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Preface

These past three years have been an incredible journey, filled with both memorable and challenging
moments. Throughout this period, I had the privilege of immersing myself in topics that truly
captivated my interest. On the other hand, now that I need to find Ariadne’s thread of my
work, I am a little lost. I extensively thought about this matter for the last year of my Ph.D. I
have come to an unconventional conclusion, I do not wish my thesis to be the summary of my
works. Instead, I want to dive deep into the subject that occupied most of my last year as a Ph.D.
student—the ⋆piler (Starpiler, a name that, let’s admit, sounds undeniably cool). Nonetheless,
in order to satisfy my advisor and the Ph.D. commission, I will make every effort to establish
connections between the various projects I have developed or contributed to throughout these
years.

To the reader who has chosen to delve into this thesis, I extend my gratitude. It is a rare
occasion for someone to dedicate their time to immerse themselves in the technical intricacies of
compilers. Should you ever feel disoriented during this modest work or simply wish to reach
out to the author (surely, to share your appreciation for the excellence of this thesis), please feel
free to send an email to francesco.bertolotti@unimi.it. Your feedback and correspondence are
sincerely welcomed.

I would also like to take a moment to express my heartfelt gratitude to the individuals who have
been crucial to my mental stability throughout these years. Firstly, I extend my deepest thanks
to my advisor, Walter Cazzola, and Luca Favalli, a friend and companion on this adventure.
Their unwavering patience and guidance have been invaluable in assisting me with this project,
especially during the times when I was unfamiliar with the intricacies of language development
and compilers. I would also like to take a moment of the reader’s time to express my gratitude to
my sister, Federica Bertolotti, who has consistently offered her assistance whenever I grappled
with mathematical complexities.. Lastly, I am profoundly grateful to my family and friends who
have patiently endured my moments of frustration and provided unwavering support. Their
presence has been a constant source of strength and encouragement.

Before ending this preface, allow me to introduce you to the ⋆piler. The ⋆piler serves as a
transpilation infrastructure, enabling the creation of both transpilers and compilers. This project
emerged from the need to reuse existing language ecosystems. Often, when a new language gains
popularity, developers expend significant effort recreating software libraries already available
for established or older languages. As new languages emerge, the software community shifts
focus, perhaps converging to an ultimate language or just endlessly following trends. Over the
past year, I have contemplated how to simplify the introduction of new languages, ensuring
comprehensive ecosystems are readily accessible. The ⋆piler represents my modest attempt to
tackle this complex problem.
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1
Prelude

In this hopefully short chapter, we will delve into the concepts necessary to understand
the ⋆piler inner workings. We will start with a brief introduction describing the
motivation of the work in Sect. 1.1. We will continue to the very syntactic core of the
⋆piler—languages (Sect. 1.2.1), grammars (Sect. 1.2.2), and parse trees (Sect. 1.2.3).
Sect. 1.2.4 discusses how these objects are implemented in the ⋆piler. Similarly,
Sect. 1.3 describes the necessary semantic objects (Semantic Domain Sect. 1.3.1, Semantic
Context Sect. 1.3.2, and Denotational semantics in Sect. 1.3.3). Alongside the theoretical
background, we also provide minimal code implementations in Sect. 1.3.4. Beyond
syntax and semantics, we will introduce two more concepts: Metric Spaces (Sect. 1.5)
and the A* algorithm (Sect. 1.6). Certainly, readers can feel free to skip sections with
which they are already acquainted.

1.1 Motivation

Before delving into the background theory, let’s establish the motivation behind
this work. As mentioned earlier, the development of compilers and transpilers is an
intricate task. These endeavors involve numerous interconnected components that must
function seamlessly together. Additionally, these tools exist in a state of perpetual
evolution. Each year, new standards introduce fresh features to programming languages,
sometimes even phasing out older or more convoluted elements. In some cases,
language development is bifurcated to maintain multiple standards simultaneously,
exemplified by the parallel existence of Python 3 and Python 2. However, it’s not only
the languages themselves that undergo continuous transformation; the entire language
ecosystem is in a state of flux.

Consider the programming libraries that distill complex concepts into a few API
calls. These libraries are in a constant state of development, and they can become so
pivotal that they sway the choice of programming language itself. Yet, the language
ecosystem encompasses more than just libraries. It includes interactive development
environments (IDEs), debugging tools, software analysis utilities, and a multitude of
other components.

Clearly, the amalgamation of all these components yields a dynamic yet intricate
ecosystem in a constant state of evolution. Effectively addressing the complexity arising
from these environments is of utmost importance because they constitute the bedrock
of modern computation. Bugs or vulnerabilities within any of these components can

3



1 Prelude

have far-reaching consequences, affecting thousands of devices and other software
elements.

While some of these ecosystems may be completely independent, a significant amount
of redundancy can be observed. Developers working with one programming language
often find themselves addressing similar application domains as those working with
another language. Consequently, similar libraries may emerge in different languages.
Consider, for instance, the case of Python and Java, both of which provide libraries for
logging purposes. While these libraries share a common objective, they are developed
independently and offer slightly different APIs. For developers transitioning between
these languages, adapting from one library to another, despite addressing the same
issue, can prove to be a perplexing experience.

An even more challenging scenario arises when an application domain is easily
manageable in one programming language but proves to be daunting in another. For
instance, while one programming language might boast a comprehensive library for
symbolic calculus, another may lack access to similar functionalities. As a result,
developers are compelled to select one language over another primarily due to the
mature ecosystem it offers, rather than the intrinsic features of the language itself.
This predicament impedes the adoption of new programming languages that may
lack a well-established ecosystem compared to their more established counterparts.
Consequently, introducing innovative language features or entirely new programming
paradigms becomes an arduous task.

Addressing such a complex issue presents a formidable challenge. However, we
argue that transpilers offer a promising avenue for resolving this problem. With a
couple of transpilers connecting two programming languages, it becomes possible to
translate libraries from one language into the equivalent for the other programming
language. This translation would enable developers from both language communities to
leverage the same library. Simultaneously, the library could benefit from an expanded
user base, allowing it to mature faster through the introduction of new features and
bug fixes contributed by a wider audience.

Nevertheless, it is crucial to acknowledge that this ideal scenario may not always be
attainable. Consider the stark contrast between programming paradigms, such as the
functional and imperative paradigms. Transpiling a functional programming language
into an imperative one might be a tractable challenge, but the reverse—transpiling
an imperative language into a functional one—could prove exceptionally difficult.
Furthermore, even if such a transpiler were developed, it could significantly alter the
way developers interact with the library, potentially leading to substantial changes
in the library’s API. Additionally, transpilers are unidirectional, designed to convert
from a source language to a target language. To achieve interoperability with a third
programming language, developers would need to create additional transpilers and
resources tailored to that specific language.

Yet, what are the alternatives?

– One option is to replicate the library from scratch in the target language. However,
this approach typically demands a significant investment of time and resources.

4



1.2 Syntax

Additionally, when the need arises for another library, starting from scratch each
time can be inefficient and costly.

– Another approach is to utilize a foreign function interface (FFI) if the target
language provides one for interoperating with the target library’s source language.
While this can be effective when possible, it relies on the availability of an FFI
and still requires manual updates and maintenance.

– Virtual machines (VMs) offer an alternative avenue. In this scenario, a library
could be directly accessible through the bytecode of the VM. This method can
simplify access to libraries and facilitate cross-language usage when the lan-
guages share a common VM. However, if the goal is to achieve interoperability
between languages supported by different VMs, additional challenges emerge,
and alternative approaches must be considered.

Each of these solutions comes with its own set of advantages and drawbacks, and
their applicability can vary depending on the specific scenarios and requirements.
It’s important to recognize that these solutions are not mutually exclusive. When
addressing the challenges within the complex environment of language interoperability,
different solutions may be needed depending on the specific cases.

In this work, our primary focus is on transpilers and their development. We introduce
a framework for designing reusable transpilers, with the aim of minimizing the cost
associated with introducing new languages to the transpilation pool.

1.2 Syntax

Indeed, the syntax of a programming language forms the foundation for understanding
its implementation. The field of languages, grammars, and parsing is extensive,
encompassing a wide range of concepts and techniques. Fortunately, for the purpose of
implementing the ⋆piler, we will only require a basic understanding of these concepts
and definitions. This will allow us to focus on the essential aspects needed to achieve
our goals efficiently.

1.2.1 Language

A Formal Language, denoted as L, can be defined as a set formed by combining
symbols from a given set Σ, commonly referred to as an alphabet. Formally,

Definition 1.2.1 (Language). A language L over the alphabet Σ is a subset of Σ∗:

L ⊆ Σ∗,

where Σ∗ represents the set of all possible sentences over the alphabet Σ.

5



1 Prelude

To illustrate this concept, consider the language α = {a, aa, . . . }, which is formed by
combining repetitions of the symbol a, and it belongs to the alphabet {a}. An example
of finite language is the set {ab, abc, d} built on the alphabet {a, b, c, d}.

Languages can be defined in various ways. Probably, the most natural methods are:

– Explicitly listing all the elements of the language, as we did previously with the
language α.

– Another method for defining a language is through a characteristic function. The
characteristic function X : Σ∗ → {1, 0} maps sentences belonging to the language
to the value 1, while sentences not belonging to the language are assigned the
value 0. For instance, the characteristic function for the language α can be defined
as follows: 1 if every character c in the sentence w is equal to a, and 0 otherwise.

While these methods are straightforward, they are not always practical for defining
languages.

A more practical approach to language definition is through grammars. In particular,
we will focus on Context-Free Grammars (CFGs), which are commonly used to define
most programming languages. However, it is important to note that CFGs are not
capable of defining every possible language. The class of languages that can be defined
by CFGs is known as Context-Free Languages.

1.2.2 Grammar

Grammars [20, 21] are incredibly powerful tools used to analyze and define languages
from a syntactic standpoint. Intuitively, a grammar consists of four essential compo-
nents. Firstly, we have the start symbol, which serves as the initial point of derivation.
Starting from this symbol, we can apply rules that replace one or more symbols with
a sequence of other symbols. Symbols can be either terminals or non-terminals. To
formalize this concept, we express a grammar as follows:

Definition 1.2.2 (Grammar). A grammar is a quadruple G = (N, Σ, R, S). Where:

– N is the set of non-terminals.

– Σ is the set of terminal symbols.

– R is a set of production rules.

– S is a starting symbol such that (S ∈ N).

Based on this definition, various types of grammars can be defined. Specifically,
we are interested in Context-Free Grammars CFGs [79], which are widely used for
language description. Other important classes of grammars are Regular (RGs) [35] and
Context-Sensitive Grammars CSGs [52]. Each type of grammar has its own set of rules
and restrictions, allowing for different levels of complexity and expressive power in
defining languages [37]. In particular, CFG rules can only replace a single non-terminal
symbol with any sequence of terminal or non-terminal symbols. Thus the definition
can be reinstantiated as:
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1.2 Syntax

Definition 1.2.3 (CFG). A CFG is a quadruple G = (N, Σ, R, S). Where:

– N is the set of non-terminals.

– Σ is the set of terminal symbols.

– R is a set of rules. Where, (A → B) ∈ R iff A ∈ N, and B is a sequence of either
terminals or non-terminals ((N ∪ Σ)k).

– S is a starting symbol such that (S ∈ N).

As we mentioned, a grammar is used to define a language. But, we have seen two
other methods that can be used to define languages. Therefore, it is only natural to
want to convert one representation into the other. For example, given a particular
grammar, we could ask ourselves what is the characteristic function representing
the same language, or vice versa. We could ask ourselves if two representations are
equivalent (meaning that they are capable of building the same class of languages).
We could also ask what representations are more powerful (meaning that they are
capable of building a class of languages that contains the other). We could easily lose
ourselves in the hierarchy of languages [37] and their representations. However, this
is a discussion that goes very far beyond the purpose of this manuscript. For the
interested reader, these topics are discussed in [78, 54].

Instead, for our purpose, it is enough to know that CFGs are the most used grammars
for modern programming languages. They cannot represent all languages but they are
still extremely convenient grammars. Furthermore, it is very easy to check whether
an element w ∈ Σ∗ belongs to the language defined as a CFG G. In general, we will
denote with L(G) the set of sentences of the language defined by G:

Notation 1.2.1. We will denote with L(G) the language defined by the grammar G.

When we will need to say that a sentence belongs to the language defined by a
certain grammar, we will use the symbol ◁.

Notation 1.2.2. Given a sentence w ∈ Σ∗, we will use the notation w ◁ G as a short for:

w ∈ L(G)

A practical way to define a grammar (compared to Definition 1.2.2) is the Backus-
Naur Form (BNF) notation [2] or its extended version (EBNF) [77]. In this formalism,
the grammar is represented by a set of rules in the format left ::= right. In CFGs, the
left-hand side of the rule consists of a single non-terminal symbol, while the right-hand
side consists of a sequence of finitely many terminal or non-terminal symbols. Non-
terminal symbols are enclosed in angular brackets (e.g. <start>). Terminal symbols are
enclosed between double quotes (e.g. "term"). It is important to note that there should
always be a rule with the starting non-terminal on the left-hand side. Now, allow me to
provide an example of a simple grammar to illustrate this concept.

7



1 Prelude

⟨start⟩ ::= "("⟨start⟩")"
⟨start⟩ ::= ⟨start⟩⟨start⟩
⟨start⟩ ::= ϵ

Grammar 1.1. Balanced parentheses grammar.

This grammar consists of three productions, all defined with a single non-terminal
symbol, represented as <start>. In addition, there are two terminal symbols: "(" and
")". The symbol ϵ denotes the null or empty symbol. The first rule specifies that the
<start> symbol can be rewritten as the string "("<start>")". This string can be further
processed by applying any of the three rules. If we apply the last rule, we obtain the
sentence () since ϵ represents the null symbol. Notably, this grammar describes the
language of balanced parentheses ({ϵ, (), (()), (()(())), . . . }).

1.2.3 Parse Tree

Given a grammar G, we can define the language L(G). Now, suppose we have a
sentence w, and we want to determine whether w belongs to the language (w◁ G). One
way to provide evidence for the question whether w ∈ L(G) is to present the sequence
of derivations that lead from the start symbol to the sentence w. These derivations can
be conveniently represented using a parse tree.

For instance, let’s consider the previously discussed Grammar 1.1 for balanced
parentheses and take the sentence w = (()). The corresponding parse tree for w would
be as follows:

< start >

< start >( )

( < start > )

ϵ

Figure 1.2. Parse tree for the sentence (()) according to Grammar 1.1.

The parse tree is typically the output of a parser (such as ANTLR [65]), which
utilizes the grammar to determine the rules and non-terminals used to generate a given
sentence [83].

8



1.2 Syntax

In some cases, a sentence can be generated using different rules, resulting in multiple
possible parse trees for the same sentence. When a grammar allows for multiple parse
trees for a sentence, it is referred to as an ambiguous grammar. However, we will focus
exclusively on non-ambiguous grammars in our discussion. Therefore, when we refer
to a generic grammar, we imply a non-ambiguous CFG.

One important consequence of considering only non-ambiguous grammars is that the
parse tree and the sentence itself are different representations of the same object. Hence,
we will reuse the notation introduced in Notation 1.2.2 for parse trees. Consequently,
we will state that the parse tree τ belongs to the language defined by the grammar G
using the notation τ ∈ L(G) or τ ◁ G.

Given a parse tree τ, we may question whether it belongs to a specific grammar G.
The process of verifying τ ◁G is relatively straightforward. It entails verifying that each
node, along with its children, adheres to one of the rules defined by the grammar G.
Readers interested in exploring these topics can find a more comprehensive discussion
in the work of Barthwal et al. [3].

1.2.4 Implementation

Languages, grammars, and parse trees play a crucial role in the development of
complete programming languages. While these concepts have strong theoretical foun-
dations, there are also numerous tools and libraries available that simplify their imple-
mentation with minimal code.

For instance, in the implementation of the ⋆piler, we utilized the popular [64, 92, 87]
Python package called Lark.1 Lark provides a powerful framework for working with
CFGs by introducing a domain-specific language (DSL) for writing CFGs. With Lark, it
is also possible to generate parsers based on the defined grammars.

Let us examine an example that demonstrates the implementation of Grammar 1.1
using the Lark library.

from lark import Lark
import rich

grammar = """
start : "(" start ")"

| start start
| empty

empty :

"""

parser = Lark(grammar, keep_all_tokens=True)

rich.print(parser.parse("(())"))

Listing 1.1. Balanced parentheses grammar lark implementation.

The provided Python code snippet showcases the definition of a grammar in the
variable grammar. It then utilizes the Lark class to create a parser object named parser.

1https://lark-parser.readthedocs.io

9
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1 Prelude

This parser is applied to the string "(())" for parsing. The resulting output of this
script can be observed in the following snippet (Snippet 1.2).

start
(
start

(
start

empty
)

)

Listing 1.2. Output of the snippet 1.1.

1.3 Semantics

Semantics plays a vital role in programming languages, as it provides the necessary
rules and meaning to interpret and reason about programs. Without semantics, a
programming language would be just a sequence of symbols that can be either accepted
or not (Although it has its purposes even by itself).

There are several ways to specify the semantics, they can be classified into different
types, such as operational semantics [67], denotational semantics [75, 76], and axiomatic
semantics [94]. For our purposes, it suffices to focus on denotational semantics. More-
over, we only need a bare-bone understanding therefore, I will reduce the formalisms
to the minimum necessary. The interested reader can complete these sections with
material from [60]

1.3.1 Semantic Domain

In denotational semantics, the semantic domain D represents the mathematical objects
that programs manipulate during execution. It establishes the range of values and
computations within the language, allowing for the interpretation and evaluation of
expressions, the execution of statements, and the determination of program behavior.
By defining the semantic domain, a formal mapping is established between language
constructs and mathematical objects, enabling precise and mathematical reasoning
about program semantics. The semantic domain serves as a foundation for interpreting
programs and facilitates the definition of denotations or interpretations for language
constructs, specifying how they are evaluated and how they relate to the semantic
domain.

