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Abstract—Nowadays, modern service compositions are increas-
ingly adopted in critical scenarios where advanced Quality of
Services (QoS) such as low latency, security, and privacy are
fundamental. The landing platforms for the deployment of such
compositions are progressively becoming capable to offer capabil-
ities that support such advanced QoS requests (e.g., low latency
via 5G network slice) spanning the Edge-Cloud Continuum.
Actual deployment solutions focus mainly on resource allocation
(i.e., CPU, memory, and storage), falling short of addressing
advanced QoS and unleashing the true potential of the Edge-
Cloud Continuum. In this paper, we present an automatic QoS-
aware deployment solution for composed services in the Edge-
Cloud Continuum. It compares QoS requests on the service
composition with the capabilities of a given continuum in order
to find, generate and execute suitable deployment recipes. Our
preliminary experimental evaluation demonstrates the feasibility
of our solution in a realistic scenario.

Index Terms—Service Composition; Service Deployment; Non-
Functional properties; 5G MEC; Edge-Cloud Continuum

I. Introduction
Cloud-native technologies are drastically improving the way

infrastructure resources are allocated and applications are de-
ployed. For developers, the ability to encapsulate applications
in containers or virtual machines simplifies the development
process, making it independent of and transparent to de-
ployment. Containerization allows also to build applications
following the distributed paradigm, where components, mainly
services, are chained into complex compositions.

The advent of Edge Computing has changed the way a
service composition can be deployed, allowing for instance to
better support real-time applications via low latency [1] and in
general a better placement of services to fulfill specific QoS
requests [2], [3]. Despite being physically separated from the
Cloud, the Edge heavily depends on it to execute resource-
hungry tasks, since computational power available on Edge
nodes decreases the farthest they are from the Cloud. This
dependency has been emphasized in recent times, when the
momentum gained by machine learning (ML) pointed out
the computational limitations of Edge Computing and conse-
quently stimulated the development of distributed approaches
relying on both Cloud and Edge, such as federated learning
(FL) [4].

In such context, a new computational paradigm is taking
hold, merging both Cloud and Edge in a Continuum. Edge-
Cloud Continuum combines the strengths from both platforms
in terms of scalability, flexibility, and mobility, to name but

a few, and delivers a wide infrastructure where applications
can be seamlessly deployed across the entire network [5].
The aim of the Continuum is to decouple the management
of heterogeneous resources and the deployment configuration
from the execution of the specific application. This decoupling
can be achieved by abstracting the deployment infrastructure,
allowing the developer to simply define applications in terms
of functional capabilities (i.e., a workflow of services) and QoS
properties to hold (e.g., confidentiality, availability, latency,
etc.). In our approach we assume that most of such non-
functional properties can be guaranteed thanks to suitable
deployment configurations, without the need of modifying the
application logic. For instance, considering an application on
the continuum made of a pipeline of services focused on
collecting sensible data to build a specific model. Low latency
and privacy properties can be granted for the data gathering
services via on premises or edge deployment, while high
computational power can be guaranteed for the data modeling
services via cloud deployment. We note that in a Cloud-only or
Edge-only scenario, we may not benefit from all the properties
without requiring modification at application logic, whereas
in the Continuum, the same requirements may be fulfilled by
specific deployment recipes.

Notwithstanding the potentialities offered by the Edge-
Cloud Continuum, the research into how to fully exploit its
potential is still in its infancy. Some solutions have been
proposed in the field of serverless computation, where stateless
applications are executed in modern Function-as-a-Service
(FaaS) platforms [6], [7], [8]. In FaaS, frameworks are de-
veloped to select the best platform according to some metrics,
such as cost. However, stateless applications focus only on
resource allocation (i.e., CPU, memory and bandwidth) and
represent only a portion of a much wider and complex range
of Edge-Cloud Continuum applications requiring much more
complex properties to hold. For instance, the metrics defined
for the selection of the optimal FaaS platform cannot be used to
cope with latency, confidentiality and authentication [9], [10],
[6], [7]. In short, we still lack a non-functional property-aware
approach to deploy applications in the Edge-Cloud Continuum,
since existing solutions work mainly for serverless frameworks
and fail short to handle pipelines of services and complex
properties.

