanical HVAC system equipped with filters) and geographical setting (a low-density suburban 

area of a medium-sized city). 

 

In the indoor TSP samples, we observed differences in alpha and beta diversity among the cities. 

It seems that the city with a higher concentration of TSP has also higher diversity; this could be a 

consequence of the higher number of particles that are available to transport microorganisms. The 

bacteria identified in these samples seem to include mostly soil, plants, and human skin bacteria. 

The Micrococcus luteus was found in almost every sample. This bacterium, Micrococcus luteus, 

is found in human skin, soil, dust and air (Ahle et al., 2023; Cao et al., 2014; Madsen et al., 2023.). 
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Other bacteria already found in airborne samples and abundant in our samples were Paracoccus 

yeei, Kocuria rosea, Kocuria rhizophila, and Moraxella osloensis (Cao et al., 2014; Kooken et al., 

2012; Madsen et al., 2023). We also found opportunistic pathogens of the upper respiratory tract 

such as Staphylococcus aureus. Interestingly, in a few samples of offices located close to green 

areas and with operable windows, we found a high relative abundance of Xanthomonas campestris 

and Clavibacter michiganensis, two common plant pathogens. This might suggest that the outdoor 

environment affected the indoor TSP microbiome. The viruses identified in the indoor samples 

were mostly bacteriophages and they reflected the bacterial composition found in our samples. 

They were mostly bacteriophages of bacteria found in soil and human skin, such as Agricanvirus 

and Pahexavirus. Overall, it seems that the concentration of indoor TSP correlates with the 

diversity of its microbiota. Additionally, the bacteria and viruses found in the samples are closely 

related to the environment and are probably influenced by the presence of plants, animals, and 

people, as suggested by the opportunistic pathogens identified in the samples. 

Finally, we compared the indoor TSP microbiome with the outdoor. The outdoor TSP microbiome 

included in its top taxa some of the bacteria identified in the indoor samples, such as Kocuria 

rhizophila and Micrococcus luteus which are bacteria found in soil and on human skin. There was 

also the presence of opportunistic pathogens of the respiratory tract like Staphylococcus aureus, 

Pseudomonas sp., and Klebsiella pneumoniae. However, the antimicrobial resistance profile was 

very similar between the two sample types. Besides these similarities, several species of 

Corynebacterium and Paracoccus were enriched in the indoor samples, and we also found 

differences in the microbial pathways. This highlights how the indoor TSP can be influenced by 

multiple variables other than the outdoor environment, as already suggested by the differences in 

TSP levels between the indoor and the outdoor samples. However, we did not observe a difference 

in virus relative abundance at the genus level because the Pahexavirus was the dominant genus in 

both samples. This could be a consequence of the limited number of sequences due to the low 

DNA concentration in the environmental samples. Overall, we noticed differences in both 

concentrations and microbiome composition between the different types of TSP samples. 

  



 45 

 

 
 
 
 

SECTION 2 

 
 

The association of TSP with the upper 
respiratory microbiome 
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2.1 SUMMARY 
 
The upper respiratory tract is an important interface with the external environment, and its 

microbiome is a key factor in the host defense mechanisms. However, the microbial community 

of the upper respiratory tract in healthy adults remains less well characterized compared to other 

microbiomes (e.g. gut, and vaginal microbiomes). In addition, current studies on the effects of 

particulate matter exposure on the respiratory microbiome are limited to PM10 and PM2.5. TSP 

exposure has never yet been studied in association with the upper respiratory tract microbiota. In 

this section, we describe the upper respiratory tract microbiome in healthy subjects and analyze 

the effects of indoor TSP exposure on the microbial community using the data and the biological 

samples described in Section 1.2. First, we characterized the microbiome of the anterior nares and 

compared microbial profiles between winter and summer using both 16S rRNA gene targeting 

sequencing and whole genome shotgun (WGS) sequencing data. We also provide a comparative 

analysis of the microbiome between the anterior nares microbiome and the nasopharynx 

microbiome using WGS sequencing data. Finally, we investigated how indoor TSP exposure 

affects both the anterior nares and the nasopharynx microbiome taking into account hours spent 

and use of face masks in the office. 
 

2.2 MATERIAL AND METHODS 
 
2.2.1 Respiratory Samples: collection and DNA extraction 
 
Anterior nares and nasopharynx swabs were collected from each subject using FLOQSwab 

(Copan, Italy). To sample the anterior nares, the swab was inserted in the subject’s nostril and was 

slowly rotated 4-5 times, pressing against the inside of the nostril. The same swab was also used 

to sample the other nostril. To sample the nasopharynx area, a swab was gently inserted in one 

nostril and stopped when resistance was met. It was then rotated for a few seconds. During the 

sample collection, clean swabs were opened and swirled in the room as negative controls. Right 

after the collection, all samples were stored at -80ºC. The DNA was extracted from all biological 

samples using the QIAmp UCP Pathogen Mini kit spin column protocol (Qiagen, Hilde, 

Germany); we included negative controls during the extraction process. After DNA extraction the 

DNA was quantified using the Qubit dsDNA High Sensitivity Assay kit (Invitrogen). 
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2.2.2 Respiratory Samples: 16S rRNA and shotgun sequencing 
 
An aliquot of the DNA extracted from the anterior nares was shipped to the sequencing service 

facility Personal Genomics Srl (Verona, Italy) for target gene (amplicon) sequencing of the 16S 

rRNA gene. The Labchip DNA High Sensitivity kit (Perkin Elmer, Waltham, MA, USA) and the 

Qubit dsDNA BR assay kit (Thermofisher Scientific, Waltham, MA, USA) were used to evaluate 

and quantify the library. The V3-V4 region of this gene was amplified using the Pro314F and 

Pro805R. The Illumina MiSeq platform (Illumina, San Diego, CA, USA) was used to sequence 

the samples and produce a paired-end library of 300 bp. The remaining DNA extracted from 

anterior nares swabs and the DNA extracted from nasopharynx swabs were used to sequence the 

whole genome by shotgun sequencing as described in Section 1.2.2. Briefly, the paired-end 

libraries were prepared using the NexteraXT DNA library preparation kit (Illumina). Three 

negative controls were included: sampling negative control (clean swabs swirled in the room); one 

negative control from DNA extraction and one negative control for library preparation. Finally, an 

equimolar pool was created, and it was quantified and sequenced on the Illumina Novaseq 6000 

S2 in one single run. 

