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Experimental details

Materials and characterizations. All reagents were obtained from commercial sources and used without further
purification. Powder X-ray diffraction patterns were recorded on a Bruker D8 Advance with Cu Ka radiation (A = 1.5406
A). Data were collected at room temperature at 20 = 3-40°. Thermogravimetric analysis was carried out on a TGASS0
(TA Instruments) analyzer. For each run, 3-S mg of sample was heated from room temperature to 600 °C at a ramp rate
of 10 °C/min. Nitrogen adsorption at 77 K was measured on a BSD instrument automatic high performance surface area
and aperture analyzer (BSD-660), and the sample was regenerated at 150 °C for 30 minutes. Single-crystal X-ray
diffraction data were collected at 204 K on a Bruker APEX-II CCD diffractometer using GaKo radiation tuned to A =
1.34139 A. The structure was solved by direct methods and refined by full-matrix least-squares on F* using the Bruker
SHELXTL package.

Synthesis of HIAM-111. NaCl (10 mg, 99.9% AR) and HsETTBPDC (30 mg, 98%) were added to a mixed solvent of
DMF (99.9%, AR)/deionized water (10/1 mL), and the solution was transferred to a 20 mL glass bottle. The bottle was
placed in an oven preset at 120 °C for 3 days and light yellow block-shaped crystals suitable for single-crystal X-ray
diffraction analysis were harvested. The as synthesized HIAM-111 sample was exchanged with acetone and then

evacuated under dynamic vacuum at 423 K for 12 h to obtain activated form of HIAM-111.

IAST selectivity calculation. The dual site Langmuir-Freundlich model was adopted to fit the adsorption isotherms of

HIAM-111, which was described as follows:
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with T-dependent parameters by, and bg

by=b,0 exp (1%); bp=bpo exp (Ib;_l;)
where g represents the adsorption amount of adsorbents with units of mol-kg", qa. and gg. represent the saturated
adsorption amount for adsorption sites A and B, respectively, bs and b are constants for species i at adsorption sites A and
B, respectively, p is the total pressure of the bulk gas at the adsorption equilibrium, and v, and v are the Freundlich
exponent for sites A and B, respectively.
Taking the C;Hs/CyH, selectivity as example, the IAST selectivity is defined by:
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where q; and g; represents the adsorption amounts of C;Hg and C,H, under equilibrium condition, which are usually
expressed with units of mmol-g’, y; and y. are the corresponding mole fractions in the gas phase for the mixtures. The
calculated IAST adsorption selectivity for the C;Hs/CoHs (CoHs/CoHy=1/1; v/ v) mixtures taking the mole fractions y; =

0.5 and y, = 1-y; = 0.5 for a total pressure of 101 kPa at 298 K.



Isosteric heat of adsorption. The adsorption heat of each component was determined precisely according to the virial
fitting parameters of single-component adsorption isotherms measured at 278 K and 298 K up to 100 kPa.

Qst = -slope x R by drawing the Ln(P) versus gas uptakes, which was defined as follows:

Ln(P)=Ln(N)+2 X7y a;N+ X1y biN;

Q=R i,
where N is the adsorption amount, and m and n determine the number of items required to precisely fit the

adsorption isotherms.

Multicomponent column breakthrough measurements. Breakthrough tests were carried out in an auto mixed-gas
breakthrough apparatus (3P Mixsorb S). The mass of adsorbents filled into the column (I.D. 6 mm, length 100 mm) was
1.21 g. The adsorbents were activated at 423 K for 10 h under helium purging (10 ml/min) prior to the measurements.
When the temperature was cooled down to 298 K, helium flow was stopped and the binary or ternary feed mixed gases at a
flow rate of 1 mL/min were introduced to the adsorption column. The outlet gas was analyzed using an online mass
spectrometer (MKS circus 3). After the adsorption reached dynamic equilibrium, the column was purged with helium (10
mL/min) at room temperature for § h for regeneration.

The purity (c) of the breakthrough gas was calculated by the following equation.

c= dcaHa

dczHztdczHatdc2He
Computational calculations. Due to the large pore size of HIAM-111, we used classical grand canonical Monte Carlo
(GCMC) simulations-with the help of the RASPA code'-to effectively sample the configurational space and find all
binding locations. The HIAM-111 was treated as a rigid framework, and the DREIDING * model was adopted for force
field parameters to represent the constituent atoms. For the guest molecules (CO,, C;H,, C;H,, and C,Hg), these reported
parameters were used respectively*>.

The simulation is carried out at room temperature with a pressure of 1 bar. The cutoft distance for intermolecular
interactions is set to 12 A with the default Lorentz-Berthelot mixing rules. For the guest molecules with partial charges, we
used the extended charge equilibration method to represent the framework charges®. Throughout the GCMC simulation,
we recorded multiple configurations over 100,000 cycles. This enables us to visualize the binding location of guest
molecules within the pore.