Our paper aims to address the above gap by defining a new
methodology for service deployment in the Edge-Cloud Con-



tinuum. We extended the graph-based representation of service
composition in [11] to model also the Continuum deployment
environment peculiarities. We then build a matching function
capable to map each service in the composition to a facility
of the Continuum, so that all the required properties can be
fulfilled. This mapping is finally used to generate and deliver
deployment recipes specific for each Continuum facility.

The contribution of this paper is fourfold: i) a new notion
of Edge-Cloud Continuum involving both 5G Telco Edge
node and on-premises Edge node (Section II), ii) a novel
methodology for QoS-aware deployment of composed services
in the Edge-Cloud Continuum (Section III), iii) a suitable
Architecture implementing the methodology and generating
executable recipes for the deployment, and iv) preliminary
experimental evaluation showing the feasibility (Section IV).

II. Scenario, Requirements and Architecture

Our reference scenario considers i) a client that wants to de-
ploy its workflow of services si specifying QoS requirements
and constraints to be satisfied on the Edge-Cloud Continuum;
ii) Cloud Service Providers (CSPs) offering deployment facili-
ties fi for third-party services on the Edge-Cloud Continuum;
iii) facilities offering specific capabilities ci to satisfy QoS
requirements and constraints. In this paper we consider an
advanced Edge-Cloud Continuum where Edge nodes can be:
i) telco nodes (i.e., 5G Multi-access Edge Computing - MEC)
based on an agreement between the CSP and a given telco
operator offering their core network capabilities to be part
of the CSPs Continuum (e.g., AWS Wavelength); ii) on-
premises nodes based on the deployment facilities on the
client’s premises enabled by the CSP for services deploy-
ment (e.g., using AWS Greengrass). When the client asks to
deploy a given workflow of services, the CSP matches the
service workflow, QoS and constraints with the capabilities
and peculiarities of its Edge-Cloud Continuum deployment
facilities associated to the specific client in order to find all
the feasible deployment configurations. Among them the CSP
selects the configuration to be deployed according to internal
policies, such as considering Cloud as the preferred service
deployment due to lower operating costs. For instance, in
case of two candidate configurations, one using 5G and Cloud
facilities and another using on-premises and Cloud facilities,
the latter would be selected. The CSP then generates the
deployment recipe for the selected configuration and executes
the deployment on the continuum.

Example II.1 shows the scenario used in the rest of the paper
to present our methodology.

Example II.1 (The Scenario). Let us assume that a client
wants to deploy a machine learning workflow made of 4
sequential services: s1 gathering data, s2 normalizing data, s3
generating a model out of the collected data (e.g., training a
decision tree), and s4 saving the model for further usage (e.g.,
for prediction). Let us assume that the client requires that data
accessed by s1 should be protected for confidentiality and the
model generated by s4 should be protected from tampering by

controlling its integrity. Let us assume that the client expresses
a constraint on the communication links between s1 and s2 and
between s2 and s3, which must carry large volumes of row
data, requiring a bandwidth of at least 200 Mbit/s. Let us also
assume the client has a contract with the CSP for Continuum
facilities including on-premises machine f1, 5G Edge node f2
in the proximity of its premises, and Cloud node f3. The CSP
ensures some capabilities (c) on the facilities and the network
links connecting them. In particular, f1 ensures confidentiality
at rest via isolation of the storage from the direct control
of CSP (c1), and f3 provides a service (sI ) ensuring data
integrity at rest (c2). In addition, all the internal links, that is
the links between two services deployed on the same facility,
have infinite bandwidth (c3), while the 5G link between f1
and f2 provide at least a 500 Mbit/s bandwidth (c4).

A. Edge-continuum deployment Requirements
In order to support the Scenario in Section II, the CSP

should be empowered with an advanced deployment architec-
ture addressing the following requirements:

• (R1) Continuum-readiness: it should seamlessly deploy
services on all the different Continuum premises.

• (R2) Property-driven: it should be driven by QoS prop-
erties and constrains expressed by the client.

• (R3) Technology agnostic: it should be capable to handle
heterogeneous deployment facilities regardless the under-
lying virtualization technology.

• (R4) Comprehensive model: it should provide a way as
general as possible to represent pipelines and facilities,
without limiting the choice in topology and data flow.

• (R5) Interoperability: it should be able to interact with
CSP facilities through software hooks.

• (R6) Context adaptability: it should perform deploy-
ment life-cycle management by re-deploying services
when changes in the environment occur.

