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Abstract

The qualitative behavior of the solutions for Hamiltonian finite dimensional systems

has been widely studied through normal form and KAM (Kolmogorov - Arnold -

Moser) theory. Starting from the late ’80s, such methods have been extended to

systems with infinitely many degrees of freedom and PDEs: nowadays a satisfac-

tory theory exists for PDEs in 1 space dimension. The case of higher dimensional

manifolds has been tackled by Bourgain, who proved some KAM-type results for the

non-linear wave equation (NLW) and the non-linear Schrödinger equation (NLS) on

the torus; such results have been subsequently extended to some equations on Lie

groups. Concerning normal form methods, only equations on Zoll manifolds or tori

have been treated.

In this thesis, we extend the normal form results to a more general class of higher

dimensional manifolds, which includes some examples that have never been treated

and also all the known examples. Among new manifolds, we mention surfaces of rev-

olution and compact Lie groups. The result that we prove is known as “almost global

existence”. Namely, we prove that, given an Hs initial datum (with s ≫ 1) of size

ϵ, the solution remains small in Hs norm for times of order ϵ−r, for any r ≥ 3. We

emphasize that our result also bounds the energy flow among different modes of the

linearized equations, thus preventing the possible insurgence of turbulence phenom-

ena.

We first present the class of manifolds we deal with, namely manifolds in which the

geodesic flow is globally integrable. Recently Bambusi and Langella constructed a

Fourier expansion adapted to these manifolds: here we show how to use it to develop

normal form theory for nonlinear Hamiltonian systems. To this end, essentially, two

tools are required: (i) an estimate of the “Fourier” coefficients of the product of two

eigenfunctions of the Laplacian; (ii) a partition of the “Fourier lattice” in suitable

dyadic clusters. The understanding of the structure of (i) is the main contribution of

the present thesis. Once this has been obtained, we introduce and study (following
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Delort-Szeftel) a class of polynomials that enters the normal form procedure. Such

a study is the main technical part of the thesis. Concerning (ii), here we prove that

the partition constructed by Bambusi-Langella, proposed with a different purpose,

actually enjoys the dyadic properties needed to develop perturbation theory.
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Riassunto della Tesi

Il problema dello studio del comportamento qualitativo delle soluzioni per i sistemi

hamiltoniani finito-dimensionali è stato ampiamente studiato attraverso la teoria della

forma normale e la teoria KAM (Kolmogorov-Arnold-Moser). A partire dalla fine

degli anni ’80, tali metodi sono stati estesi a sistemi con un numero infinito di gradi

di libertà ed equazioni differenziali alle derivate parziali (PDE): attualmente, esiste

una teoria soddisfacente per le PDE in una dimensione spaziale. Il caso di varietà

di dimensioni superiori è stato affrontato da Bourgain, il quale ha dimostrato alcuni

risultati di tipo KAM per le equazioni delle onde non lineari (NLW) e le equazioni di

Schrödinger non lineari (NLS) sul toro; tali risultati sono stati successivamente estesi

ad alcune equazioni su gruppi di Lie. Per quanto riguarda i metodi di forma normale,

sono state trattate solo equazioni su varietà Zoll o tori.

In questa tesi estendiamo i risultati di forma normale a una classe più generale di

varietà di dimensione maggiore di uno, che include alcuni esempi mai trattati e tutti

gli esempi conosciuti. Tra queste nuove varietà, menzioniamo le superfici di rivoluzione

e i gruppi di Lie compatti. I risultati che dimostriamo sono noti come ”almost-global

existence” in letteratura. In altre parole, dimostriamo che, dato un dato iniziale in

Hs (con s ≫ 1) di dimensioni ϵ, la soluzione rimane piccola nella norma Hs per

tempi dell’ordine di ϵ−r, per ogni r ≥ 3. Sottolineiamo che il nostro risultato limita il

trasferimento di energia tra diversi modi delle equazioni linearizzate, impedendo cos̀ı

la possibile insorgenza di fenomeni di turbolenza.

Nella tesi presentiamo innanzitutto la classe di varietà che trattiamo, ovvero varietà

in cui il flusso geodetico è globalmente integrabile. Recentemente, Bambusi e Langella

hanno costruito una serie di Fourier adattata a queste varietà: qui mostriamo come

utilizzarla per sviluppare la teoria della forma normale per sistemi hamiltoniani non

lineari. A questo scopo, sono necessari essenzialmente due strumenti: (i) una stima

dei ”coefficienti di Fourier” del prodotto di due autofunzioni del laplaciano; (ii) una

suddivisione del ”reticolo di Fourier” in opportuni cluster di tipo diadico. La com-
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prensione della struttura di (i) costituisce il contributo principale della presente tesi.

Una volta ottenuto ciò, introduciamo e studiamo (seguendo Delort-Szeftel) una classe

di polinomi che entra nella procedura della forma normale. Tale studio rappresenta la

parte tecnicamente più complicata della tesi. Per quanto riguarda (ii), qui dimostri-

amo che la partizione costruita da Bambusi-Langella, proposta con uno scopo diverso,

gode effettivamente delle proprietà diadiche necessarie per sviluppare la teoria delle

perturbazioni.
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Introduction

The long-time behavior of the solutions to the equations of motion arising from finite-

dimensional quasi-integrable Hamiltonian dynamical systems has been well under-

stood in the last sixty years. Starting from the celebrated KAM (Kolmogorov -

Arnold - Moser) theorem, a whole theory for quasi-periodic solutions has been de-

veloped. Essentially, under suitable non-degeneracy conditions, a full measure set of

quasi-periodic solutions, lying on invariant tori, persists under small perturbations of

an integrable system. Besides that, the Nekhoreshev theorem establishes an expo-

nential time of stability for all the solutions of a generic quasi-integrable Hamilto-

nian system. Since the introduction of Hamiltonian partial differential equations, i.e.,

Hamiltonian systems with infinitely many degrees of freedom, similar issues have been

investigated for those equations. However, long-time results for Hamiltonian partial

differential equations on compact domains are considerably more involved, since the

classical results of Hamiltonian perturbation theory do not hold for systems with in-

finitely many degrees of freedom [14].

The first positive results in the extension of KAM theory to Hamiltonian PDEs were

presented in the late 80s [39], [78]. Starting from those results, a quite satisfactory

theory concerning the persistence of periodic and quasi-periodic solutions has been

developed for equations defined on a one-dimensional domain [27, 77, 87, 89]. A quite

general method to treat quasi-linear (i.e., fully non-linear) perturbations has also been

developed [1, 2]. See also [8] for an important early result on the extension of KAM

methods for PDE’s. The problem of the persistence of almost-periodic solutions, i.e.,

solutions that lie on fully dimensional tori, then in full analogy with classical KAM

theory, is completely open and only partial results are known [38].

Regarding higher-dimensional domains, nowadays, many results about the persistence

and possibly stability of quasi-periodic solutions are known, but a complete compre-

hension is still quite far. A first breakthrough was given by Bourgain dealing with

the nonlinear wave equation and nonlinear Schrödinger equation on the d-dimensional

torus [30, 32], and by Eliasson and Kuksin with quite different techniques [53]. Later
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on, a remarkable result for a completely resonant nonlinear Schr”odinger equation

was obtained [88]. Without trying to be exhaustive, we quote also [19, 20, 25, 3, 85]

and the literature therein.

All of those results pertain to a special class of solutions, namely periodic or quasi-

periodic solutions. A relevant problem concerns the existence and stability of general

solutions of both linear and non-linear Hamiltonian PDEs, for a time that goes be-

yond the local existence theory. We recall that the theory of local well-posedness for

general PDEs is nowadays well established [79].

This thesis deals exactly with this problem and provides some results about almost-

global existence and stability in high Sobolev spaces of small solutions of some semi-

linear Hamiltonian PDEs on quite general Riemannian manifolds. Following [12], we

introduce a notion of integrable systems, which we call globally integrable quantum

systems since they appear as the quantization of classical integrable systems. For this

kind of system, we prove the long-time existence of small solutions and we control the

growth of Sobolev norm, for a time of order ϵ−M ,∀M ∈ N, where ϵ is the size of the ini-
tial datum. Consequently, we apply this abstract theorem to three concrete examples.

Namely, we consider the semilinear beam equation and the semilinear Schr”odinger

equation with convolution potential; moreover, applying our abstract theorem, we

can prove Sobolev stability for the ground state of a nonlinear Schr”odinger. Before

coming to a more detailed description of our work, we remark that its interest may

be twofold. On the one hand, it proposes a general setting, including a quite general

notion of quantum integrable system, that covers a large number of different exam-

ples; on the other hand, it extends the results of almost-global existence to a quite

general class of high-dimensional domains.

The first breakthrough results about the long-time analysis of ”generic” solutions

were obtained by Bourgain in the nineties. First, the author prove that a solution

of the NLS equation, corresponding to a small initial condition norm, stays ϵ-close

to an unperturbed solution for a time of order ϵ−M for any M ∈ N [28]. Moreover,

considering linear perturbations of Schrödinger equations, he proved that the growth

of the Sobolev norm of the solutions is controlled by ∥ϕ(t)∥ ≤ Ctϵ∥ϕ0∥, for any ϵ small

[29]. The result is improved for quasi-periodic potentials [31]. Later, a key result was

obtained by Bambusi, who applied Birkhoff normal form techniques to prove almost

global existence for a class of semilinear equations [4, 9]. Delort and Szeftel extended

the research towards non-linear equations on high-dimensional domains different from

2



tori [47, 48]; in particular, they were able to perform one step of Birkhoff normal form

for a Klein-Gordon equation on Zoll manifolds, proving a time of existence of solu-

tions that goes just beyond local existence theory. The result was then extended by

performing Birkhoff normal form at any order and thus proving the almost global

existence of solutions [6]. Extensions for quasi-linear equations and, on the other

hand, for more general higher-dimensional domains need further analysis. This thesis

furnishes a contribution in the second direction. We refer to Chapter 1 for a more

detailed review of the relevant literature in this field.

I.1 Main results

The object of this Thesis is the study of the long-time behavior of small solutions of

a class of Hamiltonian PDEs of the form

iu̇ = HLu+∇ūP (u, ū), u ∈ Hs(M ;C) (I.1.1)

with HL a globally integrable quantum system that fulfills certain assumptions and

P a generic, bounded, nonlinear perturbation. Within this class fall the non-linear

Schrödinger (NLS) equation with convolution potential, the beam equation, and the

plane wave stability problem for NLS. For these systems, we prove the almost global

existence of small solutions. Essentially, it amounts to say that, given an initial datum

u0 of size ϵ in the Sobolev space Hs, the Hs norm of its related solution remains of

order ϵ for a time of order ϵ−N , for any N > 0. As a byproduct, one deduces that the

time of existence and uniqueness of small, regular solutions goes far beyond the time

guaranteed by local existence theory.

We begin the informal presentation of our abstract results describing the notion of

globally integrable quantum system [12]. Since the celebrated Liouville theorem, it is

well known that a classical d-dimensional Hamiltonian system is integrable if its Hamil-

tonian function can be written in terms of d variables, usually called the actions of the

system. In our context, we call quantum actions a list of first order pseudodifferential

operators I1, . . . , Id, defined on a Riemannian manifold M ; in particular, in anal-

ogy with classical integrable systems, we shall require that they commute mutually,

[Ii, Ij] = 0,∀i, j and that their joint spectrum lays on a lattice, namely

Zd + κ ⊃ Λ =
{
a = (a1, . . . , ad) ∈ Rd : ∃ψa ∈ L2(M) s.t. Ijψa = ajψa

}
3



for some κ ∈ (0, 1). This lattice plays a key role since it replaces the standard Fourier

lattice on Td. We say that H is the Hamiltonian of a quantum globally integrable if it

can be written in terms of those quantum actions. Namely, if there exists a smooth

function h ∈ C∞(Rd,R) such that

H = h(I1, . . . , Id) .

Example I.1.1. An easy example of a global integrable quantum system is the Lapla-

cian on the torus Td. For that, the actions are given by Ij = Dj := −i∂j so that

h(ξ) = |ξ|2 and

−∆ = hL(I1, . . . , Id) =
d∑
j=1

∂2j .

We remark that quantum integrable systems were already present in the litera-

ture, even with a slightly different approach: in particular, our definition of quantum

integrable systems does not require nondegeneracy of the actions. We refer to [92, 93]

for further reading.

The proof of our main theorem is based on a Birkhoff normal form procedure and

so a key issue is represented by non-resonance conditions on the linear frequencies

ωa = h(a1, . . . , ad). We will come back to this crucial problem later on, in the dis-

cussion of the result (see also Chapter 1 for a more extended treatment of small

divisor problems). Typically, in higher dimension domains, only extremely mild non-

resonance conditions are available: this is the case for our problem. In particular, in

the proof we will assume that there exists a set of indexes W , that we call resonant,

such that the corresponding linear frequencies ωa fulfill the following condition.

Assumption I.1. For any r ≥ 3, there are constants γ > 0, τ > 0 such that the

following holds for any (a1, . . . , ar) ∈ Λr \W∣∣∣∣∣
r∑
j=1

σjωaj

∣∣∣∣∣ ≥ γ

(maxj=1,...,r |aj|)τ

with σj = ±1.

In the applications we will take profit of a suitable external or internal parame-

ter for tuning the frequencies, proving that nonresonance conditions are fulfilled in a

full-measure set.
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Under proper, but rather generic, conditions on the function h (namely, steepness

and homogeneity), we will prove a clusterization property of the set {a, ωa}a; this fact
follows directly from the abstract construction in [12], so, in principle, it applies to

any globally integrable system that fulfills these generic conditions. The same cluster-

ization was already proved for many of the concrete examples that we can deal with; it

was proved by Bourgain for the eigenvalues of the Laplacian on a square torus [29, 32]

and then extended to irrational tori [23]. It was proved also for surfaces of revolu-

tion [42]. We stress that this clusterization of the frequencies is a key breakthrough

that allows to deal with higher dimensional problems [7]. The precise hypothesis we

assume is the following.

Assumption I.2. There exists a partition

Λ =
⋃
α∈A

Ωα

with the following properties.

i. Each Ωα is dyadic, namely there exists a constant C, independent of α, such

that

sup
a∈Ωα

|a| ≤ C inf
a∈Ωα

|a|.

ii. There exist δ > 0 such that, if a ∈ Ωα and b ∈ Ωβ with α ̸= β, then

|a− b|+ |ωa − ωb| ≥ Cδ(|a|δ + |b|δ).

A mild assumption on the dispersive relation of the frequencies is needed in the

statement of the main theorem. However, in practice, we shall restrict to operators

with eigenvalues with super-linear asymptotic (β > 1) since there exist no examples of

linear or sublinear asymptotics (β ≤ 1) for which Bourgain partition holds. This lim-

itation plays a major role since it prevents the application of our method to problems

characterized by linear or sub-linear dispersive relation, for example, wave equations.

Assumption I.3. There exist constants C1, C2 > 0 and β, with β > 0, s.t.

C1|a|β ≤ |ωa| ≤ C2|a|β .

Eventually, we will assume that the non-linearity P is a rather generic bounded

functional; we require it to have a zero of order at least 3 in the origin and to take

real values when evaluated on real functions u.
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Assumption P. P is a functional defined on a neighborhood of the origin of Hs(M)×
Hs(M) for some positive s > d/2, that has a zero of third order at the origin and has

the structure

P (u, ū) =

(∫
M

F (N(u, ū), u(x), ū(x), x)dx

)
,

where

N(u, ū) :=

∫
M

u(x)ū(x)dx ,

and F ∈ C∞(U×U×U×M ;C) is a smooth function and U ⊂ C an open neighbourhood

of the origin.

Under these assumptions, our main abstract theorem is the following.

Theorem I.1.2. Consider the Hamiltonian system (I.1.1) that fulfills the assumptions

I.1,I.2,I.3,P. Then, for any integer r ≥ 3, there exists sr ∈ N such that, for any s ≥ sr,

there are constants ϵ0 > 0, c > 0 and C > 0 for which the following holds: if the initial

datum u0 ∈ Hs(M,C) fulfills

ϵ := ∥u0∥s < ϵ0,

then the Cauchy problem has a unique solution u ∈ C0 ((−Tϵ, Tϵ),Hs(M,C)) with

Tϵ > cϵ−r. Moreover, one has

∥u(t)∥s ≤ Cϵ, ∀t ∈ (−Tϵ, Tϵ) .

As outlined before, we apply our abstract theorem to some non-linear Hamiltonian

PDEs. In particular, we will consider equations on Riemannian manifolds M on

which the Laplacian-Beltrami ∆g operator is a globally integrable quantum system,

according to our definition. These are manifolds with integrable (in the classical sense)

geodesic flow [92]. To be concrete, we consider:

i) any flat torus Tdg. Results of this type on flat tori are well-known nowadays for

linear equations [42, 23, 13] and for non-linear systems [7]. We remark that our

result extends the one in [7] since it applies to all flat tori.

ii) surfaces of revolution, on which the actions are constructed in [94]. Results

on the growth of Sobolev norm on surfaces of revolution were known in the

literature [42, 12], but only for linear systems. To the best of our knowledge,

our theorem is the first result of almost global existence and growth of the

Sobolev norm for non-linear equations on generic rotation invariant surfaces.
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iii) Lie groups and homogeneous spaces, on which the actions are constructed ex-

plicitly in [12]. The existence of quasi-periodic solutions for both Schrödinger

and wave equations on Lie groups has also already been proved [26, 20].

Before introducing the main ideas of the proof, we present quickly the results that fol-

low as an application of our abstract theorem. The first result pertains to a nonlinear

Schrödinger equation with convolution potential:i∂tψ = −∆ψ + V ∗ ψ + f(x, |ψ|2)ψ, x ∈M

ψ(0) = ψ0

(I.1.2)

where the nonlinearity f is a smooth function in a neighborhood of the origin and has

a zero of two in u = 0. The Fourier multipliers V belong to the set

Vn :=

{
V = {Va}a∈Λ : Va ∈ R , |Va|⟨a⟩n ∈

[
−1

2
,
1

2

]}
,

The precise statement is the following.

Theorem I.1.3. There exists a set V(res) ⊂ Vn of zero measure, s.t., if V ∈ V \V(res)

the following holds. For any r ∈ N, there exists sr > d/2 such that for any s > sr

there is ϵs > 0 and C > 0 such that if the initial datum for (I.1.2) belongs to Hs and

fulfills ϵ := ∥ψ0∥s < ϵs then

∥ψ(t)∥s ≤ Cϵ , for all |t| ≤ Cϵ−r .

This system has attracted a lot of research in the last years since the presence of

the Fourier multiplier allows direct control of small divisors, but it contains all the

typical difficulties in considering higher dimensional domains [66, 55, 17].

The second application concerns the beam equation

ψtt +∆2ψ +mψ = −∂ψF (x, ψ) , (I.1.3)

with F ∈ C∞(M) in a neighborhood of the origin and with a zero of order at least

2 at ψ = 0. Here m is a real positive parameter, usually called mass. The precise

statement of the result is analogous to the one in Theorem I.1.3.

Theorem I.1.4. There exists a set of zero measure M(res) ⊂ R+ such that if m ∈
R+ \M(res) then for all r ∈ N there exist sr > d/2 such that the following holds. For

7



any s > sr there exist ϵrs, c, C such that if the initial datum for (I.1.3) fulfills

ϵ :=
∥∥∥(ψ0, ψ̇0)

∥∥∥
s
:= ∥ψ0∥Hs+2 +

∥∥∥ψ̇0

∥∥∥
Hs

< ϵsr ,

then the corresponding solution satisfies∥∥∥(ψ(t), ψ̇(t))∥∥∥
s
≤ Cϵ , for |t| ≤ cϵ−r .

The beam equation is widely studied in the literature for both its mathematical

interest and its physical interpretation. We recall for example [58, 59, 86] for a first

KAM approach to the problem. In [75] the author proves that the solutions remain

stable for a time of order ϵ−
5
4
n, n being the order of the semi-linear perturbation,

thus a time slightly longer than the one assured by the local theory. This result was

improved up to a time of order ϵ−3n and extended to irrational tori of any dimension

[16]. Our result improves both of them since it proves almost-global existence, hence

existence up to T = ϵ−M ,∀M ≥ 0. Both of those results are based on a finite number

of steps of Birkhoff normal form; our technique allows us to perform Birkhoff normal

form at any fixed order.

Our third application regards the stability in Sobolev norm of the ground state solu-

tion of the NLS equation. Given a NLS equation of the form

iψ̇ = −∆ψ + f
(
|ψ|2

)
ψ , (I.1.4)

with f ∈ C∞(U ;R), U ⊂ R an open neighbourhood of the origin, f having a zero of

order at least one at the origin, it is well-known that it has a solution given by a plane

wave of the form ψ∗(t) =
√
p0e

−iνt provided that ν = f(p0). We will prove that this

solution is stable in high Sobolev regularity for almost any value of the L2 norm of

the initial datum. Denoteing with λ̄ the lowest non vanishing eigenvalue of −∆, we

will prove the following result.

Theorem I.1.5. Assume there exists p̄0 > 0 such that λ̄ + 2f(p0) > 0 for any p0 ∈
(0, p̄0]. Then there exists a zero measure set P such that if p0 ∈ (0, p̄0] \ P then for

any r ∈ N there exists sr for which the following holds. For any s ≥ sr, there exists

constants ϵ0 and C such that if the initial datum ψ0 fulfills

∥ψ0∥20 = p0, inf
α∈T

∥∥ψ0 −
√
p0e

−iα∥∥
s
= ϵ ≤ ϵ0 ,
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then the corresponding solution fulfills

inf
α∈T

∥∥ψ(t)−√
p0e

−iα∥∥
s
≤ Cϵ ∀ |t| ≤ Cϵ−r

with ψ(0) = ψ0.

Note that in the defocusing case (i.e. f is a positive function) there is no restriction

in the L2 norm of the initial datum since the condition λ̄+2f(p0) > 0 is automatically

satisfied. Our result partially extends the known one on the standard torus Td, where
the same problem, for any plane waves, is considered [54]. We remark that in our

approach we are not allowed to consider generic plane waves, since in general the

eigenfunctions of the Laplacian, on the manifolds we consider, do not have constant

modulus. For flat tori, on which the eigenvalues are complex exponential of modulus

1, the same result for any plane wave can indeed be proven.

I.2 Ideas of the proof

In the last part of this introduction, we sketch the strategy of the proof of our results.

We begin discussing the proof of Theorem I.1.2, essentially based on a Birkhoff nor-

mal form iteration, trying to underline the main technical steps and the novelty of our

approach. Two major issues are to be considered when dealing with high-dimensional

domains. Firstly, one has to deal with bad spectral properties, namely the presence of

arbitrarily small gaps between linear frequencies, that make non-resonance conditions

quite mild and hard to handle. On the other hand, the eigenfunctions present bad

localization properties; for that reason, a key ingredient in our scheme is represented

by a multilinear estimate of the product eigenfunctions (see Theorem 3.2.1), that

leads to a suitable tame estimate of the vector fields associated to polynomials be-

longing to a certain class, that we will denote as polynomials with localized coefficients.

Given a function u ∈ Hs, we consider its spectral decomposition u =
∑

Πau; conse-

quently, one can write a polynomial P of degree r in terms of a convenient multilinear,

symmetric function

P (u) =
∑

P̃ (Πa1u, . . . ,Πaru) . (I.2.1)

We introduce the class of polynomial with localized coefficients [5, 47], whose elements

fulfill an estimate of the form (here we are assuming for simplicity that |a1| ≥ |a2| ≥
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· · · ≥ |ar|) ∣∣∣P̃ (Πa1u, ...,Πaru)
∣∣∣ ≤ CN

|a3|ν+N

|a1 − a2|+ |a3|)N
∥Πa1u∥0 (I.2.2)

for any N > 0 and for some fixed ν > 0, independent from N . In Lemma 4.2.5, we

prove that the vector field associated with a polynomial in this class satisfies a tame

estimate of the form

∥XP (u)∥s ≤ C∥u∥r−1
s ∥u∥s0 ,

that allows linking the order of a polynomial with the smallness condition of the initial

condition. Namely, we introduce a suitable norm that controls the homogeneity of a

polynomial so that, if P has degree R, we have

sup
∥u∥s≤R

∥XP (u)∥s ∼ Rr, R ≪ 1 .

Moreover, this class is closed with respect to Poisson brackets, so that the structure

persists along the normal form iteration. This is the content of Lemma 4.2.9.

In Theorem 5.2.2, we prove that indeed the non-linear perturbation we consider (see

Hypothesis P) belongs to this class. As outlined before, this is the consequence of an

estimate of the product of the eigenfunctions of the form∣∣∣∣∫ ψa1ψa2ψa3

∣∣∣∣ ≤ CN
aν+N3

(|a1 − a2|+ |a3|)N
, (I.2.3)

proved in Theorem 3.2.1. We remark that a similar estimate was already proved and

exploited [5, 47]. In our work, this result is the direct consequence of the geometri-

cal structure carried out by globally integrable quantum systems, and, in particular,

it relies directly on the existence of the lattice Λ. Since we label indexes according

to Λ, computations are more involved with respect to the case of a one-dimensional

lattice [5, 47] and a more extended analysis is implemented. The pseudodifferential

nature of the quantum actions is also a key ingredient, as can be inferred from the

proof. Already in [39] Craig and Wayne recognized the localization of eigenfunctions

on the exponentials basis as a fundamental function in the normal form approach to

Hamiltonian systems. We point out that (I.2.3) replaces the localization of the prod-

uct of the eigenfunctions controlling the fast off-diagonal decay of their product. We

remark that similar bilinear estimates of the eigenfunctions of the Laplacian were a

key ingredient in proving global well-posedness for NLS on three-dimensional spheres,
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even by means of completely different methods [34].

In the Birkhoff normal form approach, at each step of the iteration, one looks for

a canonical transformation induced by a polynomial G, that is the sum of some mul-

tilinear, homogeneous functions Gr of degree r; each of them solves a homological

equation of the form(
q∑
j=1

ωaj −
r∑

j=q+1

ωaj

)
G̃(Πa1 , . . . ,Πar) = P̃ (Πa1 , . . . ,Πar)

for each choice of non resonant indexes (a1, . . . , ar). To do that, the nonresonant

condition in the Assumption I.1 is not enough, since it induces a loss of derivatives at

each step, involving the largest index max{a1, . . . , ar}. To avoid this loss, we need a

so-called second-order Melnikov condition, that is typically automatically satisfied in

one-dimensional domains; namely, we prove an estimate that entails the third largest

index. At this end (see Lemma 5.3.16), we exploit the clusterization of the frequencies.