Let us introduce a minimal programming language called "desk." The desk lan-
guage, defined by Grammar 1.3, supports basic operations such as addition, variable
assignments, and assignment concatenation. In desk, the operations are performed
exclusively on integers, making the semantic domain D equivalent to the set of natural
numbers, denoted as N. The desk grammar definition is the following:

10



1.3 Semantics

⟨start⟩ ::= ⟨asgn⟩ | ⟨asgn⟩";"⟨start⟩
⟨asgn⟩ ::= ⟨var⟩"="⟨expr⟩
⟨expr⟩ ::= ⟨var⟩ | ⟨int⟩ | ⟨expr⟩"+"⟨expr⟩
⟨var⟩ ::= [a-z]+

⟨int⟩ ::= [0-9]+

Grammar 1.3. Grammar for the desk language. For convenience, the last two rules define terminals
using regular expressions.

1.3.2 Semantic Context

The semantic context, also referred to as memory or store, represents the environment
in which the language operates. It serves as a container for storing values from the
semantic domain. A context is typically defined as a mapping between variable names
V and the corresponding values in the semantic domain D, ρ : V → D ∪ {⊥}. Where
the symbol ⊥ represents a default empty value. The collection of all possible contexts
is denoted by the letter P.

Next, it is convenient to define a way to update the semantic context, we will use the
following notation:

Definition 1.3.1 (context update). Given a context ρ, we denote with ρ[x ← d] (x ∈ V and
d ∈ D ∪ {⊥}) the updated semantic context, such that:

∀v ∈ V , v ̸= x : ρ[x ← d](v) =ρ(v)∧ (1.1)
ρ[x ← d](x) =d (1.2)

1.3.3 Denotational Semantics

With the semantic domain and the semantic context set, we can now define the eval-
uation function. Denoted as [·](·) : T × P → D ∪ {⊥}, the evaluation function is
responsible for mapping expressions with a given context to their corresponding values.
It allows us to compute the result of expressions within the defined language.

In addition to the evaluation function, we will also utilize the execution function.
Denoted as J·K(·) : T × P→ P, the execution function describes how statements operate
on the context. It allows us to modify the context based on the execution of statements
within the defined language.

A denotational semantic is typically defined by specifying both the evaluation and
execution functions for all productions of a grammar. By providing these functions, we
can determine the meaning and behavior of each program construct within the language.
To illustrate this, let’s define the semantics for the desk language (Grammar 1.3).

11



1 Prelude

∀a ∈ <asgn>, s ∈ <start>, ρ ∈ P : Ja; sK(ρ) = JsK(JaK(ρ)) (1.3)
∀v ∈ <var>, e ∈ <expr>, ρ ∈ P : Jv = eK(ρ) = ρ[var(v)← [e](ρ)] (1.4)

∀e0, e1 ∈ <expr>, ρ ∈ P : [e1 + e2](ρ) = [e1](ρ) + [e2](ρ) (1.5)
∀v ∈ <var>, ρ ∈ P : [v](ρ) = ρ(var(v)) (1.6)
∀n ∈ <int>, ρ ∈ P : [n](ρ) = int(n) (1.7)

Here, the function int maps the syntactic values to their corresponding semantic do-
main, D. Similarly, the var function maps the syntactic variables to their corresponding
semantic domain, V . In this example, Rule 1.3 describes the behavior of an assignment
(<asgn>) concatenated (";") with another desk program (<start>). This means that we
need to execute the first assignment, obtain a new context, and then continue running
the rest of the program on the new context. On the other hand, Rule 1.4 defines the
behavior of a simple assignment. First, we evaluate the expression within the given
context, and then we update the context by mapping the result of the evaluation to
the specified variable name. To provide further clarification, let’s consider an example
execution. Consider the following desk program:

x = 1;
y = 2;
z = x + y

Listing 1.3. A desk example program.

The execution using the denotational semantics proceeds as follows:

Jx = 1; y = 2; z = x + yK(ρ⊥) = Jy = 2; z = x + yK(Jx=1K(ρ⊥))
= Jy = 2; z = x + yK(ρ⊥[var(x)← [1](ρ⊥)])
= Jy = 2; z = x + yK(ρ⊥[var(x)← int(1)])
= Jy = 2; z = x + yK(ρ1)

= Jz = x + yK(Jy=2K(ρ1))

= Jz = x + yK(ρ1[var(y)← int(2)])
= Jz = x + yK(ρ2)

= ρ2[var(z)← [x + y](ρ2)]

= ρ2[var(z)← [x](ρ2) + [y](ρ2)]

= ρ2[var(z)← ρ2(x) + ρ2(y)]

We have abbreviated the full context representation with the symbols ρ⊥, ρ1, ρ2, ρ3:

– ρ⊥ represents the empty context,

– ρ1 = ρ⊥[var(x)← int(1)],

12



1.3 Semantics

– ρ2 = ρ1[var(y)← int(2)],

– while the explicit resulting context is ρ⊥[x ← 1][y← 2][z← 3].

1.3.4 Implementation

Just as syntactic elements are crucial in programming languages, semantic elements
play an equally important role. Fortunately, there are numerous libraries available in
the literature that allow us to apply theoretical concepts in practical implementations.
One such example is the Lark Python package, which we used in the implementation
of the ⋆piler examples. In addition to providing a DSL for defining CFGs, Lark also
offers infrastructure for building interpreters and compilers.

To enhance our comprehension, let us consider an illustrative example. We will
proceed with the implementation of the desk language using Lark. It is important
to note that our implementation is minimalistic, lacking efficiency and completeness.
Initially, we will define the grammar using Lark DSL. The chosen grammar aligns
precisely with the one presented in Grammar 1.3.

grammar = """
start : asgn | asgn ";" start
asgn : var "=" expr
expr : var | int | expr "+" expr
var : /[a-z]+/
int : /[0-9]+/

"""

Listing 1.4. Lark implementation of CFG 1.3.

Next, we will define the semantics for each production in the grammar. We will focus
solely on the semantics of the assignment operation.

#...
class Asgn:

def __init__(self, var, expr): self.var, self.expr = var, expr
def exec(self, rho): return {**rho, self.var.name:self.expr.eval(rho)}
def eval(self, rho): raise NotImplemented("Executable node only.")

#...

Listing 1.5. Semantics for the assignment in Listing 1.4.

Once the semantics are defined, we can utilize the Transformer class provided by the
Lark library. This class allows us to traverse the parse tree in a bottom-up manner. By
utilizing the Transformer, we can replace the syntactic nodes with executable ones. In
the case of the assignment operation, we can implement it as shown in Listing 1.5.
Once all the node in the parse tree have been replaced with executable nodes, we can
execute the program x=1;y=2;z=x+y. Here, we show the resulting context.
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class Desk(Transformer):
def int(self, node): return Int(node[0].value)
def var(self, node): return Var(node[0].value)
def asgn(self, node): return Asgn(node[0], node[2])
# ...

parser = Lark(grammar, keep_all_tokens=True)
tree = parser.parse("x=1;y=2;z=x+y")

Desk().transform(tree).exec(dict())

Listing 1.6. Desk programming language implemenetation.

{'x': 1, 'y': 2, 'z': 3}

Listing 1.7. Output of the snippet 1.6.

1.4 Search in Space

This section serves as an introduction to Metric Spaces and the A* search algorithm.
Although these topics may appear unrelated to the preceding sections, they form the
core foundation of the ⋆piler.

1.5 Metric Spaces

Metric spaces are fundamental mathematical structures that play a crucial role in
various branches of mathematics, analysis, and applied sciences [18]. They provide a
framework for studying the notions of distance, convergence, continuity, and many
other fundamental concepts. The concept of a metric space extends the idea of distance
from everyday Euclidean spaces to more general settings, allowing for the analysis of
diverse mathematical objects.

Before formally defining a metric space, let us introduce the notion of distance
function. A distance function is a function that assigns a non-negative value to pairs of
elements in a given set, representing the "distance" or dissimilarity between them. It
provides a formal way to quantify the separation or dissimilarity between objects or
points in a space.

Definition 1.5.1 (distance function or metric). Given a set X, a distance function is
d : X× X → R+ is a non-negative map such that:

1. ∀x ∈ X : d(x, x) = 0.

2. (positivity) ∀x, y ∈ X, x ̸= y : d(x, y) > 0.

3. (symmetry) ∀x, y ∈ X : d(x, y) = d(y, x).

4. (triangular inequality) ∀x, y, z ∈ X : d(x, z) ≤ d(x, y) + d(y, z)
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With the notion of a distance function in mind, we can now formalize the concept of
a metric space:

Definition 1.5.2 (metric space). A metric space is a coupleM = (X, d). Where X is a set,
and d is a distance function on the set X.

To gain a better understanding of these concepts, let’s explore a few examples.

– One of the simplest metric spaces is the Euclidean space (Rn, de), where the

distance function is defined as de(x, y) =
√︁∑︀n

i=1(xi − yi)2.

– However, the same set can also form a metric space using the Manhattan distance,
denoted as (Rn, dm), where dm(x, y) =

∑︀n
i=1 |xi − yi|.

– Beyond Euclidean spaces, metric spaces can also be defined on sets of continuous
and bounded functions. Let C[a, b] denote the set of continuous and bounded
functions between the intervals a and b. In this case, the metric space can be
represented as (C[a, b], dc), where the distance function is defined as dc( f , g) =
sup | f (x)− g(x)| : a ≤ x ≤ b.

1.6 A*

The A* search algorithm [34] is a widely used and highly efficient path finding algorithm
in the field of artificial intelligence and graph theory [46, 100, 38, 62]. It is a popular
choice for solving various optimization and search problems, especially in domains
where finding the shortest path or optimal solution is crucial. A* combines the benefits
of both breadth-first search and greedy best-first search by intelligently balancing the
exploration of the search space using a heuristic function. This algorithm is particularly
effective in domains with large or complex state spaces, as it systematically explores
the most promising paths while keeping track of the estimated cost to reach the goal.
With its ability to provide optimal solutions and its versatility in different problem
domains, the A* search algorithm has become a fundamental tool for solving a wide
range of real-world challenges.

As mentioned before, the A* algorithm requires an heuristic function. However, not
any heuristic will do. To benefit from the optimal behavior, the heuristic needs to be
non-overestimating. Overestimation happens when the heuristic estimate exceeds the
actual cost of reaching a solution. To formalize this concept, let us begin with the
definition of weighted graph and search problem:

Definition 1.6.1 (graph). A graph is a couple G = (V, E), where V is a set of nodes, and
E ⊆ V ×V is the set of edges.

Definition 1.6.2 (weighted graph). A weighted graph is a couple G = (G′ = (V, E), f ),
where G′ is a graph, and f : E→ R is a non-negative map called weight function.
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1 Prelude

Figure 1.4. Randomly generated graph embedded in a metric space. Nodes and edges explored by the A*

algorithm are shown in red.

We provide an example graph in Fig. 1.5. Here, we defined a weighted graph with
node set V = {0, 1, 2, 3, 4, 5}, edges E = {(0, 1), (0, 2), . . . , (4, 5)}, and weight function
f ((0, 1)) = 0.2, . . . , f ((4, 5)) = 9.99. As shown in the example, weights can take any
positive real value.
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9.99

Figure 1.5. An example of weighted graph.

Next, we are ready to define the non-overestimating heuristic.
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1.6 A*

Definition 1.6.3 (non-overestimating heurisitc). The heuristic h : V × V → R for the
weighted graph G = ((V, E), f ) is non-overestimating iff ∀a, b ∈ V : h(a, b) ≤ h∗(a, b)

Here, h∗ is the exact minimal distance required to go from the node a to the node
b of G. Let us consider a few examples on top of Fig. 1.5. An always viable, but
trivial heuristic is the zero-function as it cannot overestimate (∀a, b ∈ V : h0(a, b) = 0 ≤
h∗(a, b)). A more useful heuristic, but rarely viable, is h∗ itself (∀a, b ∈ V : h∗(a, b) ≤
h∗(a, b)). In general finding an heuristic that is fast to compute and non-overestimating
is difficult. However, if we can prove that G = ((V, E), f ) is embedded in a metric
space (V, d) such that, ∀(a, b) ∈ E : f ((a, b)) = d(a, b), then we can use d as heuristic
function. We are guaranteed that hd (hd(a, b) = d(a, b)) does not overestimate by the
triangular inequality. Let hd(a, b) = c, c is the minimal cost of going from a to b if
(a, b) ∈ E otherwise, we need to traverse at least another node to reach b starting from
a. Thus (by triangular inequality) c ≤ h∗(a, b). Let us formalize this last consideration:

Lemma 1.6.1 (non-overestimating heurisitc). Let G = ((V, E), f ) be a weighted graph.
If (V, d) is a metric space such that ∀(a, b) ∈ V × V : f ((a, b)) = d(a, b) then d is a
non-overestimating heuristic for G.

Proof. Consider generic a, b ∈ V. We shall prove that d(a, b) ≤ h∗(a, b). First, suppose
(a, b) ∈ E then d(a, b) = f ((a, b)) = h∗(a, b). Now, suppose (a, b) ̸∈ E then to reach
b from a, we need to traverse a third node, c. Thus, h∗(a, b) ≥ f ((a, c)) + f ((c, b)) =
d(a, c) + d(c, b) ≥ d(a, b).

An example of graph embedded in a metric space is the road system with the
Cartesian plane. Cities are nodes of the graph, edges are straight roads connecting one
city to another, and the weight function of an edge is the length of the road. Of course
to reach a city A from a city B you cannot take less time than using the straight road
connecting A from B if one exists. Therefore, the Euclidean distance between cities is a
non-overestimating heuristic for the city graph. For instance, let us examine Fig. 1.4,
which displays a randomly generated graph. The red nodes indicate the nodes explored
by the A* algorithm, commencing from the center and extending to the farthest external
red node. This illustration vividly demonstrates that A* prioritizes exploring nodes
that lead closer to the solution.

While a comprehensive commentary on the A* algorithm is beyond the scope of this
work, for the sake of completeness, we also offer a concise Python implementation
shown in Listing. 1.8.
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def a_star_algorithm(source, target):
openset = set(source)
closeset = set()
g = {}
g[source] = 0
parents = {}
parents[source] = source

while len(openset) > 0:
n = None

for v in openset:
if n == None or g[v] + h(v) < g[n] + h(n):

n = v;

if n == None : raise ValueError("path does not exist")
if n == target: return True

for (m, weight) in n.children:

if m not in openset and m not in closeset:
openset.add(m)
parents[m] = n
g[m] = g[n] + weight

else:
if g[m] > g[n] + weight:

g[m] = g[n] + weight
parents[m] = n

if m in closeset:
closeset.remove(m)
openset.add(m)

openset.remove(n)
closeset.add(n)

raise ValueError("path does not exist")

Listing 1.8. A* implementation in Python.
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2
⋆piler

Now, we are poised to delve directly into the ⋆piler. We will commence with a
concise overview in Sect. 2.1 to grasp the framework’s entirety. Subsequently, we
will progress to the theoretical framework in Sect. 2.2. Once we have established a
firm understanding of the theory underpinning the ⋆piler, we will transition to the
discussion of the implementation and its evaluation in Sect. 2.3. Finally, we will discuss
the results in Sect. 2.4

2.1 Overview

While the concept behind the ⋆piler is relatively straightforward, the theoretical frame-
work is rich in notation, making the theorems and lemmas quite intricate. Nonetheless,
let us begin with the fundamental idea:

We want a transpiler that, given a set of transpilation units, a source program, a target
language, composes the transpilation units to reach a program written in the target language.
And, we want it fast.

To initiate our exploration, let us highlight the core essence: We want a transpiler.
This encapsulates the crux of our pursuit—a program imbued with the capability to
translate a source program from one language to a semantically equivalent rendition in
a target language. A pivotal element within this endeavor is the concept of transpilation
units—small functions designed to transform specific parts of code from the source
language to the target language. Importantly, these units make these changes while
preserving the semantics. It is worth noting that we do not assume anything about how
these transpilation units are created; we are interested in their practical application.
Naturally, the source program and target language are straightforward concepts and need
no further introduction. When we say composes the transpilation units, we are describing
the sequential application of these units until the transformation is complete—a bit like
assembling a puzzle. This technique might sound familiar to experienced readers, as it
involves repeatedly applying transpilation units until the source program becomes a
program in the target language. However, the decisive distinction lies in our assertion
that we want it fast. This aspiration for speed introduces complexity; achieving efficiency
demands an intelligent deployment of transpilation units to prevent any waste of time.

Now, let’s direct our attention to a key insight: employing a transpilation unit on
a program is much like navigating the edges of a graph, where the nodes are the
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δ

Figure 2.1. The application of a delta function—δ—that transpiles the multiplication by a number to
sequence of additions.

different programs. This realization holds significance, for when we recognize that
transpilation unit composition essentially is an exploration of an implicit graph, we
can apply the techniques detailed in Sect. 1.4, making our efforts more manageable.
Ultimately, the ⋆piler process can be seen as traversing a graph that emerges from the
recursive application of these transpilation units. A significant portion of the theoretical
framework is dedicated to embedding this implicit graph within a metric space. This
allows us to leverage the efficiency of the A* search algorithm in our pursuit of finding
a solution.

2.2 Theoretical Framework

2.2.1 Delta

Moving from the high-level framework to the theoretical intricacies, let us start with
what we have previously termed as transpilation units. To reiterate, these units are
simple functions designed to transform specific segments of a program from one
language to another while preserving semantic equivalence. It is important to note
that the realm of possibilities for a transpilation unit is wide open—there are no strict
constraints (apart from maintaining semantic equivalence). They could range from
complete transpilers to the partial transpilers that deal with the smallest language
features, or even perform no transformation at all. They might even work on mixed
languages. Clearly, the definition of a transpilation unit is flexible. Going forward, we’ll
refer to these transpilation units as deltas or δ for short:

Definition 2.2.1 (delta). Given τ ∈ T (set of all possible parse trees). A delta is a function,
δ : T → T that maps a parse tree into another one such that:

∀ρ ∈ P, τ ∈ T : JτK(ρ) = Jδ(τ)K(ρ) (2.1)

According to this definition, a delta is a function that maps a parse tree into another
parse tree. Crucially, this transformation maintains the denotational semantics: regard-
less of all possible contexts ρ ∈ R and all potential parse trees τ ∈ T , executing τ with
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Figure 2.2. A graph induced by the application of deltas {δ1, δ2, δ3, δ4, δ5, δ6} on the syntax tree τ1.

context ρ yields the same result as executing δ(τ) with the same context ρ. In other
words, although τ and δ(τ) may undertake different computational paths, their final
results are always identical. As an example, consider Fig. 2.1. Here, the delta δ is used
to transpile the multiplication expression from the left parse tree into a sequence of
additions in the right parse tree. As one can see, regardless of the value of x (given by
the context) the execution of the left tree and right tree is different but they achieve the
same result.