To the best of our knowledge, no deployment architecture is
currently capable to fully address the above requirements offer-
ing a comprehensive and adaptable approach to permanently
deploy services in the Continuum taking into account client-
defined advanced properties and constrains. Few solutions
exist for application deployment, which are compared in Table
1 with respect to the above requirements (full and partial
support of a requirement is denoted with 3and ∼ respectively).
Some considered works ([12], [13], [14], [9]) address the
Edge-Cloud Continuum scenario, but only the architecture
presented in [14] can seamlessly deploy applications along
the Continuum since it is fully independent of the specific
technology and CSP involved. QoS requirements and con-
straints are taken in account, even partially, by most of the
works ([13], [15], [14], [6], [16], [10]), but only [13], [15]
provide a comprehensive way to model both applications and
environment. Finally, there is no solution that performs a life-
cycle management of the deployment, adapting to changes
in context. In short, all solutions have drawbacks, whether
they be the limited application scenario, the dependence on
specific technologies, or the inadequate composition model.



Table 1: Related work comparison.

Author Ref. R1 R2 R3 R4 R5 R6

K. Fu et al. [12] 3 3 ∼

A. Orive et al. [13] 3 ∼ 3 3

A. Brogi et al. [15] ∼ 3 3

V. Casola et al. [14] 3 3 3 3

S. Nastic et al. [9] 3 3

N. Akhtar et al. [6] ∼ 3 3 ∼

A. Das et al. [8] 3 3 3

M. Anisetti et al. [16] 3 3

J. Quenum et al. [10] 3 3 3

Our Work 3 3 3 3 3 3

Our architecture, instead, addresses all the aforementioned
requirements, providing a QoS-driven deployment system for
the Continuum.

B. Deployment Architecture
To support the scenario in Section II and ensure the re-

quirements in Section II-A, we propose a deployment archi-
tecture capable of guaranteeing a seamless QoS and constraints
preserving execution of a given service workflow in the
Continuum.

Figure 1 schematizes our system architecture made of i) a
Deployment Engine service that targets the deployment facil-
ities through Deployment Agents, and ii) a set of Deployment
Facilities of different nature, including Cloud, Telco-Edge
and on-premises nodes (R1). The client interfaces with the
deployment engine through Deployment API providing the
service workflow to be deployed and the QoS/constraints
specification in a machine-readable format (R2) and (R4). The
Deployer Solver chooses the most appropriate deployment con-
figuration interacting with the Deployment Controller which
is in charge of i) interrogating Deployment Facilities on their
capabilities and ii) delivering the deployment recipes, using
the Deployment Agents.

The Deployment Agents are responsible to build the deploy-
ment continuum across the facilities by driving the service
deployment (R3). In order to support QoS and constraint-
aware integration, the CSP exposes to the Deployment Agents
suitable hooks to relevant resource (e.g., resource manager
for deployment) or services (e.g., services offering security
features) constituting their capabilities (R5). For instance, the
CSP can offer a hook to access non-functional certificates
(i.e., using certification scheme in [17], [18]) proving some
capabilities or to invoke authentication services to support
authentication requirements.

We note that in case of necessity (e.g., changes in the QoS
or budget constraints) the given workflow can be re-deployed
via re-executing the deployment matching with modified QoS
and constraints (R6). The re-deployment can be also used to
handle service migrations and in general changes occurring
post-deployment.
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Fig. 1: Deployment Architecture for Edge-Cloud Continuum.

In the following we describe the peculiarities of the Con-
tinuum Deployment Facilities in terms of architecture and
capabilities.

C. Cloud
Cloud solutions offer to their users managed services and

infrastructure with scalable amount of resources. This allows
users to deploy and integrate their services and products,
relieving them from most management tasks. Generally, the
control plane of the system is handled by a cloud provider,
managing the services life-cycle and ensuring their availability.
The most common type of deployment used in this context are
based on containerized services or on virtualized hosts.

The Cloud is the most flexible and powerful facility in the
Continuum in terms of offered capabilities. It supports non-
functional QoS via PaaS or IaaS services enabling them for
the deployed services. It also partially supports constraints,
for instance via resource scalability, network latency, high
bandwidth and connectivity supported by virtualized network
and local and distributed data centers. However, this support
is normally very limited due to the public internet connec-
tivity and the shared environment used in standard Cloud
configurations. The Cloud currently suffers from the lack
of transparency impacting non-functional properties such as
privacy [19].