We begin splitting the system in high and low mode with respect to a fixed cut-off

K ≫ 1.

• For the system in low modes (|aj| ≤ K), we proceed as usual in Birkhoff normal

form theory for finite dimensional systems: we divide the set of frequencies in

separated blocks Σn, we identify the so-called superactions

In =
∑
a∈En

∥Πau∥20

and we proceed to remove terms that produce the flow of energy between them,

until a fixed order, since they coincide with our definition of nonresonant indexes

(see Def. 5.1.3).

• Monomials that involve three or more large indexes (max3(a1, . . . , aj) > K) can

be included in the remainder since they have small vector field (see Lemma

4.2.13), as already pointed out in [9].

• Monomials with exactly one index larger then K are non-resonant (see Lemma

5.3.15).

• Monomials with exactly two indexes larger then K are treated exploiting the

partition described in Assumption I.2; if a, b ̸∈ Ωα then either two indexes

(|a− b| ≥ Kδ) are far apart or their related frequencies (|ωa−ωb| ≥ Kδ) are non
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resonant. In the first case, we take profit of the fast off-diagonal decay (I.2.2)

and we prove that the contribution to the vector field is small (see Lemma

4.2.14); in the other case, the term is nonresonant and it is removed in the

normal form iteration (see Lemma 5.3.16). Therefore, again we have proved

that, in the normal form dynamics, the transfer of energy can occur only within

each ”dyadic” block Ω. Exploiting dydicity, from the conservation of L2 norm

we deduce the conservation of Hs norm.

At the end of the Birkhoff normal form iteration, the initial Hamiltonian is conju-

gated to H(r) = H0 + Z + R, with ∥XR∥s ∼ Rr+1, for any order r ≥ 3 fixed at the

beginning of the iterative procedure. Since the dynamics induced by the normal form

Z conserve the Hs for any time, a standard bootstrap argument provides a control in

the blow-up of the solutions for time of order ϵ−r.

In Chapter 6 we conclude the proof of Theorems I.1.3, I.1.4 and I.1.5, applying the

abstract theorem after simple algebraic manipulations to put the equations in the

suitable form (I.1.1). The verification of Assumptions I.2 and I.3 follows directly from

the geometry of globally integrable quantum systems. In fact, in Chapter 3 we prove

that, under suitable but generic assumptions on the Hamiltonian HL (essentially, we

ask hL to be a steep function, see Def. 3.2.5), the frequencies ωaa∈Λ fulfill the Bour-

gain’s partition property. Some examples of those manifolds (tori, Lie groups, surface

of revolution) have been discussed beforehand in the Introduction. The verification

of the nonresonance condition in the Assumption I.2 is rather standard. For each

system, we deduce it by modulation of a given parameter: respectively, the Fourier

multipliers in the convolution potential, the mass, and the L2 norm of the plane wave.

For the beam equation and the stability of ground state we exploit a sub-analytical

method [47].

The Thesis is organized as follows. Chapter 1 contains a brief review of some known

results and literature about the long-time analysis of the solutions of Hamiltonian

PDEs. To be coherent we the results presented in this Thesis, we mostly treat equa-

tions on compact manifolds. In Chapter 2 we describe pseudodifferential calculus on

Riemannian manifolds; in particular, we prove Lemma 2.3.11, a key technical result

that allows us to prove the estimate of the product of the eigenfunctions of a quantum

global integrable system. In Chapter 3 we introduce the notion of globally integrable

quantum system and we conclude the estimate on the product of the eigenfunctions.

The proof of the clusterization of the frequencies is also outlined. In Chapter 4 we

study the property of polynomials with localized coefficients. In Chapter 5 we state
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our main abstract result and we develop the Birkhoff normal form iteration. Finally,

in Chapter 6 we prove that it applies to the concrete examples.
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Chapter 1

Long-time existence and growth of

Sobolev norm

In this Chapter, we discuss some known results about the long-time behavior and the

growth of Sobolev norm of the solutions of Hamiltonian PDEs. The interest in such

problems is twofold, for their mathematical and physical aspects. On the one hand,

these results extend the theory of local-wellposedness employing a variety of tech-

niques; on the other hand, the growth of Sobolev norm is an important phenomenon

in weak turbulence theory, since it describes the flow of energy towards higher in-

ternal frequencies of a system [37]. Along this Chapter, we revise some important

results, with a focus on the ones obtained with perturbative normal form techniques,

trying to highlight some key issues, in particular in considering higher dimensional

domains. We start discussing some known results on linear systems; then, we take

into account semilinear, i.e. equations with nonlinear bounded perturbations, and

quasi-linear systems, i.e. equations with nonlinear unbounded perturbations.

1.1 Growth of Sobolev norm in linear systems

In the last thirty years, linear systems have attracted a lot of research interest. In

fact, besides the interest per sé, in many cases, their comprehension represents a key

step toward problems concerning nonlinear equations. As already pointed out in the

Introduction, a seminal result regards the Schrödinger operator

iut +∆u+ V (x, t)u = 0 (1.1.1)

on Td, with V a real potential, periodic in x [29]. In particular, Bourgain proved a tϵ

bound for the Hs norm of the solution. Precisely, the result is the following.
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Theorem 1.1.1 (Bourgain, [29]). Consider (1.1.1) in arbitrary dimension d with

periodic boundary conditions. Assume V is bounded, smooth in x and t, and periodic

in x. Then, denoting with S(t) the associated flow map, for all s <∞, ϵ > 0,

∥S(t)u(0)∥s ≤ Ctϵ for t→ +∞ .

The proof relies on some spectral properties: the localization of the eigenfunctions

of the Laplacian on the torus and a partition of the spectrum in clusters whose distance

is increasing, as already discussed in I.2. Bourgain extended the result to quasi-

periodic in time potential [31], proving a logarithmic-in-time bound of the form

∥S(t)u(0)∥s ≤ C log(t)Cs for t→ +∞ .

Later on, Delort considered a similar problem on a more general class of compact man-

ifolds, that contains for example Zoll manifolds and surface of revolution, on which

the eigenvalues fulfill a similar clusterization [42]. Although the result on the bound of

the growth is the same, the proof is rather different, since it follows from an abstract

result based on symbolic calculus. Such an abstract result was then exploited to prove

that the tϵ bound extends to any arbitrary flat torus [23].

All of these results concern bounded perturbations. A first abstract result that in-

volves an unbounded Schrödinger operator of the form iψt = L(t)ψ was given in [82].

In particular, the authors recognized some properties on L under which the equation

is globally well-posed, with a polynomial growth of Sobolev norm. Remarkably, they

prove that, if the spectrum L fulfills a further hypothesis very similar to the one as-

sumed by Bourgain, therein called of increasing gaps, the control on the growth of

Sobolev can be improved up a time of order tϵ. The result is optimal [91].

A key breakthrough was achieved by combining these techniques with pseudodifferen-

tial calculus [11] (see also [84]. Through an iterative normal form procedure essentially

based on pseudodifferential calculus, an abstract unbounded Schrödinger operator is

conjugated to a pure point operator with a smoothing perturbation and a bound

of order tϵ may be proved. The same pseudodifferential smoothing procedure, alto-

gether with a careful analysis of the geography of the resonances inspired by classical

Nekhoroshev theorem, was then exploited to prove the result to hold on flat tori of

any dimension [13]. Eventually, we recall the result in [12], to which, as pointed out in

the Introduction, this Thesis owes much. In that work, the authors proved a tϵ upper

bound for the solutions of the equations of motion associated with a wide general
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linear Schrödinger operator on compact Riemannian manifolds, of the form

iut = (H0 + V (t))u

with H0 a globally integrable quantum system (see I.1 above for a definition of these

systems). This abstract theorem is then applied to many concrete examples, that

extend the known results of Delort and Bourgain to unbounded perturbations; in

advance, the growth of Sobolev norm on Lie groups is firstly considered. In particular,

we remark on the role of the spectral lattice in the proof: as discussed in this Thesis, it

has been revealed to be a key breakthrough, altogether with Bourgain’s clusterization,

that allows us to consider general higher dimensional domains.

1.2 Non linear systems

1.2.1 A general approach with Birkhoff normal form

Since the first seminal results of Bourgain [31, 32] and Colliander, Keel, Staffilani,

Takaoka and Tao [37], a large variety of tools have been developed to study the

asymptotic behavior of nonlinear Hamiltonian PDE’s. Among them, the approach

through infinite dimension Birkhoff normal techniques has resulted to be particularly

effective. The first important result was obtained for the semilinear wave equation

[4, 9]

utt −∆u+ µu+ f(u) = 0 . (1.2.1)

on a one-dimensional domain with periodic boundary conditions. In particular, the

following theorem of almost global existence is proved.

Theorem 1.2.1 ([9]). Let r ≥ 2. For almost every µ there exists sr such that, for

any s > sr, for ϵ small enough

∥(u(0), u̇(0))∥Hs×Hs−1 ≤ ϵ =⇒ ∥(u(t), u̇(t))∥Hs×Hs−1 ≤ 2ϵ

for t ≤ ϵ−r.

The crucial tool in the proof is a nonresonance condition that involves the linear

frequencies of the system, namely ωj =
√
j2 + µ with j ∈ Z, that reads:

∣∣ωj1 + · · ·+ ωjr − ωk1 − · · · − ωkq
∣∣ ≥ γ

max3(j,k)τ
(1.2.2)

for any |j| = (|j1|, . . . , |jr|) ̸= (|k1, . . . , kq|) = |k|. Here maxn(v) denote the n
th largest
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element in the vector v. This condition allows, using a Birkhoff normal form proce-

dure, to remove from the Hamiltonian all the monomials involving at most two large

Fourier modes. In fact, at each step of the iteration, the solution of the homological

equation induces a bounded canonical equation. Then, a trivial, but crucial observa-

tion allows neglecting terms with three or more large indexes since their vector is small

[4]. Later on, such a nonresonance condition was recognized in several systems and

almost global existence has been proved, for example, for plane waves in NLS [54], for

one-dimensional Schrödinger operators and d-dimensional Schrödinger operator with

convolution potential on tori [5, 9], for the quantum harmonic oscillator [64].

A similar nonresonance condition was also exploited by Delort and Szeftel, proving

a partial result of long-time existence for a Klein-Gordon equation on spheres and

Zoll manifolds [47, 48]. Later on, some of those results were extended to almost

global existence through Birkhoff normal form [6]. Despite the structure of the linear

frequencies being very similar to the one in one-dimensional domains, the results in

[47, 48] (see also [46]) are quite relevant for our work. In fact, they are based on a

crucial multi-linear estimate of the decay of the product of the eigenfunctions of the

linear operator, that inspired the results presented in this Thesis, in particular those

treated in Chapter 3.

Regarding quasi-linear perturbations, we quote for instance the breakthrough achieved

combining normal form methods and para-differential calculus in the context of Klein-

Gordon equation on a one-dimensional sphere [41]. The procedure is indeed rather

general; later on, similar paradifferential techniques were exploited to prove almost

global existence for even solutions of the capillarity-gravity water waves equation on

a one-dimensional domain [45]. This result has been fully extended to any solution

of that equation, employing a Darboux iterative procedure that corrects the non-

symplectic nature of paradifferential linearization [24].

1.2.2 Towards general higher dimensional domains

The rather strict nonresonance condition discussed in (1.2.2) typically fails in higher

dimensional domain, even in the simple case of the Laplacian on the irrational torus.

In fact, assuming |j1|, |k1| ≥ max3(j,k), in dimension d ≥ 2 the difference |j1|2 − |k1|2

describes a dense set, that prevents condition (1.2.2) to be verified for many values of

the tuning parameter. Instead, in many cases a first-order Melnikov condition, that
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involves the second-largest index, can be proved:

∣∣ωj1 + · · ·+ ωjr − ωk1 − · · · − ωkq
∣∣ ≥ γ

max2(j,k)τ
.

This condition produces a loss of derivatives at each step of the iteration, preventing

Birkhoff normal form from being applied straightforwardly.

This is the case for example for the existence of small solutions of the Klein-Gordon

equation on Td, proven for a time just slightly beyond the one provided by local

theory [43]. With a similar nonresonance condition, a much longer time existence can

be proved, but with a loss of derivative in the initial datum [15]. The precise result

is the following.

Theorem 1.2.2 ([15]). Consider the non linear wave equation (1.2.1), with x ∈ Td,
d ≥ 2. For any r ≥ 2, s ≥ 2, there exists s∗ = s∗(r, s) and ϵ small enough such that

∥(u(0), u̇(0))∥Hs∗×Hs∗−1 ≤ ϵ =⇒ ∥(u(t), u̇(t))∥Hs×Hs−1 ≤ 2ϵ

for any t ≤ ϵ−r.

The strategy adopted in the proof is based on a decomposition in high and

low modes according to a threshold that depends on the size of the perturbation,

Nϵ ∼ ϵ
− r

s−s0 . Then, the loss of derivatives produced by small divisors is tackled em-

ploying a pseudodifferential commutator estimate, that provokes the loss s∗ > s. As

already discussed in the Introduction, combining a similar decomposition with Bour-

gain’s decomposition of the frequencies, almost global existence without any loss in

regularity has been proved for some semilinear equations on flat tori of any dimension

[7].

Many other long-time existence results have been proved in the last few years. We

recall the ones for semilinear beam equation [75, 16] and for an hydrodynamic system

on irrational tori [56]. Regarding quasi-linear equations, we quote for example [55] in

which time of existence of order t ∼ ϵ−8/3, thus strictly beyond the local existence, is

proved for the solutions of the Klein-Gordon equation on tori. The quadratic lifespan

of solutions is shown also for a derivative Schrödinger equation [57], and water waves

[21]. In particular, the water wave equation in higher dimensional domain has been

widely studied in the last few years, see for instance [22, 74, 76] and literature therein.

Almost any result about long-time existence and Sobolev stability pertains to very

regular solutions (i.e. solutions in Hs with s≫ 1) but, interestingly this condition ap-

peared not to be required, at least in some numerical computations [36, 35]. Indeed,

19



this observation has been confirmed analytically in [17] for a Schrödinger operator

with a ”well-prepared” convolution potential on Td. In particular, the authors can

prove almost global existence for any initial datum u0 ∈ Hs with s0 ≥ d/2. Although

the equation is rather artificial, the technique is quite interesting, since it relies es-

sentially only on Birkhoff normal form and a novel analysis of small divisors, but

it applies to low regular solutions. We recall also [18] for other results of long-time

existence in low regularity.

1.3 Growth of Sobolev norm: lower bounds

Until now, we discussed results about the upper bounds of the growth of Sobolev

norm. A natural, opposite problem is to exhibit solutions whose Sobolev norm grows

arbitrarily in time; this amounts to prove that there exists a mechanism, often referred

to as forward energy cascade in weak turbulence theory, that allows the energy to

migrate towards higher internal frequencies of the system. Initially, the question was

posed by Bourgain for the NLS equation.

Question (Bourgain, [33]). Are there solutions u(t) of the cubic nonlinear defocus-

ing Schrödinger equation

iut −∇u = −|u|2u, x ∈ T2

such that, for some s > 1,

lim supt→∞∥u(t)∥Hs = +∞

In the last thirty years, much effort has been made to understand this problem,

but, despite the known results, a lack of general comprehension persists.

Considering linear Schrödinger operators of the form

iψt = K0ψ + V (t)ψ . (1.3.1)

Maspero proposed the notion of transporter [81]; essentially, a potential V (t) is a trans-

porter if there exists a solution with unbounded growth of Sobolev norm. Adopting

this terminology, the first example of a transporter was constructed by Bourgain [31]

and then extended to the harmonic oscillator [44]. Later on, examples of universal

transporter (i.e. potential that produces unbounded growth of Sobolev norm for any

solution) were presented for the harmonic potential, the half-wave equation on T and

the Dirac equation on Zoll manifolds [10, 80, 71]. All of those examples have in com-
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mon a quite rigid spectral structure since they present constant spectral gaps.

Concerning nonlinear systems, the situation is even more involved. In 2010, Col-

liander, Keel, Staffilani, Takaoka, Tao proved the following remarkable theorem, that

proposes a partial solution for the Bourgain conjecture [37].

Theorem 1.3.1 (Colliander, Keel, Staffilani, Takaoka, Tao [37]). Let s > 1, C ≫ 1

and µ≪ 1. Then there exists a solution of the cubic NLS on T2 and T > 0 such that

∥u(0)∥Hs < µ , ∥u(T )∥Hs > C .

This solution is constructed following closely a completely resonant model obtained

by restricting the Fourier support on a certain lattice Λ ⊂ Z2. Many further related

results about NLS on Td are known [69, 72, 65, 67]. All of those results rely on the

particularly rich structure of the resonances provided by square tori. In fact, the

irrationality of the torus may mitigate the exchange of energy between the degrees of

freedom [90], and thus the strategy adopted in [37] does not apply on irrational tori.

Moreover, on irrational tori, the polynomial-in-time upper bounds for the growth of

Sobolev norms is slower with respect to the rational case [49, 50]. However, Guardia

and Giuliani proved the existence of solutions of the cubic NLS undergoing arbitrarily

large, but finite, growth even on many irrational tori [61]. The proof, still inspired

by the one in [37], is based on the approximation of a quasi-resonant model obtained

with a partial normal form reduction of the system, so avoiding the small divisor

problems typical of irrational tori.

Examples of Sobolev instability results for systems different from NLS or in different

domains are also present in the literature. See for example [70, 63, 62, 40] and the

literature therein. We conclude this section by recalling an interesting work that

adopts a quite different point of view [60]. In that work, a Sobolev instability is

obtained employing the completely non-resonant mechanism of Arnold diffusion on

an a-priori unstable infinite Hamiltonian lattice; it should be remarkable to prove a

similar mechanism occurring also in a proper PDEs (i.e. a-priori stable) context.
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Chapter 2

Pseudodifferential operators on

Riemannian manifolds

In the first part of this Chapter, we recall some well-known definitions and results

about pseudo-differential operators on Riemannian manifolds [73, 83]. In the second

part, inspired by similar results we prove a key estimate concerning commutators of

pseudodifferential operators [47, 48]. We will use this abstract estimate to prove a

suitable decay of the product of eigenfunctions in the proof of our main result. All

along this Section, M will denote a generic compact Riemannian manifold.

2.1 Local symbols

Definition 2.1.1 (Global symbols). For any m ∈ R, a function a ∈ C∞(Rn) is said

to be a (global) symbol of order m if for any α, β ∈ Nn there exists a constant Cα,β

such that

|∂αx∂
β
ξ a(x, ξ)| ≤ Cαβ(1 + |ξ|)m−|β| x ∈ Rn, ξ ∈ Rn .

We will denote with Sm(Rn) the set of symbols of order m.

Definition 2.1.2. For a ∈ Sm(Rn), we define its seminorms as

|a|mν := sup
x∈Rn ξ∈Rn

sup
|α|+|β|≤ν

⟨ξ⟩−m+|β|
∣∣∣∂βξ ∂αxa(x, ξ)∣∣∣

Definition 2.1.3 (Local symbols). Given an open subset X ⊂ Rn, for every m ∈ R
we define

Sm(X) := {a ∈ C∞(X) : ϕ(x)a(x, ξ) ∈ Sm, ∀ϕ ∈ C∞
0 (X)} .
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In other words, for any compact K ⊂ X, there are constants Cαβ,K such that

|∂αx∂
β
ξ a(x, ξ)| ≤ Cαβ,K(1 + |ξ|)m−|β| x ∈ K, ξ ∈ Rn .

Here C∞
0 (X) is the set of smooth functions with compact support in Rn.

Given a ∈ Sm(X), the operator

Au(x) = (2π)−n
∫
Rn

eiξ·xa(x, ξ)û(ξ)dξ (2.1.1)

restricts to a well defined operator A : C∞
0 (X) → C∞(X). In particular, it ensures

all the properties of pseudodifferential operators defined on the whole Rn, since u ∈
C∞

0 (X) implies that u(x)a(x, ξ) ∈ Sm. As usual, we will denote with A = Op(a) the

pseudodifferential operator associated with a ∈ Sm(X) and with OPSm(X) the set

of pseudodifferential operators defined on the open subset X.

Remark 2.1.4. The Schwartz kernel of the operator (2.1.1) is given by

K(x, y) = (2π)−n
∫
Rn

eiξ·(x−y)a(x, ξ)dξ (2.1.2)

We will indicate with KA the kernel associated with A. It is well known that KA ∈
C∞(X ×X) if and only if A is a smoothing operator.

The precise relation with global operators is clarified by the following proposition.

Proposition 2.1.5. Let X be an open subset of Rn. Given A : C∞
0 (X) → C∞(X)

linear and continuous, if for any ϕ, ψ ∈ C∞
0 (X) the operator u → ϕAψu is in

OPSm(Rn), then there exists a ∈ Sm(X) such that

A = Op(a) + A0

with A0 with smooth kernel, namely KA0 ∈ C∞(X ×X).

Proof. Let {ψi}i∈I a locally finite partition of unity in X. Then, we denote Ajku =

ψjAψku, with ajk ∈ S the correspondent symbols and we define

a(x, ξ) =
′∑
ajk(x, ξ) :=

∑
supp(ψj)∩ supp(ψk) ̸=∅

ajk(x, ξ) .

By definition, this is a locally finite sum and so a ∈ Sm(X). The kernel of A−Op(a)
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is then given by

∑
supp(ϕj)∩ supp(ψk) =∅

ψj(x)KA(x, y)ψk(y) :=
′′∑
ψj(x)KA(x, y)ψk(y) .

Since a kernel of the form (2.1.2) is smooth outside the diagonal ∆ = {(x, x)} ⊂
X ×X, we have the thesis.

In the definition of pseudodifferential operators on manifolds, we will need the

following result, which essentially states the local coordinate invariance of symbols.

Lemma 2.1.6. Let X1, X2 ⊂ Rn open and ϕ : X1 → X2 and G : X1 → GL(n) smooth

maps. Then, if (x, ξ) ∈ X1 ×Rn implies (ϕ(x), G(x)ξ) ∈ X2 ×Rn, then a2 ∈ Sm(X2)

implies

a1(x, ξ) := a2(ϕ(x), G(x)ξ) ∈ Sm(X1) .

2.2 Pseudodifferential operators on manifolds

Given two manifolds M,N , a map f : M → N and a map ρ : N → R we denote with

f ∗ρ : M → R the standard pullback, namely

f ∗ρ(x) = ρ(f(x)), ∀x ∈M .

We define pseudodifferential operators on a compact manifold [83].

Definition 2.2.1. Let M be a compact Riemannian manifold. For m ∈ R, a linear

operator A : C∞
0 (M) → C∞(M) is said to be pseudodifferential of order m if the

following hold

1. if ψ1, ψ2 ∈ C∞(M) have disjoint support, then the kernel of the operator ψ1Aψ2

belongs to C∞(M × M), namely there exists K ∈ C∞(M × M) such that

ψ1Aψ2u =
∫
M
K(x, y)u(y) for any u ∈ C∞

0 (M);

2. for any coordinate system φ : M ⊃ Ω → Rd , if ψ1, ψ2 ∈ C∞
0 (M) has support

in Ω, then the restricted operator ψ1Aψ2 is the pull back of a pseudodifferential

operator of order m. Namely there exists B ∈ OPSm (φ(Ω)) s.t. ∀u ∈ C∞
0 (M)

one has

ψ1Aψ2u|Ω = ψ1φ
∗ (B ((φ−1

)∗
ψ2u

))
(2.2.1)
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We denote with Ψm(M) the set of pseudodifferential operators on M of order m.

Before introducing the seminorms of pseudodifferential operators defined on a

manifold we introduce an equivalent definition [83]. For that, we need a couple of

lemmas.

Lemma 2.2.2. If A : C∞
0 (M) → C∞(M) has smooth kernel KA, then it is smoothing.

Namely, it belongs to Ψ−∞(M) :=
⋂
mΨm(M).

Proof. If ψ1, ψ2 ha disjoint support, clearly the kernel ψ1KAψ2 is smooth, so the first

condition in Def. 2.2.1 is satisfied. The second condition is satisfied as well, since for

any ψ1, ψ2 ∈ C∞
0 the operator B in (2.2.1) has kernel KB = (φ−1 × φ−1)∗KA, thus it

has compact support. This concludes the proof since any smoothing operator with a

compactly supported kernel is a pseudodifferential operator on Euclidean spaces.

Lemma 2.2.3. Let φi : Ui 7→ Rn a local coordinate system onM and B ∈ OPSm(φi(Ui),
then the operator

Au(x) = φ∗
iB
(
φ−1
i

)∗
u(x), x ∈ Ui

is a pseudodifferential operator on M , namely A ∈ Ψm(M).

Proof. Before proving the lemma, we remark that the kernel of A is given by

KA(x, y) = KB (φi(x), φi(y)) , ∀x, y ∈ Ui

In fact, we have, for any x ∈ Ui and writing φi(y) = t,∫
Ui

KA (x, y)u(y)dy = Au(x) =

= φ∗
iB
(
φ−1
i

)∗
u(x) = φ∗

iB
(
u ◦ φ−1

)
=

= B
(
u ◦ φ−1

i

)
(φi(x)) =

∫
φi(Ui)

KB (φi(x), t)u
(
φ−1
i (t)

)
dt =

=

∫
Ui

KB (φi(x), φi(y))u(y)dy .

By similar computations, one prove that, for any ϕ, ψ ∈ C∞(M), the kernel of ϕAψ

is given by

KϕAψ(x, y) = ϕ(x)KB (φi(x), φi(y))ψ(y).

If ϕ, ψ have disjoint support, then KϕAψ is smooth since KB is smooth outside the

diagonal and φi is a diffeomorphism. So the first condition in Def. 2.1.1 is satisfied.
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The second condition is a consequence of the local coordinates invariance stated in

Lemma 2.1.6. In fact, fix j ̸= i and a chart φj such that Ui ∩ Ui ̸= ∅. Then we have

that, for any ψ ∈ C∞(M) with supp(ψ) ⊂ Uj,

ψAψu = φ∗
j

(
B′ ((φ−1

j )
)
ψu
)

with B′ =
(
φ−1
j ◦ φi

)∗
B
(
φ−1
i ◦ φj

)∗ ∈ OPSm (φj(Uj)) and then the second condition

of Def. 2.1.1 is satisfied.

Let {(Ui;φi)}i∈I the atlas of a given manifoldM , it is well known that there exists

a partition of unity {ψi}i∈I subordinate to the atlas, such that

supp(ψi) ⊂ Ui, ∀i ∈ I .