 

2.2.3 Bioinformatics and Statistical analysis (16S rRNA sequencing data) 
 
The sequences generated from the 16S rRNA sequencing were imported and denoised using 

QIIME 2 v. 2022 DADA2 pipeline (Bolyen et al., 2019). Taxonomy was assigned using a pre-

trained Naïve Bayes classifier (Silva database, release 138, 99%). The QIIME outputs were 

imported in R using the qiime2R package to perform the diversity and taxonomic analyses. Both 

alpha and beta diversities were analyzed using phyloseq (v 1.42) and MicrobiotaProcess (v 1.12) 

packages. The alpha (a) diversity was estimated using the Shannon Index, Chao1, and Observe 

species metrics. The difference in alpha between the two seasons was tested using a paired t-test. 

The beta (ß) diversity was estimated with a Bray-Curtis distance matrix. We analyzed the beta 

diversity in the two seasons using the Analysis of Similarities (ANOSIM) and the permutational 

multivariate analysis of variance (PERMANOVA) with 999 permutations. Among the most 

abundant 200 taxa found across all samples in each season, we selected the ones that were shared 

across season to analyze their association with seasons. We used the Analysis of Compositions of 

Microbiomes with Bias Correction (ANCOM-BC) package (v. 1.6.4) to analyze observed relative 
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abundance corrected for the three independent cohorts. In the model, we included season, age, and 

gender. The ANCOM-BC was performed using the default settings, and the mean difference (W) 

was considered significant when a p-value < 0.05 and FDR < 0.10 were reached. All 16S rRNA 

sequence analyses are summarized in Figure 21. All statistical analyses were performed in R, v 

4.2.1. 

 

 
Figure 21. The bioinformatic pipeline used to analyze the anterior nares (AN) 16S rRNA data. First, the sequencing 

data were cleaned, demultiplexed and denoised using DADA2 on QIIME 2. Then, taxonomy was assigned using the 

SILVA 138 database. All QIIME outputs were imported in R for downstream analysis. Alpha diversity (blue box) was 

estimated using the Shannon Index and then compared between the two seasons using a paired t-test. Beta diversity 

(blue box) was calculated using the Bray-Curtis matrix. ANOSIM and PERMANOVA were performed to assess 

differences between the seasons. Finally, the top 200 bacteria were selected (yellow box) to analyze differences in 

bacterial abundance among the two seasons. 
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2.2.4 Bioinformatics and Statistical analysis (metagenomics) 
 
The reads obtained from the WGS sequencing were analyzed following the same steps described 

in Section 1.2.3 for the TSP samples. We used Bcl2fastq (v 2.20) and fastp (v 0.20.1) to 

demultiplex and trim our sequences, and Kraken (v 2.1.2) and Bracken (v 2.5) to assign the 

taxonomy. The contaminants in the OTU tables were identified using the R package Decontam, 

and the phyloseq (v 1.42) and MicrobiotaProcess (v 1.10) were used to analyze the microbiome 

diversity. The alpha and the beta diversities were analyzed using the same methods described in 

Section 2.2.4. The co-occurrence between the bacterial taxa was analyzed using the Spearman 

correlation test (Spearman test, rho > 0.50, p-value < 0.05) and the networks were generated using 

phylosmith (v. 1.0.6). The most abundant 200 taxa across all samples were selected to analyze their 

difference between the two seasons using the Analysis of Compositions of Microbiomes with Bias 

Correction (ANCOM-BC) package (v. 1.6.4). The model also included age and gender, and 

corrected for the three independent cohorts (G1, G2, and G3). The ANCOM-BC was performed 

using the default settings, and the mean difference (W) was considered significant when a p-value 

< 0.05 and FDR < 0.10 were reached. The same model was also used to analyze the difference in 

taxa compositions between the anterior nares and the nasopharynx microbiome. The association 

between indoor TSP exposure and the microbiome was analyzed through multivariable association 

using the nlme package (v. 3.1). Before, we transformed the bacterial abundance using the centered 

log-ratio (CLR) transformation. The model was adjusted for age, gender, days spent in the office, 

and habitual use of a face mask. The sample observations were grouped by “subject id”. We also 

check if the respiratory microbiome correlates with the microbiome of TSP indoor using the R 

package ggstatsplot (v. 0.12.2). Finally, we analyzed the correlation (Spearman test) between the 

indoor TSP exposure and the KEGG pathways of both anterior nares and nasopharynx microbiome 

using the R package phylosmith. All statistical analyses were performed with R software, v 4.2.1. 
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2.3 RESULTS 
 
2.3.1 Description and characteristics of the enrolled subjects 
 
This study involved 34 healthy subjects: 22 workers employed at the University of Milan and 12 

at the University of Insubria in Como. These 34 subjects were separated into 3 sub-groups (G1, 

G2 and G3) and were first recruited in the winter season; 26 of these subjects remained in the study 

for the summer season (G1: November/May; G2: January-February/June; G3: March/July). The 

main characteristics of these volunteers are described in Table 5.  Most of the subjects lived in the 

city or small towns in residential areas with moderate traffic. In both seasons, we observed that the 

subjects spent on average 4 days per week in the office, but in the summer the number of people 

wearing masks in the office was lower compared to the winter. Most of the people recruited (about 

70%) were not smokers and they did not share indoor space with smokers (apartment and/or 

office). At the end of the recruitment, we collected 173 nasal swabs (anterior nares): 99 during the 

winter and 74 during the summer. In the summer, we also collected 74 nasopharynx swabs. 