To support our deployment architecture the Cloud facility
has to provide hooks for i) resource management offering
deployment and configuration of containerized and/or vir-
tualized services; ii) configurations of services relevant to
support given non-functional properties; and iii) workflow-
level networking management.

D. Telco-Edge
Telco-Edge is an innovative Edge scenario enabled by 5G

via integrating mobile networking capabilities. The state-of-
the-art solution for automated service management in such
systems is based on MEC [20], [21], [22], [23]. MEC allows
integration of container and VM based services with the 5G



core network, mutually exposing their functionality. Differ-
ently from traditional Cloud facilities, i) the edge nodes are
connected to 5G radio antennas, allowing fast communication
to and from mobile devices; ii) the service provisioning to
mobile devices is backed by unique device and user identi-
fication through IMEI and SIM identifiers, supporting strong
authentication; iii) the telco edge nodes can be geographically
closer to their users, enabling new notion of data privacy
by proximity, similarly to the notion of privacy on-premises;
and iv) the 5G standard allows users to allocate virtual
network slices, ensuring bandwidth availability and network
performance levels and latency.

In addition, by adopting the Telco-Edge facilities i) the
bandwidth between the edge node and other network nodes
is allocable; ii) the in-motion data can be contained within
the boundary of the telco network; and iii) additional services
(i.e., identification, network monitoring, authentication) for the
users connected through mobile network are available.

To support our deployment solution, the Telco-Edge facility
have to offer hooks on resource management and service con-
figuration similarly to the Cloud but also additional peculiar
hooks for i) network-level user management and authentica-
tion, and ii) network resource allocation (5G network slices)
for bandwidth and latency management via MEC.

E. On-premises
With on-premises we consider deployment facilities that are

fully under the control of the owner, but are equipped with
CSP services to make them part of the Continuum. They
can be realized via VMs/containers or physical machines.
Such facilities have normally stronger resource limitations
compared to Cloud or Edge environments, lacking scalability
and elasticity or not providing specific hardware. On the
contrary, they i) have strong properties of high confidentiality
and privacy, for instance ensuring that data cannot physically
leave the organization; ii) have the lowest latency to the devices
within the organization; and iii) leave the owners full control
of the execution environment.

In order to be part of the Continuum, on premises facilities
should i) allow our Deployment Agents to be executed in a
supported deployment environment; ii) access to resources to
arrange the service deployment; and iii) offer hooks to handle
resources for local deployment of services, connectivity to the
continuum and access to the relevant local services if needed.
Normally, on premises hooks have very restricted access to
local services, data and deployment resources making their
use in the continuum very challenging.

III. Methodology
Figure 2 shows our methodology for the Edge-Cloud Con-

tinuum scenario in Section II based on our architecture in
Figure 1. The client defines the service composition workflow
to be deployed and annotates it with QoS requirements and
constraints forming an Annotated Service Composition Tem-
plate. The service provider annotates its facilities with the
relevant properties, indicates hooks reachable by Deployment

Deployment Matching

Annotated Service Composition
Template

Annotated Continuum
Facilities Graph

ClientCloud Service Provider

Deployment Recipes

Edge-Cloud Continuum

annotates

generates defines

used by used by

generates

deployed on

Fig. 2: Our Methodology.

Agents, and produces the Annotated Deployment Facilities
Graph. The client submits the request for deployment by
submitting the Service Composition Template via Deployment
API to our Deployment Engine. The Service Composition
Template and the Annotated Deployment Facilities Graph
triggers the Deployment Matching process executed by our
Deployer Solver in order to generate the Deployment Recipes
to be used to deploy the given workflow of services on the
Edge-Cloud Continuum.

A. Annotated Service Composition Template
A Service Composition Template is an abstract representa-

tion of the workflow of services that a client wants to deploy.
It describes the services, their execution parameters and their
interconnectivity configuration.

Definition III.1 (Service Composition Template). A Service
Composition Template is a directed graph T = (S,E) where
si ∈ S are services constituting the graph vertexes, and ei ∈ E
are graph edges modeling the interaction between two services
on both control and data plane. We note that, since T = (S,E)
is a directed graph, each edge represents a one-way interaction,
while a two-way communication requires a cycle made by two
edges.