Remark 2.2.4. One can define a partition of unit, subordinate to a given atlas, such

that ∀i, j ∈ I one has

supp(ψj) ∩ supp(ψi) ̸= ∅ =⇒ {∃k ∈ I : supp(ψj) ∩ supp(ψi) ⊂ Uk} . (2.2.2)

The following proposition gives a characterization of pseudodifferential operators

on M .

Proposition 2.2.5. Given an atlas of M , let {ψi} a partition of unity subordinate

to it that moreover satisfies (2.2.2). For each i, j such that supp(ψj) ∩ supp(ψi) ̸= ∅,
let φij : Uij 7→ Rn a local system of coordinates in an open neighborhood of supp(ψj)∩
supp(ψi). Then the operator A : C∞

0 (M) 7→ C∞(M) is pseudodifferential if and only

if, for any i, j, ψiAψj satisfies:

i. if supp(ψj) ∩ supp(ψi) = ∅, then ψiAψj has smooth kernel, i.e. is smoothing;

ii. if supp(ψj) ∩ supp(ψi) ̸= ∅, then ψiAψj has the form

φ∗
ijAij

(
φ−1
ij

)∗
for some Aij ∈ OPS (φij(Uij)) with kernel supported in φij (Uij)× φij (Uij).

Proof. If A is pseudodifferential, then conditions i. and ii. follow directly from Def.

2.2.1. On the other hand, let A be an operator that satisfies i. and ii. If ϕ1, ϕ2 ∈
C∞(M), then we write

ϕ1Aϕ2 =
∑

i,j : supp(ψj)∩supp(ψi)=∅

ϕ1ψiAψjϕ2 +
∑

i,j : supp(ψj)∩supp(ψi )̸=∅

ϕ1ψiAψjϕ2 (2.2.3)
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and we conclude the proof by applying Lemma 2.2.2 and Lemma 2.2.3 to each element

respectively in the first and the second sum.

In particular, we deduce that the composition rule for pseudodifferential operators

directly follows from the composition rule of local pseudodifferential operators.

Lemma 2.2.6. For any A ∈ Ψm(M), B ∈ Ψm′
(M), m,m′ ∈ R, we have A ◦ B ∈

Ψm+m′
(M)

In the last part of this Section, we discuss the notion of the seminorms of a

pseudodifferential operator defined on M . From now on we fix a finite atlas and the

partition of unity {ψi} that satisfies the property (2.2.2). Given P ∈ Ψm(M), we can

write

P =
∑
i,j

ψiPψj =
′∑
ψiPψj +

′′∑
ψiPψj (2.2.4)

where
∑′ indicates the sum over the i, j s.t. supp(ψj) ∩ supp(ψi) ̸= ∅, while

∑′′

indicates the sum over the i, j s.t. supp(ψj) ∩ supp(ψi) = ∅. Following Prop. 2.2.5,

each term in
∑′ is represented in a local coordinate system by a pseudodifferential

operator Pij defined on an open set in Rd and S :=
∑′′ ψiPψj is a smoothing operator,

i.e. with smoothing kernel.

Definition 2.2.7. Fix a partition of unity {ψi} that satisfies (2.2.2). Let P ∈ Ψm(M)

and write P =
∑′ ψiPψj + S as in (2.2.4). For any ν ∈ R, we define the seminorm

of P as

|P |mν := max

{
sup
ij

|Pij|mν , sup
|α|≤ν

|KS|α

}
where |Pij|mν are the seminorms of the local representation of each term ψiPψj and

|KS|α are the usual C∞ seminorms of the smooth kernel of S, defined by |KS|α =

supx,y∈M |DαKs(x, y)|.

Remark 2.2.8. The definition above is well-posed on a compact manifold M since

the C∞ seminorms of KS are bounded.

Remark 2.2.9. The definition of the seminorm depends on the choice of the partition

of unity. For that reason, we assume to fix a partition of unity once and for all.

Remark 2.2.10. Given a function u ∈ C∞(M), the seminorms of the multiplication

operator v 7→ uv are controlled by

|u|s :=
∑
|α|≤s

sup
i

sup
x∈φi(Ui)

∣∣∂αx ((φ−1
i )∗u)(x)

∣∣ .
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2.3 An estimate of commutators

In the following Subsections, we give a key result on the estimate of the commutators

of pseudodifferential operators [47]. We start proving general results for local symbols

and then we will conclude the proof in the case of global operators defined on M . For

simplicity, we state the local results for X = Rn. We deeply thank Jean-Marc Delort

for the private notes shared with us.

2.3.1 Local estimates

We want to prove the following Lemma. For any couple of operators A,P , we use the

notation AdP (A) = [A,P ].

Lemma 2.3.1. There is ν > 0 s.t. for any A ∈ OPS0(Rn) and P1, ..., PN ∈
OPS 1(Rd) one has

∥AdPN
...AdP1A∥B(L2(Rn)) ≤ CN |a|0ν+N . (2.3.1)

for some constant CN = CN(P1, ..., PN).

We start by defining “paradifferential symbols”.

Definition 2.3.2. For δ ∈ (0, 1), we define the class of paradifferential symbols Σm(δ)

as the set of the symbols a ∈ Sm(Rn) s.t.

supp(Fa(η, ξ)) ⊂ {(η, ξ) : |η| ≤ δ⟨ξ⟩}

Here Fa(η, ξ) = â(η, ξ) denotes the Fourier transform of a with respect to the first

variable, namely

â(η, ξ) =
1

(2π)n

∫ n

R
e−iη·xa(x, ξ)dx .

We denote Σm :=
⋃
δ Σ

m(δ).

The following lemma shows that a paradifferential operator of order m is bounded

from Hs(Rn) to Hs−m(Rn). It follows directly from Calderon-Villancourt theorem for

pseudodifferential operators.

Lemma 2.3.3. There exists ν > 0, depending on the dimension d, such that ∀m ∈ R
and ∀a ∈ Σm, the paradifferential operator A is bounded from Hs(Rd) to Hs−m(Rd).

Moreover,

∥A∥B(Hs,Hs−m) ≤ C|a|mν .
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We can approximate pseudodifferential operators with symbols with compact sup-

port in x using paradifferential symbols, up to a smoothing remainder. Consider a

cut-off function χ ∈ C∞
0 such that χ(s) = 1 for |s| < s̄ < 1 and χ(s) = 0 for |s| > 1,

and define, ∀δ ∈ (0, 1),

χδ(s) := χ
(s
δ

)
.

Lemma 2.3.4. Let a ∈ Sm(Rn), compactly supported in x, and define aδ(x, ξ) by

âδ(η, ξ) := χδ

(
η

⟨ξ⟩

)
â(η, ξ)

with ⟨ξ⟩ := (1+|ξ|2)1/2 Then aδ ∈ Σm(δ) and A = Aδ+R with R smoothing. Moreover

∥R∥B(Hs1 ,Hs2 ) ≤ C|a|m(s2)++(m−s1)++ν

for some fixed ν = ν(n) and some C >. Moreover |aδ|ml ≤ |a|ml ∀l ∈ R.

Proof. One checks immediately that by definition

aδ(x, ξ) =

∫
Rn

(
F−1χδ

)
(⟨ξ⟩(x− y)) ⟨ξ⟩δa(y, ξ)dy

and then aδ ∈ Σn(δ). Moreover, one can write explicitly

Ru(x) =
1

(2π)n

∫
Rn

eiξ·x(a− aδ)(x, ξ)û(ξ)dξ

and thus

(̂Ru)(η) =
1

(2π)n

∫
Rn

â(η − ξ, ξ)(1− χδ)

(
η − ξ

⟨ξ⟩

)
û(ξ)dξ .

Denoting q+ = max(q, 0), we can write, for any s1, s2 ∈ R,

⟨η⟩s2 (̂Ru)(η) = 1

(2π)n

∫
Rn

b(ξ, η)(1− χδ)

(
η − ξ

⟨ξ⟩

)[
⟨η⟩s2⟨ξ⟩m−s1

⟨ξ − η⟩(s2)++(m−s1)+

]
⟨ξ⟩s1û(ξ)dξ

(2.3.2)

with b(x, ξ) = â(η − ξ, ξ)⟨ξ⟩−m⟨ξ − η⟩(s2)++(m−s1)+ . First, note that on the support of

(1− χδ)
(
η−ξ
⟨ξ⟩

)
one has |η − ξ| ≥ c(|ξ| + |η| + 1) for some positive constant and thus

the square bracket in (2.3.2) is bounded by a constant. Then, since a is compactly

supported in x, one has also |â(η − ξ, ξ)⟨ξ⟩−m| ≤ C|a|mρ ⟨ξ − η⟩−ρ for ρ large enough.

Choosing ρ = (s2)++(m−s1)++ν, with ν large enough depending on the dimension,
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we can conclude that

∥⟨D⟩s2Ru∥L2 ≤ c|a|mρ · ∥⟨D⟩s1u∥L2 .

In the next Lemma, we describe calculus for paradifferential symbols.

Lemma 2.3.5. There exists ν = ν(n) > 0 such that, for any a ∈ Σm(δ), b ∈ Σm′
(δ)

with δ < 1
3
and any N ≥ 1, there are symbols

cj ∈ Σm+m′−j(3δ), ∀j = 0, . . . , N − 1,

rN ∈ Σm+m′−N(3δ)

such that

Op(a)Op(b) =
N−1∑
j=0

Op(cj) +Op(rN).

In particular c0 = ab and for any l ∈ N,

|cj|m+m′−j
l ≤ C|a|ml+j|b|m

′

l+j

|rN |m+m′−N
l ≤ C|a|ml+N+ν |b|m

′

l+N+ν .
(2.3.3)

for some positive constant C.

Proof. We start noting that Op(a)Op(b) = Op(c) with

c(x, ξ) =
1

(2π)n

∫
Rn×Rn

e−iy·ηa(x, η − ξ)b(x− y, ξ)dy dη . (2.3.4)

By the assumptions on a and b, we can deduce that the integrand in

ĉ(ζ, ξ) =
1

(2π)n

∫
Rn

â(ζ + η, ξ − η)b̂(−η, ξ)dη .

is supported in the intersection of |ζ+η| ≤ δ⟨ξ−η⟩ and |η| ≤ δ⟨ξ⟩. Thus, the support
of ĉ is contained in |η| ≤ 3δ⟨ξ⟩, namely, c is a paradifferential symbol. Moreover, we

can insert a cut-off function χ̃δ

(
η
⟨ξ⟩

)
in the integral (2.3.4), with χ̃δ ∈ C∞

0 and χ̃δ ≡ 1

in a neighborhood of zero. Inserting the Taylor expansion

a(x, ξ − η) =
∑

|α|≤M−1

(−η)α

α!
∂αξ a(x, ξ) +M

∑
|α|=M

(−η)α

M !

∫ 1

0

∂αξ a(x, ξ − tη)dt
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in (2.3.4) and recalling that we can add the function χ̃δ, we get terms of the form

1

(2π)n

∫
Rn

e−iy·ηχ̃δ

(
η

⟨ξ⟩

)
(−η)α

α!
b(x− y, ξ)dη dy∂αξ a(x, ξ) =

=
1

α!
Dα
ξ a(x, ξ)∂

α
x b(x, ξ)

Thus, we can define cj(x, ξ) =
∑

|α|=j
1
α!
Dα
ξ a(x, ξ)∂

α
x b(x, ξ). It remains to deal with

the remainder. Its symbol is given by

rM(x, ξ) =M
∑

|α|=M

1

(2π)n

∫ ∫ 1

0

(−η)α

M !
e−iy·ηχ̃δ

(
η

⟨ξ⟩

)
∂αξ a(x, ξ − tη)b(x− y, ξ)dy dη dt =

=M
∑

|α|=M

(−)|α|

(2π)n

∫ ∫ 1

0

e−iy·ηχ̃δ

(
η

⟨ξ⟩

)
∂αξ a(x, ξ − tη) ((i∂x)

αb) (x− y, ξ)dy dη dt

Integrating by parts ν times (with ν depending on the dimension) in y and η, there

appear factors ⟨η⟩−d−1⟨y⟩−d−1, so that the integral is absolutely convergent. This

shows rN ∈ Σm+m′−N(3δ) with estimates (2.3.3).

The next corollary follows writing explicitly [A,B] = AB − BA and applying

Lemma 2.3.5.

Corollary 2.3.6. There exists ν = ν(n) > 0 such that, for any a ∈ Σm(δ), b ∈ Σm′
(δ)

with δ < 1
3
and any N ≥ 1 there are symbols

cj ∈ Σm+m′−j(3δ), j = 1, . . . , N − 1,

rN ∈ Σm+m′−N(3δ)

such that

[A,B] =
N−1∑
j=1

Op(cj) +Op(rN),

and, ∀l ∈ N,
|cj|m+m′−j

l ≤ C|a|ml+j|b|m
′

l+j

|rn|m+m′−N
l ≤ C|a|ml+N+ν |b|m

′

l+N+ν .

It follows that [A,B] ∈ Σm+m′−1(3δ).

In the next Lemma and Corollary, we deduce from Lemma 2.3.4 that one can

prove Lemma 2.3.1 restricting the analysis on paradifferential symbols.
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Remark 2.3.7. In the following, we will use a compact notation: for any k ≥ 1,

given J = (j1, ..., jk) with ji ∈ {1, 2, . . . , N} for any 1 ≤ i ≤ k and ji > jl if i > l, we

will write

P J := PjkPjk−1
...Pj1 P̄ J := Pj1Pj2 ...Pjk .

Lemma 2.3.8. Let P1, . . . , PN ∈ OPS1(Rn), A ∈ OPS0(Rn) and denote Pi,δ =

(Pi)δ,∀i = 1, . . . , N and Aδ the approximated operators defined in Lemma 2.3.4. Then,

one has

∥∥AdPN,δ
...AdP1,δ

Aδ − AdPN
...AdP1A

∥∥
B(L2(Rn))

≤ CN |a|0ν+N (2.3.5)

for CN = CN(P1, ..., PN)

Proof. The difference in (2.3.5) is a sum of terms of the form

AdP̃N
...AdP̃1

Ã

where at least one of P̃i or Ã is equal to, respectively, Pi − Pi,δ or A − Aδ. Thus,

we consider terms of the form P J(A − Aδ)P̄
K , for some J = (j1, . . . , jN1) and K =

(k1, . . . , kN2) with N = N1 +N2.

We claim that, for any u ∈ L2,

∥∥P J(A− Aδ)P̄
Ku
∥∥
L2 ≤ C|a|0ν+N .

In fact, following Lemmas 2.3.3 and 2.3.4, we have∥∥P J(A− Aδ)P̄
Ku
∥∥
L2 ≤ C

∥∥(A− Aδ)P̄
Ku
∥∥
Hs−N1

≤

≤ C|a|0N+ν

∥∥P̄Ku
∥∥
H−N2

≤ C|a|0N+ν∥u∥L2

with C = C(P1, . . . , PN).

Similarly, one proves that terms in which at least one Pi−Pi,δ satisfy estimate (2.3.1),

and thus the thesis follows.

Corollary 2.3.9. Let P1, . . . , PN ∈ OPS1(Rn), A ∈ OPS0(Rn) and denote Pi,δ =

(Pi)δ,∀i = 1, . . . , N and Aδ the approximated operators. If

∥∥AdPN,δ
...AdP1,δ

Aδ
∥∥
B(L2(Rn))

≤ CN |a|0ν+N

then the thesis of Lemma 2.3.1 holds true.

In the next lemma, we prove the key estimate that allows us to prove (2.3.5). We
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will write A ≲ B if there exists a constant, depending only on P1, . . . , PN , such that

A ≤ C ·B.

Lemma 2.3.10. There exists ν > 0 with the following property: for any k = 1, ..., N

one has

AdPk,δ
...AdP1,δ

Aδ =
N−k−1∑
j=0

Op(akj ) +Rk , (2.3.6)

where akj ∈ Σ−j with, ∀1 ≤ j ≤ N − k,

∣∣akj ∣∣−jl ≲ |a|0l+k+j , ∀l ∈ N , (2.3.7)

Rk are operators of the form

Rk =
∑

|J1|+|J2|≤k−1

P J1
δ Op(rkJ1,J2)P̄

J2
δ (2.3.8)

with rkJ1,J2 ∈ Σ−N+k−|J1|−|J2| fulfilling

∣∣rkJ1J2∣∣−N+k−|J1|−|J2|
l

≲ |a|0l+N+ν , ∀l ∈ N. (2.3.9)

Proof. From Lemma 2.3.6, we have that, ∀b ∈ Σm, p ∈ Σ1 and for all M ∈ N,

[P,B] =
M−1∑
i=0

Op(ci) +Op(rM) (2.3.10)

with ci ∈ Σm−i, rM ∈ Σm−M and

|ci|m−i
l ≲ |b|ml+i+1,

|rM |m−M
l ≲ |b|ml+M+1+ν , ∀l ∈ N

for some ν that depends on the dimension.

We prove the result inductively on k.

For k = 1, we apply (2.3.10) with M = N − 1, B = Aδ and we get

[P1,δ, Aδ] =
N−2∑
j=0

Op(cj) +Op(rN−1)

which is the thesis denoting a1j = cj and r10,0 = rN−1 (since k = 1, must be |j1| =
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|j2| = 0). In fact, we have

|a1j |
−j
l ≲ |a|0l+j+1

|r10,0|−N+1
l ≲ |a|0l+N+ν .

Suppose the thesis is true for k, that is

AdPk,δ
...AdP1,δ

Aδ =
N−k−1∑
j=0

Op(akj ) +Rk

with

Rk =
∑

|J1|+|J2|≤k−1

P J1
δ Op(rkJ1,J2)P̄

J2
δ

and
|akj |

−j
l ≲ |a|0l+k+j

|rk|J1,J2|
−N+k−|J1|−|J2|
l ≲ |a|0l+N+ν , ∀l ∈ N.

(2.3.11)

Then, we compute

AdPk+1,δ
AdPk,δ

...AdP1,δ
Aδ = [Pk+1.δ,

N−k−1∑
j=0

Op(akj )] + [Pk+1,δ, Rk] =

=
N−k−1∑
j=0

[Pk+1,δ, Op(a
k
j )] + [Pk+1,δ, Rk]

For each term term [Pk+1,δ, Op(a
k
j )], we apply (2.3.10) with M = N − k − j − 1 and

B = Op(akj ). So, we can write

[Pk+1,δ, Op(a
k
j )] =

N−k−l−2∑
i=0

Op(cji ) +Op(rjM) (2.3.12)

where cji ∈ Σ−i−j and rjM ∈ Σ−M−j, and moreover

|cij|
−i−j
l ≲ |akj |

−j
l+1+i ≲

(2.3.11)

|a|0l+i+j+(k+1)

|rjM |−M−j
l = |rjM |−N+(k+1)

l ≲ |akj |
−j
l+N−k−j+ν ≲

(2.3.11)

|a|0l+N+ν .
(2.3.13)
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Collecting the terms [Pk+1,δ, Op(a
k
j )], we get

AdPk+1,δ
AdPk,δ

...AdP1,δ
Aδ =

N−k−1∑
j=0

[Pk+1,δ, Op(a
k
j )] + [Pk+1,δ, Rk] =

=
N−k−1∑
j=0

(
N−k−j−2∑

i=0

Op(cji ) +Op(rjM)

)
+ [Pk+1,δ, Rk]

with cji defined in (2.3.12).

We define

ak+1
j :=

N−k−j−2∑
i=0

cj−ii

with the convention that czi = 0 if z < 0 and we get (notice that each ak+1
j is the sum

of terms with the same order)

|cj−ii |−i−(j−i)
l ≲

(2.3.1)

|a|0l+i+j−i+(k+1) = |a|0l+j+(k+1) (2.3.14)

and then, since j = i− (i− j),

|ak+1
j |−jl ≤

N−k−j−2∑
i=0

|cj−ii |−jl ≲
(2.3.14)

N−k−j−2∑
i=0

|a|0l+j+(k+1) ≤ C|a|0l+j+(k+1) .

Moreover, noticing that the term corresponding to j = N − k − 1 in the sum (2.3.1)

is equal to zero since N − k − j − 2 = N −K −N +K + 1− 2 = −1, we can write

N−k−1∑
j=0

N−k−j−2∑
i=0

Op(cji ) =
N−k−2∑
j=0

ak+1
j

and we get the first part of the thesis.

We pass to consider the terms Op(rjM). Notice that, fromM = N−k− j−1, we have

−M − j = −N + k+ j + 1− j. Then rjM ∈ Σ−N+(k+1), ∀j = 0, . . . , N − k− 1 and we

can consider
∑N−k−1

j=0 Op(rjM) as a term in Rk+1, with |J1| = |J2| = 0. The estimate

|rjM |−N+(k+1)
l ≲ |a|0l+N+ν

follows from (2.3.1). It remains to consider the term [Pk+1,δ, Rk]. For Pk+1,δRk, we
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have, denoting J̄ = (J1, 1),

Pk+1,δRk =
∑

|J1|+|J2|≤k−1

P J1
δ Op(rkJ1,J2)P̄

J2
δ =

=
∑

|J̄ |+|J2|≤k

P̄ J
δ Op(r

k+1
J̄ ,J2

)P̄ J2
δ

with rk+1
J̄ ,J2

:= rkJ1,J2 and then

|rk+1
J̄ ,J2

|−N+(k+1)−|J̄ |−|J2|
l =

(|J̄ |=|J1|+1)
|rkJ1,J2|

−N+k−j1−j2
l ≲

(2.3.11)

|a|0l+N+ν .

We reason similarly for RkPk+1,δ and we get the thesis.

Proof of Lemma 2.3.1 . Applying Lemma 2.3.10 with K = N , we get

AdPN,δ
...AdP1,δ

Aδ = RN =
∑

|J1|+|J2|≤N−1

P J1
δ Op(rNJ1,J2)P̄

J2
δ ,

with |rNJ1,J2|
−|J1|−|J2|
l ≲ |a|0l+N+ν . Applying Lemma 2.3.3 we get, for any u ∈ L2(Rn),

∥∥P J1
δ Op(rNJ1,J2)P̄

J2
δ u
∥∥
L2 ≲ CN |r|−|J1|−|J2|

l ≲ CN |a|0l+N+ν .

From Lemma 2.3.8, we get the thesis.

2.3.2 Global estimate

In this Section, we prove a global version of Lemma 2.3.1, in the special case of an

operator that is simply the multiplication with a function f ∈ C∞(M). We still

indicate with f this operator and we use the notation

Ad0P (f) := f and AdkG(P ) := [Adk−1
P (f), P ] for k ≥ 1

Lemma 2.3.11. Let M be a Riemannian manifold endowed by an atlas as above.

There exists ν s.t. for any P ∈ Ψ1(M) and any N ∈ N there exist constants CN =

CN(P ) with the property that for any f ∈ C∞(M) one has

∥∥AdNP f∥∥B(L2(M))
≤ CN |f |N+ν . (2.3.15)

Proof. Consider a partition of unity with the property (2.2.2) and decompose P ac-
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cording to (2.2.3)

P =
′∑
φ∗
ijPij(φ

−1
ij )

∗ + S =
′∑
P̃ij + S

where φij are local coordinates, Pij are local pseudodifferential operators and S is

smoothing. Let’s deal firstly, for simplicity, with the case N = 1. We have

AdPf = [P, f ] =
′∑
[φ∗
ijPij(φ

−1
ij )

∗, f ] + [S, f ] .

The estimate for the term involving S is obvious since it is smoothing, namely we

have

∥[S, f ]∥B(L2(M)) ≤ CS|f |0ν

for some ν depending on the dimension. For the other term we have, for any u ∈
C∞(M),

[φ∗
ijPij(φ

−1
ij )

∗, f ]u = [Pij, (φ
−1
ij )

∗f ](φ−1
ij )

∗u,

then we can take profit of (2.3.1) applied to each Pij and we get the thesis.

For N > 1, we need to control terms that involve AdS and terms that do not involve

S. A term that involves S is a linear combination of terms of the form

P̃i1j1 ...P̃iljlfP̃il+1jl+1
...P̃il+kjl+k

Su ,

with l + k ≤ N1. Thus the norm of this object is estimated by

∥∥Pi1j1 ...PiljlfPil+1jl+1
...Pil+kjl+k

Su
∥∥
B(L2)

≤ ∥Pi1j1 ...Piljl∥B(Hν1+l,L2)∥f∥ν1+l

×
∥∥Pil+1jl+1

...Pil+kjl+k

∥∥
B(Hν1+l+k,Hν1+l)∥Su∥Hν1+l+k

≤ C(P )|bf |ν1+N−1∥u∥L2 .

For terms that do not involve S, we have that they contain operators localized on the

same chart. Then, reasoning as in the case N = 1, we are lead to consider terms of

the form

AdPi1j1
. . . AdPiN jN

(φ−1)∗f.

Note that the local coordinate φ does not depend on iljl, since we are considering

elements of the partition with mutual nonempty support. Then we can apply again

(2.3.1) and get the thesis.
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2.4 Sobolev spaces

In this Section we introduce Sobolev spaces on compact manifolds in a slightly different

way with respect to more classical formulations [83]. Essentially, we define the Sobolev

spaces on M so that the boundedness of pseudodifferential operators is trivial, and

then we check that we recover the standard definition, using elliptic operators and

proving that those spaces are Hilbert spaces. To do this, we exploit Fredholm property

of elliptic operators, which we briefly recall later on.

Theorem 2.4.1. Any A ∈ Ψ0(M) extends by continuity to a bounded operator

A : L2(M) 7→ L2(M) .

Proof. Following (2.2.4), for any partition of unity {ψi} subordinate to the atlas of

M , we write

A =
∑
i,j

ψiAψj =
′∑
ψiAψj + S

so that ψiAψj is represented in local coordinates by a pseudodifferential operator

on Rn and S is smoothing. Then the result follows from the L2 boundedness of

pseudodifferential operators on Rn.

We define Sobolev spaces as imposing boundedness of any pseudodifferential op-

erator of any order.

Definition 2.4.2. For any s ∈ R, set

Hs(M) :=
{
u ∈ C∞(M) : Au ∈ L2(M) ∀A ∈ Ψs(M)

}
. (2.4.1)

Remark 2.4.3. For any A ∈ Ψs(M) we have

u ∈ L2(M) =⇒ Au ∈ H−s(M) . (2.4.2)

In fact, from the composition rule of pseudodifferential operators, BA ∈ Ψ0(M) for

any B ∈ Ψ−s, and then from Theorem 2.4.1 it follows that BAu ∈ L2. Then Au ∈
H−s(M) by our definition of Sobolev spaces.