 

Table 5. Subject Characteristics 

Characteristics 
Winter season  

(N= 34) 

Summer season  

(N= 26) 
p-value* 

Gender, n (%)   

0.7 Female 19 (55.9%) 17 (65.4%) 

Male 
 

15 (44.1%) 9 (34.6%) 

Age, mean (SD) 
 

38.3 (9.9) 38.8 (8.7) 0.8 

BMI, mean (SD) 
 

23.9 (3.2) 24.3 (3.2) 0.6 

Smoking, n (%)   

1.0 No 26 (76.5%) 19 (73.1%) 

Yes 
 

8 (23.5%) 7 (26.9%) 

Indoor space shared with Smokers, n (%)    

No 32 (94%) 26 (100%) 0.5 

Yes 2 (0.06%) 0 (0)  
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Days in office per week, mean (SD) 
  

4.3 (0.9) 4.4 (0.8) 0.9 

Wearing face mask in the office, n (%)    

No 11 (32%) 21 (81%) 0.0003* 

Yes 
 

23 (68%) 5 (19%)  

Residential area, n (%)   

0.7 
City 17 (50%) 12 (46.2%) 

Small town 15 (44.1%) 13 (50%) 

Rural area 
 

2 (5.9%) 1 (3.8%) 

Traffic level in residential area, n (%)    

High 11 (32%) 7 (27%) 0.6 

Medium 18 (53%) 16 (62%)  

Low 
 

5 (15%) 3 (12%)  

Pets, n (%)    

Yes 12 (35%) 10 (38%) 
0.7 

No 22 (65%) 16 (62%) 
*The Wilcoxon rank-sum test was performed for the continuous variables and the Fisher test for the categorical variables 

 

2.3.2 The microbiota of anterior nares and seasonal variations 
 
We determined whether season could affect the microbiota in healthy subjects using both 16S 

rRNA and shotgun sequencing data. All the samples with sequencing depth less than 4,000 reads 

were excluded from the analysis. After filtering, we had 16S rRNA data available for 156 samples: 

95 samples collected during the winter and 61 anterior nares swabs collected during the summer 

(median sampling depth = 13,241 reads, range: 4,106 – 57,834 reads). From the metagenomics 

data, we were able to analyze 162 samples: 89 samples from the winter, and 74 samples from the 

summer (median sampling depth = 3,506,075 reads, range: 2,180,154 – 94,975,134). Before the 

analysis, we checked if alpha and beta diversity were comparable among sub-groups (G1, G2, and 

G3), and we did not find any difference in alpha diversity (t-test, p-value > 0.05) neither in beta 

diversity in both sequencing data: 16S rRNA and metagenomics data (Supplemental Figure 3). 
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First, we analyzed the difference in microbiota diversity between the two seasons using the 16S 

rRNA data. The alpha diversity, estimated with the Shannon Index, was significantly higher (t-

test, p-value = 0.01) in the summer compared to the winter season (Figure 22A). The same 

significant lower diversity in the summer was observed with Chao1 and Observe metrics 

(Supplemental Figure 4). The beta diversity was significantly different between the two seasons 

(PERMANOVA, Bray-Curtis: R2 = 0.04, p-value = 0.001; Figure 22B). Therefore, we analyzed 

how the microbial composition was impacted by season using both the 16S rRNA and the 

metagenomics data. The top 10 genera in the 16S rRNA data found in both seasons are described 

in Figure 23A, and the top 15 in species metagenomics data are described in Figure 23B. At the 

genus level (16S rRNA data), we found significantly higher relative abundance of Moraxella (W 

= 3.0, p-value = 0.002, FDR = 0.03) in the winter and a significant lower abundance of 

Staphylococcus (W = -4.3, p-value < 0.0001, FDR = 0.0004), Cutibacterium (W = -4.4, p-value < 

0.0001, FDR = 0.0004) and Alloprevotella (W = -2.9, p-value = 0.004, FDR = 0.04). In line with 

these results, at the species level (metagenomics data) we found a significant increase in Moraxella 

nonliquefaciens relative abundance (W = 4.4, p-value < 0.0001, FDR = 0.002) and Moraxella 

catarrhalis (W = 3.6, p-value = 0.0004, FDR = 0.03) in the winter (Figure 24). In the summer, we 

found an increase in the relative abundance of many Staphylococcus and Cutibacterium species. 

Specifically, Staphylococcus hominis (W = -3.0, p-value = 0.003); Staphylococcus epidermidis (W 

= -2.5, p-value = 0.01); Cutibacterium acnes (W = -2.5, p-value = 0.01); Cutibacterium avidum 

(W = -2.5, p-value = 0.01); Cutibacterium granulosum (W = -2.3, p-value = 0.02). Although these 

analyses showed an FDR higher than 0.10.  From the co-occurrence analysis, we found a positive 

correlation between the relative abundance of Moraxella catarrhalis and Moraxella 

nonliquefaciens (rho = 0.4, p-value < 0.001). The Staphylococcus and Cutibacterium species with 

lower relative abundance in the winter were correlated with each other, (Figure 25). These results 

suggested a higher relative abundance of gram-negative bacteria in the anterior nares during the 

cold season. 
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Figure 22. (A) The boxplot shows the alpha diversity (Shannon index) in samples from summer (yellow) and winter 

(blue). Dots indicate the alpha diversity of each sample. (B) Principal coordinate analysis (PCoA) calculated from the 

Bray-Curtis distance matrix in anterior nares microbiota samples from healthy subjects during summer (yellow) and 

winter (blue). These images were generated using MicrobiotaProcess (v 1.10). 
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Figure 23. (A) Displays the relative abundance of the top 10 bacterial genera identified in both seasons using the 16S 

rRNA sequencing data. (B) Features a heatmap of the top 15 species found in the two seasons: winter (blue rectangles) 

and summer (yellow rectangles). In each row, color intensity indicates the relative abundance of that bacterial species 

in the samples, the darker the color, the higher the relative abundance. These images were generated using microViz 

(v 1.10). 
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Figure 24. The bar plot shows the log fold changes in the winter season for taxa identified using ANCOM-BC analysis 

(p-value < 0.05, FDR < 0.10) using both 16S rRNA data (upper panel) and metagenomics data (lower panel). 
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Figure 25. A co-occurrence network was created to examine the correlation between bacterial relative abundances, 

calculated using the Spearman test (rho > 0.50, p-value < 0.05). The size of the points indicates the mean relative 

abundance of each bacterium across the samples. This image was generated using phylosmith (v 1.0.6). 