The Service Composition Template can be annotated with
specific non-functional requirements ri ∈ R and constraints
ki ∈ K on resources. Following the notation in [24], a
requirement ri is a pair (r̂, Attr), where ri.r̂ is an abstract
requirement from a shared vocabulary of properties (e.g.,
confidentiality, integrity) and ri.Attr is a set of attributes spec-
ifying the low-level characteristics that should be provided.
The attribute values induce a hierarchy HR of requirements
(R,�R), where R is the set of requirements and �R is
the partial order. Similarly, a constraint ki ∈ K is a tuple
(k̂, V al, Op), where ki.k̂ is a resource (e.g., bandwidth, on-
premises), ki.V al is the desired value and ki.Op is the
operation on that value. The resource determines what type
of value can be specified, such as integers, booleans, lists, and
what operations can be applied (e.g., =, <,≥,∈).

Definition III.2 (Annotated Service Composition Template).
Let T = (S,E) be a Service Composition Template. The



Annotated Service Composition Template TR,K is generated
annotating vertexes and edges in the template T = (S,E) with
non-functional requirements ri ∈ R and constraints ki ∈ K.

For instance, a security requirement ri = (Confidentiality,
AES256) can be associated to an edge (i.e., communication
channel) ei, denoted as erii , while a constraint kj = (On-
premises, true, =) can be associated to a vertex (i.e., a
service of the workflow) sj denoted as s

kj

j indicating that the
deployment must be performed on an on-premises facility.

Example III.1 (Annotated Service Composition Template).
Considering Example II.1, we can represent the client ser-
vice workflow as the annotated template TR,K with the
set of services S = [sr11 , s2, s3, s

r2
4 ] and the set of edges

E = [ek1
1 , ek1

2 , e3]. The expressed requirements are r1 =
(Confidentiality, Isolation) and r2 = (Integrity, Rest), while
the posed constraint is k1 = (Bandwidth, 200, ≥).

B. Annotated Continuum Facilities Graph

The Cloud Service Provider (CSP) models its Continuum
facilities for a given client as a Continuum Facilities Graph.

Definition III.3 (Continuum Facilities Graph). The Contin-
uum Facilities Graph is a directed graph G = (F,L) made of
a vertex fi ∈ F for each facility provided by the CSP. L is the
set of edges (here called links) li connecting the vertices of
the graph. Two vertices fi and fj can be connected by a link
li if facility fj is reachable from facility fi either through the
open Internet or a dedicated private channel.

Note that the Continuum Facilities Graph is directed and
therefore each link models a one-way connection. We can
however express both two-way and intra-node communication
capabilities by defining cycles. In particular, intra-node com-
munication is represented as a cycle of length 1, i.e., a loop.

The Continuum Facilities Graph generated is then anno-
tated with non-functional capabilities ci ∈ C. Capabili-
ties represent a mechanism to support both non-functional
properties and constraints such as confidentiality, latency,
performance to name but a few. A capability is defined as
a tuple (ĉ, Spec,Op, Impl), where ci.ĉ is either a property
or a resource, ci.Spec is an attribute if ci.ĉ is a property,
a value otherwise, ci.Op is an operation on ci.Spec (if it
is an attribute, V al is always a =), and ci.Impl is a set,
even empty, of key-value pairs describing how the facility
implements the capability. The annotated data life-cycle is
managed by the service providers, possibly using certification-
based solutions. The selection and implementation of the
associated methodology is out of the scope of this paper.

Definition III.4 (Annotated Continuum Facilities Graph). Let
G = (F,L) be a Continuum Facilities Graph. The Annotated
Continuum Facilities Graph GC is generated annotating ver-
texes and edges in the Continuum Facilities Graph G = (F,L)
with the capabilities ci ∈ C (e.g., latency, bandwidth, re-
sources).

For instance, a security capability ci = (Channel_encryp-
tion, AES256, =) can be associated to a link li denoted as lcii ,
while a capability cj = (Edge, true, =) can be associated to
a vertex (i.e., a facility of the SP) fj denoted as f

rj
j .

Together, Annotated Service Composition Template and
Annotated Continuum Facilities Graph provide a general
framework to describe most kind of pipeline topologies in the
Continuum, addressing (R4).

