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Prediction models are increasingly developed and used in diagnostic and prog-
nostic studies, where the use of machine learning (ML) methods is becoming
more and more popular over traditional regression techniques. For survival out-
comes the Cox proportional hazards model is generally used and it has been
proven to achieve good prediction performances with few strong covariates.
The possibility to improve the model performance by including nonlinearities,
covariate interactions and time-varying effects while controlling for overfitting
must be carefully considered during the model building phase. On the other
hand, ML techniques are able to learn complexities from data at the cost of
hyper-parameter tuning and interpretability. One aspect of special interest is
the sample size needed for developing a survival prediction model. While there
is guidance when using traditional statistical models, the same does not apply
when using ML techniques. This work develops a time-to-event simulation
framework to evaluate performances of Cox regression compared, among oth-
ers, to tuned random survival forest, gradient boosting, and neural networks at
varying sample sizes. Simulations were based on replications of subjects from
publicly available databases, where event times were simulated according to a
Cox model with nonlinearities on continuous variables and time-varying effects
and on the SEER registry data.
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1 INTRODUCTION

Prediction models are increasingly developed and used in diagnostic and prognostic studies. Within the latter, many appli-
cations involve survival outcomes, which implies accommodation of censored data by applying appropriate techniques.
The Cox proportional hazards model is generally used in this context.

In recent years, interest in the use of machine learning (ML) techniques has increased (see for example the book of
Gerds and Kattan1). A PubMed search by Year2 using meSH terms such as “neural network*,” “machine learning,” “pat-
tern recognition,” “deep learning,” and “deep neural network*,” restricted to titles, shows a first increase in the 1990s with
35 publications per 100 000 in 1990 to reach 94 in 1996 and then a very rapid surge starting in 2016 with 127 publications
per 100 000 and reaching 687 per 100 000 in 2020.

The distinction between statistical methods (SM) and ML methods is matter of debate. While probably there is no
doubt in classifying neural networks or random forest as ML algorithms, at a closer look even classical risk scores, such as
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the Framingham cardiovascular risk score,3 are the result of an algorithm learned from the data. According to Beam and
Kohane,4 it is most useful to think to a continuum of methods (the ML spectrum) where the distinction is based on the
amount of human guidance on the algorithm. In this sense, the Framingham cardiovascular risk score was the result of
a strong interaction between statisticians and clinicians in order to select variables (together with their transformations
and interactions) to be specified in the Cox model fitted to the data (low on the ML spectrum). A fully ML approach would
have resulted if a large set of variables would have been provided to the algorithm without any pre-specification of the
importance of the variables, and on the modeling of their nonlinearities and interactions. In some applications, involving
for example high-dimensional data possibly coming from different sources, simply there is no alternative to ML methods
and their usefulness is out of doubt (high on the ML spectrum). The framework investigated here is not on the high ML
spectrum, as only a limited number of variables for the prediction model are considered. On the other hand, this is the
setting in which it is less clear the potential advantage of a ML algorithm, as outlined by Smith et al.5

When dealing with prediction models with survival outcomes, at present, there are plenty of published ML tools
specifically designed to take into account censored observations. For example, applications of neural networks to this
framework dates back at least to 1992, Ravdin and Clark,6 with developments in the 1990s and 2000.7-11

The recent scoping review by Smith et al5 of studies comparing statistical and ML approaches for time-to-event data
with simulation studies found 10 studies on the subject.

One aspect of special interest is the sample size needed for developing a survival prediction model. In clinical literature
the rule of thumb of event per variable (EPV) based on the work of Peduzzi et al12 is traditionally used. Recent work by
Riley et al13 has proposed new guidance for sample size calculation based on event rates, number of covariates to consider
and the expected model performance. Such guidance refers to settings where covariate selection is not applied and the
number of covariates does not exceed 30. Moreover, it works with traditional regression models and it is not an option for
ML techniques.

For logistic regression van der Ploeg et al,14 found that ML methods need far more EPV than SM to achieve stable
results. In the simulation studies retrieved by Smith et al,5 specifically targeted to censored data, seven articles found that
the sample size did not impact the relative performances of the methods.

Taking the Riley’s work13 context as a start, the present study refers specifically to regression models for censored data
and develops a time-to-event simulation framework to comparatively evaluate the performance of ML methods such as
tuned random survival forest (RSF),15 gradient boosting (GB)16 and deep neural networks17 at varying sample size.

To set the stage for more realistic model comparison, real-world datasets were used to implement the different
simulation settings.

In the first setting a plasmode simulation was used. The German Breast Cancer Study18,19 and the colon randomized
trial for adjuvant treatment of colon cancer20 were used to establish the survival time generating mechanisms. Specifically,
event times were simulated according to a Cox model with nonlinearities on continuous covariates, possible time-varying
effects and interactions between covariates.

A second set of simulations was based on the SEER registry data on breast and lung cancer, which was used to generate
samples of increasing size by repeated resampling. Therefore, in this simulation setting, there is no a benchmark model
and the survival data generating mechanism is unknown. For the SEER data on breast cancer, subsamples of the patients
with diagnosis of breast cancer in 2010 and 2011 were used for model training while year 2012 was used for validation.
For the SEER data on lung cancer patients with diagnosis of lung cancer between 2010 and 2015 were used. One fourth
of the data was taken at random for validation purposes, while the remaining sample was used as a training set.

Simulations were run by varying the training set size from 600 to 9000 (first setting) or to 15 000 (second setting).
For each simulated dataset, hyper-parameters tuning was performed by choosing among the procedures available in

the software of ML model packages.
The models performance were tested on the validation data using IPA and time-dependent Brier score.21 Moreover,

together with the absolute model performances, the learning curve of each technique, that is how fast each model reaches
its optimal performance, was evaluated. The sample sizes calculated for building a prognostic model with traditional sta-
tistical regression models were then compared to the sample sizes needed by ML to achieve the same level of performances
of traditional models. As in the book of Gerds and Kattan,1 the data used to build the models are here referred to as “train-
ing set,” and the portion of the data used to evaluate models’ performance is referred to as “validation set.” The latter
wording is in contrast with ML literature, according to which the validation set is that used to select hyper-parameters
(with or without resampling), while the set used to evaluate model performance is named “test set.”

The article is structured as follows. In the methods Section 2, the simulation procedures, sample size calculations
according to Riley et al,13 model evaluation and the traditional and ML regression methods considered are described. In
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Section 3, the results of the simulations based on GBCS (Section 3.1), colon cancer (Section 3.2), and SEER data on breast
and lung cancer (Section 3.3) are presented. In Section 4, results are discussed.