To recover the usual definition of Sobolev spaces, we need to recall the notion of

parametrix for elliptic operators.
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Definition 2.4.4. We say that A ∈ Ψm(M) is elliptic if there exists B ∈ Ψ−m(M)

such that AB − Id ∈ Ψ−∞(M), namely if it is invertible modulo a smooth remainder

with an inverse of order -m.

Remark 2.4.5. For any manifold M , there exist elliptic operators of any order s, for

example the operator Ps with local symbols (1 + |ξ|2) s
2 .

The ellipticity of an operator implies also the existence of a left-inverse, that is the

left parametrix. The following lemma is proved in [83], using the theory of principal

symbols.

Lemma 2.4.6. For any elliptic P ∈ Ψm(M) there exists a left parametrix, namely

an operator Q ∈ Ψ−s(M) such that

QP − Id ∈ Ψ−∞(M)

Theorem 2.4.7. For any m ∈ R, every A ∈ Ψm(M) extends by continuity to a

bounded operator

A : Hs(M) 7→ Hs−m(M) .

Moreover, if A ∈ Ψm(M) is elliptic then

Au ∈ Hs(M) =⇒ u ∈ Hs+m(M) . (2.4.3)

Proof. Let Ps ∈ Ψs(M) elliptic and Qs ∈ Ψ−s(M) its parametrix. Then for any

A ∈ Ψm(M) we can write

A = A ◦ Id = AQsPs +G

for some G smoothing. Then, since by composition rule AQs ∈ Ψm−s(M), the proof

follows from (2.4.1) and (2.4.2). In fact, we observe that

Hs(M) −→
Ps

L2(M) −→
AQs

Hs−m(M) .

Let now A ∈ Ψm(M) elliptic and suppose Au ∈ Hs(M). Then, denoting with Q the

parametrix of A, we have again

QA = Id+G

for some smoothing operator G and then u ∈ Hs+m easily follows.
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In particular, from (2.4.3) it follows that in the definition of Sobolev spaces, we

can reduce to consider any elliptic operator.

Remark 2.4.8. Definition (2.4.1) is equivalent to

Hs(M) := {u ∈ C∞(M) : Pu ∈ Ls(M)}

for some elliptic operator P ∈ Ψs(M).

The last equivalent definition allows us to prove that Hs(M) are indeed Hilbert

spaces. To do this, we exploit the Fredholm property of elliptic operators. See [51, 52]

for further readings on Fredholm theory.

Definition 2.4.9. Given two Banach spaces X, Y , a bounded operator A : X → Y is

Fredholm if ker(A) and coker(A) = Y/Im(A) are finite-dimensional. In particular,

we define

ind(A) = dim (ker(A))− dim (coker(A))

Remark 2.4.10. Denoting A∗ the adjoint of A, one has

ind(A∗) = −ind(A) . (2.4.4)

Before proving that Hs(M) is a Hilbert space, we recall the following well-known

result.

Lemma 2.4.11. An elliptic operator A ∈ Ψm(M), A : C∞(M) 7→ C∞(M) is Fred-

holm.

Theorem 2.4.12. Fix s > 0. For any compact manifold M , there exists an elliptic

operator Bs ∈ Ψs(M) such that

Hs(M) = {u ∈ C∞(M) : Bsu ∈ Ls ∈} ,

with ∥u∥Hs = ∥Bsu∥L2, is a Hilbert space.

Proof. Let P ∈ Ψs/2(M) elliptic and define

Bs = P ∗P + Id ∈ Ψs(M)

where P ∗ denotes the adjoint operator. To complete the proof, it remains to prove

that ∥·∥Hs is indeed a norm induced by a complete inner product. To do this, we

prove that Bs is an isomorphism on C∞(M).
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First, note that Bs is elliptic, and then Fredholm and it is selfadjoint by definition.

Let u ∈ C∞(M) and suppose u ∈ ker(Bs). Then we have,

Bsu = 0 =⇒ ⟨Pu, Pu⟩+ ∥u∥2L2 = 0

that implies u = 0. Since Bs is self-adjoint, the same is true for B∗
s . Then from (2.4.4)

it follows that dim (coker(Bs)) = 0, thus it is invertible.

Remark 2.4.13. For any s > 0, the negative Sobolev space H−s(M) is defined by

duality through the L2 pairing H−s(M)×Hs(M) → C.
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Chapter 3

Globally integrable quantum

systems

In this Chapter, we recall the notion of globally integrable quantum system, introduced

in [12]. Informally, it is a linear operator that can be written as a function of some

first order pseudodifferential operators, thereby called the quantum actions. Similar

systems, usually denoted as toric integrable systems, were widely studied in the liter-

ature [92, 93]. Then we prove a couple of properties of quantum integrable systems:

the localization of the eigenfunctions of the actions and the separation of their joint

spectrum1. In Chapter 6, we will provide some examples of manifolds on which the

Laplacian is a globally integrable quantum system on which we will concentrate later

on in the work.

3.1 Globally integrable quantum systems

Let (M, g) be a compact Riemannian manifold of dimension n, denote by Ψm(M) the

space of pseudodifferential operators.

Definition 3.1.1 (System of Quantum Actions). Let {Ij}j=1,...,d be d selfadjoint

pseudo-differential operators of order 1, fulfilling

i. Ij ∈ Ψ1(M), for any j = 1, . . . , d;

ii. [Ii, Ij] = 0, for any i, j = 1, . . . , d;

iii. there exists a constant c1 > 0 such that c1
√

1−∆g ≤
√

1 +
∑d

j=1 I
2
j .

We refer to (I1, ..., Id) as the quantum actions.

1see Def. 3.1.2

43



Definition 3.1.2. The joint spectrum Λ of the operators Ij is defined as the set of

a = (a1, . . . , ad) ∈ Rd s.t. there exists ψa ∈ L2(M) with ψa ̸= 0 and

Ijψa = ajψa , ∀j = 1, ..., d .

Definition 3.1.3. A linear selfadjoint operator HL will be said to be the Hamiltonian

of a globally integrable quantum system if there exists a function hL ∈ C∞(Rd,R)
such that

HL = hL(I1, . . . , Id)

where the operator function is spectrally defined.

Remark 3.1.4. Systems fulfilling Definition 3.1.3 with the further property that the

multiplicity of common eigenvalues (a1, ..., ad) of the actions is 1 were called toric

integrable quantum systems [92].

Remark 3.1.5. In the definition of global integrable quantum systems, we do not

require the number of actions d to be the dimension of the manifold.

If HL = hL(I) is the Hamiltonian of a globally integrable quantum system, then

its eigenvalues are

ωa := hL(a
1, ..., ad) ≡ hL(a) , a ≡ (a1, ..., ad) ∈ Λ .

We denote with Σ = {ωa}a∈Λ the spectrum of HL and we introduce the spectral

projectors and the relative orthogonal decomposition of functions.

Definition 3.1.6. For a ≡ (a1, . . . , ad) ∈ Λ,

Πa := Πa1 . . .Πad

where Πaj is the orthogonal projector on the eigenspace of Ij with eigenvalue aj. Given

u ∈ L2(M,C), we will consider its spectral decomposition

u =
∑
a∈Λ

Πau .

Remark 3.1.7. By spectrally defined, we mean that one has

HLψa = hL(a)ψa
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for any a ∈ Λ. Then, for a general u ∈ L2(M), we have

HLu = HL

∑
a∈Λ

Πau =
∑
a∈Λ

ωaΠau .

Example 3.1.8. An easy example of a global integrable quantum system is the Lapla-

cian defined on the torus Td. In fact, given the family of actions Ij = −i∂j and the

function hL : Rd 7→ R, hL(ξ) = |ξ|2, one has

hL(I1, . . . , Id) =
d∑
j=1

∂2j .

3.1.1 Projectors and Sobolev spaces

We begin introducing an order based on the value of the frequencies. This order is

equivalent to the one given by the length of the vectors in Λ (see Remark 3.1.10). We

prefer to use the one based on the frequencies since it is more suitable in the analysis

of the normal form dynamics.

Definition 3.1.9. Assume there exist constants C,C ′ and β, with β > 1, s.t.

∣∣ωa − C|a|β
∣∣ ≤ C ′ .

For any a ∈ Λ, we define

JaK := ω
1
β
a . (3.1.1)

Remark 3.1.10. There exist two constants C1, C2 > 0 s.t. for any 0 ̸= a ∈ Λ

C1|a| ≤ JaK ≤ C2|a| .

where, for a vector a ∈ Λ, we denote |a| :=
√∑d

j=1(a
j)2 its Euclidean norm.

Definition 3.1.11. Given a multi-index a = (a1, . . . , ar), we denote by τord the per-

mutation of (1, ..., r) with the property that

Jaτord(j)K ≥ Jaτord(j+1)K ,∀j = 1, ..., r − 1 . (3.1.2)

Definition 3.1.12. Given a multi-index a = (a1, . . . , ar), we denote

µ(a) := Jaτord(3)K, (3.1.3)

S(a) := µ(a) + |aτord(1) − aτord(2)|. (3.1.4)

45



Before stating the main result of this subsection, we define Sobolev spaces on M .

Definition 3.1.13. For any s ≥ 0, the space Hs := Hs(M) is the space of the

functions u ∈ L2(M,C) s.t.

∥u∥2s :=
∑
a∈Λ

(1 + |a|)2s∥Πau∥2L2 <∞ .

For s < 0, Hs is the completion of L2 in the norm (3.1.13). In view of Remark

3.1.10, the norm (3.1.13) is equivalent to

∥u∥2s =
∑
a∈Λ

(1 + JaK)2s∥Πau∥2L2

Remark 3.1.14. By (i.) and (iii.) of Def. 3.1.1, for any s the norm (3.1.13) is

equivalent to the standard Sobolev norm∥∥∥(Id−∆)
s
2 u
∥∥∥
L2(M,C)

,

Then, the spaces Hs are equivalent to the standard Sobolev spaces Hs(M,C).

3.2 Spectral properties

In this Section, we study two important properties of quantum integrable systems.

Firstly, we prove a localization property for the product of the eigenfunctions; this

result will inspire later the definition of a class of polynomials (see Def. 4.1.8 and

properties below). Then, assuming that the function hL fulfills some generic condi-

tions, namely steepness and homogeneity, we will deduce, following the results in [12],

that the frequencies {ωa}a∈Λ satisfy the Bourgain’s clusterization property.

3.2.1 Localization of the eigenfunctions

In this subsection, we will prove the following result.

Theorem 3.2.1. There exists ν > 0, depending on k and the dimension d, and

∀N ∈ N there exists a constant CN such that, ∀u1, . . . , uk ∈ L2(M),

∣∣∣∣∫
M

Πa1u1 . . .Πakuk

∣∣∣∣ ≤ CN
µ(a1, . . . , ak)

N+ν

S(a1, . . . , ak)N

k∏
l=1

∥Πalul∥0 (3.2.1)

for any (a1, . . . , ak) ∈ Λk, where Πai are the projectors defined in (3.1.6).
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The strategy of the proof is very similar to one of the corresponding results in

[48, 6, 46]; the difference being that the indexes run over the set Λ related to the

quantum actions. We recall the main steps and we write the proof of the new lemmas.

First, define, for any N ∈ N,

AdNP (B) = [AdN−1
P (B), P ] , Ad0P (B) = B .

Recalling Remark 2.2.10, we can restate Lemma 2.3.11 exploiting the Sobolev norm

of the function f .

Lemma 3.2.2. There exists ν s.t. for any P ∈ Ψ1(M) and any N ∈ N there exist

constants CN = CN(P ) with the property that for any f ∈ C∞(M) one has

∥∥AdNP f∥∥B(L2(M))
≤ CN∥f∥N+ν .

Given a = (a1, . . . , ad) ∈ Λ, we denote with l∗(a) the index for which |al| is

maximum. Namely,

l∗(a) := argmax
l=1,...,d

∣∣al∣∣ . (3.2.2)

Lemma 3.2.3. Let B ∈ B (L2(M)) and a, b ∈ Λ. For any N ≥ 0 and u1, u2 ∈ H∞

we have

|⟨BΠau1,Πbu2⟩| ≤ CN

∥∥adNIl∗ (B)
∥∥
B(L2(M))

|a− b|N
∥Πau1∥0∥Πbu2∥0 .

with l∗ = l∗(a− b).

Proof. First we claim that, for any l = 1, . . . , d,

|⟨BΠau1,Πbu2⟩| ≤ CN

∥∥adNIl (B)Πau1
∥∥
0

|al − bl|N
∥Πbu2∥0 . (3.2.3)

For N = 1, recalling that the actions Ij are selfadjoint, we have

⟨AdIl(B)Πau1,Πbu2⟩ = |⟨BIlΠau1,Πbu2⟩ − ⟨IlBΠau1,Πbu2⟩|

= |⟨BIlΠau1,Πbu2⟩ − ⟨BΠau1, IlΠbu2⟩|

=
∣∣al⟨BΠau1,Πbu2⟩ − bl⟨BΠau1,Πbu2⟩

∣∣
=
∣∣al − bl

∣∣ |⟨BΠau1,Πbu2⟩| .

Then, by induction on N, and replying the case N=1 with B replaced by adN−1
Il

(B),
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we get

⟨AdNIl (B)Πau1,Πbu2⟩ = ⟨AdIl
(
AdN−1

Il
(B)
)
Πau1,Πbu2⟩

= |al − bl|⟨AdN−1
Il

(B)Πau1,Πbu2⟩ = |al − bl|N⟨BΠau1,Πbu2⟩ .

This means that

|⟨BΠau1,Πbu2⟩| =
|⟨adNIl (B)Πau1,Πbu2⟩|

|al − bl|N
.

Then, by Cauchy-Schwartz inequality, it follows that the claim (3.2.3) holds. Choosing

l = l∗(a− b) defined in (3.2.2) and exploiting the trivial inequality

|a| ≤
√
d
∣∣al∗∣∣ ,

we get the thesis.

Proof of Theorem 3.2.1. We first prove the theorem for k = 3. Without loss of gen-

erality, we can assume JaK ≥ JbK ≥ JcK. We distinguish two cases.

If JcK ≤ 2|a− b|, we apply Lemma 3.2.2 with f = Πcu3 and P = Il∗(a−b) and we get

∥∥AdNIl∗ (Πcu3)
∥∥
B(L2(M))

≤ CN∥Πcu3∥N+ν ≤ CNJcKN+ν∥Πcu3∥0 .

To get the thesis we apply Lemma 3.2.3. We have

∣∣∣∣∫ Πau1Πbu2Πcu3

∣∣∣∣ ≤
∥∥AdNIl∗ (Πcu3)

∥∥
B(L2(M))

|a− b|N
∥Πau1∥0∥Πbu2∥0

≤ CN
JcKN+ν

|a− b|N
∥Πau1∥0∥Πbu2∥0∥Πcu3∥0 ,

for some constant CN depending on Ij and N . Finally, we observe that

JcKN+ν

|a− b|N
≤ 3N

JcKN+ν

(JcK + |a− b|)N
,

since JcK ≤ 2|a− b|.
If JcK > 2|a− b|, then

2

3
≤ µ(a, b, c)

S(a, b, c)
≤ 1 . (3.2.4)
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In this case, we exploit the Sobolev embedding Hd/2 ↪→ L∞ and we get∣∣∣∣∫ Πau1Πbu2Πcu3

∣∣∣∣ ≤ ∥Πcu3∥L∞∥Πau1∥0∥Πbu2∥0

≤ Cs0∥Πcu3∥s0∥Πau1∥0∥Πbu2∥0
≤ Cs0JcK

s0∥Πcu3∥0∥Πau1∥0∥Πbu2∥0
(3.2.4)

≤ CN
µ(a, b, c)N+ν

S(a, b, c)N
∥Πau1∥0∥Πbu2∥0∥Πcu3∥0 ,

with ν = s0.

We consider now the general case concerning k eigenfunctions, assuming for simplicity

that Ja1K ≥ Ja2K ≥ Ja3K are the largest indexes (with respect to the order induced by

J·K).
If Ja3K ≤ 2|a1 − a2|, we reason as in the first case, with f = Πa3u3 . . .Πakuk the

multiplication operator. In particular, we bound

∥Πa3u3 . . .Πakuk∥N+ν ≤
k∑
l=3

(
∥Πalul∥N+ν

∏
n̸=l

∥Πanun∥s0
)

≤
k∑
l=3

(
JalKN+ν∥Πalul∥0

∏
n̸=l

|an|s0∥Πanun∥0
)

≤ CNJa3KN+ν∥Πa3u3∥0
k∏
l=3

JalKs0∥Πalul∥0

≤ CNµ(a1, . . . , ak)
N+ν+s0

k∏
l=3

∥Πalul∥0 .

Then we get the thesis applying again Lemmas 3.2.2 and 3.2.3, with ν replaced by

ν + s0. If Ja3K > 2|a1 − a2|, again we take profit of Sobolev embedding. Namely, we

compute

∣∣∣∣∫ Πa1u1Πa2u2 . . .Πakuk

∣∣∣∣ ≤ ( k∏
l=3

∥Πalul∥∞
)
∥Πa1u1∥0∥Πa2u2∥0

≤
( k∏
l=3

JalKs0∥Πalul∥s0
)
∥Πa1u1∥0∥Πa2u2∥0

≤ Ja3K(k−2)s0

k∏
l=1

∥Πalul∥0 ,

and we observe that (3.2.4) holds as above.
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3.2.2 Separation of the eigenvalues

In this subsection, we prove that the eigenvalues of a global integrable quantum system

fulfill a notable partition, as long as the Hamiltonian function is steep and homoge-

neous.

Definition 3.2.4. A function hL ∈ C∞(Rd;R) is said to be homogeneous of degree d

at infinity if there exists an open ball Br ∈ Rd, centered at the origin, such that,

hL(λa) = λdhL(a), ∀λ > 0

for any a ∈ Rd \ Br;

We recall the definition of steepness [68].

Definition 3.2.5 (Steepness). Let U ⊂ Rd be a bounded connected open set with

nonempty interior. A function hL ∈ C1(U), is said to be steep in U with steep-

ness radius r, steepness indices α1, . . . , αd−1 and (strictly positive) steepness coeffi-

cients B1, . . . , Bd−1, if its gradient υ(a) := ∂hL
∂a

(a) satisfies the following estimates:

inf
a∈U

∥υ(a)∥ > 0 and for any a ∈ U and for any s dimensional linear subspace M ⊂ Rd

orthogonal to υ(a), with 1 ≤ s ≤ d− 1, one has

max
0≤η≤ξ

min
u∈M :∥u∥=1

∥ΠMυ(a+ ηu)∥ ≥ Bsξ
αs ∀ξ ∈ (0, r] ,

where ΠM is the orthogonal projector on M ; the quantities u and η are also subject to

the limitation a+ ηu ∈ U .

Remark 3.2.6. It is well known that steepness is generic. Examples of steep functions

are given by convex or quasiconvex functions.

The proof of the following crucial result is a consequence of the construction in

[12]. We report here the proof for the sake of completeness.

Theorem 3.2.7. Let HL = hL(I1, . . . , Id) a globally integrable quantum systems and

assume that hL is homogeneous at infinity (see Def. 3.2.4) and steep (see Def. 3.2.5).

Then there exists a partition

Λ =
⋃
α∈A

Ωα

with the following properties.
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i. Each Ωα is dyadic, namely there exists a constant C, independent of α, such

that

sup
a∈Ωα

|a| ≤ C inf
a∈Ωα

|a|.

ii. There exist δ > 0 such that, if a ∈ Ωα and b ∈ Ωβ with α ̸= β, then

|a− b|+ |ωa − ωb| ≥ Cδ(|a|δ + |b|δ). (3.2.5)

Proof. We consider the partition

Λ =
d⋃
s=1

⋃
M s.t.

dim(M)=s

⋃
j∈JM

E
(s)
M,j

as in Definition 8.26 of [12]. We take R > 0 large enough such that Theorem 8.28 of

[12] is satisfied and we modify the partition as follows:

ẼR :=
⋃

{E(s)
M,j | ∃a ∈ E

(s)
M,j s.t.|a| ≤ R}

Ẽ
(s)
M,j = E

(s)
M,j if |a| ≥ R ∀a ∈ E

(s)
M,j .

We are going to show that such a new partition satisfies properties (i) and (ii).

Proof of Property (i). By Theorem 8.28, the blocks E
(s)
M,j are dyadic, thus (i)

holds for the blocks Ẽ
(s)
M,j with C = 2. Let us consider ẼR: for any a ∈ ẼR one has

|a| ≤ 2 min
b∈E(s)

M,j

|b| ≤ 2R ,

where E
(s)
M,j is the block in the original partition {E(s)

M,j}s,M,j to which the lattice point

a belongs. This immediately implies

sup
a∈ẼR

|a| ≤ 2R ≤ 2γ−1Rmin
a∈ẼR

|a| ,

if γ := min{|b| | b ∈ Λ \ {0}}. Then (i) holds with C := max{2, 2γ−1R} for all the

elements of the new partition.

Proof of Property (ii). We show that there exist µ and Cµ such that, if a, b ∈ Λ

are such that (3.2.5) is violated, namely

|a− b|+ |ωa − ωb| < Cµ (|a|+ |b|)µ , (3.2.6)
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then a and b must belong to the same block. If both |a| ≤ R and |b| ≤ R, then a and b

belong to the same block since they are both contained into ẼR. Thus let us suppose

that |a| ≥ R. First , we observe that there exists cµ > 0 such that, if Cµ ≤ cµ, then

(3.2.6) implies

|a− b| ≤ |a|µ . (3.2.7)

Indeed, one has |b|µ ≤ 2µ(|a|µ + |b− a|µ), which implies

|a− b| ≤ Cµ(1 + 2µ)|a|µ + Cµ2
µ|a− b|µ .

Now, if |a− b| ≤ (2µ+1Cµ)
1

µ−1 , one has

|a− b| ≤ (2µ+1Cµ)
1

µ−1 ≤ (2µ+1Cµ)
1

µ−1 |a|µ , (3.2.8)

while if |a− b| ≥ (2µ+1Cµ)
1

µ−1 one has

|a− b|
2

≤ |a− b| − Cµ2
µ|a− b|µ ≤ Cµ(1 + 2µ)|a|µ . (3.2.9)

Combining (3.2.8) and (3.2.9) and reducing the value of Cµ, one gets (3.2.7).

We proceed showing that, if (3.2.6) holds with Cµ is small enough, one also has

|ϖ(a) · (b− a)| ≤ |a|δ|a− b| , (3.2.10)

where ϖ(a) := ∂ah0(a) and h0 is the function whose existence is assumed in 3.1.1.

Indeed, let us suppose by contradiction that (3.2.10) does not hold true: then, since

|a− b| ≤ |a|µ, ∀t ∈ [0, 1] one has

|ϖ(a+ tb) · (b− a)| ≥ |ϖ(a) · (b− a)| − |ϖ(a+ tb)−ϖ(a)||b− a|

≥ |ϖ(a) · (b− a)| − sup
a′ s.t.

|a−a′|≤|b−a|

|∂2ah0(a′)||b− a|2

≥ |a|δ|a− b| − Ch0 sup
a′ s.t.

|a−a′|≤|b−a|

|a′|M−2|b− a|2 ,

where in the last passage we have used the fact that h0 is a homogeneous function of

degree M . Then ∀t one has

|ϖ(a+ tb) · (b− a)| ≥ |a|δ|b− a| − Ch0(|a|+ |b− a|)M−2|b− a|2

≥ |a|δ − 2Ch0|a|M−2+2µ ≥ |a|δ

2
,

(3.2.11)
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provided R is large enough. But then on the one hand (3.2.11) gives

|ωa − ωb| =
∣∣∣∣∫ 1

0

ϖ(a+ t(b− a)) · (b− a) dt

∣∣∣∣ ≥ |a|δ

2
, (3.2.12)

while on the other hand (3.2.6) gives

|ωa−ωb| ≤ Cµ|a|µ+Cµ|b|µ ≤ Cµ(2µ+1)|a|µ+2µCµ|b−a|µ ≤ 2Cµ(2µ+1)|a|µ . (3.2.13)

Since estimates (3.2.13) and (3.2.12) are not compatible for R large enough, since

δ > µ, one gets a contradiction. Thus we conclude that (3.2.10) holds true and,

combining estimates (3.2.7) and (3.2.10), that

|ϖ(a) · (b− a)| ≤ |a|δ|a− b| , |a− b| ≤ |a|µ , |a| ≥ R , (3.2.14)

namely a is resonant with b − a according to Definition 6.3 of [12]. Then the proof

follows exactly with the same passages used to prove Lemma 8.39 of [12].

.
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Chapter 4

Functions with localized coefficients

In this Chapter we describe the class of polynomials with localized coefficients [48, 5],

generalizing this notion for polynomial components labeled by vectors a ∈ Λ. In

particular, we will study these polynomials in a Hamiltonian setting, since later on

we exploit them in the context of Hamiltonian equations.

4.1 Functional settings: the Hamiltonian structure and

polynomials with localized coefficients

4.1.1 Phase space

Recalling the definition of the Sobolev spaces Hs (see Def. 3.1.13), we introduce the

spaces

H−∞ :=
⋃
s

Hs, H∞ :=
⋂
s

Hs .

In the following, we will work on the complex extension of the phase space.

Definition 4.1.1. We define Λe := Λ×{±1} and we denote the index as A ≡ (a, σ) ∈
Λe.

Definition 4.1.2. For s ∈ R, define Hs
e := Hs

e(M) := Hs(M) × Hs(M). For u ≡
(u+, u−) ∈ Hs

e we will use the norm

∥u∥2Hs
e(M) ≡ ∥(u+, u−)∥2Hs

e(M) := ∥u+∥2s + ∥u−∥2s .

Correspondingly, for u ∈ Hs
e and A ≡ (a, σ) ∈ Λe, we define

ΠAu = Π(a,σ)(u+, u−) := Πauσ ,
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where Πa is given in Definition 3.1.6. For u ∈ Hs
e one has

u =
∑
A∈Λe

ΠAu .

Given an element in Hs
e, we define the involution that we use in order to identify the

subspace of “real functions”, on which u+ = u−.

Definition 4.1.3. Let u ≡ (u+, u−) ∈ Hs
e for some s ∈ R, we define

I(u) := (u−, u+)

with the bar denoting the complex conjugate. If I(u) = u we will say that u is real.

Correspondingly, it is useful to define, for A ∈ Λe,

Ā ≡ (a, σ) := (a,−σ) ,

so that one has

ΠA (I(u)) = ΠĀu .