 
2.3.3 Comparison of anterior nares and nasopharynx microbiome 
 
In the summer, we collected 74 nasopharynx (NP) swabs (median sampling depth = 26,430,743, 

range = 4,302,478 – 41,851,762). We compared these samples with the 74 anterior nares (AN) 

samples collected in the summer and described in Section 2.3.2. The alpha diversity was higher 

(t-test, p-value < 0.01) in the NP samples (Shannon Index, mean = 3.5, sd = 0.5), compared to the 

AN (Shannon Index, mean = 2.8, sd = 0.6) (Supplemental Figure 5). We observed that 85% of 

our samples collected from the same subject at the same time point had higher alpha diversity in 

the NP compared to the AN, 4% had about the same value of alpha diversity, and only 11% had 

higher alpha diversity in the AN samples compared to the NP (Figure 26A). The beta diversity 

was also different between the two types of microbiomes (PERMANOVA, Bray-Curtis: R2 = 0.12, 

p-value < 0.001) (Figure 26B). The top 10 taxa identified in both AN and NP samples are 

represented in Figure 27. When we compared the relative abundance of these species, we found 

several species that were differentially abundant (Supplemental Figure 6). Among the top 10 

shared species (Figure 27), the AN microbiome showed a higher relative abundance of several 

Corynebacterium, Cutibacterium and Staphylococcus epidermidis. Specifically, the AN samples 
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had higher relative abundance of Cutibacterium acnes (W = 4.2, p-value < 0.0001, FDR = 0.0001), 

Corynebacterium accolens (W = 2.7, p-value = 0.01, FDR = 0.01), Corynebacterium segmentosum 

(W = 2.8, p-value = 0.01, FDR = 0.01), Corynebacterium macginleyi (W = 2.8, p-value = 0.01, 

FDR = 0.01), Staphylococcus epidermidis (W = 4.5, p-value < 0.0001, FDR < 0.0001), and 

Corynebacterium kefirresidentii (W = 3.8, p-value = 0.0001, FDR = 0.001). The NP samples had 

a higher relative abundance of Staphylococcus aureus (W = 6.4, p-value < 0.0001, FDR < 0.0001). 

 

 
Figure 26. (A) Alpha diversity in the anterior nares microbiome (dark blue) and the nasopharynx microbiome (light 

blue). The y axis shows the alpha diversity values calculated using the Shannon Index. Each line connects two samples 

from the same subject, with dark lines indicating samples with higher alpha diversity in anterior nares. (B) Principal 

coordinate analysis (PCoA) calculated from the Bray-Curtis distance matrix in nasal microbiota samples from healthy 

subjects in anterior nares (dark blue) and the nasopharynx (light blue). 
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Figure 27. The top 10 bacterial taxa identified in the upper respiratory samples of healthy subjects: on the left the 

anterior nares microbiome (AN) and on the right the nasopharynx microbiome (NP). The relative abundance of each 

species is calculated from the OTU table created from the shotgun sequencing data (metagenomics data). This image 

was generated using microViz (v 1.10).  
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2.3.4 Upper respiratory microbiome and its association with indoor TSP 
 
We analyzed the associations between indoor TSP exposure and respiratory microbiome at the 

level of species. We analyzed both the AN microbiome and the NP microbiome collected in the 

summer season. The top bacterial species in the AN microbiome are described in Figure 23B and 

Figure 25. The indoor TSP exposure was negatively associated with the relative abundance of 

Streptococcus pneumoniae (beta = -0.015, 95% CI = 0.7 – 0.9, p-value = 0.01), while we found a 

positive association between the indoor TSP exposure and relative abundance of Klebsiella 

aerogenes (beta = 0.041, 95% CI = 1.7 – 2.2, p-value = 0.004) and Prevotella buccalis (beta = 

0.045, 95% CI = 1.7 – 2.2, p-value = 0.02). The top bacterial species in the NP microbiome are 

described in Figure 27. Three species of Corynebacterium were negatively associated with indoor 

TSP exposure: Corynebacterium accolens (beta = -0.036, 95% CI = 0.9 – 1.3, p-value = 0.03), 

Corynebacterium macginleyi (beta = -0.033, 95% CI = 0.7 – 1.1, p-value = 0.05), and 

Corynebacterium segmentosum (beta = -0.033, 95% CI = 0.8 – 1.2, p-value = 0.05). 

Staphylococcus aureus was positively associated with the indoor TSP (beta = 0.012, 95% CI = 0.4 

– 0.5, p-value = 0.03). The abundance of some respiratory bacteria found in indoor TSP samples 

correlates with the abundance found in the respiratory samples, Supplemental Figure 7. 

 
Figure 28. The abundance of bacterial species associated with indoor TSP exposure in anterior nares microbiome 

(AN) and nasopharynx microbiome (NP). The bacteria abundance was centered log-ratio (CLR) transformed. Positive 

associations are indicated with the green stars, while negative associated are indicated with orange stars. 
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Finally, we analyzed the correlation between the top 50 pathways (range of reads assigned = 

2,703,286 – 1,042) and indoor TSP exposure (Figure 29). In the anterior nares samples, we did 

not find any correlations. In the nasopharynx samples, we found negative correlations with amino 

acid biosynthesis (valine, leucine, isoleucine, phenylalanine, tyrosine, and tryptophan) and 

metabolism (glycerophospholipid, porphyrin and chlorophyll, 2-Oxocarboxylic acid). 

 

 
Figure 29. The heatmap shows the correlations between KEGG pathways and indoor TSP concentrations. The AN 

column displays correlations found in anterior nares and the NP column shows correlations found in nasopharynx. 

Significant correlations are marked with black asterisks. This image was generated using phylosmith (v 1.0.6).  
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2.4 DISCUSSION 
 
The upper respiratory microbiome plays an important role in host homeostasis and human health. 

However, the microbiome of this environment is still understudied and the healthy respiratory 

microbiome is not fully characterized (Kumpitsch et al., 2019; Paulo et al., 2023). Additionally, 

even though the upper respiratory microbiome is an important interface to the external 

environment, only a few studies have investigated the relationship between the microbiome of the 

upper respiratory tract and air pollution (Mariani et al., 2018; Vieceli et al., 2023). In this section, 

we analyzed the upper respiratory microbiome in 34 healthy subjects, recruited for 6 weeks in the 

cities of Milan and Como. We collected weekly anterior nares swabs and nasopharynx swabs from 

the subjects. We then evaluated the association of the upper respiratory microbiome with the 

indoor TSP exposure measured in their workplaces. 