2 METHODS

2.1 Data generating mechanism

In the first setting, using the German Breast Cancer Study18,19 and colon randomized trial,20 the data were generated from
a known model estimated on each of the two datasets. The simulation strategy was similar to that proposed by van der
Ploeg et al14 for logistic regression:

• We randomly divided the original dataset into a training set ( 3
4

of the patients) and a validation set for performance
assessment.

• Two “artificial cohorts,” training and validation sets were then obtained by separately replicating 20 times the training
and validation sets.

• On the “artificial cohorts” we generated random survival times according to a flexible survival regression model
estimated on the training set with nonlinear effects on the numerical covariates and possibly interactions and time
dependent effects. In details, the generation of random survival times was done according to the methodology proposed
by Crowther and Lambert22 using the same baseline hazard estimated in the original data. The flexible parametric
model proposed by Royston and Parmar23 was used to easily incorporate time-varying covariate effects. Natural cubic
splines with 3 degrees of freedom (df) were used for baseline estimation obtaining the model:

ln(−ln(S(t; z))) = 𝛾0 + 𝛾1 B1(t) + 𝛾2 B2(t) + 𝛾3 B3(t) + z 𝜷. (1)

In this model time-varying covariate effects were obtained by adding time (or ln(time)) by covariate interactions.
To simulate survival times, a numerical root finder to solve S(t; z)) − u = 0, where u ∼ U[0, 1], was used through the
simsurv function.24

As regards censoring times generation, for GBCS data an exponential distribution was used; the exponential param-
eter was set to have approximately 75% censoring as in the observed data. For colon data the root finder returned errors
in the generation of survival times and it was necessary to set the maximum event time. The truncation time was set
to 10 years to have approximately 45% censoring similarly to the original data.

• Training sets were generated as samples of increasing sizes (varying from 600 to 9000), drawn from the artificial cohort
training data.

• The predictions of the model, estimated using the training set, were evaluated on the validation set, as described in
Section 2.3 below.

The simulation code is reported in the supporting material with the details of the generating models. The true model
coefficients are copied for convenience in the R code file.

Another approach was used for the experiment with large SEER registry data on breast and lung cancer. Training and
validation data were obtained by dividing the cohort in two groups based on the year of diagnosis for beast cancer data
while a random split was used for lung cancer data. Subsamples from the training data of varying size (600-15 000) were
used for model development while a subsample of validation data was used for validation. In this two experiments the
true data generating mechanism is unknown.

2.2 Sample size determination

For the sample size calculation the approach of Riley et al13 was used, according to which sample size for survival
endpoints is determined as

n = P

(C − 1)ln
(
1 − R2

CS

D

) , (2)
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where P is the number of model coefficients, C is the targeted shrinkage of the parameter estimates, expressing the pre-
dictor effects, and R2

CS is the Cox-Snell R2 statistic. A first approach to determine the sample size, is choosing a desired
shrinkage amount (ie, less than 10%) in order to minimize overfitting. Then R2

CS can be established based on published
regression models. When there is no pertinent a priori information, one proposal in Riley et al13 is to use R2

CS = 𝜖 ∗
max(R2

CS), with 𝜖 ∈ [0.1 − 0.2]. Differently from continuous outcomes, with time-to-event outcomes, the max(R2
CS) is gen-

erally less than 1 and depends on the overall event rate (see the supplementary material S5 of Riley et al13 for a calculation
of max(R2

CS)).
A second approach consists in targeting a small optimism in the apparent model fit. Such an optimism can be quan-

tified by the absolute difference, 𝛿, in the apparent model fit (observed on the training data) and the optimism adjusted
model fit. According to Riley et al25 the corresponding shrinkage factor to be used in formula (2) can be obtained as
C = R2

CS

R2
CS+𝛿max(R2

CS)
. The difference 𝛿 is chosen equal to 0.05.

A third approach is based on the length of 95% confidence interval of the cumulative incidence estimate at a specific
time point.

In the first simulation setting, an estimate of the event rate was obtained using the original dataset. The number of
covariates was calculated taking into account the need for estimating the baseline risk. Considering model (1), the four
coefficients 𝛾 were added to the coefficients 𝜷 used for covariate effect estimation.

For the SEER data, the event rate was determined using all the data reserved for training.
The sample size calculations were performed using pmsampsize26 R package. The largest sample size among those

calculated using the three methods was chosen.
For the SEER data, for computational reasons, a sample of the validation cohort was used. The sample size for val-

idation data was calculated according to the procedure described in Reference 27, that is, in order to achieve a mean
calibration slope standard error less than 0.05.

2.3 Model evaluation

Evaluation of predictive performance were based on two different criteria, namely the Brier score28 and the index of
prediction accuracy (IPA)21 at a specified time. The criteria were calculated using the validation data only.

Learning curves based on inverse power law functions were then used to compare the performances for increasing
sample sizes. This was already done for evaluation of classifiers29 or for machine learning in medical imaging research.30

Letting Yr(N) the predictive performance of model r with sample size N, the learning curve is:

Yr(N) = a + b ∗ Nc
, (3)

where a is the maximum achievable performance for N →∞, b is the learning rate and c the decay rate. If Yr(N) is the Brier
score at a specified time of interest obtained with sample size equal to N, then a is the minimum Brier score obtainable for
very large N, b is connected with the Brier score at the minimum value of N, while the parameter c depends on how fast the
Brier score decreases when N increases. Considering the transformation of c = ln(p)

ln(2)
, the coefficient p can be interpreted

as the learning percentage when the sample size doubles, that is, the ratio Yr(2N)
Yr(N)

. The derivative of the learning curve is a
monotonically increasing curve showing the added value, in terms of performance, of each new sample. At the beginning
the derivative is increasing very steeply then it slows down for very large N.

Contrary to the Brier score, IPA is increasing with increasing N and derivatives are decreasing curves. Results in terms
of IPA are reported in the supporting material.