Definition 4.1.4. A function F ∈ C∞(O;C), with O ⊂ Hs0 an open neighborhood

of the origin will be said to be real for real u if F (u) ∈ R whenever u = I(u) (see Def.

4.1.3).

Definition 4.1.5. We will denote the ball centered in the origin of Hs
e of radius R by

BsR := {u ∈ Hs
e : ∥u∥s < R} .

4.1.2 Hamiltonian structure

Given a function H ∈ C∞(O,C) for some open set O ⊂ Hs
e and for some s, we define

the corresponding Hamiltonian vector field by

u̇+ = i∇u−H, u̇− = −i∇u+H

where∇u± is the L2-gradient with respect to u±. Namely, it is defined by the following

identity:

du+Hh+ = ⟨∇u+H, h+⟩, ∀h+ ∈ H∞(M) ,
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and similarly for ∇u− . We will denote the vector field associated to H as

XH :=
(
i∇u−H,−i∇u+H

)
. (4.1.1)

The Poisson brackets of two functions are defined as usual as follows.

Definition 4.1.6. Given two functions f, g ∈ C∞(O,C), with O as above, we define

their Poisson brackets by

{f, g} (u) := df(u)Xg(u) .

4.1.3 Polynomial with localized coefficients

We recall that, given a polynomial functions P of degree r, there exists a unique

r-linear symmetric function P̃ such that

P (u) = P̃ (u, ..., u). (4.1.2)

Then, we can write

P (z) =
∑

A1,...,Ar

P̃ (ΠA1u, ...,ΠAru) . (4.1.3)

We define a property of localization for monomials

P̃ (ΠA1u, ...,ΠAru)

as functions of the indexes A1, ..., Ar. To do that, we redefine the functions S and µ,

introduced in Def. 3.1.12, as functions of the extended indexes A ∈ Λe.

Definition 4.1.7. For any Λe ∋ A = (a, σ), we denote

JAK := JaK = ω
1
β
a (4.1.4)

Coherently, for any r ≥ 3 and A = (A1, . . . , Ar) ∈ Λre we denote (see Def. 3.1.12)

µ(A) := µ(a) = Jaτord(3)K

S(A) := S(a) = µ(a) + |aτord(1) − aτord(2)|
(4.1.5)

We are now in the position to state the definition of polynomials with localized

coefficients.

Definition 4.1.8 (Polynomial with localized coefficients). (i) Let ν ∈ [0,+∞), N ≥
1. We denote by Lν,Nr the class of the polynomials F homogeneous of degree r, such
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that there exists CN s.t.∣∣∣F̃ (ΠA1u1, ...,ΠArur)
∣∣∣ ≤ CN

µ(A)ν+N

S(A)N
∥ΠA1u1∥0...∥ΠArur∥0 , (4.1.6)

∀u1, . . . , ur ∈ H∞
e , ∀A ∈ Λre .

The smallest possible constant CN such that (4.1.6) holds defines a norm in Lν,Nr ,

precisely

∥F∥ν,N := sup
∥u1∥0=1,...,∥ur∥0=1

sup
A1,...,Ar

|F̃ (ΠA1u1, . . . ,ΠArur)|
S(A)N

µ(A)N+ν
.

(ii) We say that a polynomial F has localized coefficients if there exists ν ∈ [0,+∞)

and N0, such that, for any N ≥ N0 one has F ∈ Lν,Nr . In this case we write F ∈
Lr := ∪N0 ∪ν≥0 ∩N≥N0L

ν,N
r .

We introduce also a norm that depends on the homogeneity of polynomials. This

norm will turn out to be appropriate in the normal form iteration.

Definition 4.1.9. Given F ∈ Lν,Nr a homogeneous polynomial of degree r with local-

ized coefficients, we define

∥F∥ν,NR := ∥F∥ν,N Rr. (4.1.7)

For non-homogeneous polynomials, we use the following notation.

Definition 4.1.10. For r < r̄, we define the space

Lν,Nr,r̄ :=
r̄⊕
l=r

Lν,Nl .

Definition 4.1.11. For F ∈ Lν,Nr we define

∥F∥ν,NR := ∥F∥ν,N Rr .

For F ∈ Lν,Nr,r̄ , so that F =
∑r̄

l=r Fl with Fl ∈ Lν,Nl , we define

∥F∥ν,NR :=
r̄∑
l=r

∥Fl∥ν,NR .

We conclude by defining functions with localized coefficients.

Definition 4.1.12 (Function with localized coefficients). Let s0 > 0 and consider a

function F ∈ C∞(O;C), with O ⊂ Hs0
e an open neighborhood of the origin.

F is said to have localized coefficients if both the following properties hold:
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• all the monomials of the Taylor expansion of F at the origin have localized

coefficients.

• For any s > 0 large enough there exists an open neighborhood of the origin

Os ⊂ Hs
e s.t. XF belongs to C∞(Os,Hs

e).

4.2 Properties of polynomials with localized coefficients

In this Section, we state and prove the main properties of polynomials with localized

coefficients. Throughout this section, we write x ≲ y if there exists a constant C,

independent of the relevant parameters, such that x ≤ Cy. If we need to specify that

the constant depends on a parameter s, we will write x ≲s y. Moreover, we will write

x ∼ y if x ≲ y and y ≲ x

4.2.1 Localized vector fields and tame estimate

Given a polynomial map X : H∞ → H−∞ of degree r, we denote with X̃ the unique

r-linear symmetric function such that

X(u) = X̃(u, ..., u). (4.2.1)

Definition 4.2.1. Let X : H∞ → H−∞ be a polynomial map of degree r and let X̃ be

the associated multi-linear form. We will say that X has localized coefficients if there

exists ν ∈ [0,+∞) such that ∀N ≥ 1 there exists CN s.t. such that

∥ΠBX̃(ΠA1u1, ...,ΠArur)∥0 ≤ CN
µ(B,A)ν+N

S(B,A)N
∥ΠA1u1∥0 . . . ∥ΠArur∥0 ,

∀u1, . . . , ur ∈ H∞
e , ∀(B,A) ∈ Λe × Λre ,

(4.2.2)

where we denoted by (B,A) the multi-index (B,A1, ..., Ar).

The smallest possible constant CN defines a seminorm, namely

∥X∥ν,N = sup
∥u1∥0=1,...,∥ur∥0=1

sup
A1,...,Ar,B

∥∥∥X̃(ΠA1u1, . . . ,ΠArur)
∥∥∥
0

S(A, B)N

µ(A, B)N+ν
. (4.2.3)

We also define

∥X∥ν,NR := ∥X∥ν,NRr (4.2.4)

and we callMν,N
r the space of r-homogeneous polynomial maps for which (4.2.2) holds.

It is easy to see that if a polynomial function has localized coefficients, then its
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Hamiltonian vector field is a map with localized coefficients.

Lemma 4.2.2. Let P ∈ Lν,Nr+1, then XP ∈Mν,N
r . Furthermore,

∥XP∥ν,N ≤ r∥P∥ν,N , (4.2.5)

and therefore

∥XP∥ν,NR ≤ r

R
∥P∥ν,NR . (4.2.6)

Proof. For B ∈ Λe and A = (A1, . . . , Ar) ∈ Λre, we want to bound∥∥∥ΠBX̃P (ΠA1u, . . . ,ΠAru)
∥∥∥
0
.

Suppose for simplicity that B = (b,+), the case B = (b,−) being totally analogous.

We compute, exploiting self-adjointness of ΠB and the definition of the L2-gradient

(4.1.1), ∥∥∥ΠBX̃P (ΠA1u1, . . . ,ΠArur)
∥∥∥
0

= sup
h∈H∞,∥h∥=1

∣∣∣⟨ΠBX̃P (ΠA1u1, . . . ,ΠArur), h⟩e
∣∣∣

= sup
h∈H∞,∥h∥=1

∣∣∣⟨X̃p(ΠA1u1, . . . ,ΠArur),ΠBh⟩e
∣∣∣

≤ r sup
h∈H∞,∥h∥=1

∣∣∣P̃ (ΠA1u1, . . . ,ΠArur,ΠBh)
∣∣∣

= r∥P∥ν,Nr+1

µ(A, B)N+ν

S(A, B)N
∥ΠA1u1∥ . . . ∥ΠArur∥∥ΠBh∥.

From that, we deduce (4.2.5).

Before proving the tame estimate, we need a simple technical result.

Lemma 4.2.3. Fix ν > 0. For s > ν + d
2
, we have∑

A∈Λe

(1 + JaK)ν∥ΠAu∥0 ≲s ∥u∥s. (4.2.7)

Proof. We compute

∑
A∈Λe

(1 + JaK)ν∥ΠAu∥0 ≤
∑
A∈Λe

(1 + JaK)s

(1 + JaK)s−ν
∥ΠAu∥0 ≤

≤
√∑

A∈Λe

1

(1 + JaK)2(s−ν)

√∑
A∈Λe

(1 + JaK)2s∥ΠAu∥0 ≲ Cs∥u∥s
(4.2.8)

since the first sum converges for 2(s− ν) > d, that is s > ν + d
2
.
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Remark 4.2.4. In the following computations, we will repeatedly compare |a| and
JaK, taking profit of Lemma 3.1.1. In particular, we notice that for any constant

0 < K2 < 1 small enough there exists K1 > 0 large enough such that

JaK ≥ K1JbK =⇒ |a− b| ≥ K2JaK . (4.2.9)

In fact we have, defining C1, C2 as in Lemma 3.1.1,

|a− b| ≥ |a| − |b| ≥ 1

C2

JaK − 1

C1

JbK ≥
(

1

C2

− 1

C1K1

)
JaK (4.2.10)

that is the wanted estimate for K1 large enough. Moreover, we point out that there

exists a constant C such that

JaK ≥ JbK =⇒ |a− b| ≤ CJaK . (4.2.11)

Theorem 4.2.5 (Tame estimate). Let X ∈ Mν,N
r and fix s > 3

2
d+ ν. If N > d+ s,

for any s0 ∈ (3
2
d+ ν, s), one has

∥∥∥X̃(u1, . . . , ur)
∥∥∥
s
≲s,s0,N ∥X∥ν,N

r∑
j=1

∥uj∥s
∏
k ̸=j

∥uk∥s0

∀u1, . . . , ur ∈ H∞
e .

(4.2.12)

Proof. We have

∥∥∥X̃(u1, . . . , ur)
∥∥∥2
s
≤
∑
B∈Λ

(1 + JBK)2s
∥∥∥∥∥ ∑
A1,...Ar

ΠBX̃(ΠA1u1, . . . ,ΠArur)

∥∥∥∥∥
2

0

.

Exploiting Def. 4.2.1, the argument of the sum in B of the equality above is controlled

by the square of

∥X∥ν,N
∑

A1,...Ar

(1 + JbK)s
µ(A, b)N+ν

S(A, b)N
∥ΠA1u1∥0 . . . ∥ΠArur∥0 .

By symmetry, we can consider the case Ja1K ≥ Ja2K ≥ · · · ≥ ∥ar∥. By definition of S

and µ, we haveJbK ≥ Ja2K =⇒ S(A, b) = |a1 − b|+ Ja2K ≥ |a1 − b|

JbK ≤ Ja2K =⇒ S(A, b) ≥ |a1 − a2|+ JbK .
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We have, ∀κ > d, ∑
B∈Λe

S−κ ≤
∑

JbK≥Ja2K

S−κ +
∑

JbK<Ja2K

S−κ ≲ (4.2.13)

≲
∑
B∈Λe

1

(|a1 − b|+ 1)κ
+
∑
B∈Λe

1

(|a1 − a2|+ JbK)κ
≲ (4.2.14)

≲
∑
B′∈Λe

1

(|b′|+ 1)κ
+
∑
B∈Λe

1

(|a1 − a2|+ |b|)κ
<∞ (4.2.15)

where B′ = (b′, σb), with b
′ = b− a1. With a similar calculation, we obtain also∑

A1∈Λe

S−κ <∞ .

By Cauchy-Schwarz inequality, we estimate

∑
A1,...Ar

(1 + JbK)s
µ(A, b)N+ν

S(A, b)N
∥ΠA1u1∥0 . . . ∥ΠArur∥0 ≤ (4.2.16)

≤

( ∑
A1,...Ar

(1 + JbK)2s
µ(A, b)2N+ν−κ

S(A, b)2N−κ ∥ΠA1u1∥
2
0∥ΠA2u2∥0 . . . ∥ΠArur∥0

) 1
2

· (4.2.17)

·

( ∑
A1,...Ar

µ(A, b)ν+κ

S(A, b)κ
∥ΠA2u2∥0 . . . ∥ΠArur∥0

) 1
2

. (4.2.18)

Exploiting µ(A, b) ≤ Ja2K, the second term is estimated by

( ∑
A1,...Ar

µ(A, b)ν+κ

S(A, b)κ
∥ΠA2u2∥0 . . . ∥ΠArur∥0

) 1
2

≤

(∑
A1

S(A, b)−κ
∑

A2,...,Ar

Ja2Kν+κ∥ΠA2u2∥0 . . . ∥ΠArur∥0

) 1
2

≲
r∏
l=2

∥ul∥
1
2
s0

for each s0 > ν + d
2
+ κ.

Consider now the first term (4.2.17). We claim that

µ(A, b)

S(A, b)
(1 + JbK) ≲ 1 + Ja1K . (4.2.19)

Indeed, (4.2.19) is trivial for 1 + JbK ≲ (1 + Ja1K) , since µ
S
< 1 by definition. On the
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other end, if 1 + JbK ≳ (1 + Ja1K), we have, from (4.2.9),

S(A, b) ≥ |b− a1| ≳ JbK

and then

µ(A, b)

S(A, b)
(1 + JbK) ≲ µ(A, b) ≲ 1 + Ja1K

that is (4.2.19). Then we can control the first term, provided that N > s+ κ, with

∑
B

( ∑
A1,...Ar

(1 + JbK)2s
µ(A, b)2N+ν−κ

S(A, b)2N−κ ∥ΠA1u1∥
2
0∥ΠA2u2∥0 . . . ∥ΠArur∥0

) 1
2

≲
∑
B

( ∑
A1,...Ar

(1 + Ja1K)2s
µ(A, b)κ+ν

S(A, b)κ
∥ΠA1u1∥

2
0∥ΠA2u2∥0 . . . ∥ΠArur∥0

) 1
2

≲
∑
B

(∑
A1

(1 + Ja1K)2s

S(A, b)κ
∥ΠA1u1∥

2
0

∑
A2,...,Ar

Ja2Kν+κ∥ΠA2u2∥0 . . . ∥ΠArur∥0

) 1
2

≲ ∥u1∥s
r∏
l=2

∥ul∥
1
2
s0
,

with s0 ≥ κ + ν + d
2
. Summing over all the possible choices of the biggest index, we

obtain the sum in the thesis.

Corollary 4.2.6. Let P be a polynomial function with localized coefficients, then

(4.2.12) holds for its Hamiltonian vector field.

Corollary 4.2.7. Let X ∈ Mν,N
r and let s > 3

2
d + ν. If N > d + s, for any

s0 ∈ (3
2
d+ ν, s), one has

sup
∥u∥s≤R

∥X(u)∥s ≲s,s0,N ∥X∥ν,NR . (4.2.20)

4.2.2 Poisson brackets

Our class is closed with respect to Poisson brackets.

Lemma 4.2.8. Given a polynomial P and a polynomial map X, we have

dP X(u) = η
[
P̃ (u, . . . , u,X(u))

]
(4.2.21)
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where we denote with η[P̃ ] the symmetrization, namely

η[P̃ (u, . . . , u, h)] := P̃ (h, u, . . . , u) + P̃ (u, h, . . . , u) + · · ·+ P̃ (u, . . . , u, h) (4.2.22)

for any h ∈ H∞
e .

Moreover if P has degree p+ 1 and X has degree q, the multilinear polynomial asso-

ciated to dP X is given by

d̃P X(u1, . . . , up+q) = η
[
P̃
(
u1, . . . , up, X̃(up+1, . . . , up+q)

)]
. (4.2.23)

Proof. The thesis follows from the definition of differential. In fact, we have, ∀h ∈ H∞
e ,

dP (h) = η[P̃ (u, . . . , u, h)], (4.2.24)

since we can compute

P (u+ h)− P (u) = P̃ (u+ h, . . . , u+ h)− P̃ (u, . . . , u) = (4.2.25)

= η
[
P̃ (u, . . . , u, h)

]
+ o(h) . (4.2.26)

Then (4.2.23) follows from the definition of a multilinear map associated with a poly-

nomial.

Lemma 4.2.9 (Poisson brackets). Given P ∈ Lν1,Nr1+1 and X ∈Mν2,N
r2

, we have

dP X ∈ Lν
′,N ′

,

with N ′ = N − d− 1−max{ν1, ν2} and ν ′ = ν1 + ν2 + d+ 1. Moreover,

∥dP X∥ν
′N ′
≲ ∥P∥ν1,N∥X∥ν2,N .

Proof. Let u1, . . . , up, up+1, . . . , up+q ∈ H∞
e and A = (A1, . . . , Ap+q) ∈ Λp+qe . By
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Lemma 4.2.8, we have∣∣∣d̃P X (ΠA1u1, . . . ,ΠAp+qup+q
)∣∣∣

=
∣∣∣η [P̃ (ΠA1u1, . . . ,ΠApup, X̃(ΠAp+1up+1, . . . ,ΠAp+qup+q)

)]∣∣∣
≤ (p+ 1)

∑
B∈Λe

∣∣∣P̃ (ΠA1u1, . . . ,ΠApup,ΠBX̃(ΠAp+1up+1, . . . ,ΠAp+qup+q)
)∣∣∣

≤ (p+ 1)∥P∥ν1,N×

×
∑
B∈Λe

µ(A1, . . . , Ap, b)
N+ν1

S(A1, . . . , Ap)N

∥∥∥ΠBX̃(ΠAp+1up+1, . . . ,ΠAp+qup+q)
∥∥∥
0

≤ (p+ 1)∥P∥ν1,N∥X∥ν2,N×

×
∑
B∈Λe

µ(A1, . . . , Ap, b)
N+ν1

S(A1, . . . , Ap)N
µ(Ap+1, . . . , Ap+q, b)

N+ν2

S(A1, . . . , Ap)N
,

since P,X have localized coefficients. That is, we need to prove the following estimate

∑
B∈Λe

µ(A1, . . . , Ap, b)
N+ν1

S(A1, . . . , Ap, b)N
µ(Ap+1, . . . , Ap+q, b)

N+ν2

S(Ap+1, . . . , Ap+q, b)N

≲
µ(A1, . . . , Ap+q)

N ′+ν′

S(A1, . . . , Ap+q)N
′ .

(4.2.27)

By symmetry, we can assume the following relations:

Ja1K ≥ · · · ≥ JapK, Jap+1K ≥ · · · ≥ Jap+qK , Jap+1K ≤ Ja1K .

Case 1 Assume Ja1K ≥ Jap+1K ≥ Ja2K.
In this case, we have

µ(A1, . . . , Ap+q) = max(Ja2K, Jap+2K) ,

S(A1, . . . , Ap+q) = |a1 − ap+1|+ µ(A1, . . . , Ap+q) ,

and
µ(A1, . . . , Ap, b) ≤ µ(A1, . . . , Ap+q) ,

µ(Ap+1, . . . , Ap+q, b) ≤ µ(A1, . . . , Ap+q) .
(4.2.28)

Case 1.i For JbK > max(Ja2K, Jap+2K), we have

S(A1, . . . , Ap, b) = |a1 − b|+ Ja2K ,

S(Ap+1, . . . , Ap+q, b) = |ap+1 − b|+ Jap+2K .

|a1 − ap+1| = |a1 − b− ap+1 + b| ≤ |a1 − b|+ |ap+1 − b| . (4.2.29)
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From (4.2.28) and (4.2.29), we deduce

S(A1, . . . , Ap+q)

µ(A1, . . . , Ap+q)
= 1 +

|a1 − ap+1|
µ(A1, . . . , Ap+q)

≤ 1 +
|a1 − b|

µ(A1, . . . , Ap, b)
+

|ap+1 − b|
µ(Ap+1, . . . , Ap+q, b)

≤ S(A1, . . . , Ap, b)

µ(A1, . . . , Ap, b)
+
S(Ap+1, . . . , Ap+q, b)

µ(Ap+1, . . . , Ap+q, b)

≤ 2max

{
S(A1, . . . , Ap, b)

µ(A1, . . . , Ap, b)
,
S(Ap+1, . . . , Ap+q, b)

µ(Ap+1, . . . , Ap+q, b)

}
.

(4.2.30)

Let us define

L1 =

{
b ∈ Λ : JbK > max(Ja2K, Jap+2K) :

S(A1, . . . , Ap, b)

µ(A1, . . . , Ap, b)
≥ S(Ap+1, . . . , Ap+q, b)

µ(Ap+1, . . . , Ap+q, b)

}
.

Depending on the value of A one could have L1 = ∅, but this is irrelevant for the

following. If b ∈ L1, estimate (4.2.30) implies

µ(A1, . . . , Ap, b)

S(A1, . . . , Ap, b)
≤ 2

µ(A1, . . . , Ap+q)

S(A1, . . . , Ap+q)
. (4.2.31)

We observe moreover that

µ(Ap+1, . . . , Ap+q, b)
N+ν2

S(Ap+1, . . . , Ap+q, b)N
≤ µ(Ap+1, . . . , Ap+q, b)

ν2 . (4.2.32)

Then, using 4.2.28, 4.2.31 and 4.2.32, we have

∑
B∈L1

µ(A1, . . . , Ap, b)
N+ν1

S(A1, . . . , Ap, b)N
µ(Ap+1, . . . , Ap+q, b)

N+ν2

S(Ap+1, . . . , Ap+q, b)N

(4.2.28)

≲ µ(A1, . . . , Ap+q)
ν1+ν2×

×
∑
B∈L1

µ(A1, . . . , Ap, b)
N−d−1

S(A1, . . . , Ap, b)N−d−1

µ(A1, . . . , Ap, b)
d+1

S(A1, . . . , Ap, b)d+1

≲ µ(A1, . . . , Ap+q)
ν1+ν2

∑
b∈L1

µ(A1, . . . , Ap+q)
N−d−1

S(A1, . . . , Ap+q)N−d−1

µ(A1, . . . , Ap+q)
d+1

S(A1, ..., Ap, b)d+1
,

(4.2.31),(4.2.28)

≲
µ(A1, . . . , Ap+q)

N+ν1+ν2

S(A1, . . . , Ap+q)N−d−1

∑
B∈L1

1

(|a1 − b|+ 1)d+1
,

that is (4.2.27), with N ′ = N − d − 1 and ν ′ = ν1 + ν2 + d + 1. The case b ∈ Lc1 is

analogous.

Case 1.ii For JbK ≤ max(Ja2K, Jap+2K), we remark that the index of the sum in (4.2.27)
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runs over a set with cardinality controlled by µ(A1, . . . , Ap+q). That is, it suffices to

prove that

µ(A1, . . . , Ap, b)
N+ν1

S(A1, . . . , Ap, b)N
µ(Ap+1, . . . , Ap+q, b)

N+ν2

S(Ap+1, . . . , Ap+q, b)N
S(A1, . . . , Ap+q)

N ′

µ(A1, . . . , Ap+q)N
′+ν′

(4.2.33)

is controlled by a constant independent of b.

Take 0 < K2 < 1 and let K1 and C be as in (4.2.9) If Ja1K ≥ K1max(Ja2K, Jap+2K),
we get,

(4.2.33) ≤ max(JbK, Ja3K)N+ν1

(K2Ja1K)N
max(JbK, Jap+3K)ν2×

× (CJa1K +max(Ja2K, Jap+2K))
N ′

max(Ja2K, Jap+2K)N ′+ν′

≲
max(Ja2K, Jap+2K)N+ν1+ν2

Ja1KN
(Ja1K)N

′

max(Ja2K, Jap+2K)N ′+ν′
≲ 1 ,

(4.2.34)

choosing N ′ = N and ν ′ = ν1 + ν2.

If Ja1K ≤ K1max(Ja2K, Jap+2K), we get instead

(4.2.33) ≤ max(JbK, Ja3K)ν1 max(JbK, Jap+3K)ν2×

× (CJa1K +max(Ja2K, Jap+2K)N
′

max(Ja2K, Jap+2K)N ′+ν′

≲ max(Ja2K, Jap+2K)ν1+ν2
(max(Ja2K, Jap+2K)N

′

max(Ja2K, Jap+2K)N ′+ν′
≲ 1 ,

(4.2.35)

for ν ′ = ν1 + ν2. This proves the claim in the case 1.ii.

Case 2 Assume Ja1K ≥ Ja2K ≥ Jap+1K. In this case, we have

µ(A1, . . . , Ap+q) = max(Ja3K, Jap+1K) ,

S(A1, . . . , Ap+q) = |a1 − a2|+max(Ja3K, Jap+1K) .

Case 2.i Take K2 as in (4.2.9) and determine the corresponding K1. For JbK >
K1max (Ja3K, Jap+1K), we have

S(A1, . . . , Ap, b) = |a1 − argmax(Ja2K, JbK)|+min(Ja2K, JbK) ,

S(Ap+1, . . . , Ap+q, b) = |b− ap+1|+ Jap+2K ,

and moreover,

|ap+1 − b| ≥ K2JbK .
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Let us define

G1 := {b : JbK > K1max (Ja3K, Jap+1K) , JbK < Ja2K} .

For b ∈ G1 , we estimate

∑
b∈G1

µ(A1, . . . , Ap, b)
N+ν1

S(A1, . . . , Ap, b)N
µ(Ap+1, . . . , Ap+q, b)

N+ν2

S(Ap+1, . . . , Ap+q, b)N

=
∑
b∈G1

JbKN+ν1

(|a1 − a2|+ JbK)N
Jap+2KN+ν2

(|ap+1 − b|+ Jap+2K)
N

≲
∑
b∈G1

JbKN+ν1

(|a1 − a2|+ JbK)N
Jap+2KN+ν2

JbKN

≲
∑

JbK>K1 max(Ja3K,Jap+1K)

JbKν1

(|a1 − a2|+ JbK)N
Jap+2KN+ν2

≲ µ(A1, . . . , Ap+q)
N+ν2

1

(|a1 − a2|+max (Ja3K, Jap+1K))
N−ν1−d−1

≲
µ(A1, . . . , Ap+q)

N+ν2

S(A1, . . . , Ap+q)N−ν1−d−1
,

(4.2.36)

where we are using the inequality

∑
|k|>A

|k|l

(|k|+B)N
≤
∑
|k|>A

(|k|+B)l

(|k|+B)N
≤ 1

(A+B)N−l−d−1
.