 

We analyzed the differences in the microbiota of the anterior nares across two seasons, winter and 

summer, using 16S rRNA target gene sequencing and whole genome shotgun sequencing. From 

the 16S rRNA data, we observed that seasonal variation seemed to affect both the alpha and beta 

diversities in the anterior nares of healthy subjects. Specifically, we found that the diversity is 

higher in the summer season compared to the winter. There are only a few studies that have 

previously investigated seasonal variation in the human microbiota, including a study of the gut 

microbiota reporting significant differences in diversity between the winter and summer seasons 

(Davenport et al., 2014). These variations could be the result of changes in weather conditions and 

human habits between seasons. Overall, from both 16S rRNA and metagenomics data, we 

observed that the anterior nares microbiome is mostly colonized by gram-positive bacteria from 

Corynebacterium, Staphylococcus, and Dolosigranulum species. This is in line with previous 

studies that have characterized the respiratory microbiome in healthy adults (de Steenhuijsen Piters 

et al., 2015). From the 16S rRNA data, we also noticed a change in bacterial relative abundance 

between the two seasons. In the winter, the relative abundance of species of the Moraxella genus 

was higher, while in the summer there was a higher relative abundance of Alloprevotella, 

Staphylococcus, and Cutibacterium. The metagenomics data also reported a significantly higher 

relative abundance of Moraxella in the winter, specifically Moraxella catarrhalis and Moraxella 

nonliquefaciens. The Staphylococcus and Cutibacterium species that we observed (Staphylococcus 

hominis, Staphylococcus epidermidis, Cutibacterium acnes, Cutibacterium avidum, Cutibacterium 
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granulosum) were more prevalent in the summer. These are bacterial species that are usually 

described in respiratory samples. It was not surprising that we did not observe drastic changes 

between the two seasons because all the samples came from healthy subjects. However, it is 

interesting that the season with lower taxonomic diversity, winter, had a higher relative abundance 

of Moraxella. We found this genus to be less “dominant” in the microbiome of healthy adults 

compared to other genera. A study suggested that Moraxella appeared to be the least tolerant to 

other bacteria, compared to the other taxa that are usually very abundant in the anterior nares, such 

as Cutibacterium and Corynebacterium. This could explain the decrease in diversity observed in 

a season where the relative abundance of Moraxella was higher (de Steenhuijsen Piters et al., 

2015). In addition, Moraxella is an opportunistic pathogen commonly found to be associated with 

viral infections, with incidences that are higher during the cold season (McCauley et al., 2021; 

Welp and Bomberger, 2020). 

 

After characterizing the seasonal variations in the microbiota of the anterior nares, we also 

analyzed the difference between the anterior nares and the nasopharynx microbiome. We noticed 

a difference in taxonomic diversity. When compared to samples from the same subjects, the 

nasopharynx samples showed higher diversity than the anterior nares samples. However, the 

taxonomic composition was very similar, as already reported in a previous study (De Boeck et al., 

2017). Even if the taxonomic composition did not differ significantly between the two 

microbiomes, in the ANCOM-BC analysis we observed a difference in bacterial abundance 

between the two types of samples. We found that the dominant species in the nasopharynx was 

Staphylococcus aureus, while in the anterior nares, we found a higher relative abundance of 

Cutibacterium acnes, Staphylococcus epidermidis, and several Corynebacterium. These bacteria 

that are more abundant in the anterior nares are taxa commonly found in the skin microbiome. 

Considering that the anterior nares are the most external part of the upper respiratory tract, it is not 

surprising that some taxa are shared with the skin microbiome (Smythe and Wilkinson, 2023). 

Besides these differences, the anterior nares and nasopharynx microbiota appeared to be similar 

and mostly dominated by gram-positive taxa. Finally, we investigated how the TSP indoor 

exposure affected the taxonomic composition of both microbiota. In the anterior nares, we 

observed that an increase of indoor TSP exposure was associated with a decrease of Streptococcus 

pneumoniae, and an increase of Klebsiella aerogenes and Prevotella buccalis. While not 
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specifically on the microbial composition of anterior nares and its relationship with air pollution 

as done here, previous studies of the upper airways observed a decrease of gram-positive bacteria 

in response to air pollution and an increase of gram-negative bacteria (Mariani et al., 2018; Xue et 

al., 2020). In the nasopharynx, the increase of indoor TSP concentrations was associated with a 

decrease of Corynebacterium accolens, Corynebacterium macginleyi, and Corynebacterium 

segmentosum. Corynebacterium, a gram-positive bacteria, is a common commensal in the upper 

airways that is usually dominant in healthy adults (De Boeck et al., 2017). A decrease of 

Corynebacterium species was previously observed in a study of the nasopharynx in response to 

cigarette smoke and particulate matter exposure (e.g., PM2.5 and PM10), (Elgamal et al., 2021; 

Mariani et al., 2018). On the other hand, we observed that an increase of indoor TSP exposure was 

positively associated with an increase of Staphylococcus aureus, also a gram-positive bacterium. 

Previous in vitro studies have reported that both particulate matter and cigarette smoke increased 

the presence of Staphylococcus aureus in the nasopharynx, leading to potentially pathogenic levels 

(Lacoma et al., 2019; Purves et al., 2022). Additionally, we found that the abundance of respiratory 

bacteria identified in indoor TSP (i.e, Staphylococcus aureus, Klebsiella pneumoniae, 

Cutibacterium granulosum) correlates with the abundance of these bacteria in the upper respiratory 

microbiome. Finally, we evaluated if the indoor TSP exposure affects not only the taxonomic 

composition but also the microbial pathways. In the correlation analysis, we found that an increase 

of indoor TSP exposure is associated with a decrease in amino acid biosynthesis and metabolism 

in the nasopharynx. This might be a consequence of the decrease of bacterial commensal in 

response to indoor TSP, as described above, and also reported in previous studies, (Elgamal et al., 

2021; Mariani et al., 2018). 

Taken together, these findings suggest that the upper respiratory microbiome of healthy subjects 

can be affected by indoor TSP exposure.  