2.4 Statistical and machine learning methods for predicting time to event probabilities

We considered two traditional regression methods, namely the Cox model and an accelerated failure time (AFT) model
with log-logistic distribution. Both Cox and AFT regression were specified with and without cubic natural splines (with 3
df) for continuous covariates. We considered four ML methods: boosting, both for the Cox and for the AFT with log-logistic
distribution, random forest and a deep neural network.
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INFANTE et al. 5661

2.4.1 Cox and AFT boosting

The boosting algorithm originated in the ML community for classification and was subsequently applied to more gen-
eral regression problems. Hastie, Tibshirani, and Friedman, in their book on statistical learning,31 present boosting as
“stagewise, additive modeling.” Additive modeling means that the algorithm combines additively simple models (called
base learners), while stagewise means that the combination acts sequentially, trying to improve the performance at each
step. The number of steps is a fundamental hyper-parameter crucial for obtaining a balance between goodness of fit
and overfitting. Boosting has relationships with penalized estimation and can be viewed as a functional gradient descent
algorithm able to optimize a complex loss function of the covariates. The boosting algorithm is therefore specified through
a loss function to be minimized (such as the squared-error or a likelihood-based loss function) and by different base
learners, such as P-splines, B-spline bases or stumps.

The approach adopted here is the one based on gradient boosting for additive models presented by Bühlmann and
Hothorn,16 using an additive combination of P-splines for continuous covariates as base learners, and the optimization of
the partial Cox likelihood for Cox boosting, and of the log-logistic likelihood for AFT modeling.32 Specifically the function
gamboost, using regularization and P-splines for continuous covariates, in the R package mboost was used.33

Hyper-parameter selection, namely the number of boosting steps, was performed by the functioncvrisk, which uses
cross-validation to estimate the empirical risk. Specifically, a 10-fold cross-validation was used.

2.4.2 Random survival forest

RSFs15 is a ML method that averages the terminal node statistics of survival trees to obtain an ensemble learner. In survival
trees, predictions are based on binary recursive splits of the variable space. Starting from the root node, two daughter nodes
are created dividing the sample in two groups (branches). The division is done by selecting over all possible covariates
and their split values the one that maximize the survival difference between the two resulting groups using, for example,
the log-rank test statistics. The process is continued for each of the branches until the terminal nodes of the tree contain
a minimum number of events. Then, for each terminal node, corresponding to specific covariate patterns, the survival
probability is calculated. Predictions for new subjects are obtained by dropping them down the tree, that is, by finding
their corresponding terminal nodes. As predictions from a single tree are often poorly generalizable, the general idea of
combining base learners is effective in improving prediction performances. Random forest is an ensemble learner that
combines the predictions of survival trees, the base learners, obtained through randomization. The randomization occurs
into the learning process in two forms: to grow a survival tree the data are randomly drawn into a bootstrap sample; a
randomly selected subset of variables is chosen as candidates for splitting during the grow stage at each node of the tree.
The framework of fast unified random forests for survival, regression, and classification (RF-SRC)34 was used in this work.
In particular, RSFs35 were implemented through the function rfsrc.fast in the R package randomForestSRC,36

which provides a good approximation and fosters computational speed. The two key parameters selected for tuning,
through the function tune, were (i) the minimum number of events in each terminal node, that is, nodesize, and (ii) the
number of candidate variables selected for splitting a node, that is, mtry. The tuned parameters were used in a 5000-trees
forest on train data to predict the ensemble survival outcome at 250 unique time points (adjusted by setting ntime). Any
other parameter was set automatically as provided for inrfsrc.fast default setup. Hyper-parameters were tuned using
out-of-bag observations.

2.4.3 PC-hazard deep neural network

In neural networks the basic computation is performed by the neuron. The neuron has inputs and outputs: the inputs are
combined, usually a weighted sum, and transformed using a nonlinear function (ie logistic or RELU functions). Trans-
formations are called activation function as the first use, by McCulloch and Pitts in the 40,37 provided an activation signal
only if the linear combinations was greater than a threshold. In feed-forward neural networks (the ones mostly used for
prediction models), neurons are organized in layers. Layers are then connected taking as input the output of the preced-
ing layer. The first layer, or input layer, takes linear combination of the original variables, while the output layer has the
task to output the predicted values. The input layer communicate with the first hidden layer, and then the first hidden
layer to the second hidden layer, until the output propagating the signal in forward direction. A neural network is a highly
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nonlinear model able to account for multiple interactions among the inputs. The task of finding the neurons weights for
prediction is done by minimizing a loss function, that is, the squared-error or a likelihood-based loss function. As the
neural network is a very complex model, the minimization is a complex task and is done through the backpropagation
algorithm, which involves a clever and efficient way to update the weights according to the derivatives of such a complex
function. As neural networks are very flexible it is very important to control for overfitting. Many tools are available, for
example regularization applied to neuron weights, dropout (during training, some number of layer outputs are randomly
ignored or “dropped out”), limiting the number of neurons in layers and the number of layers, the learning rate (which
control the amount of update of the weights at each iteration).

Applications of neural networks to survival data are not new in biomedical literature. The pioneer work dates back
at least to 1992.6 Many successive implementations were based on discrete times or on some sort of discretization, mak-
ing the model easily adapted to standard regression techniques.7-10 In fact, as there is a correspondence between the
discrete-time survival likelihood and the Bernoulli likelihood, and between a piecewise exponential model and the Poisson
likelihood, it is possible to use standard regression algorithms for generalized linear models to fit a neural network for cen-
sored data. It is worth mentioning also a proposal based on pseudo-values,38 which is another form of time discretization
that makes possible to use standard software.

Recent developments in ML with software such as TensorFlow39 or Keras40 made possible to extend such approaches
in the field of deep neural networks.17,41,42 Deep neural networks have many hidden layers, then increasing the ability to
learn nonlinearities and interactions.

We used the comprehensive mlr3 R package, which offers a modern implementation in R through a connection to
Pyhton.43 Trials with the data used for the simulations showed good performances of the PC-hazard method17 in compar-
ison with the other implemented approaches. A piecewise constant hazard is assumed in predefined time intervals. An
equidistant grid over 10 cut points was used as for the default method. Five hyper-parameters were tuned: the dropout
rate; the weight decay; the learning rate; the number of nodes per layer; the number of hidden layers. A random search
was used within the hyper-parameters space with a total of 100 evaluations using a three-fold cross validation. For SEER
lung cancer data 250 random searches were performed. The C-index was used to select the optimal hyper-parameters
combination, as usual in many applications of neural networks to survival data. It is worth saying that mlr3 offers the
possibility to perform hyper-parameters selection using other metrics, such as the Brier score, and this option is preferred
if not only discrimination but also calibration is of interest. As in this work, Brier score is used to compare the different
models, in the supporting information, the results of PC-hazard with hyper-parameters selection using Brier score for the
SEER lung cancer data are reported.

The implementation and the tuning of the deep neural network was performed through the mlr3 library using a
random search on a predefined hyper-parameters domain.

3 RESULTS

In this section, the results of the simulations based on GBCS data, colon cancer data, and SEER data on breast and lung
cancer are presented in terms of Brier score. Results in terms of IPA are in accordance to those of the Brier score and are
reported in the supporting material.