This is the thesis with N ′ = N − d− ν1 − 1 and ν ′ = ν1 + ν2 + d.

Let G2 := {b : JbK > K1max (Ja3K, Jap+1K) , JbK ≥ Ja2K}, then we have to estimate

∑
b∈G2

Ja2KN+ν1

(|a1 − b|+ Ja2K)N
Jap+2KN+ν2

(|ap+1 − b|+ Jap+2K)N
. (4.2.37)

We observe that there exist two constants K3, K4 such that

JbK ≤ K4Ja1K ⇒ |a1 − b| ≥ K3|a1 − a2| . (4.2.38)
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Then we estimate (4.2.37) by

∑
b∈G2

Ja2KN+ν1

(|a1 − b|+ Ja2K)N
Jap+2KN+ν2

|ap+1 − b|N

(4.2.38)

≲
∑

b∈G2,JbK≤K4Ja1K

Ja2KN+ν1

(|a1 − b|+ Ja2K)N
Jap+2KN+ν2

JbKN

+
∑

b∈G2,JbK≥K4Ja1K

Ja2KN+ν1

(|a1 − b|+ Ja2K)N
Jap+2KN+ν2

JbKN
.

(4.2.39)

The first term in (4.2.39) is controlled by

max(Jap+1K, Ja3K)N+ν2

(|a1 − a2|+max(Jap+1K, Ja3K))N−ν1−d−1

∑
b∈G2

Ja2KN+ν1JbK−N

(|a1 − a2|+ Ja2K)ν1+d+1
≲

≲
max(Jap+1K, Ja3K)N+ν2

(|a1 − a2|+max(Jap+1K, Ja3K))N−ν1−d−1

∑
b∈G2

1

JbKd+1
≲

≲
µ(A1, . . . , Ap+q)

N ′+ν′

S(A1, . . . , Ap+q)N
′ .

For the second term in (4.2.39) we claim that JbK ≥ K4Ja1K implies

Ja2KN+ν1

(|a1 − b|+ Ja2K)N
Jap+2KN+ν2

JbKN
≲

max(Jap+1K, Ja3K)N
′+ν′

(|a1 − a2|+max(Jap+1K, Ja3K))
N ′

1

JbKd+1
,

with N ′ = N − ν1 − d− 1 and ν ′ = ν1 + ν2 + d+ 1. Indeed, we have

Ja2KN+ν1

(|a1 − b|+ Ja2K)N
Jap+2KN+ν2

JbKN
(|a1 − a2|+max(Jap+1K, Ja3K))

N ′

max(Jap+1K, Ja3K)N ′+ν′
JbKd+1

≲ Ja2Kν1 max(Jap+1K, Ja3K)N+ν2
1

JbKN−d−1

Ja1KN
′

max(Jap+1K, Ja3K)N ′+ν′

JbK≥K4Ja2K
≲

Ja1KN
′

JbKN−d−1−ν1
≲

Ja1KN
′

Ja1KN−d−1−ν1
≲ 1 ,

for any N ′ ≤ N − d− 1− ν1. Then, we estimate

∑
b∈G2,JbK≥K4Ja1K

Ja2KN+ν1

(|a1 − b|+ Ja2K)N
Jap+2KN+ν2

JbKN

≲
max(Jap+1K, Ja3K)N

′+ν′

(|a1 − a2|+max(Jap+1K, Ja3K))
N ′

∑
b∈G2

1

JbKd+1

≲
max(Jap+1K, Ja3K)N

′+ν′

(|a1 − a2|+max(Jap+1K, Ja3K))
N ′ .
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Case 2.ii For JbK ≤ K1max(Jap+1K, Ja3K), we argue as in Case 1.ii, and it is sufficient

to bound from above

µ(A1, . . . , Ap, b)
N+ν1

S(A1, . . . , Ap, b)N
µ(Ap+1, . . . , Ap+q, b)

N+ν2

S(Ap+1, . . . , Ap+q, b)N
S(A1, . . . , Ap+q)

N ′

µ(A1, . . . , Ap+q)N
′+ν′

(4.2.40)

with a constant.

If |a1 − a2| ≤ 2max(Jap+1K, Ja3K), we get

(4.2.40) ≤ max(JbK, Ja3K)ν1µ(Ap+1, . . . , Ap+q, b)
ν2×

× (|a1 − a2|+max(Jap+1K, Ja3K))
N ′

max(Jap+1K, Ja3K)N ′+ν′

≲ max(Jap+1K, Ja3K)ν1+ν2
(max(Jap+1K, Ja3K))

N ′

max(Jap+1K, Ja3K)N ′+ν′
≲ 1 ,

for ν ′ ≥ ν1 + ν2.

If |a1 − a2| ≥ 2max(Jap+1K, Ja3K) , we consider separately the case JbK ≤ Ja2K and the

case JbK > Ja2K.

If JbK ≤ Ja2K , we have

(4.2.40) ≤ max(JbK, Ja3K)N+ν1

|a1 − a2|N
µ(Ap+1, . . . , Ap+q, b)

ν2×

× (|a1 − a2|+max(Jap+1K, Ja3K))
N ′

max(Jap+1K, Ja3K)N ′+ν′

≤ 2N+ν1+ν2
max(Jap+1K, Ja3K)N+ν1+ν2

|a1 − a2|N

(
|a1 − a2|+ 1

2
|a1 − a2|

)N ′

max(Jap+1K, Ja3K)N ′+ν′
≤ 3N

′
,

for ν ′ ≥ ν1 + ν2.

If JbK > Ja2K and recalling that max(Jap+1K, Ja3K) ≤ 1
2
|a1 − a2|, we need to bound

(4.2.40) ≤ Ja2KN+ν1

(|a1 − b|+ Ja2K)N
Jap+2KN+ν2

(|ap+1 − b|+ Jap+2K)N

(
3
2
|a1 − a2|

)N ′

max(Jap+1K, Ja3K)N ′+ν′

≲
Ja2KN+ν1

(|a1 − b|+ Ja2K)N
max(Jap+1K, Ja3K)ν2

(
1
C
|a1 − b|+ JbK

)N ′

max(Jap+1K, Ja3K)N ′+ν′
,

(4.2.41)

where we are using the following triangular inequality,

|a1 − a2| ≤ |a1 − b|+ |b− a2| ≤ |a1 − b|+ CJbK,

and Ja2K < JbK.
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If |a1 − b| ≤ JbK we conclude, recalling that JbK ≤ K1max(Jap+1K, Ja3K), that

(4.2.41) ≲ max(Jap+1K, Ja3K)ν1+ν2
JbKN ′

max(Jap+1K, Ja3K)N ′+ν′

≲
max(Jap+1K, Ja3K)ν1+ν2+N

max(Jap+1K, Ja3K)N ′+ν′
≲ 1 ,

for N = N ′ and ν ′ = ν1 + ν2. If instead |a1 − b| ≥ JbK, we conclude that

(4.2.41) ≲
max(Jap+1K, Ja3K)N+ν1+ν2

|a1 − b|N
|a1 − b|N ′

max(Jap+1K, Ja3K)N ′+ν′
≲ 1 , (4.2.42)

for N ≤ N ′ and ν ′ ≥ ν1 + ν2.

Corollary 4.2.10. Let F ∈ Lν,Nr1,r2 and G ∈ Lν
′,N ′

r′1,r
′
2
, then {F ;G} ∈ Lν

′′,N ′′

r1+r′1−2,r2+r′2−2,

with

∥{F ;G}∥ν
′′,N ′′

R ≲
1

R2
∥F∥ν,NR ∥G∥ν

′,N
R , (4.2.43)

with N ′′ = N − d− 1−max {ν, ν ′} and ν ′′ = ν + ν ′ + d+ 1.

4.2.3 High and low modes

In the definition of the normal form, we will distinguish between low and high modes.

To this end, we fix some large K and we give the following definition.

Definition 4.2.11. For K > 1, we define

u≤ = Π≤u :=
∑

{A : JAK≤K}

ΠAu , (4.2.44)

u⊥ = Π⊥u :=
∑

{A : JAK>K}

ΠAu . (4.2.45)

Definition 4.2.12. A polynomial P of degree r is of order k + 1 ≤ r in the high

modes u⊥ if, ∀1 ≤ l ≤ k, ∀u1, . . . , ur ∈ H∞
e ,

P̃ (Π⊥u1, . . . ,Π
⊥ul, u

≤
l+1, . . . , u

≤
r ) = 0 (4.2.46)

and there exist u1, . . . , ur s.t.

P̃ (Π⊥u1, . . . ,Π
⊥uk+1, u

≤
k+2, . . . , u

≤
r ) ̸= 0 . (4.2.47)

71



From Theorem 4.2.5 and noticing that

∥∥Π⊥u
∥∥
s0
≤ 1

Ks−s0

∥∥Π⊥u
∥∥
s
, (4.2.48)

we immediately have the following Corollary.

Corollary 4.2.13. Let P ∈ Lν,Nr+1.

i) If P is of order at least three in u⊥ then, for every s0 ∈
(
3
2
d+ ν, s

)
, we have

sup
∥u∥s≤R

∥XP (u)∥s ≲
∥P∥ν,NR
Ks−s0

1

R
(4.2.49)

ii) If P is at least of order two in u⊥ then, for every s0 ∈
(
3
2
d+ ν, s

)
, we have

sup
∥u∥s≤R

∥∥Π≤XP (u)
∥∥
s
≲

∥P∥ν,NR
Ks−s0

1

R
(4.2.50)

Proof of Corollary 4.2.13. Firstly recall the usual high modes estimate

∥∥u⊥∥∥2
s0
=
∑

JAK>K

(1 + JaK)2s0∥ΠAu∥20 ≲
1

K2(s−s0)
∥u∥2s . (4.2.51)

i) If P is at least of order 3 in u⊥, XP is at least of order two in u⊥. Then

XP (u) = X(u≤ + u⊥) = X̃P (u
≤ + u⊥, . . . , u≤ + u⊥)

=
r∑
l=2

(
r

l

)
X̃P (u

≤, . . . , u≤
r−l−times

, u⊥, . . . , u⊥
l−times

) .

Applying the tame estimate in Lemma 4.2.5, we get

∥XP (u)∥s

≤ ∥P∥ν,N
r∑
l=2

(∥∥u≤∥∥
s

∥∥u≤∥∥r−l−1

s0

∥∥u⊥∥∥l
s0
+
∥∥u≤∥∥r−l

s0

∥∥u⊥∥∥l−1

s0

∥∥u⊥∥∥
s

)
(4.2.51)

≲
∥P∥ν,N

Ks−s0
∥u∥2s∥u∥

r−2
s0

.

ii) We reason as in the previous case, since again Π≤XP is of order two in u⊥.

We also have the following easy, but important corollary.

Corollary 4.2.14. Let P ∈ LN,νr+1 be of order 2 in u⊥; assume that

P̃ (ΠA1u1, . . . ,ΠAr+1ur+1) ̸= 0 =⇒ |aτord(1) − aτord(2)| > Kδ (4.2.52)
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with τord the ordering permutation defined in Def. 3.1.11. Then, ∀N ′ > N one has

∥P∥ν,N ≤ ∥P∥ν,N
′

Kδ(N ′−N)
(4.2.53)

and therefore, for any s large enough,

sup
∥u∥s≤R

∥XP (u)∥s ≤ (r + 1)
∥P∥ν,N

′

R

Kδ(N ′−N)

1

R
. (4.2.54)

Proof of Corollary 4.2.14. Writing N ′ = N −M1, (4.2.53) amounts to show that

µ(A1, . . . , Ar)
N+ν

S(A1, . . . , Ar)N
=
µ(A1, . . . , Ar)

N ′+ν+M1

S(A1, . . . , Ar)N
′+M1

≤ µ(A1, . . . , Ar)
N ′+ν+M1

S(A1, . . . , Ar)N
′

1

|aτord(1) − aτord(2)|M1

≤ µ(A1, . . . , Ar)
N ′+ν+M1

S(A1, . . . , Ar)N
′

1

KδM1
.

Then we apply directly Lemmas 4.2.5 and 4.2.5 and we get (4.2.54).
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Chapter 5

An abstract result of almost global

existence

5.1 The main abstract result

We will study an equation of the form

iu̇ = HLu+∇ūP (u, ū) , (5.1.1)

where HL is a linear selfadjoint operator on which we are going to make several as-

sumptions and P is a nonlinear functional that we describe below. Here ∇ū is the

gradient of P with respect to the variable ū and the L2 metric.

We remark that the system (5.1.1) is Hamiltonian with Hamiltonian function H =

H0 + P where

H0 :=

∫
M

ūHLu dx . (5.1.2)

We assume the following Hypotheses on HL.

Hypothesis L.0. [Integrability of HL] HL is a globally integrable quantum system,

according to Def. 3.1.1.

Hypothesis L.1 (Asymptotics). There exist constants C1, C2 and β, with β > 0, s.t.

C1|a|β ≤ |ωa| ≤ C2|a|β , (5.1.3)

where, for a vector a ∈ Rd, we denote |a| :=
√∑d

j=1 (a
j)2.

As a corollary, one can partition Σ in separated pieces. Precisely we have the

following lemma.
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Lemma 5.1.1. There exists a sequence of intervals

Σn = [an, bn] , n ∈ N (5.1.4)

and a positive constant C, with the following properties:

an < bn < an+1 < 3n , (5.1.5)

and

Σ ⊂ [0, a1] ∪

(⋃
n

Σn

)
, (5.1.6)

|bn − an| ≡ |Σn| ≤ 2 (5.1.7)

d(Σn,Σn+1) ≡ an+1 − bn ≥ 2

nd/β
. (5.1.8)

Proof. Given a set X, we denote with ♯X its cardinality. Fix N > 0, we have

♯
{
a ∈ Λ: |a|β ≤ N

}
≤ ♯

{
a ∈ Zd : |a| ≤ N

1
β

}
≤ (2π)−dN

d
β .

Thus, from (5.1.3), there exists a constant K = K(C1, C2, d) such that for any N > 0

♯ {a ∈ Λ: ωa ≤ N} ≤ KN
d
β .

Then, for any n ∈ N, n ≥ 0, we have

♯ (Σ ∩ [n, n+ 1]) ≤ K(n+ 1)
d
β

and so there must be a gap in Σ∩ [n, n+1] with length at least K−1(n+1)−
d
β centered

in some γn ∈ [n, n+ 1]. Defining

βn := γn −
1

2K(n+ 1)
d
β

αn+1 := γn +
1

2K(n+ 1)
d
β

, ∀n ≥ 0

the intervals Σn = [an, bn] satisfy the theses by construction.

We are now going to assume a non-resonance condition that allows to use of nor-

mal form theory to eliminate from the Hamiltonian the terms enforcing exchanges of

energy among modes labeled by indexes belonging to different intervals Σn.
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First, we keep into account that the system depends on both u and ū, extending

the space of the indexes a ∈ Λ.

Definition 5.1.2. We define Λe := Λ×{±1} and we denote the index as A ≡ (a, σ) ∈
Λe.

Definition 5.1.3 (Set of resonant indexes). A multi-index A ≡ (A1, ..., Ar) ∈ Λre,

Aj ≡ (aj, σj) is said to be resonant if r is even and there exists a permutation τ of

(1, ..., r) and a sequence n1, ..., nr/2 s.t.

∀j = 1, ..., r/2, ωaτ(j) , ωaτ(j+r/2)
∈ Σnτ(j)

and στ(j) = −στ(j+r/2) . (5.1.9)

We denote with W the set of resonant indexes.

Hypothesis L.2. [Non-resonance] For any r ≥ 3, there are constants γ, τ such that

for any multi-index A = (A1 . . . , Ar) ∈ Λre \W one has∣∣∣∣∣
r∑
j=1

σjωaj

∣∣∣∣∣ ≥ γ

(maxj=1,...,r |aj|)τ
. (5.1.10)

Eventually, we assume a dyadic clusterization of the lattice Λ.

Hypothesis L.3 (Bourgain clusters). There exists a partition

Λ =
⋃
α∈A

Ωα

with the following properties.

i. Each Ωα is dyadic, namely there exists a constant C, independent of α, such

that

sup
a∈Ωα

|a| ≤ C inf
a∈Ωα

|a|.

ii. There exist δ > 0 such that, if a ∈ Ωα and b ∈ Ωβ with α ̸= β, then

|a− b|+ |ωa − ωb| ≥ Cδ(|a|δ + |b|δ).

Concerning the non-linearity P , we assume that it has the following form.

Hypothesis P. P is a functional defined on a neighborhood of the origin of Hs(M)×
Hs(M) for some positive s > d/2, that has a zero of third order at the origin and has
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the structure

P (u, ū) =

(∫
M

F (N(u, ū), u(x), ū(x), x)dx

)
, (5.1.11)

where

N(u, ū) :=

∫
M

u(x)ū(x)dx , (5.1.12)

and F ∈ C∞(U×U×U×M ;C) is a smooth function and U ⊂ C an open neighbourhood

of the origin. We also assume that F (N, u, ū, x) ∈ R.

Our main result is the following.

Theorem 5.1.4. Consider the Hamiltonian system (5.1.1). Assume Hypotheses L.0,

L.1, L.2, L.3, P, then for any integer r ≥ 3, there exists sr ∈ N such that, for any

s ≥ sr, there are constants ϵ0 > 0, c > 0 and C for which the following holds: if the

initial datum u0 ∈ Hs(M,C) fulfills

ϵ := ∥u0∥s < ϵ0 ,

then the Cauchy problem has a unique solution u ∈ C0 ((−Tϵ, Tϵ), Hs(M,C)) with

Tϵ > cϵ−r. Moreover, one has

∥u(t)∥s ≤ Cϵ, ∀t ∈ (−Tϵ, Tϵ) .

5.2 Structure of the proof of Theorem 5.1.4

The proof of Theorem 5.1.4 is the combination of two main results. First, we prove an

almost global existence result holding for nonlinearities P with localized coefficients,

namely Theorem 5.2.1. This is the content of Sections 5.3 and 5.4. Then we prove that

all nonlinearities P satisfying Assumption P have localized coefficients (see Theorem

5.2.2). This is the content of Section 5.5.

Consider a Hamiltonian function of the form

H(u) = H0(u) + P (u) ,

H0(u) =

∫
M

u−HLu+dx =
∑
a∈Λ

ωa

∫
M

Π(a,+)uΠ(a,−)u dx .
(5.2.1)

We will prove the following.

Theorem 5.2.1. Consider the Hamiltonian (5.2.1), assume that ωa fulfill the Hy-

potheses L.1, L.2, L.3, and assume that P is a function with localized coefficients,

which is real for real states and that has a zero of order at least three at the origin,
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then for any integer r ≥ 3, there exists sr ∈ N such that, for any s ≥ sr, there are

constants ϵ0 > 0, c > 0 and C for which the following holds: if the initial datum

u0 ∈ Hs(M,C) fulfills

ϵ := ∥u0∥s < ϵ0 ,

then the Cauchy problem has a unique solution u ∈ C0 ((−Tϵ, Tϵ), Hs(M,C)) with

Tϵ > cϵ−r. Moreover, one has

∥u(t)∥s ≤ Cϵ, ∀t ∈ (−Tϵ, Tϵ) . (5.2.2)

Theorem 5.1.4 is a consequence of Theorem 5.2.1, in view of the following.

Theorem 5.2.2. A nonlinear functional of the form (5.1.11) fulfilling Hypothesis P

is a function with localized coefficients.

5.3 Birkhoff normal form

In this Section, we construct the normal form (see Theorem 5.3.19 and Corollary

5.3.5) in order to normalize the homogeneous term of low degree in P ; this is the

core of the proof. The normal form is the result of the application of a sequence of

near to the identity Lie transforms. For a precise definition of a Lie transform see the

Subsection 5.3.2. In Subsection 5.3.3 we show how to solve the homological equation

which is needed in the iterative scheme of Subsection 5.3.4.

5.3.1 Normal form: definition and statement

We start defining the support of a polynomial.

Definition 5.3.1 (Support). Given a polynomial

P (u) =
r∑
l=3

∑
A=(A1,...,Al)∈Λl

e

P̃ (ΠA1u, . . . ,ΠAl
u) (5.3.1)

we define the support of P as

supp(P ) =
{
A = (A1, . . . , Al) : ∃u1, . . . , ul s.t. P̃ (ΠA1u1, . . . ,ΠAl

ul) ̸= 0
}
. (5.3.2)

We now define what we mean by normal form. Informally, it is a polynomial

containing all the terms that we will not eliminate from the perturbation in the

normal form procedure. For fixed K ≫ 1 and r ≥ 3 we have the following definitions.
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Definition 5.3.2 (Block Resonant Normal Form). A non homogeneous polynomial

ZBR of degree r will be said to be in Block Resonant Normal Form if

ZBR = Z0 + ZB , (5.3.3)

with Z0 and ZB of degree, respectively, 0 and 2 in Π⊥u and

i. A ∈ Supp(Z0) implies A ∈ W (see Def. 5.1.3);

ii. A ∈ Supp(ZB) implies that there exists a block Ωα s.t.

aτord(1), aτord(2) ∈ Ωα , and στord(1)στord(2) = −1 .

where τord is the ordering permutation defined in (3.1.11).

Definition 5.3.3 (Higher Order Normal Form). A non homogeneous polynomial ZHO

of degree r will be said to be in Higher Order Normal Form if it has the structure

ZHO = Z2 + Z≥3 ,

with Z2 of degree 2 in Π⊥u and Z≥3 of degree at least three in Π⊥u and the following

holds:

A ∈ supp(Z2) =⇒
∣∣aτord(1) − aτord(2)

∣∣ > CδK
δ. (5.3.4)

The terms in Z0 are resonant in the standard sense of perturbation theory, namely,

they do not enforce the exchange of energy between modes pertaining to different sets

Σn; the terms in ZB do not provoke the exchange of energy between modes pertaining

to different blocks Ωα and thus they conserve the total L2 norm of the modes of a

block Ωα; finally, according to Corollaries 4.2.13 and 4.2.14, terms in Higher Order

Normal Form will be shown to have a small vector field.

Definition 5.3.4. A polynomial which is the sum of polynomials in normal form

according to the above definitions will be said to be in normal form.

The heart of the proof of Theorem 5.2.1 is the following proposition.

Proposition 5.3.5. For any r ≥ 0, ∃sr such that, ∀s ≥ sr, ∃Rs,r > 0, with the

property that ∀R < Rs,r ∃K and a canonical transformation

T (r) : BsR/22r → BsR with [T (r)]−1 : BsR/42r → BsR/22r (5.3.5)
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s.t.

H ◦ T (r) = H0 + Z0 + ZB +R(r̄)

with Z0 and ZB as in K block-resonant normal form, see Def. 5.3.2, and

∥XR(r̄)(u)∥s ≲ Rr+2, ∀u ∈ BsR .

Moreover, we have

∥∥Π≤XZB
(u)
∥∥
s
≲ Rr+2 , ∀u ∈ BsR . (5.3.6)

5.3.2 Lie Transform

The transformation T (r) will be constructed by the composition of Lie transforms, so

we start by studying the properties of the Lie transform.

Given G ∈ C∞(Hs
e,C), we denote by Φt

G the flow generated by the Hamilton

equation u̇ = XG(u). From Lemma 4.2.5 one has the following result.

Lemma 5.3.6. Fir r̄, let 3 ≤ r ≤ r̄, ν ∈ [0,+∞), N ≥ 1 and G ∈ Lν,Nr,r̄ . ∀s > 3
2
d+ ν

there is a constant Cr̄,N,s > 0 such that ∀R > 0 satisfying

∥G∥ν,NR ≤ R2

Cr̄,N,s
(5.3.7)

the map Φt
G : BsR/2 → BsR is well defined for |t| ≤ 1, and moreover

sup
∥u∥s<R/2

∥∥Φt
G(u)− u

∥∥
s
≲s |t|

∥G∥ν,NR
R

.

Definition 5.3.7. We call ΦG := Φt
G

∣∣
t=1

Lie transform generated by G.

Lemma 5.3.8. Let G ∈ Lν,Nr,r̄ , 3 ≤ r ≤ r̄ and let ΦG be the Lie transform it generates.

For any s > 3
2
d+ ν there exists Rs > 0 such that for any F ∈ C∞(Bs

Rs
) satisfying

sup
∥u∥s≤Rs

∥XF (u)∥s <∞ ,

one has

sup
∥u∥s≤R/2

∥XF◦ΦG
(u)∥s ≤ 2 sup

∥u∥s≤R
∥XF (u)∥s , ∀R < Rs .
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Defining

Ad0G(P ) := P and AdkG(P ) := {Adk−1
G (P ), G} for k ≥ 1

we have the following standard lemma.

Lemma 5.3.9 (Lie transform). Let 3 ≤ r ≤ r̄ and G ∈ Lν,Nr,r̄ . Assume (5.3.7), then

for any P ∈ C∞(Bs2Rs
,C), we have,

P (ΦG(u)) =
n∑
k=0

1

k!

(
AdkGP

)
(u) +

1

n!

∫ 1

0

(1− τ)n
(
Adn+1

G P
)
(Φτ

G(u)) dτ (5.3.8)

for any n ∈ N and ∀u ∈ BsR/2.

From the estimate of Poisson brackets (see Lemma 4.2.9), we deduce the following

result.

Lemma 5.3.10. Let G ∈ Lν,Nr1+2,r̄1+2 and F ∈ Lν,Nr2,r̄2, with r1 ≤ r̄1 and r2 ≤ r̄2. ∀k ≥ 0

we have AdkG(F ) ∈ Lνk,Nk

r2+kr1,r̄2+kr̄1
and

∥∥AdkG(F )∥∥νk,Nk

R
≲

(
∥G∥ν,NR
R2

)k

∥F∥ν,NR , (5.3.9)

with Nk = N − k(d+ ν) and νk = k(d+ 2ν).

Proof. We prove it by induction. For k = 1, the thesis follows from (4.2.43). Suppose

the thesis is true at step k. Exploiting again (4.2.43), we get∥∥Adk+1
G (F )

∥∥νk+1,Nk+1

R
=
∥∥{AdkG(F ), G}∥∥νk+1,Nk+1

R
≲

1

R2

(
∥G∥ν,NR
R2

)k

∥F∥ν,NR ∥G∥ν,NR =

(
∥G∥ν,NR
R2

)k+1

∥F∥ν,NR .

It is useful for the perturbative iteration to summarize the last results in the

following lemma.