  



 64 

 

 
 
 
 

SECTION 3 

 
 

Indoor TSP exposure, respiratory microbiome 
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3.1 SUMMARY 
 
Human endogenous retroviruses (HERVs) are viral elements integrated into the human genome 

that are involved in immune response (Rangel et al., 2022). The methylation of these genes 

regulates their activation, usually, the promoter region of these sequences is methylated, and these 

genes are inactivated. However, external stimuli can lead to loss of methylation and activation of 

these genes which are associated with inflammation and immune response (Rangel et al., 2022). 

Because air pollution is often associated with global hypomethylation some studies suggest that 

these pollutants can activate the HERV genes (Byun et al., 2013; Reddam et al., 2023). In this 

section, we analyze if the indoor TSP exposure can affect the DNA methylation of HERV genes. 

In addition, we investigate if the upper respiratory microbiome, which contributes to the 

homeostasis of the host immune system, can be involved. First, we evaluated the DNA methylation 

of four HERV genes (e.g., HERV-K, HERV-W, HERV-P, and HERV-H) in the healthy subjects 

described in Section 2.3. Then, we analyzed the association between the methylation levels of 

these genes and the indoor TSP exposure. Finally, we performed an interaction analysis to see if 

the microbiome might influence the effects of TSP on HERV methylation. 

 

3.2 MATERIAL AND METHODS 
 
3.2.1 Buccal brush: collection, DNA extraction and pyrosequencing 
 
A buccal brush was collected from each subject for 2 weeks during the winter campaign as 

described in Section 1. The sponge was gently rotated for a few seconds on both sides of the 

mouth. After the sample collection, each sponge was centrifuged at 3000g for 10 minutes. Then 

the sample was stored at -80ºC. The DNA was extracted using NucleoSpin cfDNA XS kit 

(Macherey-Nagel), and then each DNA sample at a concentration of 25 ng/μL was treated with 

sodium bisulfite using the EZ-96 DNA Methylation-Gold™ Kit (Zymo Research; Irvine, CA, 

USA). Therefore, 10 μL of bisulfite-treated DNA of each sample was used for PCR amplification 

and then pyrosequencing. The pyrosequencing was used to evaluate the methylation levels of four 

HERV genes: HERV-K, HERV-W, HERVP, and HERV-H, and it was performed using the 

PyroMark MD System (QIAGEN). We used the Pyro Q-CpG software (Biotage, Uppsala, 

Sweden) to quantify the methylation level at individual CpG positions in each gene’s promoter 

region of interest. The protocol followed for the PCR amplification and the pyrosequencing are 
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described by Monti (Monti et al., 2021). Each sample was measured twice to test the 

reproducibility of the experimental setting. 

 

3.2.2 Statistical analysis 
 
We used a linear mixed-effects model to evaluate the effects of indoor TSP exposure on HERV 

gene methylation. We also evaluated the association of HERV gene methylation with alpha 

diversity and the top 15 bacteria species identified in the anterior nares (Figure 23) and described 

in Section 2.3.2. All these models were adjusted for outdoor TSP, run, and sub-group (R1, R2, 

R3). The time was used as a random effect. Finally, we tested the interaction between indoor TSP 

exposure and respiratory microbiome on HERV methylation. We tested both the interaction 

between indoor TSP exposure and alpha diversity and the interaction between indoor TSP 

exposure and the abundance of the top 15 bacteria. Each HERV gene was analyzed in a separate 

model. We considered an association significant when a p-value < 0.05 was reached. All statistical 

analyses were performed in SAS 9.4 statistical software (SAS Institute Inc., Cary, NC, USA). 

 

3.3 RESULTS 
 
3.3.1 Description and characteristics of the enrolled subjects 
 
During the winter season (G1: November; G2: January-February; G3: March), we collected for 2 

weeks buccal brush from 23 subjects (Table 6) among the 34 subjects described in Section 2.3. In 

the end, we were able to collect 46 buccal brushes and evaluate the methylation of four HERV 

genes: HERV-K, HERV-W, HERV-P and HERV-H. The methylation levels of these genes are 

described in Table 7. 
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Table 6. Description of the subjects randomly selected for the evaluation of HERV 

methylation   

Characteristics 
Winter season  

(N= 23) 

Gender, n (%)  

Female 14 (61%) 

Male 
 

9 (39%) 

Age, mean (SD) 
 

41.3 (10) 

BMI, mean (SD) 
 

23.6 (3.1) 

Smoking, n (%)  

No 19 (83%) 

Yes 
 

4 (17%) 

 

Table 7. DNA methylation level identified in each HERV gene analyzed 

HERV gene Position Median Q1 - Q3 

HERV-H 1 81.1 75.9 – 86.3  

HERV-K 1 46.2 44.2 - 48.2 

HERV-P 1 36.4 25.1 - 45.6 

HERV-W 

1 96.2 95.5 – 96.9 

2 98.2 97.5 – 99.9 

3 77.4 74.2 – 80.2 

 

 

3.3.2 DNA methylation of HERV genes, TSP exposure and microbiome 
 
When we evaluated the association between indoor TSP exposure and HERV methylation, we did 

not observe any significant association between indoor TSP exposure and the methylation of the 

four HERV genes analyzed. On the contrary, the microbiome of the anterior nares seems associated 

with the methylation of HERV-K in different ways. First, we found a negative association between 
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HERV-K and the alpha diversity (beta = -1.7, p-value = 0.006). Then, we observed that the 

methylation of HERV-K was negatively associated with the relative abundance of Staphylococcus 

aureus (beta = -0.9, p-value = 0.004), Staphylococcus epidermidis (beta = -0.89, p-value = 0.03) 

and Klebsiella pneumoniae (beta = -0.66, p-value = 0.02). The relative abundance of 

Corynebacterium pseudodiphtheriticum (beta = 0.44, p-value = 0.04). We also found one negative 

association between the methylation of HERV-H and Cutibacterium acnes (beta = -2.7, p-value = 

0.01), and one positive association between the methylation of HERV-W and Cutibacterium 

granulosum (beta = 0.7, p-value = 0.01). In the interaction models (Figure 30), when the relative 

abundance of Cutibacterium acnes and Actinomyces neaslundii is low, the indoor TSP exposure 

is positively associated with the methylation of HERV-W. However, we found this association 

significant only in one out of the three promoter regions analyzed for HERV-W, Supplemental 

Table 4. 