3.1 German Breast Cancer Study data

In the German Breast Cancer Study (GBCS) a total of 720 patients with primary node positive breast cancer were recruited
between July 1984, and December 1989.18 These data were used to illustrate methods for building prognostic models44

and also for illustrating external validation of a prognostic model.45

The estimated monthly event rate is 0.006. Considering a mean follow-up (restricted at 72 months) of 50 months, a
maximum R2

CS equal to 0.72 was calculated.
The generating model was based on the available covariate information, namely age at diagnosis (years), menopausal

status, hormone therapy, tumor size (mm), tumor grade (1-3), number of nodes, number of progesterone and estrogen
receptors. Numerical variables (nodes excluded) were modeled with natural cubic splines with 3 df, and tumor grade
with two dichotomous variables. This amounts to a total of 17 coefficients. In addition, to model the baseline hazard, 3
coefficients were needed plus the intercept, for a total of 21 coefficients.
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INFANTE et al. 5663

F I G U R E 1 GBCS cancer data. (A) Brier score as a function of sample size for the different regression models. (B) Derivatives of the
estimates of the learning curves for the different methods. The horizontal line is at the intersection of the derivative of AFT+splines with
Riley’s sample size (vertical gray line).

The function pmsampsizewas used with the following specifications: expected R2
CS equal to 0.1 of max(R2

CS), P = 21,
a prediction horizon of 72 months. Based on these settings, and fixing a 10% shrinkage, generated a target sample size
of 2501 subjects, while the target of an absolute difference 𝛿 = 0.05 in the model’s apparent and validated R-squared
generated 548 subjects. The target sample size was therefore 2501.

In order to highlight the abilities of ML methods to discover interactions and possibly time dependent effects, we
included in the generating model these two interactions: interaction between estrogen receptors levels (modeled with a
natural cubic spline with 3 df) and the logarithm of time (linear), resulting in a time-dependent estrogen effect; interaction
between tumor size (modeled with a natural cubic spline with 3 df) and grade. The generating model has thus a total of
30 coefficients and the calculation with pmsampsize generated a target sample size of 3573 patients.

The generated survival data had a monthly event rate of 0.001 with about 75% censoring, as in GBCS data, obtained
using an exponential distribution for the censoring times.

The performance of the different models according to the the Brier score, calculated at 6 years, are reported in
Figure 1A for different sample sizes.

The absolute benchmark model here is represented by the true model (Cox + Splines + TD), which has the better
performance for N > 1000. Cox regression with splines (Cox + splines) and the boosted Cox model are performing very
well. These models are all proportional hazards and model nonlinear effects using natural spline functions. A fairer
benchmark for ML methods is the AFT model with log-logistic distribution using restricted cubic splines to account for
nonlinear effects. The same benchmark was used for all the simulations. The simple Cox or AFT regression without
modeling of nonlinear effects showed the worst performances.

At the sample size of 2384 patients random forest regression and PC-hazard show the worst performances (except for
the simple Cox and AFT regression). The Brier score of AFT with splines at sample size 2384, is reached by random forest
at a sample size of about 8000, while PC-hazard requires even more. Random forest regression shows better performances
than boosted AFT at a sample size of about 6000 patients

The result of the fitting of the learning curve for each regression model considered is reported in Supplementary
Table 1. Random forest and PC-hazard have the smallest absolute value of the c coefficient that summarizes the improve-
ment for growing sample size. The simple Cox and AFT regressions have the highest improvement for small samples.
In particular it can be seen how the percentage reduction of the Brier score for doubling of the sample size, that is, p, is
inversely correlated with the complexity of the model. Random forest have the slowest learning rate.

Considering the derivative of the learning curves in Figure 1B it is possible to compare the different approaches as far
as the learning rate. In Table 1 are reported the required sample size per method obtained by setting the derivative of the
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T A B L E 1 GBCS: Sample size per method obtained by setting the derivative of the learning curve reached by AFT regression with cubic
natural splines at determined sample size as reference.

Cox Cox + splines AFT AFT + splines Cox-boost AFT-boost PC-Haz RFsrc

1 2040 2818 1801 2501 3349 3116 5954 5847

2 82% 113% 72% 100% 134% 125% 238% 234%

learning curve reached by AFT regression with cubic natural splines at N = 2501 as reference. In order to reach the same
slope of the learning curve reached by the reference model, random forest and PC-hazard requires more than double the
sample size, while boosting methods need approximately an additional 40% of the sample size.

In Supplementary Figure 1 the estimates of the learning curves for the different methods are reported together with
their standard errors. The variability of the estimates is comparable among the different models. In Supplementary Table 1,
parameter estimates are also reported.

3.2 Colon cancer data

We used colon cancer data from a trial of adjuvant chemotherapy for colon cancer comparing Levamisole and Levamisole
plus 5-FU (a chemotherapy agent),20,46 available in the survival R package.47 The re-analysis presented by Eng and Seagle48

explored the complex pattern of interaction between age and treatment using RMST. In fact it appeared that age was
significantly associated with relapse in the Levamisole plus 5-FU arm but not the Levamisole alone arm.

In this study the monthly event rate is 0.01.
Considering a mean follow-up (restricted at 72 months) of 68 months a maximum R2

CS equal to 0.85 was calculated.
There are two records per person, one for recurrence and one for death. Only the data for recurrences were considered.
The generating model was based on the available covariate information, namely age at diagnosis (years), sex, treat-

ment, obstruction of colon by tumor, perforation of colon, adherence to nearby organs, number of lymph nodes with
detectable cancer, differentiation of tumor (well, moderate, poor), Extent of local spread (submucosa, muscle, serosa, con-
tiguous structures), time from surgery to registration (short, long) and more than four positive lymph nodes. Numerical
variables were modeled using truncated power cubic splines with 1 knot (at 50 for age and at 2 for the number of nodes).
Extent of local spread was modeled with a dichotomous variable (3 and 4 vs 1 and 2). As suggested by Eng and Seagle48 an
interaction between treatment and age was also inserted. This amount to a total of 19 coefficients. In addition, to model
the baseline hazard, 3 coefficients were needed plus the intercept, for a total of 23 coefficients.

The function pmsampsize was used with these settings: R2 equal to 0.1 of the maximum R2
CS, 23 parameters to be

fitted and a prediction horizon of 72 months. The calculation based on an expected shrinkage of predictor effects equal
to 10% results in 2306 subjects, while the target of an absolute difference of 0.05 in the model’s apparent and validated
R-squared results in 507 subjects. The target sample size was therefore 2306.