Lemma 5.3.11. Fix r̄, let P ∈ Lν,Nr1,r̄1 and G ∈ Lν,Nr2+2,r̄2+2 with r1 < r̄, r2 + 2 < r̄. Let

n =
r̄ + 3− r1

r2
, (5.3.10)

if the r.h.s. is integer, otherwise we define n to be the r.h.s. of (5.3.10) +1. Let

s > 3
2
d+2 There exists Cr̄,s,N > 0 such that if R fulfills (5.3.7), then the Lie transform
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ΦG : BsR/2 → BsR is well defined. Moreover, one has

P ◦ ΦG = P + P ′ +RP,G

and ∃ν ′, N ′ s.t., P ′ ∈ Lν
′,N ′

r1+r2,r̄1+nr̄2. Furthermore XRP,G
∈ C∞(BsR,Hs

e) and one has

∥P ′∥ν
′,N ′

R ≲ ∥P∥ν,NR
∥G∥ν,NR
R2

(5.3.11)

sup
∥u∥s≤R/2

∥∥XRP,G
(u)
∥∥
s
≲ ∥P∥ν,NR

(
∥G∥ν,NR
R2

)n+1
1

R
, (5.3.12)

so that XRP,G
has a zero of order at least r̄ + 2 at the origin.

Proof. Define

P ′ :=
n∑
k=1

1

k!
AdkGP

and RP,G be the integral term in (5.3.8). Then, by Lemma 5.3.10, one has

∥P ′∥ν
′,N ′

R ≲
n∑
k=1

1

k!

(
∥G∥ν,N

R2

)k

∥P∥ν,NR ≲
∥G∥ν,N

R2
∥P∥ν,NR ,

provided
(

∥G∥ν,N
R2

)
≤ 1/2, which is ensured by (5.3.7). This gives (5.3.11). To get

(5.3.12) just use the estimate (5.3.9), Lemma 4.2.2 and Lemma 5.3.8.

5.3.3 Solution of the homological equation

In this subsection, we state and solve the homological equation.

Remark 5.3.12. Recall that, following Lemma 5.1.1, the set of frequencies decom-

poses as the union of bounded and disjoint intervals Σn. In the following, we will

choose the cut-off K lying between two intervals, namely such that for any a, b ∈ Λ

with JaK < K and JbK ≥ K we have that, for any n ≥ 1,

ωa ∈ Σn =⇒ ωb ̸∈ Σn . (5.3.13)

We start defining the set of non-resonant indexes.

Definition 5.3.13 (Block K non resonant indexes). We say that A = (A1, ..., Ar) ∈
Λre is Block-K non resonant, and we write A ∈ IK(r), if JAτord(3)K < K (namely there

are at most two large indexes) and one of the following holds:

• JAτord(1)K < K (there are no indexes larger than K) and A ̸∈ W ;
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• JAτord(1)K ≥ K and JAτord(2)K < K (there is exactly one large index);

• JAτord(2)K ≥ K and JAτord(3)K < K (there are exactly two large indexes) and one

of the following holds, recalling Hyp. L.3:

– ∃α s.t. aτord(1), aτord(2) ∈ Ωα and στord(1)στord(2) = +1,

– ∃α ̸= β s.t. aτord(1) ∈ Ωα, aτord(2) ∈ Ωβ and |aτord(1) − aτord(2)| ≤ Kδ.

Remark 5.3.14. By Definitions 5.3.2 and 5.3.3, a polynomial supported only on

multi-indexes A /∈ IK(r) is in normal form according to Definition 5.3.4

In the following lemma, we show that there are no resonant multi-indexes with

just one large index.

Lemma 5.3.15. Fix K as in(5.3.13). If A ∈ Λre is s.t.

JAτord(1)K ≥ K and JAτord(2)K < K , (5.3.14)

then there exists a constant γ′r > 0 such that

∣∣∣ r∑
l=1

σlωal

∣∣∣ ≥ γ′rK
−τ ,

where τ > 0 is the constant appearing in Hyp. L.2.

Proof. For simplicity, we can suppose that Aτord(1) = A1. We distinguish two cases.

Case 1 If JA1K ≥ K1 = 2(r− 1)
1
βK, recalling ωaj < Kβ for any j = 2, . . . , r, we have

that ∣∣∣∣∣
r∑
l=2

σlωal

∣∣∣∣∣ ≤ (r − 1)Kβ . (5.3.15)

From (5.3.15) and JA1K ≥ K1, we deduce∣∣∣∣∣
r∑
l=2

σlωal + σ1ωa1

∣∣∣∣∣ ≥ Kβ
1 − (r − 1)Kβ ≳ 1

that implies the thesis.

Case 2 If JA1K < K1, we prove that A ̸∈ W . In fact, if by contradiction A ∈ W , it

should exist A′ ∈ A with A1, A
′ ∈ Σn for some n. But then, from (5.3.13), it would

follow that JAτord(2)K ≥ K. This is in contradiction with (5.3.14).
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Since A ̸∈ W , from Hypothesis (L.2) it follows that∣∣∣∣∣
r∑
j=1

σjωaj

∣∣∣∣∣ ≥ γ

(maxj=1,...,r |aj|)τ
≳

γ

Kτ
1

=
γ′r
Kτ

,

with γ′r =
γ

2(r−1)
τ
β
.

In the following lemma, we take care of multi-indexes with exactly two indexes

with modulus larger than K.

Lemma 5.3.16. If A ∈ IK(r) is s.t.

JAτord(2)K ≥ K and JAτord(3)K < K , (5.3.16)

then there exist constants γ′r and τ such that∣∣∣∣∣
r∑
l=1

σlωal

∣∣∣∣∣ ≥ γ′r
Kτ ′

.

Proof. For simplicity, suppose that

Aτord(1) = A1 and Aτord(2) = A2 .

Case 1 Consider first the case σ1 = σ2. Reasoning as in the proof of Lemma 5.3.15,

we distinguish two cases.

Case 1.i If JA1K ≥ K1 := 2(r − 2)
1
βK, the thesis follows trivially since∣∣∣∣∣

r∑
l=1

σlωal

∣∣∣∣∣ =
∣∣∣∣∣
r∑
l=3

σlωal + σ1ωa1 + σ2ωa2

∣∣∣∣∣
and we can reason as in case 1. in the Proof of Lemma 5.3.15.

Case 1.ii If JA1K < K1, we observe that by definition A ̸∈ W , since σ1σ2 = +1 and

recalling (5.3.13). Then, from Hyp. (L.2), it follows∣∣∣∣∣
r∑
j=1

σjωaj

∣∣∣∣∣ ≥ γ

(maxj=1,...,r |aj|)τ
≳

γ

Kτ
1

=
γ′

Kτ

for γ′ = γ

2τ (r−1)
τ
β
.

Case 2 Consider now the case σ1σ2 = −1. It follows by definition of IK(r) that

a1 ∈ Ωα, a2 ∈ Ωβ with α ̸= β and moreover |a1 − a2| ≤ Kδ. From Hyp. L.3, it follows
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that

|ωa1 − ωa2| ≥ Cδ|a1|δ .

Case 2.i If Ja1K ≥ K2 := 2 (r − 2)
1
δ K

β
δ we observe that |a1| ≳ K2 and then∣∣∣∣∣

r∑
l=3

σlωal + ωa1 − ωa2

∣∣∣∣∣ ≥ Cδ|a1|δ − (r − 2)Kβ ≳ 1

and the thesis follows.

Case 2.ii If Ja1K < K2, one has that A ̸∈ W . To see this, remark that |ωa1 − ωa2| ≥
Cδ|a1|δ > CKδ > 2 but each Σn has a length smaller or equal to 2, so that a1, a2

belong to different set Σn and then the definition of W cannot be fulfilled. Then

recalling Hyp. (L.2), we conclude that∣∣∣∣∣
r∑
j=1

σjωaj

∣∣∣∣∣ ≥ γ

(maxj=1,...,r |aj|)τ
≳

γ

Kτ
2

=
γ′

Kτ ′

with γ′ = γ

C(r−2)
τ
δ
and τ ′ = β

δ
τ .

In the next lemma, we solve the homological equation.

Lemma 5.3.17 (Homological equation). Let r̄, l be given in such a way that r̄ ≥ l ≥ 3,

then for any F ∈ Lν,Nl,r̄ there exist G,Z ∈ Lν,Nl,r̄ which solve the homological equation

{H0, G}+ F = Z. (5.3.17)

Furthermore there exist τ(r̄) and γ(r̄) s.t.

∥G∥ν,NR ≤ Kτ

γ
∥F∥ν,NR , (5.3.18)

and Z ∈ Lν,Nl,r̄ is in normal form according to Def. 5.3.4 and fulfills the estimate

∥Z∥ν,NR ≤ ∥F∥ν,NR .

Proof. Writing

F (u) =
r̄∑
l=3

∑
A∈Λl

e

F̃l(ΠA1u, . . . ,ΠAl
u) ,

we define G,Z through their multilinear map. More precisely, recalling Definition
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5.3.13, we set, for 3 ≤ l ≤ r̄,

Z̃l(ΠA1u1, . . . ,ΠAl
ul) :=

{
F̃l(ΠA1u1, . . . ,ΠAl

ul) if (A1, . . . , Al) ̸∈ IK(l)

0 otherwise

G̃l(ΠA1u1, . . . ,ΠAl
ul) :=


F̃l(ΠA1u1, . . . ,ΠAl

ul)∑l
j=1 σjωaj

if (A1, . . . , Al) ∈ IK(l)

0 otherwise .

These polynomials solve the homological equation (5.3.17) since

{H0, G}(u) = −
r̄∑
l=3

∑
A∈IK(l)

F̃ (ΠA1u, . . . ,ΠAl
u) .

In particular Z̃ is in normal form (recall Remark 5.3.14). The estimate (5.3.18) follows

from Lemmas 5.3.15 and 5.3.16.

5.3.4 Proof of the normal form Lemma

In this subsection, we complete the proof of Proposition 5.3.5.

Fix r̄ ≥ 2 and Taylor expand P at order r̄ + 2. Recalling (5.2.1) and Definition

4.1.12, we have

P = P (0) +RT,0 .

with P (0) ∈ LN,ν1,r̄+2 for some positive N, ν. Furthermore RT,0 has a zero of order r̄+ 2

at u = 0. Moreover, since XRT,0
∈ C∞(BsR,Hs

e), one has, for s large enough and R > 0

small enough

∥XRT
(u)∥s ≲ Rr̄+2 , ∀u ∈ BsR ,

In the following lemma, we describe the iterative step that proves Theorem 5.3.19.

Lemma 5.3.18 (Iteration). Fix r̄ ≥ 2; for any 0 ≤ k ≤ r̄, there is a small constant

µk > 0 s.t., denoting

µ = µ(R) :=
∥P (0)∥N,νR

R2
Kτ ,

if Rk, K are s.t.

µ(Rk) ≤ µk (5.3.19)

then there exist Nk, νk > 0 such that, ∀s0 > d/2 + νk the following holds: there exists
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an invertible canonical transformation T (k) : Bs0
Rk/2k

→ Bs0Rk
such that

H(k) = H ◦ T (k) = H0 + Z(k) + P (k) +R(k)
T

and, ∃Rk > 0 s.t. one has

• Z(k) ∈ L
Nk−1,νk−1

3,r̄k−1+2 is in normal form and

∥∥Z(k)
∥∥Nk−1,νk−1

R
≲k ∥P (0)∥N,νR , ∀R < Rk , (5.3.20)

• P (k) ∈ LNk,νk
k+3,r̄k+2 and

∥∥P (k)
∥∥Nk,νk

R
≲k µ

k∥P (0)∥N,νR , ∀R < Rk , (5.3.21)

• ∀s ≥ s0 ∃Rs,k s.t. T (k) ∈ C∞
(
BsRs,k

2k

;Hs
e

)
and [T (k)]−1 ∈ C∞

(
BsRs,k

4k

;Hs
e

)

T (k)(BsR/2k) ⊂ BsR , [T (k)]−1(BsR/4k) ⊂ BsR/2k , ∀R < Rs,k , (5.3.22)

• XR(k)
T

∈ C∞(Bs
Rs,k/2k

,Hs
e) and, ∀u ∈ BsR, with R < Rs,k/2

k one has

∥∥∥XR(k)
T
(u)
∥∥∥
s
≲k R

2(KτR)r̄ (5.3.23)

Proof. The result is true for k = 0 with T (0) = Id and N0 = N , ν0 = ν. We prove the

inductive step k ⇝ k + 1.

We determine Gk+1, Zk+1 ∈ LNk,νk
k+3,r̄k+1

solving the homological equation.

{H0, Gk+1}+ P (k) = Zk+1 , (5.3.24)

To this end, we remark that the maximal degree homogeneity of P (k) appears when

k = r̄− 1 and is smaller than r̄r̄. So we take τ and γ in (5.3.18) to be τ(r̄r̄) and γ(r̄r̄).

Then we write

H(k+1) := H(k) ◦ ΦGk+1
.
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Exploiting (5.3.24), the Hamiltonian H(k+1) has the form,

H(k+1) = H0 + Z(k) + Zk+1+

+H ′
0 − {H0, Gk+1}+ (P (k))′ +

(
Z(k)

)′
+

+RH0,Gk+1
+RP (k),Gk+1

+RZ(k),Gk+1
+RT,k ◦ ΦGk+1

,

with the primed quantities defined as in Lemma 5.3.11. Collecting the terms above,

we define the following quantities:

Z(k+1) := Z(k) + Zk+1 ,

P (k+1) := H ′
0 − {H0, Gk+1}+ (P (k))′ +

(
Z(k)

)′
,

RT,k+1 := RH0,Gk+1
+RP (k),Gk+1

+RZ(k),Gk+1
+RT,k ◦ ΦGk+1

.

First, we check the order of the polynomials, we have (P (k))′ ∈ L2k+2,r̄k+n1r̄k , with

a suitable n1. Similarly one has H ′
0 − {H0, Gk+1} ∈ L2k+2,r̄k+n2r̄k , and (Zk)′ ∈

L3+k+1,r̄k−1+n3r̄k with suitable n2, n3. Defining

r̄k+1 := max {r̄k−1 + n3r̄k, r̄k + n2r̄k, r̄k + n1r̄k}

one gets the result on the order. We come to the estimates. First, we remark that

µ ≲ RKτ . (5.3.25)

From Lemma 5.3.17 and the inductive hypothesis, we get the estimates

∥Gk+1∥Nk,νk
R ≤ Kτ

γ
∥P (k)∥Nk,νk

R ≲
Kτ

γ
µk∥P (0)∥N,νR ≲ µk+1R2 ,

∥Zk+1∥Nk,νk
R ≲ ∥P (k)∥Nk,νk

R ≲ µk∥P (0)∥N,νR .

(5.3.26)

The estimate (5.3.20) follows from (5.3.26).

For the estimate (5.3.21), we prove it for H̃ ′
0 − {H0, Gk+1} applying Lemma 5.3.10.

Denoting N ′ = Nk+1 = Nk − n(νk + d) and ν ′ = νk+1 = n(2νk + d), and taking profit
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of (5.3.24), we have

∥H ′
0 − {H0, Gk+1}∥Nk,νk

R =

∥∥∥∥∥
n∑
l=1

1

l!
AdlGk+1

({H0, Gk+1})

∥∥∥∥∥
Nk,νk

R

=

∥∥∥∥∥
n∑
l=1

1

l!
AdlGk+1

(
Zk+1 − P (k)

)∥∥∥∥∥
Nk,νk

R

≲
n∑
l=1

1

l!

(
∥Gk+1∥Nk,νk

R

R2

)l ∥∥P (k)
∥∥Nk,νk

R
≲ µk

∥∥P (0)
∥∥N,ν
k

n∑
l=1

1

l!
µ(k+1)l

≲ µk
∥∥P (0)

∥∥N,ν
R
µk+1

∞∑
l=0

1

l!
µ(k+1)l ≲ µ2k+1

∥∥∥P̂∥∥∥N,ν
R

,

that is (5.3.21) with k replaced by k + 1 (also in the case k = 0).

Concerning
(
Z(k)

)′
we just use (5.3.11) which gives∥∥∥(Z(k)

)′∥∥∥Nk,νk

R
≲
∥∥P (0)

∥∥N,ν
R

µk+1 .

Similarly one gets the estimate of
(
P (k)

)′
.

Finally, consider RZ(k),Gk+1
. One has Z(k) ∈ L3,r̄k−1

, so that we apply (5.3.12) with

r1 = k + 1, r2 = 3, which gives

n+ 1 ≥ r̄

k + 1
,

so that the remainder is estimated by

∥∥∥XR
Z(k),Gk+1

∥∥∥ ≲ ∥∥Z(k)
∥∥Nk,νk

R

R
(µk+1)n+1 ≲

∥∥P (0)
∥∥Nk,νk

R

R
µr̄ ≲ R2(RKτ )r̄ .

Proceeding in the same way for the other terms one gets the thesis.

We thus have the following.

Corollary 5.3.19 (Normal form). Assume Hypotheses L.1, L.2 and L.3 for the

Hamiltonian H = H0 + P of the form (5.2.1) and that P is a function with local-

ized coefficients according to Definition 4.1.12 and with a zero of order at least 3 at

the origin. For any r̄ > 3 there exist τ and sr̄ ≥ s0 > d/2 such that for any s ≥ sr̄

the following holds. There exist constants Rr̄,s and Cr̄,s such that, if K and R fulfill

RKτ ≤ Rr̄,s ,
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then there exists an invertible canonical transformation

T (r̄) : BsR/2r̄ → BsR ,
[
T (r̄)

]−1
: BsR/4r̄ → BsR/2r̄

such that

H(r̄) = H ◦ T (r̄) = H0 + Z(r̄) +RT (5.3.27)

where Z(r̄) ∈ Lνr̄,Nr̄

3,r̄r̄ is in normal form and XRT
∈ C∞(BsR/2r̄ ,Hs

e). Moreover, for any

u ∈ BsR, we have

∥XRT
(u)∥s ≲ R2(KτR)r̄ .

Applying Corollary 5.3.19, we prove Proposition 5.3.5.

Proof of Proposition 5.3.5. We apply Corollary 5.3.19. Choosing K in such a way

that

RKτ ∼ R
1
2 (5.3.28)

we have

(RKτ )r̄R2 ≃ R
r̄+4
2 .

Choosing r̄ := 2r we get

∥XRT
(u)∥s ≲ Rr+2 .

From Theorem 5.3.19, Definitions 5.3.2 and 5.3.3, we can write

Z(r̄) = Z0 + ZB + Z2 + Z≥3 .

We have to show that Z2 and Z≥3 can be considered remainder terms of order Rr+1.

From Corollary 4.2.13, we have that, for any u ∈ BsR/2r̄ ,

∥∥XZ≥3
(u)
∥∥
s
≲

∥Z≥3∥ν,NR
Ks−s0

1

R
≲

R2

Ks−s0
.

Since (5.3.28) implies K ∼ R− 1
2τ , we have

R2

Ks−s0
∼ R2+

s−s0
2τ ≲ Rr+1
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if s > sr = s0 + 2τ(r − 1) and so

∥∥XZ≥3
(u)
∥∥
s
≲ Rr+1 .

It remains to consider XZ2 . From Lemma 4.2.14, it follows that, for any u ∈ BsR,

∥XZ2(u)∥s ≲
∥Z2∥ν,N

′

R

Kδ(N ′−N)

1

R
≲

R2

Kδ(N ′−N)
,

for any N ′ > N . Denoting N ′ = N +M1, we have

R2

KδM1
∼ R2+

δM1
2τ ∼ Rr+1

for M1 =
2τ
δ
(r − 2). We get the thesis denoting

R(r̄) := Z2 + Z≥3 +RT .

The estimates (5.3.6) follow from Lemma 4.2.13.

5.4 Dynamics of the normal form

We conclude the proof of Theorem 5.2.1, exploiting Proposition 5.3.5 to study the

dynamics corresponding to a smooth, small, real initial datum for the Hamilton equa-

tions of (5.2.1). Precisely, take some large s and assume that

∥u0∥s =: ϵ <
R

2 · 42r
, (5.4.1)

with a small R < Rs,r and Rr,s from Proposition 5.3.5. Denote

z0 :=
(
T (r̄)

)−1
(u0) ,

and we consider the evolution in the z variables. Let z = (z+, z−) ∈ Hs ×Hs ≡ Hs
e

and, for K defined in Proposition 5.3.5, recall that

Π≤z = z≤ =
∑

{JAK≤K}

ΠAz ,

Π⊥z = z⊥ =
∑

{JAK>K}

ΠAz .
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Write the Hamilton equations of H(r̄) as a system:ż≤ = XH0(z
≤) +XZ0(z

≤) + Π≤XZB
(z) + Π≤XR(r̄)(z) ,

ż⊥ = XH0(z
⊥) + Π⊥XZB

(z) + Π⊥XR(r̄)(z) .
(5.4.2)

We start considering the dynamics of z≤. We remark first that Π≤XZB
and

Π≤XR(r̄) are remainder terms of order Rr+2 (see Proposition 5.3.5). Then, it re-

mains to analyze the role of Z0.

To this end, we define the set of indexes correspondent to each ”band” of the spectrum

Σn, the correspondent projector and the correspondent ”superaction”, namely

En := {a ∈ Λ : ωa ∈ Σn} , Πnz :=
∑

{A=(a,σ):a∈En}

ΠAz ,

Jn(z) :=
∑
a∈En

∫
Π(a,+)zΠ(a,−)z dx .

In particular, if z is real (as we assumed)

Jn(z) =
∑
a∈En

∥∥Π(a,+)z
∥∥2
0
=

1

2

∑
a∈En

∥∥Π(a,+)z
∥∥2
0
+
∥∥Π(a,−)z

∥∥2
0
.

In the next lemma, we prove that Jn is preserved under the dynamics associated to

Z0.

Lemma 5.4.1. Let Z a polynomial supported on W , then

{Z, Jn} = 0 .

Proof. From Def. 5.3.1 follows that Z̃ is the sum of terms of the form∫
M

ΠA1u1 . . .ΠAl
ul

with A = (A1, . . . , Al) ∈ W . First, note that we have

XJn(u) = i
∑
a∈En

(
Π(a,+)u,−Π(a,−)u

)
= i
∑
(a,σ)

δa∈Σn(δσ,+ − δσ,−)Π(a,σ)u .

Moreover, for any homogeneous polynomial F , one has

dF (u)X = F̃ (X, u, . . . , u) + F̃ (u,X, . . . , u) + · · ·+ F̃ (u, . . . , u,X) .
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Decompose Z =
∑

l Zl in homogeneous polynomials, we have

{Zl, Jn}(u) = dZ(u)XJn(u) =

= i
∑

A1,...,Al

Z̃(ΠA1u, ...,ΠAl
u)

n∑
j=1

δaj∈Σn(δσj ,+ − δσj ,−) .

We recall that Z is in normal form, which means that the sum can be restricted to

multi-indexes belonging to W . So, fix one of the multi-indexs A ∈ W . The definition

of W implies that there exists a permutation τ of 1, ..., l, and indexes n1, ..., nl s.t,

aτ(j), aτ(j+l/2) ∈ Σnj
and στ(j)στ(j+l/2) = −1. Thus consider the sum

n∑
j=1

δaj∈Σn(δσj ,+ − δσj ,−) =
n∑
j=1

δaτ(j)∈Σn(δστ(j),+ − δστ(j),−) .

If aτ(j) ∈ Σn with a sign, it means that also aτ(j+l/2) ∈ Σn with the opposite sign.

Thus the sum vanishes for any index in W .

Corollary 5.4.2. There exists a positive constant C1 with the following property:

assume that (5.4.1) holds and that there exists Te > 0 s.t.

∥z(t)∥s ≤
R

2 · 22r
, ∀ |t| ≤ Te (5.4.3)

and some R < Rrs, then one has

∥∥z≤(t)∥∥2
s
≤ C1(

∥∥z≤(0)∥∥2
s
+ |t|Rr+3) . (5.4.4)

Proof. Define

an,s := inf
a∈En

(1 + JaK)2s

then there exist two constants C3, C4 such that, for any n, one has

C3∥Πnz∥2s ≤ an,sJn ≤ C4∥Πnz∥2s ,

∥z≤∥2s ≃
∑
n s.t.

maxEn≤K

an,sJn . (5.4.5)
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Then, by Proposition 5.3.5 and Lemma 5.4.1, one has

d

dt

∑
n s.t.

maxEn≤K

an,sJn ≲
∑
n

an,s
{
Jn, Z2 +R(r̄)

}
≲ Rr+3 , (5.4.6)

which is valid for |t| ≤ Te. From (5.4.5) and (5.4.6) the thesis immediately follows.

Consider the dynamics of the high modes z⊥ given by (5.4.2). From Proposition

5.3.5), Π⊥XR(r) is a remainder term of order Rr+2 and ZB is in Block Resonant Normal

Form and of order 2 in z⊥.

Recalling the dyadic partition Λ =
⋃
α∈AΩα, we define the correspondent projec-

tors and the correspondent superactions. Since we are interested in the dynamics

of the high modes, we consider only superactions defined on modes |a| ≥ K. This

amount to consider a cutoff of the Bourgain’s blocks, which do not break the dyadicity

of the partition.

Παz :=
∑

{A=(a,σ) : a∈Ωα, JaK≥K}

ΠAz

Jα(z) :=
∑

{a∈Ωα, JaK≥K}

∫
Π(a,+)zΠ(a,−)z dx = ∥Παz∥20 .

By definition of Block Resonant normal form (see Def. 5.3.2) Π⊥XZB
is linear in z⊥.

Then we exploit that ZB is a real polynomial to show that the L2 norm on each block

is conserved along the dynamics induced by the normal form. Namely, the dynamics

of the normal form ZB enforces the exchange of energy only within high modes in the

same block Ωα. This is the content of the following lemma.

Lemma 5.4.3. For any real z ∈ Hs
e, we have that, for any α ∈ A,

{Jα, ZB} (z) = 0 .

Proof. In this proof, we denote again uA := ΠAu. Since ZB is real and recalling Def.

5.3.2, it is the sum of terms of the form

Z̃β(z) :=

∫
z(a,+)z(b,−)zA3 . . . zAl

+

∫
z(a,−)z(b,+)zA3

. . . zAr

= 2Re

(∫
z(a,+)z(b,−)zA3 . . . zAr

)
, ∀z real

(5.4.7)

with A = ((a,+), (b,−), A3, . . . , Ar) ∈ Λre such that a, b ∈ Ωβ, JaK > K and JbK > K

for some β. Here, for the sake of simplicity, we are considering multi-indexes for which

the two largest indexes are the first and the second.
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If β ̸= α, then {Jα, Zβ} = 0. Otherwise, we have{
Jα, Z̃α

}
(z) = i

∫
z(a,−)z(b,+) . . . zĀr

− i

∫
z(a,+)z(b,−) . . . zAr

+ i

∫
z(b,−)z(a,+) . . . zAr − i

∫
z(b,+)z(a,−) . . . zĀr

= 0 ,

with a, b ∈ Ωα.