One simple, yet crucial remark, is the fact that composing deltas leaves the semantics
unchanged i.e., the composition of two deltas yields another delta:

Remark 2.2.1 (delta composition). Given two deltas, δ1 and δ2, their composition, δ1 ◦ δ2, is
a delta.

This remark can be verified by considering that ∀τ ∈ T , ∀ρ ∈ PJδ1(δ2(τ))K(ρ) =
Jδ2(τ)K(ρ) = JτK(ρ). Thus, any finite composition of deltas remains a delta. Thus, if the
right delta are available, we can compose them to achieve a full language-to-language
transpilation. In particular, a transpilation is defined as follows:

Definition 2.2.2 (transpilation). Given a parse tree τ ∈ T . Given δi0 , . . . , δin deltas, we
denote their composition δi0 ◦ · · · ◦ δin as δ⃗I , where I = [i0, . . . , in]. δ⃗I performs a transpilation
of τ to a grammar G iff

δ⃗I(τ)◁ G

A transpilation for a parse tree τ to a grammar G, is nothing more than the composi-
tion of deltas δi0 , . . . , δin such that they achieve a parse tree from the target grammar G
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2 ⋆piler

when fed with the τ. As already mentioned previously, one can easily check when a
tree τ belongs to the language defined by a grammar G (τ ◁ G) [3].

A crucial observation to make here is that the application of deltas, initiated from a
parse tree τ, leads to the creation of a graph. This concept is illustrated in Fig. 2.2. In
this diagram, the initial parse tree is represented by τ1. Upon applying deltas δ1 and
δ2, two new parse trees, τ2 and τ3, are produced respectively. When starting from τ3,
the application of δ4 ◦ δ5 results in returning to the initial tree τ1. This arrangement
highlights that within this framework, the transpilation search is equivalent to locating
solution nodes within this induced graph. If we were not to care for speed, we could
end the framework here as this would achieve our goal. Unfortunately, speed is one
of those elements that cannot be ignored. Therefore, we continue our framework by
trying to embed the induced graph into a metric space.

2.2.2 Search Graph

Let us introduce the search graph:

Definition 2.2.3 (search graph). Let ∆ = {δ0, . . . , δN} be a set of deltas. Let V ⊆ TΓ be
a set of parse trees from grammars Γ = {G0, . . . , GM}. Let E = {(τ1, τ2) ∈ V × V | ∃ δ ∈
∆ . δ(τ1) = τ2}. We call S∆,Γ = (V, E) the search graph.

The search graph stands as a formal representation of our problem. Reference Fig. 2.2
once again. In this context, six delta functions ∆ = δ1, . . . , δ6 were utilized. The iterative
application of these deltas yielded a total of 7 parse trees, all originating from τ1. Each
of these parse trees pertains to a distinct grammar, denoted as Γ = G1, . . . , G7. It’s
important to note that some Gi could equal Gj for certain i, j ∈ 1, . . . , 7. Therefore, S∆,Γ
visually encapsulates our search graph.

Now, we must introduce the objective of our search, which will define the search
problem at hand:

Definition 2.2.4 (search problem). The search problem is defined by the triple (S∆,Γ =
(V, E), τ, G), where S∆,Γ is a search graph, τ is a starting parse tree from V and G is a target
grammar from Γ.

The definition of the search problem essentially encapsulates our objective. It intro-
duces the starting parse tree τ, which serves as the entry point for the search graph S∆,Γ.
It also presents the target grammar G, which indicates when, during the search, we have
reached a solution. Consider again Fig. 2.2. In this context, the search problem could
be denoted as (S∆,Γ, τ1, G7), where ∆ = δ1, . . . , δ6 and Γ = G1, . . . , G7. It’s evident that
if τ7 ◁ G7 and there are no other parse trees belonging to G7 (i.e., ∄i ∈ 1, . . . , 6 . τi ◁ G7),
then there exist multiple paths of deltas that lead to the solution. For example, the
path δ⃗ = [δ1, δ3, δ4, δ5] achieves the desired translation. It’s important to note that even
though there could be several paths solving the search problem, our interest lies in any
one of them. Thus, we consider our problem solved if a solution exists, irrespective of
the specific path taken to reach it.

Let us formalize the solution to the search problem:
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Definition 2.2.5 (search solution). Given the search problem P = (S∆,Γ = (V, E), τ, G), a
transpilation δ⃗I is a solution for P when:

1. δ⃗I(τ)◁ G.

2. ∀i ≥ 0 : ⃗δI[:i](τ) ∈ V

3. ∀i ≥ 0 : ( ⃗δI[:i](τ), ⃗δI[:i+1](τ)) ∈ E

Let’s examine the conditions that need to be satisfied for the transpilation δ⃗I to be a
solution for the search problem (S∆,Γ = (V, E), τ, G):

1. (δ⃗I(τ)◁ G): Naturally, the resulting parse tree from the transpilation (i.e., the
application of δ⃗I) must belong to the language defined by the target grammar G.

2. (∀i ≥ 0 : ⃗δI[:i](τ) ∈ V): Furthermore, we require that each of the parse trees
traversed by δ⃗I is actually a part of the search graph.

3. (∀i ≥ 0 : ( ⃗δI[:i](τ), ⃗δI[:i+1](τ)) ∈ E): Similarly, every edge traversed by δ⃗I must be
present within the search graph.

In essence, for δ⃗I to be a valid solution, it needs to generate a parse tree that conforms
to the target grammar, traverse valid nodes in the search graph, and follow valid edges
within this graph.

The notation I[: i] is a Python-like notation to take slices from a list defined as
follows:

Notation 2.2.1 (slice). Let x = [x0, . . . , xm], then x[: k] = [x0, . . . , xk] when 0 ≤ k ≤ m.
Otherwise, x[: k] = x when k > m.

The subsequent logical step is to establish a metric space for the search problem,
thereby enabling the application of a heuristic for the A* algorithm. However, it is
important to acknowledge that we currently lack knowledge of an existing metric that
suits this context, nor have we been successful in formulating one. Nevertheless, there
is still potential to make progress. By making slight adjustments to the definitions of
the search graph, search problem, and search solution, we can introduce a modified
version that opens up possibilities for the creation of an appropriate metric space. This
adapted approach provides the necessary framework to incorporate a metric space that
guides our transpilation searches. However, it is worth highlighting that the upcoming
segment might be unnecessary under specific conditions, as outlined below:

– If a non-trivial heuristic function exists that can effectively guide the A* algorithm
in the context of the search problem.

– Alternatively, if the search graph can be embedded in a metric space that suc-
cessfully distinguishes between syntactically similar parse trees and dissimilar
ones.
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Before introducing the new versions of graph, problem, and solution, let us define a
small utility function, referred to as node-set function with symbol λ:

Definition 2.2.6 (node-set). Let us define the node-set function λ that given a parse tree
τ = (V, E) returns the set of non-terminals from all non-leaf nodes of the tree, i.e.,

λ(τ) = {v | v ∈ V ∧ ∃w ∈ V . (v, w) ∈ E} .

This simple function is applied to parse trees and returns their non-leaf nodes. For
example, the λ function applied on the root node of the left parse tree in Fig. 2.1 is
λ(root) = {add, mul}. Notice that the node-set function always returns a subset of the
non-terminals of the grammar of the language used to write the program represented
by the parse tree.

One important remark about transpilations and the node-set function is the following:

Remark 2.2.2. If δ⃗I is a transpilation from parse tree τ1 to parse tree τ2 ◁ G then:

λ(δ⃗I(τ1)) ⊆ NG

In this context, NG represents the set of non-terminals within grammar G. This
signifies that if a transpilation is oriented towards a particular grammar G, the resultant
set of nodes must be confined within the collection of non-terminals present in G. If
this observation were to be untrue, the transpilation would yield a parse tree featuring
a non-leaf node that lies outside the set NG of non-terminals. This would naturally lead
to a contradiction since the transpilation aimed at G would then generate a parse tree τ
such that τ ⋪ G.

2.2.3 Simplified Search Graph

Now, let us discuss the variation of the search graph/problem/solution respectively
called simplified search graph/problem/solution, starting from the simplified search graph.

Definition 2.2.7 (simplified search graph). Let ∆ = {δ0, . . . , δN} be a set of deltas. Let V ⊆
TΓ be a set of parse trees from grammars Γ = {G0, . . . , GM}. Let V ′ = {λ(τ) | τ ∈ V}. Let
E′ = {(λ(τ1), λ(τ2)) ∈ V ′ ×V ′ | ∃ δ ∈ ∆, τ1, τ2 ∈ V . δ(τ1) = τ2}. We call S′∆,Γ = (V ′, E′)
the simplified search graph of the search graph S∆,Γ = (V, E).

The formulation of the simplified search graph closely resembles that of the standard
search graph, differing primarily in the definition of nodes. While the search graph
nodes were individual parse trees and edges corresponded to deltas connecting parse
trees, in this context, nodes represent node-sets from their respective parse trees. This
adjustment could lead to different parse trees being consolidated under a single node.
Consequently, the simplified search graph emerges as a contraction1 (see Fig. 2.3) of
the corresponding search graph. Within the simplified search graph, edges symbolize
deltas that map node-sets from one parse tree to another node-set in a distinct parse
tree.

Consequently, the definition of simplified search problem becomes:
1In this context, a contraction occur between two nodes u and v that are merged into a new node w.
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Figure 2.3. A contraction between to two node representing parse trees with the same node-set. On top a
portion of a search graph, below the same portion of the simplified search graph.

Definition 2.2.8 (simplified search problem). The simplified search problem is defined by
the triple (S′∆,Γ = (V ′, E′), τ, G), where S′∆,Γ is a simplified search graph, τ is a starting parse
tree from V ′, G is a target grammar from Γ.

The sole distinction in comparison to the search problem lies in the initial components
of the triplet. Previously, it was based on a search graph, whereas now it relies on a
simplified search graph. This subtle alteration results in a distinct interpretation of a
solution, specifically dubbed as the simplified search solution:

Definition 2.2.9 (simplified search solution). Given the simplified search problem (S′∆,Γ =

(V ′, E′), τ, G), a transpilation δ⃗I is a solution when:

1. λ(⃗δI(τ)) ⊆ NG.

2. ∀i ≥ 0 : λ(⃗δI[:i](τ)) ∈ V ′

3. ∀i ≥ 0 : (λ(⃗δI[:i](τ)), λ(⃗δI[:i+1](τ))) ∈ E′

In this scenario, for a transpilation to qualify as a solution, it only needs to map
the initial parse tree τ to a node-set that falls within the non-terminals of the target
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grammar G. This requirement is noticeably weaker. Consequently, a solution to the
simplified search problem might not necessarily be a solution for the respective search
problem. However, the converse remains true—a solution to the search problem also
fulfills the requirements for the corresponding simplified search problem. As previously,
conditions 2 and 3 of the theorem ensure that the transpilation δ⃗I adheres to traversing
nodes and edges that are part of the simplified search graph of the simplified search
problem. This consideration yields to the first theorem:

Theorem 2.2.1. The set of solutions for the search problem is a subset of the solution for the
respective simplified search problem.

Proof. The proof trivially follows by the fact that a solution for the search problem is
always a solution for the simplified search problem.

Suppose that we can quickly identify solutions for the simplified search problem.
In that case, we can enumerate these solutions, check if they are also solutions for the
original search problem, and if so, we have found a transpilation from τ to τ′ where
τ′ ◁ G. If they are not solutions (for the original search problem), we move on to the
next solution for the simplified search problem. The problems arises when the number
of solutions for the simplified search problem is not finite but there is no solution for the
search problem. In this case, we may explore the search graph indefinitely. Consider this
example, see Fig. 2.3, let τw be such that λ(τw) ∈ NG. Thus, δ⃗I0 = [. . . , δi1u] is a solution
for the simplified search problem. But also δ⃗I1 = [. . . , δi1u, δuv], δ⃗I2 = [. . . , δi1u, δuv, δuv],
... are solutions. The previous, is an infinite countable set of solutions for the simplified
search problem. If none of these are solutions for the original search problem, we
would end up exploring them indefinitely.

Termination, may or may not be a deal breaker. On the other hand, if deltas are
designed in such a way that it necessary to loop around applying the same deltas
over and over to reach a transpilation, you have probably made purposely a bad
design choice. Furthermore, as we will see in Sect. 3, we can address these issues by
introducing further constraints on the deltas.

2.2.4 Metric Space

Now, we work towards building a metric space for the simplified search graph. In
doing so, we firstly need to define a distance function between sets. We will use the
distance discussed in [36]:

Definition 2.2.10 (set difference distance). Let U be a universe set, and let A, B ⊆ U . The
function dsdd : P(U )×P(U )→ R (where P represents the power set function) is defined as:

dsdd(A, B) = |A ∪ B| − |A ∩ B| (2.2)

The set difference function (dsdd) is a proper distance function [36]. A brief proof of
this fact follows:
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Figure 2.4. Visual proof of the fact that |A∪C− A∩C| ≤ |A∪ B− A∩ B|+ |B∪C− B∩C|. Where
a = A− B−C, b = B− A−C, c = C− B− A, d = A∩ B−C, e = A∩C− B, f = B∩C− A,
and g = A ∩ B ∩ C.

Proof. We need only to verify the 4 properties that distance functions must satisfy from
Definition 1.5.1:

1. ∀A ∈ P(U ) : dsdd(A, A) = |A ∪ A| − |A ∩ A| = 0.

2. ∀A, B ∈ P(U ), A ̸= B : dsdd(A, B) = |A ∪ B| − |A ∩ B| ≥ 1 > 0.

3. ∀A, B ∈ P(U ) : dsdd(A, B) = |A ∪ B| − |A ∩ B| = |B ∪ A| − |B ∩ A| = dsdd(B, A) .

4. ∀A, B, C ∈ P(U ) : dsdd(A, C) ≤ dsdd(A, B) + dsdd(B, C). We need to verify that
|A∪C| − |A∩C| ≤ |A∪ B| − |A∩ B|+ |B∪C| − |B∩C|. Thus |A∪C− A∩C| ≤
|A ∪ B− A ∩ B|+ |B ∪ C − B ∩ C|. The rest of the proof can easily be seen by
considering Fig. 2.4. The left side of the inequality is the cardinality of the set
a ∪ d ∪ c ∪ f . The right side of the inequality is the cardinality of set a ∪ e ∪ b ∪ f
added with the cardinality of set b ∪ d ∪ c ∪ e. As you can see, elements from
the left side appear also on the right side of the inequality. Thus proving the
triangular inequality.

Thus dsdd is a proper distance function between sets.

Now, this distance (dsdd) is more than enough to build a metric space on top of the
simplified search graph. However, we will introduce a novel distance function rooted
on drsdd, denoted dS

rsdd. dS
rsdd introduces the solution set S, as the inputs of dS

rsdd get
closer to S the distance slowly collapse to a small value ( 1

2 ):
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Figure 2.5. Distance function dS
rsdd graph. Each point (x, y) represents a set of a ball with center (x, y)

and radius 15. The solution set is a ball with center in (0,0) and radius 30. As the set approaches the
solution set, the distance decreases. When the set becomes a subset of the solution set, the distance
becomes 1

2 .

Definition 2.2.11 (relative set difference distance). Let U be a universe set. And let
A, B, S ⊆ U . The function dS

rsdd : P(U )×P(U )→ R

dS
rsdd(A, B) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dsdd(A, B) if A ̸⊆ S ∧ B ̸⊆ S,
dsdd(S, B) if A ⊆ S ∧ B ̸⊆ S,
dsdd(A, S) if A ̸⊆ S ∧ B ⊆ S,
1
2 if A ⊆ S ∧ B ⊆ S ∧ A ̸= B,
0 if A ⊆ S ∧ B ⊆ S ∧ A = B

(2.3)

drsdd computes the distance between two sets relatively to a third set S.

The distance decreases as A and B get closer to S. Fig. 2.5 shows the behavior of
dS

rsdd(A, S) wrt. the set S. The distance between A and S decreases when the set A
approaches the set S. The distance collapses to the value 1

2 when the set A is a subset of
S but A ̸= B. Any number ∈ (0, 1) would comply with the distance function definition:
we choose 1

2 because it is the central number in the range.
Now, we have to prove that dS

rsdd is truly a distance function as claimed:
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Lemma 2.2.1. dS
rsdd is a distance function.

Proof. Let U be the universe set. Let X ⊆ P(U ). Let S ∈ X . Let us use d(·, ·) instead of
dS

rsdd and d instead of dsdd.

1. A ∈ X =⇒ d(A, A) = 0.
2. A, B ∈ X ∧ A ̸= B =⇒ d(A, B) > 0.
3. A, B ∈ X =⇒ d(A, B) = d(B, A).
4. A, B, C ∈ X =⇒ d(A, C) ≤ d(A, B) + d(B, C).

The first three properties immediately follow from the definition of d.The last property
(triangle inequality) will be proved by exhaustively checking all cases.