The generated survival data had a monthly event rate is 0.008 with about 45% censoring, as in colon cancer data,
obtained using an administrative censoring at 10 years of follow-up. This choice was due to the fact that the simsurv
function returned errors in the generation of survival times unless setting the maxt option to censor large event times.

In Figure 2A the average Brier score at different sample sizes for the considered regression models is reported. The
spread of the Brier scores among the different models is more limited than with the GBCS data. In this setting the simple
Cox and AFT regression, without nonlinear effects, perform very well and near to the true model (Cox + splines + inter-
action). It was not possible, to the best of our abilities, to find a tuning for PC-hazard with reasonable performances. The
Brier scores were much higher than that of the other regression approaches and the IPA were negatives. It is therefore
not reported in Figure 2A.

At the sample size of 2306 patients, random forest shows the worst performance. The Brier score of AFT with splines
at sample size 2306, is reached by random forest at a sample size of about 4500 while that of AFT at about 6000. Random
forest regression becomes competitive with respect to boosted AFT at a sample size of about 5000 patients.

The result of the fitting of the learning curve for each method considered is reported in Supplementary Table 2. The
learning curve is reported also for PC-hazard to see how the algorithm improves its performance. Also in this case random
forest and PC-hazard have the smallest absolute value of the c coefficient that summarizes the improvement for growing
sample size. The percentage reduction of the Brier score for doubling of the sample size, that is, p, is lower for random
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INFANTE et al. 5665

F I G U R E 2 Colon cancer data. (A) Brier score as a function of sample size for the different regression models. (B) Derivatives of the
estimates of the learning curves for the different methods. The horizontal line is at the intersection of the derivative of AFT+splines with
Riley’s sample size (vertical gray line).

T A B L E 2 Colon: Sample size per method obtained by setting the derivative of the learning curve reached by AFT regression with cubic
natural splines at determined sample size as reference.

Cox Cox + splines AFT AFT + splines Cox-boost AFT-boost PC-Haz RFsrc

2045 2382 2012 2306 2114 2087 5679 3412

89% 103% 87% 100% 92% 91% 246% 148%

forest and PC-hazard have the slowest learning rate. In Supplementary Figure 2 the estimates of the learning curves
for the different methods are reported together with their standard errors. Also in this application, the variability of the
estimates is comparable among the different models.

The derivative of the learning curves are reported in Figure 2B. In Table 2 are reported the required sample size per
method obtained by setting the derivative of the learning curve reached by AFT regression with cubic natural splines at
N = 2306 as reference. In order to reach the same slope of the learning curve reached by the reference model, PC-hazard
requires more than double the sample size, random forest needs about 50% more observations, while boosting methods
need approximately a 10% less records of the calculated sample size.

3.3 SEER registry data

The data extraction was performed on SEER Research Data 2000-201849 using the SEER*Stat software version 8.3.9.2.50

3.3.1 Breast cancer

The selection criteria included female patients who were at least 18 years of age and who received a primary malignant
breast cancer diagnosis, staged as localized or regional, between 2010 and 2012. The exclusion criteria aimed to select only
complete records or factors having levels with frequency >1%. Retrieved variables were patient’ characteristics, that is,
age in years and race group (three-levels factor: black, other, white), and tumor characteristics, that is, year of diagnosis
(2010 and 2011 in the train set, 2012 as validation set), size in millimeters (for those cases reporting “less than × cm,” it
was chosen a value of× cm minus 5 mm as reasonable), tumor grade (three-levels factor: 1, 2, 3), AJCC 6th ed. tumor stage
(three-levels factor: I, II, III), total number of regional lymph nodes that were removed and examined by the pathologist
(at least one) and total number of those that were found to contain metastases, breast tumor subtype (four-levels factor:
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5666 INFANTE et al.

Triple negative, HER2 enriched, Luminal A, Luminal B). In addition, each record included the survival status and time
in months from diagnosis. A total of 106 823 cases were selected, 70 175 for training set and 36 648 for validation set.

In this study the monthly event rate in the training set was 0.002 with a 83% censoring. Considering a mean follow-up
(truncated at 60 months) of 60 months a maximum R2

CS equal to 0.52 was calculated.
The total number of positive nodes is a variable with a spike at zero as some patients have no positive nodes. According

to one of the proposal in Reference 51, total number of positive nodes was modeled with two variables: one binary variable,
modeling the presence (1) or absence of positive nodes, and a continuous variable with the number of positive nodes.
Modeling numerical variables with natural cubic splines with 3 df, and the baseline hazard with 3 coefficients plus the
intercept, the total number of coefficients was 21.

The function pmsampsizewas used with these settings: the expected R2 equal to 0.1 of the maximum R2
CS, 21 param-

eters to be fitted and a prediction horizon of 60 months. The calculation based on an expected shrinkage of predictor
effects equal to 10% results in 3501 subjects, while the target of an absolute difference of 0.05 in the model’s apparent and
validated R-squared results in 775 subjects. The target sample size was therefore 3501.

Following the approach described in Riley et al,27 a validation sample size of 6000 patients was identified to have a
mean calibration slope standard error less than 0.05. A validation sample size 6000 patients was then drawn at random
from the test set, for computational reasons, and used for validation in all simulations runs. The validation set had a
monthly event rate is 0.002 with about 87% censoring.

In Figure 3, the distributions of the hyper-parameters selected through the simulations are reported. Regarding
PC-hazard, for increasing sample sizes there was a decrease in the number of nodes per layer and an increase in weight
decay while the amount of dropout and the learning rate were approximately stable. Rarely more than one hidden layer
was selected (not shown). Boosting algorithms show a clear increase in the number of step values. Random forest shows
a decrease in the frequency of high mtry values and a slight increase of node size for increasing sample sizes.

In Figure 4A, the average Brier score at different sample sizes for the considered regression models is reported. In this
setting AFT regression with splines, or boosted, performs very well. At the sample size of 3501 patients, PC-hazard shows
the worst performance while random forest performs better than the simple Cox and AFT regressions without nonlinear
effects. The Brier score of AFT regression with splines at sample size of 3501, was reached by random forest at a sample
size of about 6000 and PC-hazard at about 7000. Random forest regression and PC-hazard reaches the same performances
of boosted AFT at the last sample size of 15 000 and outperform AFT regression with splines. A larger sample size was
also evaluated, namely 20 000 to see for a further possible improvement of PC-hazard. In fact the performance at 20 000
was practically the same of that at 15 000 samples.