 

 
Figure 30. The effect modifier of Cutibacterium acnes and Actinomyces naeslundii relative abundance (CLR 

transformed) on the association between indoor TSP exposure and DNA methylation of HERV-W (position 1). 

Estimates were obtained using a multiple linear regression model for repeated measures, with adjustments for outdoor 

TSP, sequencing run, and sample subgroup (R1, R2, R3). 
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3.4  DISCUSSION   
 

The DNA methylation of promoter regions consents to inactivate the expression of HERV genes 

which are viral genes integrated in our genome. However, these genes can be demethylated, then 

activated, and involved in immune system response (Rangel et al., 2022; Reddam et al., 2023). A 

recent study suggested that because air pollution is associated with global hypomethylation, 

exposure to these pollutants could affect HERV methylation (Reddam et al., 2023). In addition, 

because the microbiome plays an important role in host immunity, other evidence suggested that 

HERV can communicate with the microbiome to control inflammation (Jichang Wang et al., 

2023). In this part of the project, we analyzed if the indoor TSP exposure and/or the respiratory 

can affect the methylation of HERV genes. Finally, we analyzed the interaction of microbiome 

and indoor TSP exposure on the HERV methylation. 

 

In this section, we analyzed the data collected from 23 healthy subjects out of the 34 described in 

Section 2. In this part of the project, we consider for the analysis: 46 buccal brushes to evaluate 

the methylation, 46 anterior nares swab to characterize the anterior nares microbiome, and the 

weekly indoor TSP measurements of their offices. Four HERV genes (e.g., HERV-K, HERV-H, 

HERV-W, HERV-P) were selected to evaluate their methylation through pyrosequencing. All 

these HERV genes selected have been associated with human diseases like cancer and 

neurodegenerative disease (Christensen, 2010; Garcia-Montojo et al., 2018; Rangel et al., 2022; 

Qianqian Wang et al., 2023). When we evaluate the association between the indoor TSP exposure 

and the methylation of each HERV, we did not find any significant results. However, the 

microbiome was associated in multiple ways with HERV-K. First, we observed a negative 

association with alpha diversity. Then we found that among the most abundant bacteria in the 

anterior nares, three were negatively associated with the methylation of HERV-K: Staphylococcus 

aureus, Staphylococcus epidermidis, and Klebsiella pneumoniae. While the relative abundance of 

Corynebacterium pseudodiphtheriticum was positively associated. All these results suggest that 

microbiome and HERV-K can affect each other, but further investigation is necessary to 

understand the possible mechanism. However, a previous study on HERVs and skin microbiota, 

has already found associations between commensal bacteria and HERVs. From their experiments 

in mice, these researchers found that Staphylococcus epidermidis and Staphylococcus aureus 

promoted the expression of several families of HERVs (Lima-Junior et al., 2021). Finally, from 



 70 

our interaction analyses, we did not find significant association, except for two associations at one 

specific position for HERV-W. We observed that at low abundance of Cutibacterium acnes and 

Actinomyces naeslundii, the indoor TSP exposure is positively associated with the methylation of 

HERV-W at the first position, among the three investigated. A previous study has already 

described hypermethylation of HERV-W in response to coarse PM (Reddam et al., 2023). These 

authors suggested that the hypermethylation of HERV-W can have adverse health outcomes 

because HERV-W has a protective role against exogenous infections and excessive immune 

activation (Grandi and Tramontano, 2017). Overall, from these analyses, we found that the 

respiratory microbiome is correlated with the methylation of HERV genes, and it also seems to 

influence the association between indoor TSP and the methylation of HERV-W. 
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CONCLUSION 
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In this project, we analyzed the effect of indoor TSP exposure on healthy subjects. We analyzed 

the bacteria that inhabit our upper airways (upper respiratory microbiome) and the viral genes 

integrated in our genome (HERVs). When we analyzed the environmental data we collected, we 

noticed that in addition to their concentrations, the outdoor and indoor TSP differed also in their 

microbiome composition. We found that these particles carry several bacteria and viruses that 

reflect the characteristics of the environment. Indoor TSP exposure was mostly associated with 

gram-positive bacteria in the respiratory microbiome. We found negative associations with 

common commensals such as Corynebacterium and Streptococcus. We also noticed a positive 

association with Staphylococcus aureus, a bacterium that was already found to be positively 

associated with other types of exposure such as smoke and PM. In vitro studies suggest that 

exposure to these pollutants induce virulence in this bacterium. Finally, our analysis showed some 

association between the upper respiratory microbiome and the methylation of HERV-K, while 

indoor TSP did not report any association with HERV methylation. However, when we considered 

the influence of the microbiome in the association between indoor TSP and HERV methylation, 

we found that a low abundance of Cutibacterium acnes and Actinomyces naeslundii, the indoor 

TSP is associated with hypermethylation of HERV-W. A hypermethylation of this HERV gene 

was previously found in association with coarse PM, and the inactivation of this gene might be 

adverse because HERV-W has a protective role against infections. Taken together these 

observations suggest that indoor TSP exposure can directly affect the respiratory microbiome, and 

also, through its effect on microbiome, indirectly affect the methylation of HERV genes. Further 

study is necessary to support this hypothesis.   
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Supplemental Table 1. Indoor/Outdoor (I/O) ratios, calculated by dividing each TSP indoor concentration with the average of the 
corresponding outdoor ones. Ratios > 1 are highlight in red. 

 

I/O ratios (µg/m3) – Winter 
 

OFFICE Sub-group T1 T2 T3 average of the three 
weeks ST. DEV. MIN. MAX. 