Case A = B = C:

A, B, C ⊆ S : d(A, C)⏟  ⏞  
0

≤ d(A, B)⏟  ⏞  
0

+ d(B, C)⏟  ⏞  
0

A, B, C ̸⊆ S : d(A, C)⏟  ⏞  
d(A,C)

≤ d(A, B)⏟  ⏞  
d(A,B)

+ d(B, C)⏟  ⏞  
d(B,C)

Case A = B ̸= C:

d(A, C) ≤ d(A, B)⏟  ⏞  
0

+d(B, C)

Case A ̸= B = C:

d(A, C) ≤ d(A, B) + d(B, C)⏟  ⏞  
0

Case A = C ̸= B:

d(A, C)⏟  ⏞  
0

≤ d(A, B) + d(B, C)
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Case A ̸= C ̸= B:

A, B, C ⊆ S : d(A, C)⏟  ⏞  
1/2

≤ d(A, B)⏟  ⏞  
1/2

+ d(B, C)⏟  ⏞  
1/2

A ⊆ S ∧ B, C ̸⊆ S : d(A, C)⏟  ⏞  
d(S,C)

≤ d(A, B)⏟  ⏞  
d(S,B)

+ d(B, C)⏟  ⏞  
d(B,C)

B ⊆ S ∧ A, C ̸⊆ S : d(A, C)⏟  ⏞  
d(A,C)

≤ d(A, B)⏟  ⏞  
d(A,S)

+ d(B, C)⏟  ⏞  
d(S,C)

C ⊆ S ∧ A, B ̸⊆ S : d(A, C)⏟  ⏞  
d(A,S)

≤ d(A, B)⏟  ⏞  
d(A,B)

+ d(B, C)⏟  ⏞  
d(B,S)

A, B ⊆ S ∧ C ̸⊆ S : d(A, C)⏟  ⏞  
d(S,C)

≤ d(A, B)⏟  ⏞  
1/2

+ d(B, C)⏟  ⏞  
d(S,C)

A, C ⊆ S ∧ B ̸⊆ S : d(A, C)⏟  ⏞  
1/2

≤ d(A, B)⏟  ⏞  
d(S,B)

+ d(B, C)⏟  ⏞  
d(B,S)

B, C ⊆ S ∧ A ̸⊆ S : d(A, C)⏟  ⏞  
d(A,S)

≤ d(A, B)⏟  ⏞  
d(A,S)

+ d(B, C)⏟  ⏞  
1/2

A, B, C ̸⊆ S : d(A, C)⏟  ⏞  
d(A,C)

≤ d(A, B)⏟  ⏞  
d(A,B)

+ d(B, C)⏟  ⏞  
d(B,C)

This concludes the proof: d(·, ·) is a distance function.

This result yields the second theorem:

Theorem 2.2.2. Let NΓ = ∪G∈ΓNG be the set of all non-terminals from grammars in Γ. Let
S ⊆ NΓ. Then the couple (P(NΓ), dS

rsdd) is a metric space.

Proof. The proof trivially follows from Lemma 2.2.1.

This is the result we longed for in order to build a metric space on the simplified
search problem. Recall that we introduced the distance function dS

rsdd to prove the
previous theorem; however, the same theorem holds for the distance function dsdd. So,
why did we initially opt for dS

rsdd when we already had a simpler distance function?
The reason for this choice is tied to the solution set. Remember, for the simplified search
problem, each node representing a node-set contained in the set of non-terminals of
the target grammar is a solution. If we used dsdd, two different solution node-sets, let,
say u and v, would have a distance greater than 0, even though both are solutions
(ssdd(u, v) ≥ 1). Therefore, it is logical to construct a metric space in a way that ensures
that all solutions are at distance 0 from each other, as they are equivalent from our
perspective.
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2.2.5 Heuristic

Now, we finally approach the last part of this section. In this last part our goal is to use
the metric space previously introduced to build a heuristic function:

Definition 2.2.12 (heuristic). Let hS : P(NΓ)→ R be the non-negative map

hS(A) =

{︃
0 if A ⊆ S
dS

rsdd(S, A) otherwise
(2.4)

Where A, S ⊆ NΓ

The function hS is defined based on the solution set S. When a node, denoted as w,
is considered a solution according to S, we set hS(w) to be 0. On the other hand, if w
is not a solution according to S, we employ the distance function dS

rsdd to gauge the
estimated distance between w and S. However, we only require an estimate that does
not overstate the actual distance. Let us proceed to prove this property:

Theorem 2.2.3. hS is an admissible heuristic (i.e., non-overestimating).

Proof. Let (S′∆,Γ, τ, G) be a simplified search problem. Where, we search for a transpila-
tion starting from τ to a parse tree having non-terminals from NG. Let S = NG and let
τ∗ be a parse tree such that λ(τ∗) ⊆ NG. We need to show that

hS(λ(τ)) ≤ dS
rsdd(λ(τ), λ(τ∗))

If λ(τ) ⊆ S then:
hS(λ(τ)) = 0 ≤ dS

rsdd(λ(τ), λ(τ∗))

As dS
rsdd is a distance function, it cannot be negative. Otherwise,

hS(λ(τ)) = dS
rsdd(S, λ(τ)) (2.5)

= dsdd(S, λ(τ)) (2.6)
≤ dsdd(S, λ(τ)) (2.7)
= dsdd(λ(τ), S) (2.8)

= dS
rsdd(λ(τ), λ(τ∗)) (2.9)

All equations follows from either the definition of dS
rsdd (Definition 2.2.11), or from

the definition of the distance function. This theorem shows that, it is possible to
apply A* to the simplified search problem. For each solution found by A*, we check
whether it is a solution for the original search problem. We stop the search if it is a
solution. Otherwise, we continue searching. Algorithm 1 shows the pseudocode for the
transpilation. Algorithm 1 is a modified version of the A* algorithm to keep searching
solutions. Notice that, both the search graph and the simplified search graph are never
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Algorithm 1 A* adapted for the searching a transpilation

Require: ∆ set of delta functions
Require: τ input parse tree
Require: G target grammar

C ← {}
O← {τ}
g← map with default value + inf
g(τ)← 0
f ← map with default value + inf
f (λ(τ))← hNG(λ(τ))
while O ̸= ∅ do

C ← o ∈ O with lowest f value
if C ⊆ NG ∧ c ◁ G then return c
end if
remove c from O.
for all δ ∈ ∆ do

score ← g(λ(δ(C))) + dNG
rsdd(λ(C), λ(δ(C)))

if score ≤ λ(δ(C)) then
g(λ(δ(C)))← score
f (λ(δ(C)))← score + hNG(λ(δ(C)))
if λ(δ(C)) ̸∈ O then

O.add(λ(δ(C)))
end if

end if
end for

end while

explicitly built. The search graph is explored starting from τ on the fly by applying
deltas from ∆.

In closing, it is worth highlighting that the algorithm presented here, a slight mod-
ification of A* (The modifications concern only the input, and the return condition),
operates with a complexity of O

(︀
bd)︀. In this expression, b stands for the branching

factor, and d represents the shortest path length from the initial node to the solution
node. In our context, the branching factor is always bounded by |∆|, while d is bounded
by |V| (the number of nodes in the graph), resulting in a worst case complexity of
O
(︁
|∆||V|

)︁
. While we often have limited control over |V| due to various problematic

aspects, we can influence |∆| in many cases. As evident, a smaller number of deltas
leads to reduced time complexity.

With this algorithm, we can now conclude this section. However, this dissertation
would be incomplete without at least one attempt to implement this framework. In the
next section, we will delve into the practical implementation of the ⋆piler. We will
evaluate its performance using straightforward programming languages. Additionally,
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1 def int64 sort(int64* array, int64 len) does
2 int64 i = 0;
3 while i < len do
4 int64 j = i;
5 while j < len do
6 if array[i] > array[j] do
7 int64 tmp = array[i];
8 array&[i] = array[j];
9 array&[j] = tmp;

10 done
11 &j = j + 1;
12 done
13 &i = i + 1;
14 done
15 return 0;
16 done

Listing 2.1. Bubblesort implementation with S programming language.

we will compare the effectiveness of the A* search algorithm with a simpler Breadth
First Search (BFS). This comparison will ultimately lead us to the conclusion that
the utilization of A* is crucial for making such a framework applicable in real-world
scenarios.

2.3 Concrete Framework

We can move beyond the theoretical framework to explore some practical aspects. We
start by discussing the programming languages used to test the ⋆piler. In our devel-
opment, we crafted three programming languages: S, S++, and S#. Each subsequent
language in the sequence becomes progressively more complex. This set of languages,
collectively referred to as the S family, or Simple languages, mirrors the evolution from
C to C++ to C#. This section will commence with an exploration of S, the initial member
of this language family.

2.3.1 The S programming language

The language S mimics a subset of C. It accounts for expressions, function definitions
and declarations, while loop, if-then, and struct definitions. It supports native types:
double, int64, int32, int8, void. For the S language, we also developed a compiler to
LLVM [51] intermediate representation. Among the developed languages S is the only
one that can be compiled directly to LLVM.

To better understand the capabilities of S, let us showcase a few examples starting
from an implementation of the Bubblesort algorithm shown in Listing 2.1. This code
snippet presents a basic implementation of the Bubblesort algorithm. It takes two
inputs: a pointer to an int64 array (array) and an int64 value (length) indicating the
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array’s length (line 1). In lines 3-14, it employs loops indexed by i and j to traverse
the array. When encountering a pair of unsorted elements (line 6), they are swapped
(lines 7-9). Notably, both the while loop and the if-then statements exhibit syntax
that is only slightly different from the C programming language. The distinction lies
in the application of the & operator. Placed to the left of a variable, & returns the
memory pointer to that variable. Conversely, &[k] designates the memory pointer of
the k-th element in the array. The use of the & operator serves for pointer arithmetic
and assignments. In S, the left side of assignments invariably comprises a memory
pointer where the outcome of the right-side expression is stored.

The next example showcases the use of struct alongside a few other features:

1 struct X with
2 int64 x;
3 int64 y;
4 int64 z;
5 done
6 def int8* malloc(int64);
7 def void free(int8*);
8 def int64 start() does
9 X* x = &malloc(size of X) as X*;

10 &free(x as int8*);
11 return 1;
12 done

Listing 2.2. Struct usage within the S programming language.

Lines 1-5 define the struct X, composed of three int64 variables (x, y, and z). Lines
6 and 7 introduce two external functions, malloc and free, which are intended to be
linked with the libc library for dynamic memory allocation. Finally, lines 8-12 present
the start method. This specific signature signifies the entry point of any S program,
akin to the main function in C. In S, functions are treated as variables, thus using the &

operator on a function name yields the memory location of the function, which can
be invoked using parentheses (...). The size of operator functions analogously to
the C sizeof, returning the memory size of the object to which it is applied (used in
line 9). Meanwhile, the as operator serves for type casting, converting the type on the
left side to the type specified on the right side (used in both lines 9 and 10). Thus, this
small snippet, firstly dynamically allocates an X object (line 9), then it frees the memory
allocated and returns 1.

The next S code snippet showcases the usage of the import to deal with multiple
files:
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1 // src/increment.s file /////////
2 def int64 increment(int64 x) does
3 return x + 1;
4 done
5 // src/start.s file ///////////////////////////
6 from "src/increment.s" import increment as inc;
7 def int64 start() does
8 return &inc(0);
9 done

Listing 2.3. import usage within the S programming language.

Let us assume that lines 1-4 are saved in the file src/increment.s, and lines 5-9
are saved in the file src/start.s. In lines 2-3, a simple function is defined that takes
an Int64 value and returns the value increased by one. Line 6 imports the increment

function from the src/increment.s file and renames it to inc. The start function (the
entry point) returns the result of incrementing the value 0 using the inc function.

The following code snippet showcases the usage of the auto keywords alongside the
struct initialization:

1 struct X with
2 int64 x;
3 int64 y;
4 X* next;
5 done
6 def int64 start() does
7 auto x = X{x:0, y:1, next:0 as X*};
8 return x.y;
9 done

Listing 2.4. auto usage within the S programming language.

Lines 1-4 define a simple struct named X, which consists of two int64 values, x and
y, and a pointer to another struct of type X. This allows for the creation of recursively
defined types, similar to C. Notably, in line 7, the keyword auto is used to automatically
infer the type on the right side of the assignment. Line 7 also demonstrates the
initialization of the X struct. The fields x and y are initialized to 0 and 1 respectively,
while the next field is initialized as 0 as X*, which is akin to assigning the C NULL

value to a pointer. In line 8, the notation x.y return the value stored in the field y of the
variable x of type X (the retrieved value is 1). To retrieve the memory location a field
one uses the &. notation. For example, x&.y=1 would store in the field y of x the value
1.

Alongside struct initialization, it is also possible to directly initialize arrays:
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1 def int64 start() does
2 int64* x = [1,2,3,4];
3 int64** y = [[1,2,3],[1,2]];
4 return 0;
5 done

Listing 2.5. Global variables within the S programming language.

Array initialization happens in a pythonic way. For example, consider Listing 2.5. It
shows two arrays initializations. The first one containing four elements from 1 to 4

(line 2). The second one contains two arrays with 3 and 2 elements respectively (line
3). Thus the type of the first array, x, is a pointer to int64. Meanwhile, the type of the
second array, y, is a pointer to pointers of int64 elements.

The last language feature that we showcase for the S language are global variables:

1 def auto x = 1;
2 def int64 start() does
3 return x;
4 done

Listing 2.6. Global variables within the S programming language.

In line 1, the def keyword is used to define a global variable named x, which is
assigned the value 1. The variable type is automatically inferred with the keyword
auto. The start method merely returns the value of this global variable.

The S programming language is entirely implemented using Python. The syntax of S
is defined as a grammar using the open-source Lark package. For executing S programs,
we developed an LLVM compiler using llvmlite2, which offers Python bindings for the
LLVM C++ compiler infrastructure API.

In theory, the ⋆piler could be used for compiling S directly to executable object code.
However, this would require writing the deltas to directly translate S to object code,
which goes beyond the scope of a simple demo. Moreover, such an approach would
tie the execution of S to a specific processor architecture, hindering portability and
reproducibility.

2.3.2 The S++ programming language

Here, we introduce the S++ language, which is an extension of the S language, resem-
bling the C++ programming language. The primary addition in S++ compared to S is
the inclusion of classes.

2https://llvmlite.readthedocs.io
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1 class Pair with
2 def int64 a;
3 def int64 b;
4 def Pair* start(Pair* this, int64 a, int64 b) does
5 this&.a = a;
6 this&.b = b;
7 return this;
8 done
9 end

Listing 2.7. Class within the S++ programming language.

In S++, classes are created using the keyword class, followed by the class name (as
seen in Listing 2.7 with Pair). The class body is enclosed between the with and done

keywords. Class fields are defined similarly to global variables in S. In Listing 2.7, two
int64 fields, a and b, are defined in lines 2-3. Lines 4-7 depict the class constructor. The
constructor must be named start, receive an uninitialized object as an argument, and
return a pointer to the newly created class object. The constructor role is to initialize
the object received as an argument.

Given that S++ does not have a garbage collector, classes have another special method,
namely the end method:

1 def void free(int8*);
2 def int8* malloc(int64);
3 class String with
4 def int8* string;
5 def String* start(String* this) does
6 this&.string = &malloc(64);
7 return this;
8 end
9 def void end(XY* this) does

10 &free(this.string as int8*);
11 return;
12 end
13 end

Listing 2.8. Destructor within the S++ programming language.

The purpose of the end method is to release any dynamically allocated memory
associated with the class. For instance, in Listing 2.8, memory allocation for 64 bytes is
performed in the constructor (lines 5-8). This memory will be automatically deallocated
by the end method (lines 9-11) once the object is no longer in use. However, note that
the end method is automatically called only when the related object is allocated on the
stack. In cases where the object is allocated on the heap or another form of dynamic
memory, it is necessary to directly call the end method to free the allocated memory.
Failing to properly call the end method can lead to memory leaks.

As a result of the difference between stack and heap allocation, there are two ways to
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construct and object:

1 class Point with
2 def double x;
3 def double y;
4 def Point* start(Point* this, double x, double y) does
5 this&.x = x; this&.y = y; return this;
6 end
7 def Point* set(Point* this, double x, double y) does
8 this&.x = x; this&.y = y; return this;
9 end

10 end
11 def int64 start() does
12 Point* point_heap = new Point(0.0,0.0);
13 Point* point_stack = Point{x:1.0, y:1.0};
14 point_head.end();
15 return 1;
16 end

Listing 2.9. Stack vs heap instantiation within the S++ programming language.

Consider Listing 2.9. In this example, lines 1-10 define a simple Point class that
manages two double numbers. This class does not have a custom destructor since
it does not deal with dynamically allocated memory. The start function (line 11-16)
demonstrates two ways to allocate and construct Point objects. In line 12, the new

keyword is used. This notation allocates memory on the heap, which means that
explicit calls to the destructor are necessary to properly deallocate the memory, as
shown in line 14. On the other hand, line 13 showcases a notation similar to struct
initialization in the S programming language. This notation allocates the Point object on
the stack, eliminating the need for explicit calls to the destructor. Stack-allocated objects
in S++ are automatically destructed when they go out of scope, ensuring memory
cleanup.

In contrast to the S programming language, there is no dedicated compiler for the S++
programming language. To execute an S++ program, it needs to be translated to the S
programming language first. Afterward, the translated S program can be compiled into
LLVM code for execution. This multi-step process allows S++ programs to be executed
by leveraging the existing S compiler and the LLVM compiler infrastructure.

2.3.3 The S# programming language

The final language we will consider is S#. This programming language extends the S++
programming language and mimics C#. The primary change introduced by S# is the
incorporation of a garbage collector. This addition aims to eliminate the use of pointers,
which have been removed from the language. However, for the sake of simplicity, S#
is not multithreaded. It keeps track of allocated memory and only frees the memory
explicitly by calling the garbage collector.
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1 class Test{
2 fun (Test -> Test) __init__(this) {
3 return this;
4 }
5 fun (Test->void) f1(this) {
6 Integer integer = new Integer(1);
7 return;
8 }
9 fun (-> int64) __main__() {

10 Test test = new Test();
11 gccollect();
12 return 1;
13 }
14 }

Listing 2.10. Main class in the S# programming language.

Consider Listing 2.10. Firstly, note the main method __main__. This method is
enclosed within the class Test. However, this signature serves to identify the entry
point in the program. Next, observe that the type of the method is fully specified to the
left of the method name. For example, method f1 (lines 5-8) takes a single argument
of type Test and returns nothing, resulting in the signature fun (Test->void) f1.
Another special method name is __init__, which serves as the constructor. Unlike in
S++, S# does not require a special signature for the destructor method as a garbage
collector is provided. In Listing 2.10, the garbage collector is called at the end of the
__main__ method using the built-in gccollect() (line 11).

The S# language also directly supports double quoted strings, which were not directly
supported in S and S++. The listing 2.11 showcases a simple String class that manages
int8[] array representing a strings. The String class also offers few utilities such as
clone, concat, and equals.

The notation for native strings is the conventional one, using double quotes (lines
13-15). In this case, the class String uses an int8[] field named buffer, which
represents a one-dimensional array of int8 elements. Unlike the C++ style notation, S#
does not support multi-dimensional arrays. However, this limitation does not affect
the capabilities of S# since multi-dimensional arrays can always be treated as single-
dimensional arrays. Consider also the print method of Listing 2.11. In line 12, the
print built-in is introduced. This function, prints an int8 array to standard output.

With respect to the previous programming languages (S and S++), S# also introduces
the limited for loop.