The results in terms of learning curve for each regression model investigated are reported in Supplementary Table 3.
Random forest has the smallest absolute value of the c coefficient that summarizes the improvement for growing sample
size, while PC-hazard has the largest. The percentage reduction of the Brier score for doubling of the sample size, that
is, p, was the lowest for PC-hazard and the highest for random forest. However PC-hazard has the worst performance
for small sample sizes (top-left of Figure 4A) as demonstrated by the very high b coefficient. In fact, PC-hazard has very
poor performances with low sample sizes of 600 (that was excluded from the evaluations) and 1000. Considering the
sample size of 1000, in 30 out of 300 simulations the selected learning rate was about a half the one selected in the other
simulations with a Brier score greater than 0.25 and a negative value for IPA. These 30 simulations, at sample size 1000,
were therefore excluded from the mean calculation. In Figure 4B the derivative plot of the estimates of the learning curves
for the different methods are reported.

In Table 3 are reported the required sample size per method obtained by setting the derivative of the learning curve
reached by AFT regression with cubic natural splines at N = 3501 as reference. In order to reach the same slope of the
learning curve reached by the reference model, PC-hazard requires more than twice the sample size, random forest needs
about 50% more observations, while boosting methods need quite the same sample size.

In Supplementary Figure 3, the estimates of the learning curves for the different methods are reported together with
their variability. In this application also, the variability of the performances of ML methods is similar to that of the other
methods.

3.3.2 SEER lung cancer

The selection criteria included patients who were at least 18 years of age and who received a primary malignant lung can-
cer diagnosis between 2010 and 2015. The exclusion criteria aimed to select only complete records. Retrieved variables
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INFANTE et al. 5667

F I G U R E 3 SEER breast: Hyperparameters selection.

were patient’ characteristics, that is, age in years, sex, and race group (three-levels factor: black, other, white), and
tumor characteristics. The tumor size, in millimeters, was analysed as numeric variable (for those cases reporting “less
than× cm,” it was chosen a value of× cm minus 5 mm as reasonable), the same way as the total number of regional lymph
nodes that were removed and examined by the pathologist (at least one) and total number of those that were found to
contain metastases. Other tumor-specific features were employed as categorical, that is, the laterality of primary site (left
lung or right lung only), tumor grade (four-levels factor: 1, 2, 3, 4), AJCC 7th ed. tumor stage (four-levels factor: I, II, III,
IV), three-levels factor to distinguish regional, localized or distant disease, and histology (seven-levels factor: adenomas
and adenocarcinomas, squamous cell neoplasms, epithelial neoplasms NOS, acinar cell neoplasms, cystic or mucinous
or serous neoplasms, complex epithelial neoplasms, and other types). The last level of histology gathered ICD-O-3 codes
8000-8009, 8120-8139, 8430-8439, 8500-8549, and 8930-8999. In addition, each record included the survival status and
time in months from diagnosis.
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5668 INFANTE et al.

F I G U R E 4 SEER breast cancer data. (A) Brier score as a function of sample size for the different regression models. (B) Derivatives of
the estimates of the learning curves for the different methods. The horizontal line is at the intersection of the derivative of AFT+splines with
Riley’s sample size (vertical gray line).

T A B L E 3 SEER breast: Sample size per method obtained by setting the derivative of the learning curve reached by AFT regression
with cubic natural splines at determined sample size as reference.

Cox Cox + splines AFT AFT + Splines Cox-boost AFT-boost PC-Haz RFsrc

2882 3573 2925 3501 3663 3321 7467 5484

82% 102% 84% 100% 105% 95% 213% 157%

A total of 33 693 cases were selected, randomly divided in 75% (n = 25 270) for the training set and 25% (n = 8423) for
the validation set.

In the training data the monthly event rate was 0.009 with a 55% censoring. Considering a mean follow-up (truncated
at 36 months) of 36 months a maximum R2

CS equal to 0.75 was calculated.
The same strategy used for the data on breast cancer was used to model the total number of positive nodes with the

spike at zero. Modeling numerical variables with natural cubic splines with 3 df, plus the 3 coefficients needed for the
baseline hazard and the intercept, this amounts to a total of 33 coefficients.

The function pmsampsizewas then used specifying the expected R2 equal to 0.1 of the maximum R2
CS, 33 coefficients

to be fitted and a prediction horizon of 36 months. Considering these settings and the 10% target of an expected shrinkage
of predictor effects, 3801 subjects were calculated. The target of an absolute difference of 0.05 in the model’s apparent and
validated R-squared resulted in 832 subjects. The target sample size was therefore 3801.

We decided to use all the 8423 patients for validation as, according to the approach in Riley et al,27 a mean calibration
slope standard error less than 0.05 is achieved with a sample size of approximately 5000 patients.

In the validation survival data, the monthly event rate was 0.009 with about 56% censoring.
In Figure 5, the distributions of the hyper-parameters selected through the simulations are reported. For increasing

sample sizes, PC-hazard choose more than one layer more often, the number of nodes per layer and the dropout values
do not follow a specific trend, while a relevant decrease in weight decay and learning rate are appreciable. Boosting
algorithms show a clear increase in the number of step values. Random forest shows an increase in the frequency of high
mtry values and a slight increase for increasing sample sizes of nodesize.

In Figure 6A, the average Brier score at different sample sizes for the considered regression models is reported. Boost-
ing, both with Cox and AFT regressions shows the lowest Brier scores. The difference between Cox and AFT regressions
with and without splines is lower than that observed with breast cancer data. At the sample size of 3801 patients, ran-
dom forest and PC-hazard show the worst performances. For larger samples, PC-hazard performs slightly better than
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F I G U R E 5 SEER lung: Hyperparameters selection.

random forest. For increasing sample sizes, random forest and PC-hazard reach the Brier score of of AFT regression with-
out splines, while never reach the performance of AFT regression with splines. The Brier score of AFT without splines at
sample size of 3801, is reached by PC-hazard (although the learning curve is fluctuating) and by random forest at about
8000 and 9000 respectively. Random forest regression and PC-hazard reach approximately the same performances of AFT
without splines at the last sample size of 15 000 and 9000, respectively.

The results in terms of learning curve for each regression model considered are reported in Supplementary Table 4.
Random forest has the smallest absolute value of the c coefficient that summarizes the improvement for growing sample
size, while PC-hazard has the largest. The percentage reduction of the Brier score for doubling of the sample size, that
is, p, is the highest for random forest and the lowest for PC-hazard. However PC-hazard has the worst performance for
small sample sizes as demonstrated for the very high b coefficient.