Office 1 R1 1,3 1,4 0,8 1,2 0,3 0,8 1,4 
Office 2 R1 1,1 1,3 0,7 1,0 0,3 0,7 1,3 
Office 3 R1 1,1 1,8 0,7 1,2 0,5 0,7 1,8 
Office 4 R1 0,5 1,1 0,7 0,8 0,3 0,5 1,1 
Office 5 R1 0,5 1,0 0,6 0,7 0,3 0,5 1,0 
Office 6 R1 0,6 0,9 0,8 0,8 0,1 0,6 0,9 
Office 7 R2 0,5 0,5 0,5 0,5 0,02 0,5 0,5 
Office 8 R2 0,4 0,5 0,5 0,5 0,1 0,4 0,5 
Office 9 R2 0,4 0,5 0,5 0,5 0,05 0,4 0,5 
Office 10 R2 0,4 0,5 0,6 0,5 0,1 0,4 0,6 
Office 11 R2 0,5 0,4 0,5 0,5 0,05 0,4 0,5 
Office 12 R2 0,5 0,3 0,5 0,5 0,1 0,3 0,5 
Office 13 R3 0,5 0,5 0,7 0,6 0,1 0,5 0,7 
Office 14 R3 0,6 0,5 0,7 0,6 0,1 0,5 0,7 
Office 15 R3 0,3 0,2 0,4 0,3 0,1 0,2 0,4 
Office 16 R3 0,2 0,1 0,2 0,1 0,1 0,1 0,2 
Office 17 R3 0,2 0,1 0,3 0,2 0,1 0,2 0,3 

 

I/O ratios (µg/m3) – Summer 
 

Office 1 R1 0,9 0,7 0,8 0,8 0,1 0,7 0,9 
Office 4 R1 0,8 0,8 0,8 0,8 0,03 0,8 0,8 
Office 5 R1 1,1 1,2 1,0 1,1 0,1 1,0 1,2 
Office 7 R2 0,8 0,6 0,6 0,7 0,1 0,6 0,8 
Office 8 R2 0,9 0,6 0,5 0,6 0,2 0,5 0,9 
Office 9 R2 1,1 0,8 0,8 0,9 0,1 0,8 1,1 
Office 10 R2 0,9 0,6 0,5 0,7 0,2 0,5 0,9 
Office 11 R2 0,7 0,6 0,5 0,6 0,1 0,5 0,7 
Office 13 R3 0,6 0,6 0,5 0,6 0,04 0,5 0,6 
Office 14 R3 0,7 0,6 0,5 0,6 0,1 0,5 0,7 
Office 15 R3 0,4 0,3 0,4 0,4 0,1 0,3 0,4 
Office 16 R3 0,3 0,4 0,4 0,4 0,04 0,3 0,4 
Office 17 R3 0,4 0,4 0,4 0,4 0,01 0,4 0,4 
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Supplemental Table 2. The number of indoor TSP DNA samples per office and time collected during the summer season. 
 

City 
 

Office 
Time  

Total T4 T5 T6 
 

Milan 
office 2 1 1 0 2 
office 4 1 1 1 3 
office 6 1 1 0 2 
office 7 1 1 1 3 
office 8 1 1 1 3 
office 9 1 1 1 3 
office 10 1 1 1 3 

office 11 1 1 1 3 
 ALL 

 
8 8 6 22 

 
Como 

 

office 13  1 1 1 3 
office 14 1 1 1 3 

office 15 1 1 1 3 
office 16 1 1 1 3 
office 17 1 1 1 3 

 ALL 5 5 5 15 

 
 

Supplemental Table 3. The number of outdoor TSP DNA samples per office and time collected during the summer season. 

City 
 

Outdoor 

Time  
Total T4 T5 T6 

Milan 

Building 1 (R1) 1 1 1 3 

Building 2 (R1) 0 1 0 1 

Building 1 (R2) 1 1 1 3 

Building 2 (R2) 1 0 0 1 
 

ALL 3 3 2 8 

Como 

Building 1 (R3) 1 1 1 3 
Building 2 (R3) 1 1 1 3 

 

ALL 2 2 2 6 
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Supplemental Table 4.  Significant results of the interaction analysis: indoor TSP, top bacteria species, and HERV 
methylation 

Outcome Effect modifier 

Selected value 

of the effect 

modifier 

Beta p-value 
p-value interaction 

(TSP indoor*Species) 

HERVW assay1 

pos1 
Cutibacterium acnes 

p25=2.8 0.07 0.036 

0.025 q50=3.8 0.02 0.546 

p75=4.3 -0.01 0.713 

HERVW assay1 

pos1 
Actinomyces naeslundii 

p25=-7.6 0.08 0.017 

0.021 q50=-4.7 0.02 0.382 

p75=-3.6 0.00 0.965 
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Supplemental Figure 1. The heatmaps indicate the correlation between indoor and outdoor TSP exposure. Red 

squares represent negative correlations, while the blue squares represent positive correlations. 
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Supplemental Figure 2. Boxplots showing the alpha diversity in indoor TSP samples. The dots represent the alpha 

diversity of each sample. (A) Comparison of the alpha diversity of samples from Milan and Como. (B) Comparison 

of alpha diversity among the three different groups (R1, R2, R3). In both plots, Milan samples are in light blue color 

and Como samples in green. These images were generated using MicrobiotaProcess (v 1.10). 
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Supplemental Figure 3. Principal coordinate analysis (PCoA) calculated from the Bray-Curtis distance matrix in 

Anterior Nares (AN) samples from healthy subjects. (A) Comparison of beta diversity among the three sub-groups of  

healthy people during the winter season (B) Comparison of beta diversity among the three sub-groups of  healthy 

people during the summer season. These images were generated using MicrobiotaProcess (v 1.10). 
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Supplemental Figure 4. Boxplots showing the alpha diversity in Anterior Nares (AN) samples between the two 

seasons: summer (yellow boxplots) and winter (blue boxplots). These images were generated using MicrobiotaProcess 

(v 1.10). 
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Supplemental Figure 5. Boxplots showing the alpha diversity between Anterior Nares (AN) samples (dark blue 

boxplots) and Nasopharynx (NP) samples (light blue boxplots). These images were generated using 

MicrobiotaProcess (v 1.10). 
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Supplemental Figure 6. The bar plot shows the difference (log fold changes) in bacterial abundance between the 

nasopharynx microbiome and the anterior nares microbiome. This difference was identified using ANCOM-BC 

analysis (p-value < 0.05, FDR < 0.10). The red bars indicate bacteria with higher relative abundance in the 

nasopharynx microbiome, while the blue bars indicate the one with higher abundance in anterior nares microbiome. 
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Supplemental Figure 7. Correlations in bacteria abundance between indoor TSP and respiratory samples: anterior 

nares (AN) and nasopharynx (NP). The correlation was estimated using the Pearson correlation test (p-value < 0.05), 

the plots were created using the R package ggstatsplot (v. 0.12.2).   
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