1 for i from this.size {
2 this.buffer[i] = value;
3 }

Listing 2.12. For loop within the S# programming language.
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1 class String {
2 var int8[] buffer;
3 fun (String, int8[]->String) __init__(this, buffer) {
4 this.buffer = buffer;
5 return this;
6 }
7 fun (String -> int64) size(this) {...}
8 fun (String -> String) clone(this) {...}
9 fun (String, String -> String) concat(this, other) {...}

10 fun (String, String -> int64) equals(this, other) {...}
11 fun (String -> String) print(this) {
12 print(this.buffer);
13 return this;
14 }
15 fun (->int64) __main__() {
16 String string1 = new String("A");
17 String string2 = new String("B");
18 String string3 = new String("AB");
19 return string1.concat(string2).equals(string3);
20 }
21 }

Listing 2.11. String class in the S# programming language.

Language Feature

Common

native types: long, int, char, double, float
literals: string, array, rationals, naturals
import from
arithmetic operators: +, -, *, /, %
logical operators: ==, !=, >=, <=, <, >
other operators: cast to, size of, indexing, enclosed expression, function call
statements: if-then, while loop, return, return void, skip, statement expression, assignement, auto assignement, declaration assignement.

S

native types: pointers
struct definition
function definition
global assignement declaration
expressions: dereference, reference to

S++

native types: pointers
class definition: fields, constructor, destructor, methods
function definition
global assignement declaration
expressions: new, indexing, dereference, reference to

S#

class definition: fields, constructor, methods
garbage collector
expressions: new, indexing, method call
statements: for loop

Table 2.1. List of language features for S, S++, and S# languages. All languages share a set of common
features defined in the Common entry. The other entries describe the additions wrt. the common
features. Notice that even if different languages share the same language feature there may be either
syntactic or subtle semantic differences. For example, S++ and S# new language features in principle
are the same but have different implementations.
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S

S++

S#

LLVM
∆S→S++

∆S++→S

∆S#→S++

|∆S→S++ | = 4

|∆S++→S | = 9

|∆S#→S++ | = 20

Figure 2.6. The system presents three available languages. There are 4 deltas to translate S programs to
S++ programs—denoted as ∆S→S++. There are 9 deltas to translate S++ programs to S programs—
denoted as ∆S++→S. There are 20 deltas to translate S# programs to S++ programs—denoted as
∆S#→S++.

The syntax for the limited for loop is showcased in Listing 2.12 (lines 1-3). The
iteration variable is defined between the keywords for and from. The number of
iterations is specified as an expression after the from keyword. In this case, during each
iteration, the variable i takes values from 0 up to the result of evaluating this.size -

1. This construct is akin to traditional for loops in other programming languages and
provides a way to iterate through a range of values within a limited scope.

Similar to S++, there is no direct compiler or interpreter for executing S# programs.
However, it is possible to execute S# programs by translating them to S and then using
the LLVM compiler to compile and subsequently execute the translated S# program.
This process leverages the existing S language infrastructure for compilation and
execution. Finally, we provide a small table summarizing the language features of S,
S++ and S# in Table 2.1.

2.3.4 Translations

Now that we have dealt with the experimental programming languages (S, S++, and S#),
We can move on to their translation. We developed a set of deltas necessary to translate
S# to S++ (∆S#→S++), S++ to S (∆S++→S), and S to S++ (∆S→S++). As a result, we can
also translate S# to S using ∆S#→S = ∆S#→S++ ∪ ∆S++→S. The resulting translations are
summarized in Fig. 2.6. The same figure summarizes also the number of deltas used in
each group: |∆S#→S++| = 20 , S++ to S |∆S++→S| = 9, and S to S++ |∆S→S++| = 4. For
a total of 33 deltas.

Let us delve into the implementation of some of these deltas. Each delta is realized
using a concept known as a "transformer," which is a fundamental component of
the Lark parsing library. In Lark, a transformer is created by inheriting from the
Transformer class. Within this inherited class, methods correspond to concrete syntax
rules. For instance, spplang_while corresponds to the syntax rule governing the “while”
loop feature. When a parse tree is processed, the Transformer parent class traverses it
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and invokes the appropriate method for each and any encountered node. This invoked
method processes the sub-tree rooted at that node, potentially altering it. The output of
this method then substitutes the original sub-tree. In practice, a transformer could be
employed to substitute every sub-tree governed by spplang_while with a single node,
thereby transforming the structure.

Let us take a straightforward example. Our objective is to substitute instances of
spplang_int64 with slang_int64. It is important to note that the structural composition
of these nodes remains unaltered, as their semantics is equivalent in both S++ and S.

from lark import Token
from lark.tree import Tree
from lark.visitors import Transformer

class Int64(Transformer):
def spplang_int64(self, children):

return Tree(Token("RULE", "slang_int64"), children)

Listing 2.13. S to S++ delta for translating spplang_int64 occurrences to slang_int64 occurrences.

In the provided code, we have created a subclass named Int64 that inherits from the
Transformer class. Within this subclass, we define a single rule, spplang_int64. This
rule is designed to replace any occurrences of spplang_int64 with a new Tree labeled
as slang_int64. Notably, the structure of the children in the substituted tree remains
unaltered.

In our framework, each transformer corresponds to a delta. Given that our search
algorithm complexity is bounded by O

(︁
|∆||V|

)︁
, we may seek to manage the prolif-

eration of deltas. This can be achieved by consolidating multiple rules into a single
transformer instead of employing a separate transformer for each rule. It is important
to emphasize that merging two transformers into a single one is always possible, which
can effectively reduce the number of deltas if deemed necessary. This approach should
be flexible and adaptable as needed.

Let us consider a new example:

1 class News(Transformer):

3 def spplang_new(self, nodes):
4 return slang.parse(f'''
5 (
6 auto tmp = memcpy(
7 malloc(size of {get_type(nodes)}),
8 {get_type(nodes)}{{}} as int8*,
9 size of {get_type(nodes)}
10 ) as {get_type(nodes)}*
11 ).start(tmp {get_args(nodes)})'''
12 )

Listing 2.14. S to S++ delta for translating spplang_new.

In this code section, we are transpiling the S++ new feature into a compliant S sub-tree.
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1 new T(3);

auto tmp = memcpy(
malloc(size of T),
T{} as int8*,
size of T,

) as T*).start(tmp, 3);

S++→ S

(a) S++ to S delta for new..

class x with
...

done

struct X with
...

done

S→ S++

(b) S to S++ delta for structs..

for i from 10 {
...

}

auto i = 10;
while i > 0 do

...
i &= i - 1;

done

S#→ S++

(c) S# to S++ delta for for-loops .

Figure 2.7. Example of transpilations for different language features. Fig. 2.7a showcases the transpilation
of the S++ new feature to the S programming language. Fig. 2.7b showcases the transpilation of
the S struct language feature to the S++ programming language. Finally, Fig. 2.7c showcases the
transpilation of the S# for-loop language feature to the S++ programming language.

Suppose the instantiated type is T, and the constructor for T takes only one argument
3. Thus, the result of get_type(nodes) is T and the result of get_args(nodes) is 3. In
lines 6-10, we utilize a temporary variable named tmp, which points to a portion of
heap memory. This memory is initialized using the memcpy function. Recall that memcpy
requires three arguments: a target memory pointer, a source memory pointer, and the
size of the copy. In this context, the target memory pointer is allocated memory (line 7)
of size size of T. The source memory pointer points to the stack-initialized object T{}
as int8*. Remember that T{}, in S, signifies stack instantiation. The third argument,
the size of the copy, is simply the size of the instantiated type size of T. Therefore,
tmp now points to a newly instantiated object of type T, although it is not yet fully
initialized. The constructor for T still needs to be called. We cast tmp to the appropriate
type (i.e., T*, in line 10), and then invoke the constructor (i.e., the start method). Keep
in mind that the start method always takes an instance of its own object. In this
case, the argument is explicitly inserted in line 11 as .start(tmp,...). Additional
arguments for the start method are introduced using the get_args(nodes) function.
Ultimately, this results in tmp.start(tmp,3). Finally, we parse the resulting f-string
into a tree which will replace the old one (line 4). Fig. 2.7a showcases an application of
such a delta on a simple code snippet.

It is important to emphasize that the provided code snippet does not represent
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the actual implementation. Incorporating a parsing step within a delta would make
the delta computationally expensive. Additionally, numerous other intricacies need
consideration. For instance, it is necessary to ensure that both memcpy and malloc are
pre-defined. While these issues are resolvable, they complicate the discussion. To
maintain clarity, we have chosen to offer a minimal code excerpt that offers an insight
into how the delta might be implemented.

Now, let us see another example from the deltas that deal with S to S++ translations:

1 class Structs(Transformer):
2 def slang_struct(self, nodes):
3 #...
4 class_tree = Tree(Token('RULE', 'spplang_class'), [
5 Token('CLASS', 'class_'),
6 Tree(Token('RULE','spplang_identifier'), [
7 Token('__ANON__', get_struct_name(nodes))]),
8 Token('WITH', 'with_'),
9 Token('DONE', 'done')])
10 #...

Listing 2.15. Delta to transpile S struct to S++ classes.

Once again, we are presenting only a small portion of the code. As previously
mentioned, the delta named Structs is responsible for replacing the sub-parse tree
that defines S structs with equivalent sub-trees in S++. In this scenario, we have
chosen to convert S structs into S++ classes. In lines 4-9, we are showcasing only a
fragment of the resultant sub-tree. Here, we create an spplang_class node with an
spplang_identifier labeled with the outcome of get_struct_name(nodes). Subse-
quently, we will have to include all the struct fields and introduce a default constructor
as well. Fig. 2.7b showcases an example of application on a minimal code snippet.

Let us move to the final delta that we will discuss:

1 class Fors(Transformer):
2 def ssharplang_for(self, nodes):
3 return [
4 Tree(Token('RULE', 'spplang_stmt_expr'), [
5 Tree(Token('RULE', 'spplang_auto_assignement'), [...]),
6 Token('DONE', 'done')]),

8 Tree(Token('RULE', 'spplang_while'), [
9 Token('WHILE', 'while'),
10 ...,
11 Token('DO', 'do'),
12 Tree(Token('RULE', 'spplang_block'), [...]),
13 Token('DONE', 'done')])
14 ]

Listing 2.16. Delta to transpile S for loops to S++ while loops.

This delta belongs to the set of transformations that deals with the translations
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from S# to S++. Specifically, it handles the conversion of for-loop sub-trees into their
corresponding while-loop counterparts in S++. This is achieved by substituting the
for-loop construct with a while-loop structure. In lines 4-6, a variable is defined with
the same name used by the iteration variable of the original for loop. Subsequently, in
lines 8-13, a while loop sub-tree is constructed. This while loop utilizes the previously
defined variable to replicate the iteration behavior of the original for loop, while
maintaining the same loop body. An application of such a delta is shown in Fig. 2.7c.

2.3.5 Running Example

To better understand the overall framework, let us discuss a brief running example.
Suppose we desire to transpile the following code snippet in S# to an S++ snippet:

1 class Point {
2 var double x;
3 var double y;
4 fun (Point,double,double->Point) __init__(this, x, y) {
5 this.x = x;
6 this.y = y;
7 return this;
8 }
9 fun (Point,Point->Point) add(this, other) {

10 this.x = this.x + other.x;
11 this.y = this.y + other.y;
12 return this;
13 }
14 }

Listing 2.17. S# implementation of a class managing a 2-dimensional point.

The provided code snippet introduces a basic class designed to handle points. The
class contains fields x and y, representing the x and y coordinates respectively (lines
2-3). Additionally, the Point class offers a constructor for coordinate initialization (lines
4-8) and an add method for adding a given point to the current instance (lines 9-13). In
order to translate listing 2.17, we need to address a few things:

– Replace the class definition syntax: Replace the open curly brackets with with

and the closed curly bracket with done.

– Modify the syntax of defined fields (x and y): replace var with def.

– Adjust the syntax of defined methods (__init__ and add): Replace fun with
def. Replace the curly brackets with does and done. Move the type inside the
parentheses.

– Rename the special method __init__ to start, as constructors in S++ are defined
using the name start.
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– Address type differences: In S#, each defined object is implicitly a pointer to a
heap memory location. Convert custom types to pointers (e.g., Point becomes
Point*). Modify field access: when S++ expects a pointer, replace the dot notation
with &. notation (e.g., this.x becomes this&.x).

– Consider that there is no overlap between non-terminals of S++ and non-terminals
of S#. However, non-terminals such as identifiers have the same syntax. Thus, for
a complete transpilation, we need to address such cases by simply renaming the
non-terminals.

Additionally, in the provided code, the new keyword is not used. However, if we
were to transpile an instantiation, we would also need to register the object in a specific
structure. This registration process ensures that the object memory can be freed when
the object is no longer in use and the garbage collector is called. This step is crucial for
memory management in languages like S# without explicit pointer handling.

To accomplish these various small transpilations, we developed a set of specific
deltas, each addressing a distinct aspect. This approach allows for a clear separation of
concerns among the deltas and promotes a high degree of reusability. For instance, let
us say we want to introduce S#-style for-loops into our new language. By including
the desired syntax, we can readily utilize the existing deltas to translate the for-loop
instances to both S and S++ syntax.

1 class Point with
2 def double x;
3 def double y;
4 def Point* start(Point* this, double x, double y) does
5 this&.x = x;
6 this&.y = y;
7 return this;
8 done
9 def Point* add(Point* this, Point* other) does

10 this&.x = this.x + other.x;
11 this&.y = this.y + other.y;
12 return this;
13 done
14 end

Listing 2.18. S++ implementation of a class managing a 2-dimensional point.

The transpilation starts with the parse tree representing Listing 2.17. Then, we apply
all the available deltas. In this case, we have 20 deltas. Now, not all the deltas are
applicable from the start, some delta depends on the execution of other deltas. However,
after this step, we end up with at most 20 other parse trees. Next, among these parse
trees, we need to choose the most promising one to explore. The idea is to choose the
one that is closer to being a solution and that is not the result of a long transpilation (as
we could end up stuck in a local minimum). This property is captured by the expected
distance to reach the solution (given by the defined heuristic) with the traveled distance
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(a) Shortest path.. (b) A* to solution.. (c) BFS to solution..
(d) Distance to solu-

tion..

(e) A* to solution. (f) BFS to solution.

Figure 2.8. Graphs generated from the exploration of possible translations from a start S# program to
the equivalent S++ program. The top row shows the full graphs induced using deltas from ∆S#→S++.
The bottom row shows the graphs induced using a larger set of deltas ∆S#→S++ ∪ ∆S++→S. Nodes
are colored in black. Edges to already explored nodes are colored in light gray. Red colored nodes and
edges show the explored paths of different algorithms.

(given by the metric space). Having chosen the next parse tree, we apply again the
whole battery of 20 deltas. Thus reaching a pool of at most 39 explorable parse trees.
Again, we choose the most promising delta and we go on until we find a parse tree
of which non-terminals are a subset of the solution set. Finally, we check if the found
parse tree is a solution. If it is a solution, we end the search. Otherwise, if it is not a
solution, we continue the search. The resulting translation is presented in Listing 2.18.

A delta application may depend on the application of previous deltas. For example,
if we were to transpile the same Point class into the S language, we would need to
transpile S# language features to the respective intermediate S++ language feature,
as we did not develop any delta from S# to S (see Fig. 2.6). Of course, the path of
deltas to perform the translation may not be known beforehand. Therefore, we need a
search step to find the proper transpilation. As mentioned earlier, the application of
deltas induces a graph on which we search for a solution. Consider Fig. 2.8, sub-figures
from 2.8a to 2.8d shows the graph induced for translating the S# class Point into the
S++ class Point using only the group ∆S#→S++. Figure 2.8a shows, in red, the shortest
path from the root node to a solution. Figure 2.8b shows, in red, the nodes explored by
the A* algorithm. Figure 2.8c shows, in red, the nodes explored using a BFS algorithm.
Figure 2.8d shows, edges and nodes colored according to the distance from the solution
wrt. the distance function dS

rsdd. All these graphs, in light gray, show which edges
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Figure 2.9. Test times and nodes visited for each test in the S#→ S++ translation task.

connect a node to another explored node. Most noticeably, the A* algorithm explores
a fraction of the nodes explored by the BFS algorithm. Now, let us consider Fig. 2.8e
and Fig. 2.8f. These figures show the induced graph when using ∆S#→S++ ∪ ∆S++→S.
Most noticeably, the A* algorithm explores a number of nodes that is roughly the same
with the previous case. Instead, the BFS algorithm explores a larger set of nodes, thus
requiring more time.

2.3.6 Evaluation

Having covered both the theoretical framework and the implementation details, we
can now delve into the evaluation of the ⋆piler. It is essential to acknowledge that
the ⋆piler is a compilation infrastructure that involves a search process, developed in
Python. Consequently, in terms of speed, it might not match up to dedicated monolithic
compilers. In this section, our focus will be on comparing the application of A* within
the ⋆piler against a Breadth First Search approach.

The evaluation is performed on a PC with 32 GB of available memory and processor
Intel Core i7-10700K.

We develop 12 tests for the S#→S++ translation task, 16 tests for the S++→S transla-
tion task, and 92 tests for the S→S++ translation task. The number of test for translate
S→S++ is higher as we reused the test for the LLVM compiler. Each test is run for 5

times (for a total of 600 runs).
This translation task usually induces a large graph with thousands of nodes, as the

number of deltas usable for the translation is 20. The main results are highlighted in
Fig. 2.9. Figure 2.9a shows the transpilation times for all the 16 tests of the S#→ S++
translation task. The time axis is displayed in logarithmic scale. Using the A* search
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Figure 2.10. Test times and nodes visited for each test in the S++→ S translation task.

algorithm, to execute all the tests requires less than 1 s. On average, the completion
time of all tests is 0.16 s. Instead, the tests (to translate S# to S++) may require several
minutes to complete, ranging from 1 s to 20 min when using BFS. On average, the
completion time is 158.52 s. Figure 2.9b shows the number of nodes visited for each
test. On average, A* visits 68 nodes (ranging from 33 to 106) and BFS visits 12, 265
nodes (ranging from 375 to 48, 117). Thanks to the discussed heuristic in Sect. 2.2, A* is
capable of exploring far fewer nodes compared to BFS, resulting in short translation
times.