In Figure 6B the derivative plot of the estimates of the learning curves for the different methods are reported.
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5670 INFANTE et al.

F I G U R E 6 SEER lung cancer data. (A) Brier score as a function of sample size for the different regression models. (B) Derivatives of
the estimates of the learning curves for the different methods. The horizontal line is at the intersection of the derivative of AFT+splines with
Riley’s sample size (vertical gray line).

T A B L E 4 SEER lung: Sample size per method obtained by setting the derivative of the learning curve reached by AFT regression
with cubic natural splines at determined sample size as reference.

Cox Cox + splines AFT AFT + Splines Cox-boost AFT-boost PC-Haz RFsrc

2687 3287 2741 3110 2962 2586 3644 3489

86% 106% 88% 100% 95% 83% 117% 112%

In Supplementary Figure 4, the estimates of the learning curves for the different methods are reported together with
their variability. The variability of the performances of ML methods is larger than that of the other methods. PC-hazard
has the largest variability.

In Table 4 are reported the required sample size per method obtained by setting the derivative of the learning curve
reached by AFT regression with cubic natural splines at N = 3801 as reference. In order to reach the same slope of the
learning curve reached by the reference model, PC-hazard and random forest require an additional 17% and 12%, respec-
tively, of the calculated sample size, while boosting methods need approximately a 10% less records of the calculated
sample size.

3.4 Sample size

The different simulations showed some specificities but also common traits. Trying to summarize a common message,
in Table 5 it is reported the sample size needed by RF and NN to reach the performance of the reference model at Riley’s
sample size. Moreover the sample size needed by RF and NN to reach the same learning curve slope of the reference model
at Riley’s sample size is reported. As reference it was taken the level of performances of AFT regression with splines for
nonlinear effects. PC-hazard and random forests need at least from 2 to 3 times the sample size calculated according to
Riley’s method to achieve the performance of the reference. To achieve the learning rate of the reference, PC-hazard and
RF need a double sample size.

4 DISCUSSION

The use of risk prediction models in medicine can be of help to clinicians in many decision making tasks, for example,
patient counseling, treatment choice or selection of patients eligible for a clinical trial. There is a large body of literature
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INFANTE et al. 5671

T A B L E 5 Summary of the sample sizes needed by PC-hazard and random forest to reach the brier score and the slope of the
learning curve of the reference model at Riley’s sample size estimate.

Brier score Learning curve slope

Dataset Reference model (RM) Riley’s sample size PC-hazard RF PC-hazard RF

GBCS AFT + splines 2501 >9000 (3.8) ≈8000 (3.4) ≈6000 (2.4) ≈5900 (2.3)

Colon AFT + splines 2306 NA ≈4500 (2.0) ≈5700 (2.5) ≈3400 (1.5)

SEER breast AFT + splines 3501 ≈7000 (2.0) ≈6000 (1.7) ≈ 7500 (2.1) ≈5500 (1.6)

SEER lung AFT + splines 3801 >15 000 (4.0) >15 000 (4.0) ≈3600 (1.2) ≈3500 (1.1)

on model development using multivariable regression, and their validation and application (see for example Moons et al52

and references in the series about prognosis and prognostic research).
In a classic paper contrasting two approaches devoted to the solution of prediction problems, that is, statistical and

algorithmic modeling, the latter most widely known as ML, Breiman describes how these two different paradigms were
generated by two distinct research communities or “modeling cultures.”53 One of the effects of the coexistence of these two
communities are conflicting opinions, such as the claims that ML methods outperform traditional models and, conversely,
that there is no advantage of using ML over traditional statistical models.

The distinction between traditional statistical models and ML models is itself matter of debate. In the article by
Beam and Kohane4 the distinction is not clear-cut, and a ML spectrum is defined by the trade-off between the pre-
dictive algorithm a priori specification against the ability of the algorithm to learn from the (possibly big) data. At the
very bottom of the spectrum is the human decision making and at the top the complex deep learning methods fitted on
high-dimensional data. The possibility to learn from the data is obviously linked to the amount of data available.

In a work comparing ML techniques and traditional statistical methods in cardiovascular diseases by Wallisch et al,54

the authors stated that, as long as sample size is sufficient, predictive accuracy is not largely affected by the choice of
algorithm. Again according to Beam and Kohane,4 while risk calculators developed using traditional techniques require
sample size of the order of 104, successful applications of ML were obtained with sample size of order 106 or more. Such
a huge amount of data is required to carefully tune the hyperparameters used by ML methods in order to balance the
trade-off between the reduction of the training error and the ability to generalize predictions to new data (the bias-variance
trade-off).

One of the issues regarding the use of ML is the guidance on the minimum sample size needed to develop a predictive
model. For traditional statistical models, the rule of thumb based on the event per variable is generally used but more
recent proposals are available combining information on the event rate, the number of variables considered and the
expected algorithm performance.13 However, such considerations cannot generalize to ML. Existing work on the required
sample size for ML relies mainly on logistic regression14 or image analysis.30

To have insights on the sample size needed by ML methods, one can resort to data simulation. In a recent publication
by Smith et al,5 a scoping methodological review on risk prediction for survival outcomes which compares statistical and
ML approaches through simulations, it has been underlined the limited number of articles on the topic and the focus
on ML, with the frequent comparison with the Cox model only, in its simplest formulation. Frequently the simulation
setting was favorable to ML methods, for example focusing on high-dimensional data. Many articles reported that sample
size did not impact the relative performance of the methods. This finding may be due to the limited number of model
investigated. The results reported in this work shows that the relative performance of the models is highly dependent on
the sample size.

The main difficulty in building a simulation framework to have insights on the sample size needed by ML methods is
the heavy computational burden when learning from the data, especially that related to cross-validation (or resampling
method) for hyper-parameters tuning. This fact, coupled with the need of huge datasets, makes simulations very slow
and difficult to set up.

To circumvent this problem, van der Ploeg et al14 used default algorithms settings in their simulation study, thus
avoiding the burden of hyper-parameters tuning. Such a procedure has the disadvantage of using ML techniques in a
suboptimal way as the hyper-parameters tuning is a key feature for a proper learning from the data. As an alternative to
simulation, in the search for a neutral comparison among different methods,55 a competition of experts framework, as
done by Wallish et al,54 can be engaged.
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5672 INFANTE et al.