The following Corollary is proved exactly in the same way as Corollary 5.4.2

Corollary 5.4.4. There exists a positive constant C1 with the following property:

assume there exists Te > 0 s.t. (5.4.3) holds for some R < Rrs, then one has

∥∥z⊥(t)∥∥2
s
≤ C1(

∥∥z⊥(0)∥∥2
s
+ |t|Rr+3) . (5.4.8)

Proof of Theorem 5.2.1. We prove by a bootstrap argument that, if ϵ is small enough,

the escape time Te fulfills 1/R
r+1 ≲ Te. First we make the canonical transformation

T (r) and apply the estimate (5.3.5) with R = 2−1ϵ42r where ϵ := ∥u0∥,getting that

∥z0∥s ≤
R

2 · 22r
.

Then we can apply Lemmas 5.4.2 and Lemma 5.4.4, since the assumptions on the

initial datum z(0) are fulfilled. Assume now, by contradiction, that there exists t∗ <

Te := R−r−1(2 · 22r)−2 s.t. z(t) ∈ BsR′
r
for all |t| < t∗ and z(t∗) ∈ ∂BsR′

r
, with R′

r :=
√
2C1R
2·22r and C1 as in Lemmas 5.4.4, 5.4.2. For |t| ≤ t∗, Lemmas 5.4.2 and 5.4.4 give

that (√
2C1R

2 · 22r

)2

= ∥z(t∗)∥2s ≤ C1(∥z0∥2s +Rr+3|t|) ≤ C1

(
R2

22 · 24r
+

R2

22 · 24r

)
,

which is absurd. Going back to the variables u, changing r+1 to r and adjusting the

name of the constants one gets the result.

5.5 Proof of Theorem 5.2.2

In this Section, we prove Theorem 5.2.2. It implies that the functional introduced in

Hypothesis P is a function with localized coefficients. The proof follows immediately

from the next lemma and Theorem 3.2.1.
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Lemma 5.5.1. Let P be a polynomial with localized coefficients, then also

Q(u) := P (u)

∫
M

uūdx (5.5.1)

has localized coefficients.

Proof. Let r be the degree of P , then one has

|Q̃(Πa1u1,Πa2u2,Πb1u3, ....,Πbrur+2)| = δa1,a2

∣∣∣P̃ (Πb1u3, ....,Πbrur+2)
∣∣∣ ∥Πa1u1∥ ∥Πa2u2∥ .

(5.5.2)

Therefore, to get the thesis it is enough to show that

δa1,a2
µ(b)N+ν

S(b)N
≲
µ(a1, a2,b)

N+ν

S(a1, a2,b)N
. (5.5.3)

For simplicity, we will also denote a := a1 = a2 and we consider, in full generality that

Jb1K ≥ Jb2K ≥ Jb3K are the three largest indexes among b1, . . . , br.

Case 1. If JaK ≥ Jb1K we have the trivial estimate

µ(b)N+ν

S(b)N
=

Jb3Kν+N

(|b1 − b2|+ Jb3K)N
≤ Jb3Kν

≤ Jb1Kν =
Jb1Kν+N

(|a1 − a2|+ Jb1K)N
=
µ(a1, a2,b)

N+ν

S(a1, a2,b)N
,

since |a1 − a2| = 0.

Case 2. If Jb1K > JaK > Jb2K, we need to distinguish two cases.

Case 2.i. Consider first the case Jb1K > K1Jb2K, with K1 > 0 so large that

|b1 − b2| ≥ K2Jb1K (5.5.4)

for a constant 0 < K2 < 1; the existence of such constants is established in 4.2.4 .

Then using |b1 − a| ≲ Jb1K + JaK ≲ Jb1K, we estimate

Jb3Kν+N

(|b1 − b2|+ Jb3K)N
≤ Jb3Kν+N

(K2Jb1K + Jb3K)N
≲

Jb3Kν+N

(|b1 − a|+ Jb3K)N
.

Since the function f(x) = xN+ν

(K+x)N
is increasing for any N, ν > 0, K ≥ 0 and x ≥ 0,

the above quantity is bounded, up to a constant, by

JaKν+N

(|b1 − a|+ JaK)N
=
µ(a1, a2,b)

N+ν

S(a1, a2,b)N
.
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Case 2.ii. If Jb1K ≤ K1Jb2K we observe that

K1CJb2K ≥ CJb1K ≥ |b1 − a|

and we estimate

Jb3Kν+N

(|b1 − b2|+ Jb3K)N
≤ Jb2Kν = (K1C + 1)N

Jb2Kν+N

(K1CJb2K + Jb2K)N

≤ (K1C + 1)N
Jb2Kν+N

(|b1 − a|+ Jb2K)N
.

(5.5.5)

Using again the monotonicity of the function f(x) = xN+ν

(K+x)N
, we get

(5.5.5) ≤ (K1C + 1)N
JaKν+N

(|b1 − a|+ JaK)N

= (K1C + 1)N
µ(a1, a2,b)

N+ν

S(a1, a2,b)N
.

Case 3. If Jb2K ≥ JaK > Jb3K we get

µ(b)N+ν

S(b)N
=

Jb3Kν+N

(|b1 − b2|+ Jb3K)N

≤ JaKν+N

(|b1 − b2|+ JaK)N
=
µ(a1, a2,b)

N+ν

S(a1, a2,b)N
.

Case 4. If JaK ≤ Jb3K the estimates (4.2.27) is obvious since it does not involve a.

This concludes the proof.

Proof of Theorem 5.2.2. The proof follows directly from Lemma 5.5.1 and the defi-

nition of a function with localized coefficients 4.1.12, since the Taylor expansion of a

functional fulfilling Hypothesis P is the sum of terms Pm of the form (5.5.1), where any

P (u) is a polynomial with localized coefficients as a consequene of Theorem 3.2.1.
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Chapter 6

Applications of the abstract result

In this final Chapter, we prove some results of almost global existence and Sobolev

stability by applying the abstract Theorem 5.1.4, proven in Chapter 5.

6.1 Manifolds

We present examples of manifolds on which the Laplacian-Beltrami operator −∆ is a

globally integrable quantum system with steep and homogeneous Hamiltonian func-

tion. Thus, the associated set of frequencies satisfies Theorem 3.2.7 and so fulfills

Hypothesis L.3 of the abstract Theorem 5.1.4. For some of these examples, the par-

tition of the frequencies follows directly from the spectral structure of the Laplacian.

For example, this is the case for tori [23]. Theorem 3.2.7 furnishes a more general

theoretical framework and extends the result to Lie groups and surfaces of revolution.

1. Flat tori. Given a basis e1, . . . , ed of Rd we define a maximal dimensional lattice

Γ ⊂ Rd by

Γ :=

{
x =

d∑
j=1

mjej , mj ∈ Z

}

and the corresponding maximal dimensional torus T dΓ := Rd/Γ. By using in Rd

the basis ej, one is reduced to the standard torus Td endowed by a flat metric.

Then the actions are given by the operators −i∂j. Bourgain’s clustering of the

eigenvalues of the Laplacian was already proved in [29, 32].

2. Rotation invariant surfaces. Consider a real analytic function f : R3 → R,
invariant by rotations around the z axis, and assume it is a submersion at

f(x, y, z) = 1 . Denote by M the level surface f(x, y, z) = 1 and endow it

by the natural metric g induced by the Euclidean metric of R3. We introduce

coordinates in M as follows: let N and S be the north and the south poles
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(intersection of M with the z axis) and denote by θ ∈ [0, L] the curvilinear

abscissa along the geodesic given by the intersection of M with the xz plane;

we orient it as going from N to S and consider also the cylindrical coordinates

(r, ϕ, z) of R3: on M we will use the coordinates

(θ, ϕ) ∈ (0, L)× (0, 2π) .

Using such coordinates, one can write the equation of M by expressing the

cylindrical coordinates of a point in R3 as a function of (θ, ϕ) getting

M =
{
(r(θ), ϕ, z(θ)) , (θ, ϕ) ∈ (0, L)× T1

}
.

Since θ is a geodesic parameter, the metric takes the form

g = r2(θ)dϕ2 + dθ2 .

We assume that the function r(θ) has only one critical point θ0 ∈ (0, L). The

fact that the Laplacian is a globally integrable quantum system that was proved

by Colin de Verdier [94].

3. Lie Groups and Homogeneous spaces. M is either a compact, simply

connected Lie group or a homogeneous space. The steepness of the Laplacian

is proved in [12].

From now on, M will denote any of these manifolds.

6.2 Applications

We will we denote with I1, . . . , Id the quantum actions (see Def. 3.1.1) of the Laplacian

and with hL0 the function (see Def. 3.1.3) such that

−∆ = hL0(I1, . . . , Id) . (6.2.1)

Moreover, we will denote with {λa}a∈Λ the eigenvalues of −∆, namely

λa = hL0(a), ∀a ∈ Λ . (6.2.2)

As emphasized in Section 6.1, they fulfill Hypothesis L.3.

In the applications, we apply Theorem 5.1.4 to a Hamiltonian with linear part HL
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that is a small correction of −∆; for each of them we will check that they still fulfill

Hypotheses L.0, L.1 and L.3. We remark that considering systems that are small

corrections of the Laplacian allows us to verify the non-resonance assumption L.2.

Finally, we remark that all the nonlinear perturbations that we will meet are of the

form (5.1.11), so they fulfill Hypothesis P. In other words, following Theorem 5.2.2,

they are functions with localized coefficients.

6.2.1 NLS equation with convolution potential

Our first result concerns a nonlinear Schrödinger equation with a spectral multiplier.

To define it we recall the definition of the spectral projectors Πa, with a ∈ Λ.

Definition 6.2.1. For a ≡ (a1, . . . , ad) ∈ Λ,

Πa := Πa1 . . .Πad (6.2.3)

where Πaj is the orthogonal projector on the eigenspace of Ij with eigenvalue aj.

Given u ∈ L2(M,C), consider its spectral decomposition,

u =
∑
a∈Λ

Πau ,

and let V = {Va}a∈Λ with Va ∈ R be a sequence; correspondingly, we define a spectral

multiplier by

V ∗ u :=
∑
a

VaΠau . (6.2.4)

In the following, we will assume that V belongs to the space

Vn :=

{
V = {Va}a∈Λ : Va ∈ R , |Va|⟨a⟩n ∈

[
−1

2
,
1

2

]}
, (6.2.5)

that we endow with the product measure.

Consider the Cauchy problemi∂tψ = −∆ψ + V ∗ ψ + f(x, |ψ|2)ψ, x ∈M ,

ψ(0) = ψ0

(6.2.6)

where V ∈ Vn and the non-linearity f is of class C∞(M × U ,R), U ⊂ R being a

neighbourhood of the origin, and fulfills f(x, 0) = 0, ∂yf(x, y)|y=0 = 0.
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Theorem 6.2.2. There exists a set V(res) ⊂ Vn of zero measure, s.t., if V ∈ V \V(res)

the following holds. For any r ∈ N, there exists sr > d/2 such that for any s > sr

there is ϵs > 0 and C > 0 such that if the initial datum for (6.2.6) belongs to Hs and

fulfills ϵ := |ψ0|s < ϵs then

∥ψ(t)∥s ≤ Cϵ , for all |t| ≤ Cϵ−r .

We begin the proof of Theorem 6.2.2 recalling that the nonlinear Schrödinger

equation (6.2.6) is Hamiltonian with a Hamiltonian function

H =

∫
M

(φ(−∆ψ) + φ(V ∗ ψ) + F (x, ψφ)) dx (6.2.7)

where F is such that f(x, u) = ∂uF (x, u) and φ is a variable conjugated to ψ. To get

equation (6.2.6) one has to restrict to the invariant manifold φ = ψ.

The Hamiltonian (6.2.7) fits the abstract settings (5.1.2) with HL the globally inte-

grable quantum system

HL = −∆+ V ∗ (6.2.8)

The actions are I1, . . . , Id, namely they are the actions of the Laplacian; the associated

function hL is

Rd ∋ ξ 7→ hL0(ξ) + v(ξ) (6.2.9)

where v(ξ) is any C∞ interpolation of V ∗ on the lattice Λ, namely it is a function

such that v(ξ) = Vξ,∀ξ ∈ Λ. Moreover, we remark that the frequencies are given by

ωa := λa + Va . (6.2.10)

In order to apply Theorem 5.1.4 and prove Theorem 6.2.2, it remains to verify that

Hypotheses L.1,L.2 and L.3 hold.

Hypotheses L.1 and L.3 clearly hold, since they hold for {λa}a∈Λ and the coefficients

Va have strong decay, see (6.2.5). In fact, for any a, b ∈ Λ,

|a− b|+ |λa − λb| ≥ Cδ(|a|δ + |b|δ) (6.2.11)

implies

|a− b|+ |ωa − ωb| ≥ |a− b|+ |λa − λb| − |Va − Vb| ≥

≥ Cδ(|a|δ + |b|δ)− 1/2 ≥ C ′
δ(|a|δ + |b|δ) .

(6.2.12)
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We come to prove the non-resonance condition L.2. Actually, we will prove a stronger

condition.

Lemma 6.2.3. For any r there exists τ and a set V(res) ⊂ V of zero measure, s.t., if

V ∈ V \ V(res) there exists γ > 0 s.t. for all K ≥ 1 one has

|ω · k| ≥ γ

Kτ
,

∀k = (ka1 , ..., kar) s.t. |aj| ≤ K ∀j = 1, ..., r , |k|ℓ1 ≤ r
(6.2.13)

Before proving this lemma we prove a preliminary result; to this end consider, for

k fulfilling (6.2.13), consider

V(k, γ) := {V ∈ Vn : |ω · k| < γ} .

We have

Lemma 6.2.4. One has

|V(k, γ)| ≤ 2γKn . (6.2.14)

Here we indicate with | · | the measure of a set.

Proof. We prove that the result is true for any arbitrary sequence λa, namely that

the asymptotic behavior is not important.

First, if V(k, γ) is empty there is nothing to prove. Assume that Ṽ ∈ V(k, γ). Since

k ̸= 0, there exists ā such that kā ̸= 0 and thus |kā| ≥ 1; so we have∣∣∣∣∂ω · k
∂V̂ā

∣∣∣∣ ≥ 1 .

It means that if V(k, γ) is not empty it is contained in the layer∣∣∣ ̂̃Vā′ − V̂ ′
ā

∣∣∣ ≤ γ ,

whose measure is γ⟨ā⟩n ≤ 2γNn. This implies (6.2.14).

Proof of Lemma 6.2.3. From Lemma 6.2.4 it follows that the measure of the set

V(res)(γ) :=
⋃
K≥1

⋃
k

V
(
k,

γ

Kdr+2

)
is estimated by a constant times γ. It follows that the set

V(res) := ∩γ>0V(res)(γ)
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has zero measure and with this definition the lemma is proved.

6.2.2 Sobolev stability of the ground state of NLS

Our second result is the long-time Sobolev stability of the ground state solution of

the nonlinear Schrödinger equation

iψ̇ = −∆ψ + f
(
|ψ|2

)
ψ , (6.2.15)

where f ∈ C∞(U ;R), U ⊂ R is an open neighborhood of the origin, and f has a zero

of order at least one at the origin. It is well known that for any p0 ∈ U ∩R+ equation

(6.2.15) has a solution given by a plane wave of the form

ψ∗(t) =
√
p0e

−iνt ,

provided ν = f(p0). Denote by λ̄ the lowest non vanishing eigenvalue of −∆, then we

will prove the following result.

Theorem 6.2.5. Assume there exists p̄0 > 0 such that λ̄ + 2f(p0) > 0 for any

p0 ∈ (0, p̄0]. Then there exists a zero measure set P such that if p0 ∈ (0, p̄0] \ P then

for any r ∈ N there exists sr for which the following holds. For any s ≥ sr, there

exists constants ϵ0 and C such that if the initial datum ψ0 fulfills

∥ψ0∥20 = p0, inf
α∈T

∥∥ψ0 −
√
p0e

−iα∥∥
s
= ϵ ≤ ϵ0 ,

then the corresponding solution fulfills

inf
α∈T

∥∥ψ(t)−√
p0e

−iα∥∥
s
≤ Cϵ ∀ |t| ≤ Cϵ−r

with ψ(0) = ψ0.

Remark 6.2.6. Note that if f is a positive function (the so-called defocusing case)

there is no restriction in the L2 norm of the initial datum, since λ̄ + 2f(p0) > 0 for

any p0.

The equation (6.2.15) is Hamiltonian with Hamiltonian

H(ψ, ψ̄) =

∫
M

(
ψ(−∆ψ) + F (|ψ|2)

)
dx , (6.2.16)

where F is such that F ′ = −f . We introduce variables in which the ground state

becomes an equilibrium point of a reduced system [54]. To this end, we consider the
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space

L2
0(M ;C) :=

{
φ ∈ L2(M ;C) :

∫
M

φ(x)dx = 0

}
,

of the functions with vanishing average and we denote

N(φ) =

∫
M

|φ|2 dx .

Then we consider the map

L2
0(M,C)× R× T → L2(M ;C)

(φ, p, θ) 7→ ψ(φ, p, θ) := e−iθ
(√

p− ∥φ∥2 + φ(x)

)
.

(6.2.17)

Lemma 6.2.7 (Faou,Lubich,Glouckler [54]). The map (6.2.17) defines a local coor-

dinate system close to φ = 0. Furthermore, such coordinates are symplectic, namely

the Hamilton equations of a Hamiltonian function H have the form

θ̇ =
∂H

∂p
, ṗ = −∂H

∂θ
, ż = −i∇z̄H .

Then the Hamiltonian is just (6.2.16) with ψ given by (6.2.17). We now fix a

value p0 of p (which is an integral of motion) and expand in power series in φ getting

(neglecting irrelevant terms independent of φ) a Hamiltonian of the form

H = H0 + P̂

with

H0(φ) =

∫
M

[
φ̄(−∆φ) + 2f(p0)φ̄φ+

f(p0)

2

(
φ2 + φ̄2

)]
dx

and P̂ = P̂ (φ, φ̄) of the form (5.1.11). Thus we have just to verify the assumptions

on the linear part.

Introducing the spectral decomposition relative to the quantum actions of the Lapla-

cian, we get

H0 =
∑
a∈Λ

∫
M

(
(λa + 2f(p0))Πaφ̄Πaφ+

f(p0)

2
(Πaφ)

2 +
f(p0)

2
(Πaφ̄)

2

)
dx ,

which can be diagonalized through a symplectic change of coordinates of the form(
wa

w̄a

)
= Sa

(
φa

φ̄a

)
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where Sa are matrices uniformly bounded with respect to a. Such a change of coor-

dinates of course does not change the nature of P̂ of having localized coefficients. In

the new coordinates, one gets

H0(w,w) =
∑
a

ωa

∫
M

Πaw̄Πawdx

with

ωa =
√
λ2a + 2f(p0)λa . (6.2.18)

Hypotheses L.1 and L.3 hold for {ωa}a∈Λ, since they hold for {λa}a∈Λ and one has

ωa =
√
λ2a + 2f(p0)λa = λa

(
1 +

f(p0)

λa
+ o

(
f(p0)

λa

))
so that

|a− b|+ |λa − λb| ≥ Cδ(|a|δ + |b|δ)

implies

|a− b|+ |ωa − ωb| ≥ C ′
δ(|a|δ + |b|δ) .

with computations analogous to the ones in (6.2.12)

We prove now the non-resonance condition L.2, essentially identically as for the

case of the Klein-Gordon equation on tori and Zoll Manifolds given by Delort and

Szeftel [47] (see also [48]). In particular, the proof follows by applying the next

theorem.

Theorem 6.2.8 ([47], Theorem 5.1). Let X be a closed ball BR0 in Rp for some

R0 > 0 and by Y a compact interval in R. Let f : X × Y 7→ R be a continuous

subanalytic function, ρ : X 7→ R a real analytic function, ρ ̸≡ 0. Assume

• f is real analytic on {x ∈ X; ρ(x) ̸= 0}× Y ;

• for all x0 ∈ X, the equation f(x0, y) = 0 has only finitely many solutions y ∈ Y .

Then there are N0 ∈ N, α0 > 0, δ > 0, C > 0, such that for any α ∈ (0, α0), any

N ≥ N0, any x ∈ X with ρ(x) ̸= 0,

meas
{
y ∈ Y : |f(x, y)| ≤ α|ρ(x)|N

}
≤ Cαδ|ρ(x)|Nδ .

The strategy to deduce the existence of large sets of values p0 for which assumption

L.2 holds is not trivial. In our case one can reproduce almost exactly the computations
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of [47, Sect. 5.2], substituting the function f of that paper with the function

f(x, y) :=
l∑

j=1

√
x2jy + xj −

p∑
j=l+1

√
x2jy + xj ,

which has the property that

m2f

(
λaj ,

1

m2

)
with m2 = 2f(p0) are exactly the small divisors one has to control.

The only nontrivial point is to prove that for any fixed value of x ∈ [0, 1]p the

equation f(x, y) = 0 has only isolated solutions in y. We give detailed proof just of

this fact since its proof requires different computations.

First, we have to give a selection property for the sequences (x1, ..., xp): we will

say that a sequence (x1, ..., xp), given an integer l ≤ p satisfy condition Z, if one of

the following holds:

• p is odd

• p is even and l ̸= p/2

• p is even, l = p/2 and for any permutation τ of 1, ..., p/2 exists j s.t. xτ(j) ̸=
xp/2+j.

Lemma 6.2.9. For any (x1, ..., xp) ∈ [0, 1]p fulfilling condition Z, the equation f(x, y) =

0 has a discrete set of solution.

Proof. Following [48] we remark that since f is an analytic function of y, its roots can

have accumulation points only if the function identically vanishes. We compute its

Taylor expansion at y = 0 and show that it can be identically zero only if condition

Z is violated. Denote

νj =
√
x2jy + xj ,

by direct computation, we get

dkνj
dyk

= ck

(
xj
νj

)2k

νj ,

with suitable constants ck. Thus we have

∂kf

∂yk
= ck

[
j∑
j=1

(
xj
ν2j

)2k

νj −
p∑

j=l+1

(
xj
ν2j

)2k

νj

]
. (6.2.19)
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Let consider the equivalence relation

xi ∼ xj ⇐⇒ (xi = xj and (i, j ≤ l or i, j > l))

and denote by nj the cardinality of the correspondent equivalence classes. So, we can

write the condition (6.2.19) = 0 (renaming the indexes j), as

0 =

l1∑
j=1

nj

(
xj
νj

)2k

νj −
p1∑

j=l1+1

nj

(
xj
νj

)2k

νj , (6.2.20)

and now we have that ∀i ̸= j xi ̸= xj. Remark that in our computation we have

implicitly erased the terms with a plus sign with a corresponding term with a minus

sign, and that. Moreover, there must be at least a couple of indexes i, j with i ≤ l and

j > l such that xi ̸= xj, so that not all the n′
js vanish since condition Z is fulfilled.

Now, (6.2.20) is a linear equation in the unknown nj and its determinant must

vanish to have nontrivial solutions. However, it is a Vandermonde determinant, that

can be explicitly computed, giving

ν1 . . . νp1
∏

1≤k<l≤p1

(
x2l
ν2l

− x2k
ν2k

)
̸= 0 .

This leads to a contradiction.

As anticipated, the rest of the proof follows exactly as in [48] and thus is omitted.

6.2.3 Semilinear beam equation

A third result concerns the beam equation

ψtt +∆2ψ +mψ = −∂ψF (x, ψ) , (6.2.21)

with F ∈ C∞(M ×U), U ⊂ R being a neighbourhood of the origin, and m > 0 a real

positive parameter that we will call mass. We will assume F to have a zero of order

at least 2 at ψ = 0. The precise statement of the main theorem is the following.

Theorem 6.2.10. There exists a set of zero measure M(res) ⊂ R+ such that if m ∈
R+ \M(res) then for all r ∈ N there exist sr > d/2 such that the following holds. For

any s > sr there exist ϵrs, c, C such that if the initial datum for (6.2.21) fulfills

ϵ :=
∥∥∥(ψ0, ψ̇0)

∥∥∥
s
:= ∥ψ0∥Hs+2 +

∥∥∥ψ̇0

∥∥∥
Hs

< ϵsr ,
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then the corresponding solution satisfies∥∥∥(ψ(t), ψ̇(t))∥∥∥
s
≤ Cϵ , for |t| ≤ cϵ−r .

Introducing the variable φ = ψ̇ ≡ ψt, it is well known that (6.2.21) is an Hamilto-

nian system in the variables (ψ, φ), with Hamiltonian function

H(ψ, φ) :=

∫
M

(
φ2

2
+
ψ(∆2

g +m)ψ

2
+ P (x, ψ)

)
dx .

To prove Theorem 6.2.10 we first show how to put the system in the form (5.1.2) and

then we prove that the Hypotheses of Theorem 5.1.4 are verified.

We introduce new variables [16]

u(x) :=
1√
2

((
∆2
g +m

)1/4
ψ + i

(
∆2
g +m

)−1/4
φ
)
,

u(x) :=
1√
2

((
∆2
g +m

)1/4
ψ − i

(
∆2
g +m

)−1/4
φ
)
,

such that the Hamiltonian takes the form

H(u, ū) :=

∫
M

ū (HLu) + P (x, u, ū) dx

with

HL =
√
−∆2

g +m.

We point out that HL is a globally integrable quantum system; in particular, its

actions are given by the actions of the Laplacian and the associated function is

Rd ∋ ξ 7→ hL(ξ) =
√
h2L0(ξ) +m.

Moreover, the frequencies {ωa}a∈Λ are given by

ωa :=
√
λ2a +m .

As for the other applications, Hypotheses L.1 and L.3 hold since they hold for {λa}a∈Λ
and

ωa = λa

(
1 +

m

2λ2a
+ o

(
m

λ2a

))
.

The verification of non-resonance condition L.2 is again a straightforward application

of Theorem 6.2.8, thus we omit the details.
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In Annales Henri Poincaré, volume 4, pages 343–368, 2003.

[94] Y. C. d. Verdier. Spectre conjoint d’opérateurs pseudo-différentiels qui commutent.
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