To study the molecular adsorption in HIAM-111 at the binding sites identified with our GCMC simulations, ab initio
calculations were performed using the VASP code (version 6.4.0)”%. To account for van der Waals interactions, we
employ a vdW-DE3-optl functional’in conjunction with the standard PAW pseudopotentials’. The implementation of
vdW-DF3-optl is previously discussed'’. Gamma-point sampling is used due to the large MOF unit cell, consisting of 440
atoms and having lattice constants of a = 19.06, b = 31.86, and ¢ = 14.52 A. The kinetic energy cutoff is set to 520 eV to
ensure converged results. For geometric optimization, we set the criteria at 10 eV for the self-consistent field (SCF) loop

and 0.005 eV A for forces. To quantify the binding strength, we calculated the energy difference between the loaded



MOF and the sum of the energies of the individual empty MOF and the gas-phase guest molecules using the following
equation:

Ey = Enor + Eguest - Eroaded
Here, Eiqd.d represents the MOF loaded with a specific guest molecule, Eyor stands for the energy of the empty framework,

and Egueq is the energy of the isolated guest molecule.
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Figure S1. Optical image of the as-synthesized HTAM-111 crystals.
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Figure S2. 8-connected Na, clusters in the crystal structure of HIAM-111. Blue and pink colored linkers represent

octacarboxylates in different mode.



Figure S3. Two different modes of the organic linker (marked in different colors) in the crystal structure of HIAM-111.
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Figure S4. Topology analysis of HIAM-111 in single node description resulting in a new net named hia3 6,7,8-c trinodal
net with 6-c and 8-c for the two distinct ligands and 7-c for the Na cluster. Point symbol {4'°.6*8}{4"7.6*},{4*°.6°}.
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Figure SS. Topology analysis of HIAM-111 in the two possible all node cluster descriptions. The Na, SBU is always 8-c
while the ligands may be represented in two different ways, as shown from the left, with a 4-c node representing the central
C=C and four 3-c nodes, or (center) with six 3-c nodes mapping all the ramifications of the ligand. The two
representations result in two new distinct underlying nets named hia2 for the pentanodal 3%4%8-c net ( Point Symbol
{4-87},{4%6},{8"122}{42.628°}{4°.6°.8°}, ). and hial for the 3*8-c (Point Symbol
{4-8},{4-5-6},{8-10°}{5>.6}{4%5.6°7%.8°} ).

The coordinates of the 3 nets hial, hia2, hia3 are available as supplementary cif files (with the connectivity according to

the latest Topocif dictionary)' and have been deposited in the personal.ttd database included in the TopCryst system.’

1 www.iucr.org/resources/cif/dictionaries/cif_topology
2 A. P. Shevchenko, A. A. Shabalin, I. Y. Karpukhin and V. A. Blatov, Topological representations of crystal structures:
generation, analysis and implementation in the TopCryst system, Sci. Technol. Adv. Mater.: Methods, 2022, 2, 250-265.

http://topcryst.com
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Figure $6. PXRD patterns of the activated and as-synthesized HIAM-111 samples compared to the simulated one.
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Figure S7. TG curves of the as synthesized and acetone-exchanged HIAM-111 samples.
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Figure S8. PXRD patterns of the HIAM-111 samples after being soaked in different solvents for 9 days.
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Figure 89. PXRD patterns of the HIAM-111 sample collected at various temperatures compared with the simulated one.
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Figure S10. PXRD patterns of the HIAM-111 sample upon exposure in air (70-80%RH).
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Figure S11. (a) Fluorescent spectra of HIAM-111 and HsSETTBPDC at room temperature excited at 360 nm, (b) Solid
state diffuse reflectance spectra of HIAM-111 and HSETTBPDC.
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Figure S12. BET plots of the five consecutive N, adsorption isotherms at 77 K.
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Figure S13. C;H,, C,H,, C,H,, and CO; adsorption-desorption isotherms on HIAM-111 at278 K.
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Figure S14. The fitting curves and parameters of Viral equation for adsorption isotherms of C,H,, C;Hs, C;He, and CO,
on HIAM-111.
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Figure S17. Breakthrough curves of a ternary mixture of CoH2/C2H4/C2He (1/90/9) on HIAM-111 at 298
K.
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Figure S$18. Three consecutive breakthrough curves of a ternary mixture C2H2/C2H4/C2He (1/90/9) on
HIAM-111 at 298 K (99.5% Ethylene productivity: 0.0248 L/kg).
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Table S1. Crystal data and structure refinement parameters for the as synthesized HIAM-111.

Empirical formula

Formula weight
Temperature/K

Crystal system

Space group

a/A

b/A

c/A

a/°

b/

Y/°

Volume/A3

Z

pcalcg/cm3

/mm-1

F(000)

Crystal size/mm3
Radiation

20 range for data collection/®
Index ranges

Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F2
Final R indexes [[>=2¢ (I)]
Final R indexes [all data]
Largest diff. peak/hole / e A3

CS8 H38 Na4 O19
1130.84

204
Orthorhombic
Pban

19.057(3)
31.856(4)
14.5183(19)

90

90

90

8814(2)

4

0.852

0.451

2328.0
0.13x0.12x0.1
GaKa (A = 1.34139)
4.7 to 107.804°

22<=h<=22,-38<=k<=35, -15<=I<=17

41467

8074 [R(int) = 0.1046]
8074 /0 /376

0.999

R1 =0.0919, wR2 = 0.2748
R1 = 0.1456, wR2 = 0.3215
1.10/-0.40
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Table S2. Fitting parameters of Dual-site Langmuir-Freundlich isotherm model.

CO, CH, CH, C,He
a0 140.48141 209.25813 1.86843 1.66164
bl 3.93595E-4 6.81264E-4 1.91261E-4 1.06645E-S
cl 0.74704 0.73378 1.59147 2.51172
a2 81.10222 0.95782 27.39291 10.82097
b2 8.29143E-S 5.75837E-6 0.00169 0.00487
c2 0.97013 2.44014 0.93692 0.98248
Chi*r2 2.60732E-S 6.09919E-S 8.97235E-6 2.05516E-6
R*2 0.9999 0.9999 0.9999 0.9999
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