We adopted two different simulation strategies according to Morris et al.56 In the first two simulations we defined a
data-generating mechanism with a true model benchmark, while in the last two simulations we draw repeatedly random
samples from specific datasets and we compared the different approaches in presence of an unknown data-generating
mechanism. Simulations were performed at different sample sizes. The data generating mechanism is very important
as suggested by Austin et al.57 In their study, comparing traditional and ML methods using different data generating
mechanisms, no method was uniformly superior to the other. Therefore, in the first two simulations, we focused more on
learning rate (how fast each model reaches its optimal performance) than on the absolute performance of the different
methods.

In our work, we made heavy use of parallel computation with a pre simulation setup for defining a plausible domain
for hyper-parameters optimization search. For example, when using boosting, we used some example simulated datasets
to perform a cross validation procedure to determine the optimal number of boosting steps and decide a maximum num-
ber of boosting steps to be used in the simulations. For neural networks the setup was particularly difficult as we had to
decide the range of four hyper-parameters and, most importantly, the number of random searches to be performed. In
principle, it would be wise to specify a very large number of random searches but this will dramatically increases com-
putational times of the simulation procedure. We found good neural network configurations for GBCS and SEER breast
cancer data, while we did not succeed in finding a neural network configuration with good performance for colon can-
cer data, even increasing the number of random searches. Considering SEER lung cancer data, increasing the number of
random searches from 100, as in breast cancer applications, to 250 was instead effective for achieving good performances.
The main distinction between breast cancer data and the other data considered is the number of continuous variables:
in colon cancer data, only age and the number of lymph nodes with detectable cancer were present with limited pos-
sibilities for nonlinear effects. It is possible that ML regression is more effective in settings where continuous variables
are involved.

Another difficulty was to deal with censored data. While for binary response variables, there is huge availability of
ML methods to be compared with logistic regression, it is more difficult to find ML regression able to properly treating
censored data. Many ML methods exploit the Cox likelihood and this may limit the potentiality of the methods, especially
in settings where the standard Cox regression can be used. For this reason we tested other models not relying on Cox
proportional hazard likelihood, such as boosting based on a non-proportional hazard regression model, the random forest
and the PC-hazard method.

The approach we used to first calculate the minimum sample size for building a prognostic model with traditional
statistical regression techniques, along the lines suggested by Riley et al.13 This calculated sample sizes was then compared
to that needed by ML techniques to achieve the same learning rate or the same performance level of traditional methods.

The setting investigated was therefore the same of Riley et al,13 considering a number of predictors, or better coef-
ficients in terms of standard regression models, not exceeding 30. Variable selection was therefore not considered. This
setting is the one where potential benefits of ML are more uncertain while, probably, ML methods become much more
appealing in more complex scenarios with many putative prognostic factors.

Interestingly, boosting algorithms are working excellently in these settings both in terms of absolute performances
and learning rates. Considering more extreme ML techniques, namely random forests and deep neural networks, absolute
performances are good especially in complex applications (presence of nonlinear effects) while the learning rate is some-
what slower than that of traditional techniques. It seems that random forests requires at least 150% the minimum sample
size suggested for traditional regression models while neural networks requires about 200% the minimum sample size.
This is true at least in situations where neural networks successfully outperforms the simpler modeling strategies (Cox
and AFT regression without nonlinear effects). Concerning the performances of the methods in terms of time dependent
Brier score, the simulations are quite concordant in suggesting the need for a double or triple sample size to obtain the
same performance level of standard regression.

As pointed out by a reviewer, a clarification should be made about considering random forests more extreme ML
methods than boosting. In fact, they look conceptually very similar, two ensemble methods in which the base learners are
fitted on parallel (random forests) or sequential (boosting) transformations of the data. Boosting however is implemented
in many flexible ways and, as outlined in Reference 58, can be seen both as a statistical model, when a statistical model
is fitted, or as an algorithmic approach, when it is implemented using for example stumps. In the application presented
here, the base learner used for boosting is in fact a traditional regression model, making the actual implementation more
similar to traditional regression than random forests.

Another aspect that was investigated is that of the variability of the model performances. Variability in predictive
performances is very important and contributes to the reliability of the model results. Looking at the results obtained it

 10970258, 2023, 30, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sim

.9931 by U
niversita D

i M
ilano, W

iley O
nline L

ibrary on [11/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



INFANTE et al. 5673

seems that, when ML methods are effective, the variability of the performance scores is in line with that of traditional
models. In difficult applications for ML, such as the one presented here on lung cancer, also the variability of ML is much
larger than that of standard models.

At the end, looking at the results presented here, it seems that there would be no room for using extreme ML methods,
such as random forests or neural networks, for developing a predictive model in a standard setting. In fact, these methods
were never able to outperform boosting regression of simple Cox or AFT regression with splines to model nonlinear
effects. Even performances of the simple regressions without nonlinearities were in some cases difficult to reach. Apart
from considerations inherent to prediction performance and learning rates, the actual use of one particular strategy is
however matter of many different considerations and “cultures.” We share one sentence from the book of Kattan and
Gerds1 in which they say: “…we start by noting that for practical purposes it is often reasonable to expect that all sound
strategies when applied to the same dataset should end-up with comparable results… ” We therefore did not expect to
see big differences among the methods and our main motivation was to determine whether an additional sample size was
needed by RF and NN to achieve the same performances of traditional models. To this respect, it seems that, although the
sample sizes needed are in fact larger, it is not an order of magnitude difference, and doubling or tripling the sample size
is already effective. To this respect, RF, NN and even more boosting, could be a good way for benchmarking a standard,
explainable, regression method.

In conclusion, the results most relevant both for practical and research purposes regard the very initial goal of the
study, that is, clarification on the minimum sample size required for developing a reliable survival prediction model using
ML models compared to traditional regression methods. While ML models require larger sample sizes, it is sufficient
doubling or tripling the minimum sample size required by traditional regression models to obtain similar performances
and not to increase by one or more order of magnitude. It is interesting that boosting algorithms, in the setting inves-
tigated here, need a lower or equal sample size than traditional regression models. Another key factor when building a
prediction model is if and how possible nonlinear effects of covariates should be taken into account. ML techniques are
of value for modeling nonlinearities and interactions, but must be accurately trained to find optimal hyper-parameters
to balance the bias-variance trade-off. On the other hand, traditional regression models can easily account for nonlinear
effects that must be explicitly modeled and more emphasis must be put on this topic in applied literature. Future applied
and methodological research comparing ML and traditional regression cannot ignore inclusion of nonlinear effects in
traditional regression models. These results come from a framework considering prediction models with small number
of covariates but, rather than being of a limited use, they can be potentially helpful to biomedical researchers interested
in exploiting clinical and biological variables for predicting patients’ outcome.
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