This translation task induces a far smaller graph with hundreds of nodes, as the
number of deltas usable for translation is only 9. The main results are highlighted
in Fig. 2.10. Figure 2.10a shows the transpilation times for all 12 tests of the S++→ S
translation task. The time axis is displayed with a linear scale. Using the A* search
algorithm, the average completion time is 0.09 s, ranging from 1 ms to 0.3 s. Instead,
using BFS, the tests run for 0.29 s on average, ranging from 1 ms to 1.29s. Figure 2.10b
shows the number of nodes visited for each test. On average, A* visits 16 nodes
(ranging from 4 to 39) and BFS visits 34 nodes (ranging from 4 to 127). Again, the A*
algorithm shows noticeable improvement over the BFS algorithm.

This translation task induces a very small graph with less than 10 nodes, as the
number of deltas usable for translation is only 4. The main results are highlighted in
Fig. 2.11. Figure 2.11a shows the transpilation times for all the 92 tests of the S→ S++
translation task. The time axis is displayed with a linear scale. Using the A* search
algorithm, the average completion time is 0.966 ms, ranging from 0.2 ms to 0.9 ms.
Using the BFS algorithm, the average completion time is 8.156 ms, ranging from 2 ms to
7 ms. Figure 2.11b shows the number of nodes visited for each test. On average, the A*
algorithm visits 2.60 nodes, ranging from 2 to 7 nodes. Instead, the BFS algorithm visits
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Figure 2.11. Test times and nodes visited for each test in the S++→ S translation task.
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2.63 nodes on average, ranging from 2 to 8 nodes. In this scenario, the A* algorithm
does not lead to improvements. Instead, due to the higher initialization costs, it leads
to slightly lower performance.

2.4 Discussion

With this, we conclude our exploration of the ⋆piler. There are a few important consid-
erations we would like to highlight. By now, we should possess a robust comprehension
of the theoretical foundation of the ⋆piler, along with a reasonable grasp of its practical
implementation. However, we have yet to delve into the factors that distinguish the
⋆piler from conventional monolithic compilers or language workbenches.

When comparing the ⋆piler to monolithic compilers, its trade-offs become evident.
The ⋆piler prioritizes reusability and separation of concerns as inherent design prin-
ciples. These features align with the essence of many language workbenches as well.
However, the distinction that sets the ⋆piler apart lies in its unique approach. The
⋆piler goes beyond the conventional paradigms by merging elements from both lan-
guage workbenches and search algorithms. While language workbenches provide an
integrated environment for language creation and manipulation, the ⋆piler enhances
this approach by incorporating heuristic-driven search algorithms. This combination
addresses the challenges of transpilation with efficiency and accuracy. While the ⋆piler
is not on par with modern language workbenches in terms of maturity or tooling of-
fered, the ⋆piler can become the infrastructure onto which new language workbenches
are built.

The strength of the ⋆piler originates from its ability to systematically navigate
through vast language spaces, optimizing transpilation processes while maintaining
compatibility between diverse languages. This capability stands out in comparison to
traditional monolithic compilers and even many language workbenches.

In essence, the ⋆piler offers a novel transpilation strategy that leverages the strengths
of both language workbenches and search algorithms. It bridges the gap between these
approaches, providing a powerful tool that simplifies the complex task of language
translation and compatibility.

Libraries migration Often, software libraries are specific for the language in which
they are developed. Reusing these pieces of software becomes extremely difficult
when different languages and different VMs are involved. However, by performing a
translation, the same software developed in S++ can be reused with the S language.
For example, we developed a small class managing strings in S++. The class uses
stdio directives to efficiently compute string operations. By translating the S++ class,
S developers can access a higher-level API to handle strings too. However, migration
through transpilation requires a fair amount of carefulness. For example, in Python,
class methods with specific names (such as __init__ or __getitem__) can have a specific
behavior. Instead these names add no special meaning for Java or C++. Therefore, if a
Java method named __getitem__ were to be transpiled in Python, another name would
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2 ⋆piler

have to be generated, and generating a meaningful new name may be difficult. However,
when using the ⋆piler framework developers have the choice to use the deltas that
fit the developer needs the most. For example, a developer may choose to use a delta
that generates a new method name randomly, or he could use a delta that prompts for
the new name when one is needed. Developers could use deltas that generated new
method names using a deep learning architecture as [6, 5, 1]. Another difficult example
is the Python eval and exec which allows to execute strings containing Python code.
Since these strings cannot be inferred at compile time, when transpiling from Python to
Java, the target language will need the ability (natively or with an external library) to
evaluate/execute Python strings. The ⋆piler framework can handle these cases in two
ways. 1) Developers employ a delta that translates the exec in a library call that can
execute Python code strings. 2) Developers that do not have such a delta will not be
able to translate Python source code using the exec builtin but they can still translate
all the Python code that does not use the exec builtin.

Reusing compiler tests Compiler tests are one of the most valuable assets to verify
the correctness of compilers. The research community has developed several tools to
efficiently generate test suites for several compilers [19, 81]. However, generated suites
are specific for the target language. Using the proposed framework, a test suite can
be translated and reused to test new languages. A single suite may be capable to test
different languages. For example, in our demonstration experiment, test programs
developed for S++ and S# are also used to test the S language. Also, many of the S test
programs are translated to S++ to test the language.

Reusing compiler components Introducing new features in existing languages can
be difficult [7, 63, 57]. Instead, with ⋆piler the language developer only needs to add a
syntactic construct and develop a delta performing the translation of the new feature.
For example, in our demonstration experiment, we introduced the for loop in the S#
language, then we added a delta function to translate the S# for loop to the S++ while
loop. The same translation can be reused in other languages that implement the S# style
for loop. For example, if we were to introduce S# style for loop to S++, we would need
to only add the syntactic construct to the language and the system would automatically
take care of the application of the respective delta to reach a translation.

Heuristic The proposed heuristic hS is effective in exploring the language features
inside a syntax tree to guide a translation system. However, there are cases when this
heuristic is of little help. Recall that, the heuristic starts to lower when, during search,
the current syntax tree shares language features with the solution set. Otherwise, the
value of the heuristic does not shrink. For example, consider Fig. 2.5, on the edges of
the graph the distance to the solution remains the same, thus not guiding the search
towards the solution. In these cases, applying A* is equivalent to applying a BFS.
Meaning that A* cannot help on those cases that require a chain of deltas that does not
get close to the solution set early in the search. However, it is still possible to guide the
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search, but it will require extra knowledge. For example, if we know that the translation
needs to go through a certain set of language features S′, we can craft another heuristic
to guide the specific case:

hS,S′(A) =

{︃
(0, 0) if A ⊆ S
(dS

rsdd(S, A), dS′
rsdd(S

′, A)) otherwise
(2.10)

Among nodes that have the same distance to the solution set S, it promotes those that
are close to the intermediate set S′. Of course, the heuristic can be extended with
several intermediate sets to guide even delta paths that are expected to be extremely
long.

Deltas development Deltas are functions developed in isolation from each other.
This yields a system that can reuse already developed deltas to add language features
to different languages easily. Yet during search, deltas can interact with each other
unexpectedly as unforeseen situations appear. Overall, the deltas are the most crucial
and difficult components in terms of development. They require additional care to
ensure that it is applied as intended.

Deltas debugging Consider a transpilation path δ⃗ that ends in an error (or an un-
expected result). Most likely, this is due to a bug in one of the deltas used in δ⃗. Yet,
tracking the error is difficult, as it could have occurred at any point in the chain.
Moreover, if we consider that these functions may be working on a very large syntax
tree, pinpointing the bug may be extremely difficult and time-consuming. Therefore, if
deltas are not organized properly, it may result in a brittle system.

Deltas as compilers We discussed a system that searches among a dataset of deltas
for a path to a correct transpilation. However, developers may design deltas so that a
specific chain works for every input program, i.e., a compiler.

You can choose your transpilation Recall that the language S++ denotes the construc-
tor method using the identifier start. If we were to translate a S# class that already
contained a method named start, we would quickly run in a dilemma. We cannot
transpile the S# start method as is, because it would be regarded as a constructor in
the target language. Yet, changing its signature may be a problem as the S++ API would
change. These cases may or may not require an ad hoc treatment. To solve these cases,
one can choose whether to use the delta that handles methods with the name start

or not. This feature does make for customizable transpilers that can handle a variety
of cases depending on the developer needs. A variability managing framework appli-
cable to the delta scenarios could be Feature Models [39, 73]. Further, approaches to
self-optimization as [32] could be used to choose the best performing deltas depending
on the environment.
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Partial transpilers Transpiling a program in one language into another is not always
possible. For example, transpiling a program written in a Turing-Complete language
in a non-Turing-Complete language is not always possible. However, some programs
may still be transpilable. Consider a program that performs only assignments and
basic operations without relying on loops. Such a program can be transpiled into a
non-Turing-Complete language (as long as it supports assignments). In these cases, the
system will use only the deltas to translate assignments. If an unlimited loop is present
in the source program, the transpilation will fail, as there will be no delta available to
translate the loop into the target language.
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Themes & Variations

In this concluding chapter, we will explore alternative design approaches to the ⋆piler.
These proposed variations aim to enhance specific facets of the language development
cycle, although they might introduce complexities in other areas. As we will observe,
there will consistently be a delicate balance between ensuring system guarantees and
the intricacies of implementation. It may happen that the result of a transpilation does
not comply with the target grammar, in Sect. 3.1, we try to address these cases. In the
⋆piler, the search for the transpilation is done only when the parse tree to transpile is
available, in Sect. 3.2, we try to address by searching ahead of time.

3.1 Variation 1

As a quick reminder, solving a transpilation with the ⋆piler often involves navigating
through numerous search steps within the simplified search graph. In this context, we
aim to restructure the system to eliminate the necessity for repeated searches. In the
original ⋆piler version, the need for repeated searches stemmed from the uncertainty
that even when the set of non-terminals aligned with the solution set (with the former
being a subset of the latter), the located parse tree might not actually be a valid solution.
Essentially, we needed to verify whether the identified parse tree conformed to the
target grammar. In order to solve this issue, we need to reformulate the definition of
delta as follows.

Definition 3.1.1 (augmented delta). Let G1, . . . , GM be a set of grammars. Let Ni be the set
of non-terminals of grammar Gi. An augmented delta, denoted δ+, is a map δ+ : T → T such
that:

1. ∀ρ ∈ P, τ ∈ T : JτK(ρ) = Jδ+(τ)K(ρ)

2. λ(δ+(τ)) ⊆ Ni =⇒ δ+(τ)◁ Gi

Comparatively, the augmented delta is now linked to a specific set of grammars.
For instance, when considering the transpilation between S, S++, and S#, these would
represent the pertinent grammars. The conditions that a delta must satisfy have
expanded to two: 1) The semantic equivalence of the resulting parse must still be
maintained, akin to the previous deltas definition. 2) Additionally, when the set of
nodes in the resulting parse tree (λ(δ+(τ))) forms a subset of the non-terminals within
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a grammar (Ni), then the resulting parse tree must adhere to that particular grammar
(δ+(τ)◁ Gi).

Naturally, creating deltas that not only preserve semantic equivalence but also ensure
the alignment of the resulting parse tree with potential target grammars is a more
challenging task. Nevertheless, as we will observe, this requirement will ultimately
lead to a more efficient framework.

As for Remark 2.2.1, note that the composition of augmented deltas remains an
augmented delta:

Remark 3.1.1 (delta composition). Given two augmented deltas, δ+1 and δ+2 , their composition,
δ+1 ◦ δ+2 , is an augmented delta.

Proof. The proof follows from:

– Regarding the condition about semantic equivalence.

∀ρ ∈ P, τ ∈ T : Jδ+1 (δ+2 (τ))K(ρ) = Jδ+1 (τ)K(ρ) = JτK(ρ)

– Regarding the condition about grammar alignment. Let τ′ = δ+2 (τ)

λ(δ+1 (τ′)) ⊆ Ni =⇒ δ+1 (τ′)◁ Gi

As previously, any finite composition of augmented deltas remains an augmented
delta. Thus, if the right deltas are available, we can compose them to achieve a full
transpilation which we define as follows:

Definition 3.1.2 (transpilation). Let τ ∈ T be a parse tree. Given δ+i0 , . . . , δ+in
augmented

deltas, we denote their composition δ+i0 ◦ · · · ◦ δ+in
as δ⃗I

+
, where I = [i0, . . . , in]. δ⃗I

+
performs a

transpilation of τ to a grammar G iff

δ⃗I
+
(τ)◁ G

The definition of transpilation for this variant remains practically unchanged com-
pared to the transpilation definition for the original ⋆piler (Definition 2.2.2). However,
it is worth noting that here, the requirement δ⃗I

+
(τ)◁ G is equivalent to requiring

λ(δ⃗I
+
(τ))◁ NG, where NG represents the set of non-terminals for grammar G.

Once more, we find ourselves in a similar scenario as before. The application of
an augmented delta set to a parse tree results in numerous new parse trees to be
examined. The repeated application of all the deltas to these unexplored parse trees
opens a graph within which we search for a solution. As with the original approach,
we must efficiently establish a heuristic to navigate this graph. Let us begin with the
new definition of search graph:
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Definition 3.1.3 (search graph). Let ∆ = {δ+0 , . . . , δ+N} be a set of augmented deltas. Let
V ⊆ TΓ be a set of parse trees from grammars Γ = {G0, . . . , GM}. Let E = {(τ1, τ2) ∈
V ×V | ∃ δ ∈ ∆ . δ(τ1) = τ2}. We call S∆,Γ = (V, E) the search graph.

As before, we proceed by defining both the search problem and search solution.
Both these definition are unchanged wrt. the original ⋆piler. However, note that the
set of deltas, denoted as ∆, contains augmented deltas. Meanwhile, for the ⋆piler it
contained standard deltas.

Definition 3.1.4 (search problem). The search problem is defined by the triple (S∆,Γ =
(V, E), τ, G), where S∆,Γ is a search graph, τ is a starting parse tree from V and G is a target
grammar from Γ.

Definition 3.1.5 (search solution). Given the search problem (S∆,Γ = (V, E), τ, G), a
transpilation δ⃗+I is a solution when:

1. λ(⃗δ+I (τ)) ⊆ NG ( =⇒ δ⃗+I (τ)◁ G).

2. ∀i ≥ 0 : δ⃗+I[:i](τ) ∈ V.

3. ∀i ≥ 0 : (⃗δ+I[:i](τ), δ⃗+I[:i+1](τ)) ∈ E.

In short, the search problem entails defining a search graph (S∆,Γ), an initial parse
tree (τ), and a target grammar (G). The search solution for this problem is a sequence
of deltas (⃗δ+I ) that results in a parse tree conforming to the target grammar in terms
of non-terminals (λ(⃗δ+I (τ)) ⊆ NG). Notice that, such a requirement implies that the
transpiled parse tree conforms entirely with the target grammar (⃗δ+I (τ)◁ G). Moreover,
this sequence of deltas (⃗δ+I ) must navigate through nodes and edges within the search
graph (i.e., it cannot exit the search graph).

Now, instead of defining the simplified search/problem/solution, as we did for
the ⋆piler, we directly embed the search graph within a metric space. Consider the
following function:

Definition 3.1.6. Let T be the set of all possible parse trees according to a defined set of
grammars G1, . . . , GM. Let S be a set of non-terminals S ⊆ NG1 ∪ · · · ∪ NGM . The non-
negative map d̂S

rsdd : T × T → R is defined as:

d̂S
rsdd(τ1, τ2) = dS

rsdd(λ(τ1), λ(τ2)) +
1
2
(1− 1[τ1, τ2])

Where 1[·, ·] is the indicator function such that 1[x, y] = 1 if x = y and 0 otherwise.
We proceed by showing that d̂S

rsdd is in fact a distance function wrt. the set of parse
trees.

Lemma 3.1.1. Let T be the set of all possible parse trees according to a defined set of grammars
G1, . . . , GM. Let S be a set of non-terminals S ⊆ NG1 ∪ · · · ∪ NGM . The non-negative map
d̂S

rsdd : T × T → R is a distance function.
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Proof. In order to prove that d̂S
rsdd is indeed a distance function, we need to show that

all four requirements from Definition 1.5.1 hold.

1. Let τ ∈ T , we have

d̂S
rsdd(τ, τ) = dS

rsdd(λ(τ), λ(τ)) +
1
2
(1− 1[τ, τ]) = 0

2. Let τ1, τ2 ∈ T such that τ1 ̸= τ2, we have

d̂S
rsdd(τ1, τ2) = dS

rsdd(λ(τ1), λ(τ2)) +
1
2
(1− 1[τ1, τ2]) ≥ 0 +

1
2
> 0

3. Let τ1, τ2 ∈ T , we have that

d̂S
rsdd(τ1, τ2) = dS

rsdd(λ(τ1), λ(τ2)) +
1
2
(1− 1[τ1, τ2])

= dS
rsdd(λ(τ2), λ(τ1)) +

1
2
(1− 1[τ2, τ1])

= d̂S
rsdd(τ2, τ1)

4. Let τ1, τ2, τ3 ∈ T , we need to show that d̂S
rsdd(τ1, τ3) ≤ d̂S

rsdd(τ1, τ2)+ d̂S
rsdd(λ(τ2), λ(τ3)).

That is:

dS
rsdd(λ(τ1), λ(τ3)) +

1
2
(1− 1[τ1, τ3]) ≤ dS

rsdd(λ(τ1), λ(τ2)) +
1
2
(1− 1[τ1, τ2])+

dS
rsdd(λ(τ2), λ(τ3)) +

1
2
(1− 1[λ(τ2), λ(τ3)])

Now, we can reuse the fact that dS
rsdd is a distance function, and thus dS

rsdd(τ1, τ3) ≤
dS

rsdd(τ1, τ2) + dS
rsdd(τ2, τ3).

dS
rsdd(λ(τ1), λ(τ3)) ≤dS

rsdd(λ(τ1), λ(τ3)) + dS
rsdd(λ(τ2), λ(τ3))

≤dS
rsdd(λ(τ1), λ(τ2)) + dS

rsdd(λ(τ2), λ(τ3))+

1
2
(1− 1[τ1, τ2]) +

1
2
(1− 1[τ2, τ3])−

1
2
(1− 1[τ1, τ3])

The last inequality follows from the fact that:

1
2
(1− 1[τ1, τ2]) +

1
2
(1− 1[τ2, τ3])−

1
2
(1− 1[τ1, τ3]) ≥ 0

This inequality can be simply verified by exhausting all cases regarding equality
and inequality of τ1, τ2, and τ3. The only case that would unverify the inequality
is when τ1 = τ2 (so that the first term results in 0), τ2 = τ3 (so that the second
term results in 0), and τ1 ̸= τ3 (so that the third term results in − 1

2 ). However, by
transitive property of equality τ1 = τ3. Thus, this last case yields a contradiction.
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Thus d̂S
rsdd is a distance function.

This lemma easily yields us to the following theorem:

Theorem 3.1.1. Let T be the set of all possible parse trees according to a defined set of grammars
G1, . . . , GM. Let S be a set of non-terminals S ⊆ NG1 ∪ · · · ∪ NGM . Then (T , d̂S

rsdd) is a metric
space.

Proof. The proof trivially follows from Lemma 3.1.1.

Having established a proper metric space for parse trees, we can now define a
heuristic based on this metric space. However, we must exercise more caution than in
the original ⋆piler design. Unlike before, we cannot directly employ the distance metric
as a heuristic function. In the prior design, the distance function operated on sets of
non-terminals, and we were aware of the solution set. This time, the distance function
pertains to parse trees, a distinct entity from the solution set. Consequently, directly
measuring the distance between them is not feasible. To create a non-overestimating
heuristic, we will need to return to employing dS

rsdd.

Definition 3.1.7. Let ĥS : T → R be the map defined as:

ĥS(τ) =

{︃
0 if λ(τ) ⊆ S
dS

rsdd(S, λ(τ)) otherwise
(3.1)

We proceed by showing that ĥS is indeed a non-overestimating heuristic function.
This is the subject of the next theorem.

Theorem 3.1.2. ĥS is a non-overestimating heuristic.

Proof. In order to show that ĥS is a non-overestimating heuristic, we need to show that,
given a solution parse tree τ∗ (recall that by definition of the solution set, λ(τ∗) ⊆ S)
and an arbitrary parse tree τ:

ĥS(τ) ≤ d̂S
rsdd(τ, τ∗)

i.e., ĥS does not overestimate the actual distance to the solution. Notice that, the actual
distance may depend on the specific topology of the graph. However, d̂S

rsdd(τ, τ∗) is
surely a lower bound for the true distance. If this were not the case, we would be
breaking the triangular inequality of the previous Lemma, which would lead to an
contradiction.

The rest of the proof follows by considering cases exhaustively:

– Case (λ(τ) ⊆ S).

ĥS(τ) ≤ d̂S
rsdd(τ, τ∗)

0 ≤ d̂S
rsdd(τ, τ∗)

This is surely the case, as we showed that d̂S
rsdd is a distance function, and as such,

it cannot be negative.
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– Case (λ(τ) ̸⊆ S).

ĥS(τ)− d̂S
rsdd(τ, τ∗) ≤ 0

dS
rsdd(S, λ(τ))− dS

rsdd(λ(τ), λ(τ∗))− 1
2
(1− 1[τ, τ∗]) ≤ 0

dsdd(S, λ(τ))− dsdd(λ(τ), S)− 1
2
(1− 1[τ, τ∗]) ≤ 0

−1
2
(1− 1[τ, τ∗]) ≤ 0

Which is definitely true.

In the initial version of the ⋆piler, the condition λ(τ) ⊂ NG for a target grammar G
did not automatically ensure that δ⃗(τ)◁ G. Yet, with the introduction of augmented
deltas, this has changed (⃗δ+(τ)◁ G). The consequence of this slight adjustment is
a framework that eliminates the need to restart searches. This attribute is certainly
advantageous for the framework, but it comes with a trade-off. The augmented delta
approach imposes additional demands on the deltas, making their development more
complex and intricate.

As we proceed to the following sections, we will observe that we can impose ad-
ditional burdens on the deltas to attain other advantageous properties that were not
addressed in the original version of the ⋆piler.

3.2 Variation 2

In its original design, the ⋆piler lacks guarantees regarding its transpilation capabilities.
It simply attempts to find a viable transpilation from a starting parse tree; if successful,
it implies the existence of a sequence of deltas performing the transpilation from that
specific parse tree to the target grammar. What about other parse trees from the same
grammar? It would be compelling to have guarantees about which parse trees can
be transpiled in which target grammars. In this section, we address this challenge by
introducing a mechanism to enhance delta predictability. The core concept is to imbue
deltas with supplementary information. Previously, deltas only needed to uphold
the semantics of the input parse tree. Here, we augment deltas with a form of type
system. Each delta will specify which non-terminals it translates and what are the
resulting introduced non-terminals. This augmentation aims to enhance predictability
and constraints within the transpilation process.

Let us begin by defining the Non-Terminal Set (NTS).

Definition 3.2.1 (Non-Terminal Set). Let Γ = G1, . . . , GM be a set of grammars. Let
N1, . . . , NM the respective non-terminals. Let N = N1 ∪ · · · ∪NM. An NTS X of the grammar
set Γ is any subset X of N, i.e., X ∈ P(N).
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Put differently, an NTS for specific grammars essentially constitutes a collection of
non-terminals extracted from these grammars. The NTS functions as the tool that
directs the transpilation process. With the NTS, we can specify which non-terminals a
delta must translate and what the resulting non-terminals are. Let us delve into how
NTS will be integrated within deltas to accomplish our objectives.

Definition 3.2.2 (NTS delta). Let Γ = {G1, . . . , GM} be a set of grammars. Let A and B be
NTS from Γ. An NTS delta, denoted δA→B : T → T (with signature A→ B), is a map such
that for each τ ∈ T :

1. ∀ρ ∈ P, τ ∈ T : JτK(ρ) = JδA→B(τ)K(ρ)

2. λ(δA→B(τ)) ∩ (A− B) = ∅

3. λ(δA→B(τ)) ∩ B = B

Furthermore, a delta δA→B is applicable to the parse tree τ iff λ(τ) ∩ A = A.

According to the first criterion, an NTS delta, denoted as δA→B, must ensure the
preservation of the semantics of the input parse tree (as with the ⋆piler). Regarding
the other two properties, it is easier to consider them as subsequent application of two
operations on the set λ(τ):

1. remove the elements of A from λ(τ).

2. add elements of B to λ(τ).

As one can easily check, applying these two operations does end in having λ(δA→B(τ))∩
(A− B) = ∅ and λ(δA→B(τ)) ∩ B = B. Furthermore, it is specified that a delta is appli-
cable iff the node-set of the parse tree effectively contains all the non-terminals which
the delta is supposed to translate (i.e., λ(τ) ∩ A = A). For clarity, let us consider an
example. Let τ be a parse tree such that λ(τ) = {a, b, c, d, e} a set of non-terminals. Let
δ{a,c,e}→{a,g}, δ{a,d}→{e} be NTS deltas. If we apply the first delta to τ we obtain τ′ such
that λ(τ′) = {a, b, d, g}. From τ′, we can apply only the second delta. The second delta
yields a parse tree τ′′ such that λ(τ′′) = {b, g, e}. Note that, neither the first nor the
second delta are applicable on τ′′.

Now, we extend a little the definition of NTS delta, introducing NTS+ deltas:

Definition 3.2.3 (NTS+ delta). Let Γ = {G1, . . . , GM} be a set of grammars. Let {Ai}N
i=1

and {Bi}N
i=1 be NTS from Γ. An NTS+ delta, denoted δA1,...,AN→B1,...,BN : T → T , is a map

such that for each τ ∈ T :

1. ∀ρ ∈ P, τ ∈ TA : JτK(ρ) = JδA1,...,AN→B1,...,BN (τ)K(ρ)

2. ∀i = {1, . . . , N} : λ(δA1,...,Ai→B1,...,Bi(τ)) ∩ (Ai − Bi) = ∅.

3. ∀i = {1, . . . , N} : λ(δA1,...,Ai→B1,...,Bi(τ)) ∩ Bi = Bi

Furthermore, an NTS+ delta δA1,...,AN→B1,...,BN is applicable to the parse tree τ iff
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1. λ(τ) ∩ A1 = A1

2. ∀i ∈ {1, . . . , N − 1} : λ(δA1,...,Ai→B1,...,Bi(τ)) ∩ Ai+1 = Ai+1

As you can see, the NTS+ delta is simply a generalization of the NTS delta. When N =
1 the NTS+ delta collapses to the previous definition of NTS delta. For sake of clarity,
let us discuss the operations performed by an NTS+ delta such as δA1,...,AN→B1,...,BN in
terms of non-terminal sets:

– It removes elements from A1.

– It adds elements from B1.

– . . .

– It removes elements from BN .

– It adds elements from BN .

This sequence of operations should meet the conditions 2) and 3) in the NTS+ definition.
Furthermore, this delta is only applicable under a few conditions. Firstly, the interested
parse tree must contain the non-terminals from A1. Furthermore, whenever an Ai (with
1 < i ≤ N) is removed, we are removing exactly those elements (not one more, nor one
less). The introduction of this generalization is necessary only because the notation
NTS delta does not allow to determine the fact that composition of deltas remains a
delta. However, this property holds for NTS+ deltas. This is the subject of the next
remark.

Remark 3.2.1 (NTS+ delta composition). Let Γ = {G1, . . . , GM} be a set of grammars. Let
δA1,...,AN→B1,...,BN , δC1,...,CM→D1,...,DM be NTS+ deltas. Then δA1,...,AN→B1,...,BN ◦ δC1,...,CM→D1,...,CM

is an NTS+ delta with signature

A1, . . . , AN , C1, . . . , CM → B1, . . . , BN , D1, . . . , DM

.

Proof. Since both δA1,...,AN→B1,...,BN and δC1,...,CM→D1,...,CM do not change the semantics
neither δA1,...,AN→B1,...,BN ◦ δC1,...,CM→D1,...,CM does (see Remark 2.2.1). Now consider what
the subsequent application of these two deltas does in term of set operations, starting
with δA1,...,AN→B1,...,BN :

– It removes elements from A1.

– It adds elements from B1.

– . . .

– It removes elements from AN .

– It adds elements from BN .
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Instead, δC1,...,CM→D1,...,DM :

– It removes elements from C1.

– It adds elements from D1.

– . . .

– It removes elements from CM.

– It adds elements from DM.

The composition of δA1,...,AN→B1,...,BN and δC1,...,CM→D1,...,DM yields the concatenation
of the previous operations which is exactly the definition of a delta with signature
A1, . . . , AN , C1, . . . , CM → B1, . . . , BN , D1, . . . , DM. Furthermore, the composed delta
is only applicable when the concatenation of both deltas is applicable. Thus the
composition of NTS+ deltas remains an NTS+ delta.

Recall that both NTS and NTS+ deltas provide us with information about the non-
terminals to be removed and added during the transpilation process. Furthermore, in
the context of the ⋆piler, our primary focus was on transpilations that corresponded
to solutions within the simplified search graph. This notion was represented as
λ(⃗δ(τ)) ⊂ NG, where τ denotes the initial parse tree and NG (often referred to as the
solution set) represents the set of non-terminals belonging to the target grammar G. By
utilizing the distinctive characteristics of the newly introduced NTS+ deltas, we can
strategically anticipate the potential transpilations that might lead to a solution. In
order to facilitate this, let us define the following property:

Definition 3.2.4. Let X and Y be NTSs. Let δ = δA1,...,AN→B1,...,BN be an NTS+ delta. We will
say that δ moves X to Y, X δ−→ Y iff Y is the result of the following operations onto X: remove A1,
add B1, . . . , remove AN , add BN . Provided that X ∩ A1 = A1, ((X− A1) ∪ B1) ∩ A2 = A2,
and so on.

This specific property enables us to determine whether an NTS, denoted as Y, can be
obtained by applying an NTS+ delta, represented as δ, to another NTS, referred to as X.
It is important to note that NTS+ deltas are never directly applied to NTSs; rather, their
application is always performed on parse trees. Nevertheless, one of the outcomes of
applying NTS+ deltas to parse trees is the modification of the node-set based on their
signature. Therefore, we can try to anticipate how the node-set of parse trees change
based on the signatures of deltas. With this understanding in place, we can proceed to
define the concept of an NTS search graph:

Definition 3.2.5 (NTS search graph). Let ∆ be the set of NTS+ deltas. Let Γ = {G1, . . . , GM}
be a set of grammars. Let N = NG1 ∪ · · · ∪NGM be the union of non-terminals. Let V = P(N).

Let E = {(U, V) ∈ P(N)2 | ∃δ ∈ ∆ . U δ−→ V}. Then S∆,Γ = (V, E) is an NTS search graph.
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∅

{a} {b} {c} {d}

{a, b} {a, c} {a, d} {b, c} {b, d} {c, d}

{a, b, c} {a, b, d} {a, c, d} {b, c, d}

{a, b, c, d}

δ
{a}→{c}
1

δ
{b,c}→{d}
2

Figure 3.1. An example of an NTS search graph with non-terminals N = {a, b, c, d} and two deltas
with signatures {a} → {c} and {b, c} → {d}. Edges from the first delta are colored in red. Edges
from the second delta are colored in blue.

An NTS search graph is essentially a graph that emerges from the consideration of all
potential applications of NTS+ deltas (∆) across every conceivable node-set, denoted as
P(N). Given that the number of nodes is exponential in relation to the number of non-
terminals (|P(N)| = 2|N|), such a graph naturally becomes immensely large. However,
it is important to note that we do not need to store the entire graph. Instead, we
can dynamically compute the specific segments of the graph that require exploration.
Fig. 3.1 provides a visual example. Here, the possible nodes are P({a, b, c, d}) (16

nodes). Edges are generated starting from two deltas with signatures {a} → {c} and
{b, c} → {d} respectively. As one can see, even with very few non-terminals and
only two deltas the graph becomes quite large and densely connected. Fortunately,
there is no need to completely generate or explore such a graph. We can simply
explore only those paths that are relevant for the task at hand. For example, consider a
starting grammar with non-terminals {a, b} and a target grammar with non-terminals
{c, d}. We know that every parse tree, τ, that we will have to transpile will have
non-terminals from set {a, b} (λ(τ) ⊆ {a, b}). Therefore, if we receive a parse tree
such that λ(τ) = {a, b}, we already know that the only admissible solution is given
by application of δ⃗12 = δ1 ◦ δ2. Notice that, it is not guaranteed that such a path is a
solution. However, as we will see, we are guaranteed that if a solution exists then we
will find it. For completeness, we should also consider the case in which the source
parse tree, τ, is such that λ(τ) = {a} or λ(τ) = {b}. In the first case, δ⃗3 = δ1, reach
a solution. While, in the second case, it is not able to reach a solution. To translate
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such a parse tree, we need a delta that can be applied to a parse tree with a node set
containing exclusively b. Without introducing new deltas, we can deduce that any
parse tree τ such that λ(τ) = {b} cannot be transpiled to an equivalent parse tree
having non-terminals from the target grammar. In order to formalize these concepts
we introduce the NTS search problem.

Definition 3.2.6 (NTS search problem). The search problem is defined by the triple (S∆,Γ =
(V, E), S, T), where S∆,Γ is an NTS search graph, S and T are the source and target NTS
respectively.

The first main difference wrt. the original approach is the lack of the starting parse
tree (τ) and target grammar. Here, τ is no longer needed. Now, knowing the signatures
of deltas we can precompute paths that lead from one NTS to another. In other words,
we can precompute for all parse trees τ such that λ(τ) = S the possible transpilations
δ⃗ that yield the target NTS (such that δ⃗(τ) ⊆ T). This consideration also leads us to the
definition of NTS search solution.

Definition 3.2.7 (NTS search solution). Given the NTS search problem (S∆,Γ = (V, E), S, T),

a composition of NTS deltas δ0, ◦, . . . , ◦, δn = δ⃗, such that δi ∈ ∆, is a solution iff S δ⃗−→ X,
such that X ⊆ T.

In other words, a composition of deltas is a solution iff, by considering their signa-
tures, their composition yields an NTS set that is a subset of T starting from the source
NTS S. Notice that this time there is no need to worry about the transpilation exiting
the NTS search graph S∆,Γ, since the S∆,Γ is generated by considering the P(N) and all
possible applications of NTS deltas in ∆.

Now, let us consider a practical scenario. Consider a source grammar GS and a target
grammar GT. Suppose we want to transpile parse trees from GS to parse trees of GT,
thus we set up an NTS search problem. Now, the NTS search problem requires a source
NTS and a target NTS. We can easily fix the target NTS with NGT (the non-terminals of
the target grammar). However, how should we choose the source NTS? Consider that
if we fix the source NTS to be NGS , we will find solutions only for the parse tree τ such
that λ(τ) = NGS . Thus, in order to precompute all possible solutions for all possible
parse trees we need to consider all subsets of NGS . Unfortunately, this means exploring
a graph 2|NGS | times! This is unfeasible even for relatively small grammars. On the
other hand, we can still search this graph on the fly, and a search on such a graph is
much faster compared to the ⋆piler searches, as traversing an edge involves only set
operations. Furthermore, we can also cache the solutions found on the NTS search
problem and we would initiate a new graph exploration only upon the change of the
problem (i.e. either the search graph or the source NTS or the target NTS changes).

We should also consider another aspect. Suppose we found a set of solutions for a
particular search problem (G, S, T). Thus, we have found transpilations δ⃗ such that:
λ(τ) = S =⇒ λ(⃗δ(τ)) ⊆ T. While we know that τ is semantically equivalent to
δ⃗(τ), it may not be true that δ⃗(τ)◁ GT. This is a fairly strange event, we obtained a
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semantically equivalent transpilation with all the required non-terminals that is not
compliant with the target grammar. Unfortunately, we do not have a practical example
of a delta that could cause such an event. Nonetheless, recall that this same situation
was faced by the ⋆piler in its original framework. Furthermore, we addressed this
problem in Sect. 3.1 by introducing further requirements on the deltas. Thus, one
could combine the approaches (Variant described in Sect. 3.1 and Variant described in
Sect. 3.2) to obtain the best of both worlds.

Finally, to conclude this section, we need to show that if there is a transpilation for
parse tree τ to the target grammar GT. Then this transpilation is contained in the set of
solutions for the NTS search problem (S∆,Γ, λ(T), NGT ). In order to prove this result,
we will reintroduce the concept of search graph/problem and solution. We will need to
show that a solution for the search problem is a solution for the NTS search problem.

Definition 3.2.8 (search graph). Let ∆ = {δ0, . . . , δN} be a set of NTS+ deltas. Let V ⊆ TΓ
be a set of parse trees from grammars Γ = {G0, . . . , GM}. Let E = {(τ1, τ2) ∈ V ×V | ∃ δ ∈
∆ . δ(τ1) = τ2}. We call S∆,Γ = (V, E) the search graph.

Definition 3.2.9 (search problem). The search problem is defined by the triple (S∆,Γ =
(V, E), τ, G), where S∆,Γ is a search graph, τ is a starting parse tree from V and G is a target
grammar from Γ.

Definition 3.2.10 (search solution). Given the search problem (S∆,Γ = (V, E), τ, G), a
composition of deltas δ⃗I is a solution when:

1. δ⃗I(τ)◁ G.

2. ∀i ≥ 0 : δ⃗I[:i](τ) ∈ V.

3. ∀i ≥ 0 : (⃗δI[:i](τ), δ⃗I[:i+1](τ)) ∈ E.

Now, these three definition are identical to the ones proposed for the original ⋆piler
framework. The only difference is the usage of NTS+ deltas instead of the traditional
deltas. Note that, for each search problem (S∆,Γ = (V, E), τ, G), we can build the
respective NTS search problem (S′∆,Γ = (V, E), λ(τ), NG). Using these definitions, we
can show that a solution for a search problem is also a solution for the NTS search
problem. This is the subject of the following theorem:

Theorem 3.2.1. Let δ⃗ be a solution for the search problem (S∆,Γ, τ, G), then δ⃗ is a solution for
the respective NTS search problem (S′∆,Γ, λ(τ), NG).

Proof. The proof trivially follows by the first property of search solution (i.e., δ⃗(τ)◁ G).
Since δ⃗(τ)◁ G, we have that λ(⃗δ(τ)) ⊆ NG.

Thus if a solution exists for a specific search problem it also exists for the respective
NTS search problem. This particular property allows us to search only solutions for
the NTS search problem and check those solutions against the original problem. The
advantage of using the NTS domain is twofold. for once 1) we can cache solutions, as
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the set of used non-terminals from a parse tree is not likely to change much across
compilations. 2) Simulating a transpilation using the signatures is much faster than
using the deltas directly on parse trees. By using the signature, we only need to either
add or remove elements from a set until we reach a solution. Instead, by using the delta
directly, we may incur in heavy operations that traverse large parse trees. Furthermore,
we will show that, it is possible to use A* to search solution for NTS search problem.
Firstly, we need to define a metric space for P(N), i.e., we need to define a metric
space for the nodes of the NTS search graph. Luckily, we have already encountered the
distance function that provide such a metric space, dsdd.

Lemma 3.2.1. Let N be the union of non-terminals from grammars G1, . . . , GN . Then
(P(N), dsdd) is a metric space.

Proof. The proof trivially follows by the fact that dsdd is a distance function on sets
(shown in Definition 2.2.10), such as those contained in P(N).

Now, we only lack a proper non-overestimating heuristic so that A* can be used.

Definition 3.2.11. Let T be the solution NTS. Let hT : P(N) → R be a non-negative map
such that:

h̄T(X) =

{︃
0 if X ⊆ T
minY⊆T dsdd(X, Y) otw.

(3.2)

Theorem 3.2.2. h̄T is an admissible heuristic (i.e., non-overestimating).

Proof. Let (G, S, T) be the generic NTS problem at hand. Let T∗ ⊆ T be a generic target

node. Let δ⃗I = δ1 ◦ · · · ◦ δk (for k ≥ 1) be an NTS delta such that S δ⃗I−→ T∗. We need to
show that

h̄T(S) ≤
k−1∑︁
i=1

dsdd(λ(⃗δI [: i](τ)), λ(⃗δI [: i + 1](τ))

In other words, we need to show that the distance traveled by a generic chain of NTS+
deltas within the NTS search graph is always greater or equal to the distance estimated
by our heuristic. We proceed by case.

– (S ⊆ T). If S ⊆ T =⇒ h̄T(S) = 0 which does not overestimate.

– (otherwise). h̄T(S) ≤ dsdd(S, T∗). Now, consider our situation in the graph. We
start at node S and we want travel to node T∗. In order to do so, we need
to travel a sequence of deltas. If there is a single delta that brings us to the
destination T∗, then we traveled dsdd(S, T∗) which is clearly greater than or equal
to minY⊆T dsdd(S, Y). Thus, we do not overestimate over paths of a single delta.
Now suppose that we need to travel a sequence of deltas greater than 1. Then,
we start at S, we travel to a middle node B and then we travel again to the
solution T∗. By triangular inequality (since the graph is embedded in a metric
sapce), we are traveling more distance than going directly from S to T∗. Since
h̄T(S) ≤ dsdd(S, T∗), we are not overestimating.
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Finally, let us recap the overall steps on which the second variant of the ⋆piler is built.
Recall that we added to deltas preconditions and postconditions. The precondition
tells which non-terminals are removed (or translated) and the postconditions tells what
non-terminals are added as a result of the delta application. These preconditions and
postconditions can be used to induce a graph from the set of nodes represented by
non-terminals sets (V = P(N)). Now, recall that if a transpilation brings a source parse
tree τ in a parse tree τ′ for a target grammar G (i.e., τ′ ◁ G) then λ(τ′) ⊆ NG. Thus
such a path must exist in the NTS search graph. Therefore, by enumerating solutions
in the NTS search graph, we are guaranteed to find a solution if one exist.

3.3 Variation 3

Recall that the first variation aimed to remove the necessity of repeated searches in
the ⋆piler framework. This necessity arose from the fact that even when a parse tree
node-set (λ(τ)) agrees with the set of non-terminals for a target grammar (λ(τ) ⊆ G),
we cannot be sure that the achieved parse tree is compliant with the target grammar
(τ ◁G need not be true). In Sect. 3.1, we solved this issue by introducing the augmented
deltas, that is, we enforced the fact that if λ(δ(τ)) ⊆ NG =⇒ δ(τ)◁ G. The rest of
Sect. 3.1 is then dedicated to show that the variation works as much as the ⋆piler does.

Now, recall also that the second variation aimed to enhance the search of the induced
graph by avoiding the direct application of deltas. The idea is to introduce additional
information on the delta (precondintions and postconditions) so that the search graph
can be generated and explored ahead of time. The Sect. 3.2 is entirely dedicated to this
approach.

Both these variations arise by modifying the definition of deltas. If we combine the
previous definitions (augmented delta and NTS+ delta), we can introduce the NTS+
augmented delta which recites:

Definition 3.3.1 (NTS+ augmented delta). Let G1, . . . , GM be a set of grammars. Let Ni
be the set of non-terminals of grammar Gi. An augmented delta, denoted δA→B

+ , is a map
δA→B
+ : T → T such that:

1. ∀ρ ∈ P, τ ∈ T : JτK(ρ) = JδA→B
+ (τ)K(ρ)

2. λ(δA→B
+ (τ)) ⊆ Ni =⇒ δ+(τ)◁ Gi

3. λ(δA→B
+ (τ)) ∩ (A− B) = ∅

4. λ(δA→B
+ (τ)) ∩ B = B

Furthermore, we say that a delta δA→B
+ is applicable to the parse tree τ iff λ(τ) ∩ A = A.

The definition of NTS+ augmented delta generates a variation of the ⋆piler that
combines both benefits of the previous variations. However, developing a transpilation
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function that fits the definition of NTS+ augmented deltas becomes increasingly difficult.
Of course, in practice, one can very rarely even prove that a transpilation function does
not change the semantics of the input which is a core requirement not only for the
⋆piler but for all transpilers in general.
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4
Related Work

In this work, we developed the theoretical and practical framework called the ⋆piler.
The ⋆piler is an exotic transpilation infrastructure that aims to improve reusability of
language components and reducing glue code. However, during the years, the research
community worked tirelessly proposing a variety of approaches addressing the same
issues addressed by the ⋆piler. In this section, we provide an overview of the most
promising approaches.

In particular, in Sect. 4.1, we will delve into the topic of Language Workbenches, and
in Sect. 4.2, we will explore the concept of Language Product Lines (LPLs).

4.1 Language Workbenches

As you might have gathered, crafting programming languages is a challenging endeavor.
It demands comprehension of intricate components and advanced programming skills.
Moreover, delving into optimizations, creating development environments, and devis-
ing debugging tools significantly amplifies the complexity of language development.

The development of programming languages or domain-specific languages holds
immense value as these languages serve as our interfaces with machines. Furthermore,
the choice of interface can vary based on the task at hand. For instance, when describing
data for storage and manipulation, dedicated syntaxes like JSON 1 or YAML 2 might
be ideal. In cases involving interaction with databases, SQL or its implementations 3

might be preferred. Similarly, for crafting web pages, HTML 4 could be the option to
go for. This diversity underscores how languages are tailored to simplify interactions
with computers, adapting to distinct needs.

To address this complexity, the research community introduced the concept of Lan-
guage Workbenches. These workbenches offer comprehensive tool sets for constructing,
modifying, and overseeing programming languages and their associated tools. They
provide an integrated environment for language engineering, facilitating the develop-
ment of languages, domain-specific languages, integrated development environments
(IDEs), and compilers.

During the years, the research community proposed several language workbenches,

1www.json.org
2yaml.org
3www.postgresql.org
4html.spec.whatwg.org
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encompassing very different ideas. For a more complete discussion of reusability in
language workbenches, we refer to [7].

Melange Melange [27, 26, 24] serves as a language workbench that seamlessly in-
tegrates tools from the Eclipse Modeling Framework (EMF) ecosystem [80]. Within
Melange, abstract syntaxes are defined through Xtext, while corresponding seman-
tics are specified via Xtend-based Kermeta 3 aspects. Constructing a language within
Melange involves creating an Ecore model that declaratively outlines a set of classes
for the abstract syntax, complemented by Kermeta semantic aspects. These aspects
are intricately linked to Ecore-generated classes via specific annotations. Within Erd-
weg et al.’s classification [28], Melange accommodates language extension, unification,
self-extension, and extension composition [56]. The workbench boasts sophisticated
composition mechanisms like the extension of existing languages or amalgamation of
multiple languages [27].

MontiCore MontiCore [33, 45, 72] stands as a distinctive language workbench that
employs a singular domain-specific language for the definition of both abstract and
concrete syntax. This workbench generates class models automatically and their
semantics are realized in Java through abstract syntax tree (AST) visitors. These visitors
gain access to inherited and synthesized grammar attributes via an injected getter/setter
API integrated into the target Abstract Data Types (ADTs). In accordance with the
classification by Erdweg et al. [28], MontiCore covers language extension, unification,
self-extension, and extension composition [56]. ADTs linked to AST nodes can be
expanded to recycle existing semantics, and the framework supports multiple grammar
inheritance.

Meta Programming System (MPS) MPS [89, 66] emerges as a development environ-
ment tailored for non-textual domain-specific languages. Unlike traditional approaches,
MPS adopts a projectional [90] paradigm, circumventing the need for parsers. The
framework defines abstract syntax through meta-models, stored in non-human-editable
XML files. Instead of traditional code, programs are modeled by composing elemental
building blocks called concepts, each representing a type of AST node. Various com-
ponents like behavior and editors can be linked to these concepts to construct both the
visual representation and the semantics of the AST using a subset of Java known as
BaseLanguage. In alignment with Erdweg et al.’s classification [28], MPS encompasses
language extension, unification, self-extension, and extension composition [56].

Neverlang Neverlang [11, 17, 84, 16] introduces a distinctive language workbench
focused on modular development of programming language compilers, interpreters,
and their related ecosystems. Central to the Neverlang approach is the concept of
language features. These features are realized through compilation units termed slices,
which in turn implement them by composing various modules. This composition process
is syntax-driven, where the language grammar dictates insertion points for semantic
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actions. Modules can also carry meta-data, contributing to the development of the
language ecosystem, including IDE support. The Automatic Integrated Development
Environment (AiDE) complements Neverlang, catering to LPL development [48, 47, 30].
AiDE serves three roles: language developer, deployer, and user, accommodating
all phases of language family development. In accordance with the taxonomy by
Erdweg et al. [28], Neverlang supports language extension, unification, self-extension,
and extension composition [56].

Spoofax Spoofax [91, 88, 40] stands as a language workbench offering diverse DSLs
for language development. A significant feature is its use of Syntax Definition For-
malism (SDF3) to specify grammars, which may even be ambiguous, and Stratego for
semantics—a sequence of AST transformations called rules and strategies. The program
abstract syntax is maintained as a ATerm data structure. As per the Erdweg et al.
classification [28], Spoofax facilitates language extension, unification, self-extension, and
extension composition [56].

Rascal Rascal [41, 4, 42] functions as a meta-programming language dedicated to con-
structing language processing tools. Algebraic data types are used to define the abstract
syntax, and Rascal library facilitates parsing textual input, followed by implosion for tree
transformations. For evaluating ASTs, user-defined functions and pattern matching of
algebraic data types on function arguments are used, employing a technique called
pattern-based dispatch [4].

CBS CBS [22, 59, 58] stands as a language workbench partly developed with Ras-
cal, designed for component-based programming language and DSL development.
The central idea of CBS is the utilization of funcons, modular components that can
be repurposed across various language specifications [23, 9]. The PlanCompS initia-
tive [10] aspires to establish a comprehensive funcon library, serving as a foundation
for language development within CBS.

Truffle Truffle [93, 99, 50] is a library aimed at building language interpreters and
implementations. This approach involves abstract syntax tree node rewriting to carry
out optimizations and semantic operations. By coupling Truffle with GraalVM [98,
97], successful programming language implementations have emerged across diverse
projects [61, 43].

Compared to these existing tools, the ⋆piler represents a drastically different ap-
proach, and it comes with its own set of advantages and drawbacks. Many of the
established tools in this domain have benefited from years of development efforts,
making them more mature and feature-rich. These tools often provide extensive sup-
port for the development of integrated development environments (IDEs) and other
language-related tools.
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In contrast, the approach adopted by the ⋆piler is distinctive in that it effectively
minimizes the need for glue code when reusing language components. This reduction
in glue code is achieved through a compilation/transpilation process that involves a
search step, which, notably, only requires the parse tree and the transpilation units.
While the ⋆piler may not offer the same level of maturity or feature richness as some
of these other tools, its approach has the potential to streamline the process of language
component reuse.

4.2 Language Product Lines

LPLs [56] represent an innovative engineering approach to language development and
customization. These product lines are designed to facilitate the creation of families
of domain-specific languages or programming languages with shared characteristics
(such as role base languages [49]). LPLs enable developers to efficiently generate and
maintain multiple language variants within a coherent framework. By embracing
concepts from software product lines, LPLs empower researchers and practitioners to
build tailored languages that cater to specific needs and application domains.

LPLs are aimed at modeling families of programming languages where each member,
referred to as a variant, can be tailored to satisfy specific domain or customer require-
ments. One notable example of successful LPL engineering is Neverlang.js [48, 14, 15].
Neverlang.js represents a family of JavaScript-like programming languages that have
been designed to gradually introduce language features to computer science students.

Many language workbenches, such as Neverlang, also adopt the philosophy of LPL
engineering as an approach to enhance reusability and address language variability [86,
41]. For a comprehensive overview of LPLs and language workbenches, you can refer
to [29]. Additionally, there are tools like AiDE, which is a variability management tool
for LPLs [85, 86]. AiDE operates as a bottom-up LPL engineering environment [47],
helping manage the complexity of language families through the utilization of Feature
Models [39, 25, 82] and language configurators with automatic constraint checking.
While there is no best configarators, researchers have designed tools to model the
variability of configurators [8, 95].

Since LPLs represent an engineering methodology for the development of program-
ming languages, researchers have also focused on evaluating the quality of such LPLs.
This evaluation includes the proposal of a set of software metrics [13]. Moreover, there
is a focus on mutation operators for mutation testing of LPLs, as discussed in [12].

4.3 Transpilers

Transpilers are software that aims to translate one program written in one language
into a different one. For example, SequalsK [74] is a bidirectional transpiler between
Swift and Kotlin. SequalsK aims to bridge the development of Android and IOS
applications. Ling et al. [53] have developed a C to Rust source-to-source transpiler
with the purpose of migrating old source code. Also, a partial Python to Rust transpiler
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is proposed by Lunnikivi et al. [55]. They have shown a 12x performance improvement
in the transpiled code. These transpilers are only concerned with a single source
language and a single target language (one-to-one). Instead the ⋆piler framework
offers a homogeneous approach to develop many-to-many transpilers. ROSE [68, 69] is
a compiler infrastructure with an intermediate representation that supports a variety of
languages, such as C, C++, and Java. The ROSE infrastructure uses tree transformations
to apply optimizations on the intermediate representation. EpsilonFlock [71, 70] is a
tool developed using the Epsilon platform [44] to perform a rule based meta-model
transpilation. Instead, of using an intermediate representation to which all languages
need to be transpiled to, the ⋆piler framework allows a level of flexibility that permits
the development of both one-to-one transpilers and one-to-many transpilers. Moreover,
delta developed for any transpilers can always be reused for different scenarios.

4.4 Multi-Language Systems

Folliot et al. [31] describe a multi-language system—called VVM. VVM is a virtual
machine running VMlets which can execute the bytecode of their language. Self [96] is a
minimal programming language that is optimized during runtime. Self has been used to
implement languages such as Java and Smalltalk without relying on custom VMs. VMs
usually run a single intermediate language. However, they can be effective at unifying
the ecosystem of the languages that compiles toward a VM (successful examples are
the Java and the Scala programming languages). Instead, the ⋆piler framework can
be effective also at unifying the ecosystem of languages that are developed to run on
different VMs. Moreover, the ⋆piler framework can decouple a language from its VM.
It can allow to run the same language on different VMs.
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Postface

We are finally arrived at the conclusion of this thesis. I sincerely hope that the material presented
throughout these pages has been easily understandable for the reader, as few things are more
frustrating than encountering unclear explanations. To address any potential shortcomings on
my part in delivering the subject matter effectively, I wholeheartedly invite readers to reach
out with any questions or concerns via mail to francesco.bertolotti@unimi.it. Furthermore, I
trust that readers have found the content engaging and even worthy of further investigations.
However, if this is not the case, as the saying goes: “it is what it is”.
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