Example III.2 (Annotated Continuum Facilities Graph).
Considering Example II.1, we can represent the CSP fa-
cilities as the annotated graph GC with the set of fa-
cilities F = [f c1

1 , f2, f
c2
3 ] and the set of links L =

[lc31 , lc42 , lc33 , l4, l5, l6, l
c3
7 ]. The provided capabilities are c1 =

(Confidentiality, Isolation, =, []), c2 = (Integrity, Rest, =,
[service: sI; mode: interception]), c3 = (Bandwidth, +∞, =,
[]) and c4 = (Bandwidth, 500, ≥, []).

C. Deployment matching

The deployment matching process searches for the most
suitable solution for the QoS-aware deployment of a given
service workflow on the Continuum. It takes as input the
Annotated Continuum Facilities Graph GC and the Annotated
Service Composition Template TR,K , generates a set of suit-
able deployment solutions M and among them finds the one
M̂ that better satisfies a given CSP policy (e.g., the lowest
operational cost).

The set of suitable deployment solutions M is defined on
(S ∈ TR,K) × (F ∈ GC) so that: i) for every edge ei ∈ E
between any two vertices si and sj ∈ S there is a link
li ∈ L between the matching vertices fi and fj ∈ F ; ii) for
every pair (si, fi) in M , the capabilities ci of fi satisfy the
requirements ri and the constraints ki of si; iii) for every edge
ei between any two vertices si and sj ∈ S, the capabilities
ci of li between the matching vertices fi and fj ∈ F satisfy
the requirements ri and the constraints ki of ei. If the set of
suitable deployment solutions M is empty, it means that the
deployment of the service workflow cannot take place on the
given continuum, given the QoS requirements and constraints.
If the set of suitable deployment solutions M is not empty,
the deployment matching orders them according to the CSP
policy and selects the first one in the order.

Given the set of deployment solutions M , if the CSP policy
refers to operational cost reduction only, a solution like the
one in [16] can be adopted. We will investigate the impact
of more articulated CSP policies as well as the adoption of
an optimization approach for finding the suitable deployment
solution and contemporaneously addressing such CSP policy
in our future works.

Algorithm 1 shows the pseudocode of our matching func-
tion. The algorithm i) iterates over all the permutations of
services altering the elements starting from the beginning of
the list; ii) for each permutation it iterates on its partitions
starting from the beginning of the list, thus leaving the largest
partitions containing the most preferred facilities; iii) for each
permutation it checks whether all requirements are met, if that



Algorithm 1 Pseudocode of our deployment matching exhaus-
tive algorithm.

procedure matching(S, F )
matches = ∅
. Iterate services permutations
for service_perm in perm(S) do

. Services partitioning in |F | facilities
for part in partitions(service_perm, |F |) do

. Test if all requirements are met
valid← true
for ri in R do

if ri(S, F, part) == false then
valid← false
break

end if
end for
if valid then

. Match found
matches = matches ∪ {part}

end if
end for

end for
return matches

end procedure
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Fig. 3: Annotated Deployment Graphs including (a) Annotated
Service Composition Template and (b) Annotated Continuum
Facilities Graph, with the resulting matching.

is the case it adds it to the results partition otherwise it breaks
to the inner for loop; iv) finally it returns the set of results.

Example III.3 (Deployment matching). Let us consider the
scenario in Example II.1, the Annotated Template TR,K and

the Annotated Graph GC , in Example III.1 and Example III.2
respectively. Let us now apply our matching function in
Algorithm 1 to the services in TR,K and the facilities in
GC retrieving a set of possible matching M . Figure 3 shows
one of the possible solution in M = {m1,m2,m3,m4},
where m1 = (s1, f1), m2 = (s2, f2), m3 = (s3, f2), and
m4 = (s4, f3). Here, s1 is matched with f1 since it is the
only facility ensuring confidentiality. Similarly, s4 is matched
with f3 since it is the only facility providing a way to check
integrity. Lastly, s2 and s3 are matched with f2 to provide
large bandwidth between the first three services.

D. Deployment Recipes

The purpose of the above deployment matching is to assign
each service to a facility in such a way that all requirements
(i.e., QoS and constraints) can be fulfilled and the CSP internal
policy satisfied. However, a mere assignment is not always
enough to enforce the desired properties. For instance, low
latency can be achieved by simply assigning services to the
physically closest facility, while, on the contrary, communica-
tion channel confidentiality requires configuring a component
or service to handle message encryption and decryption. To
address the above deployment challenges, our methodology
enriches traditional deployment recipes with hooks metadata.
This metadata is consumed by our Deployment Agents to
enable relevant properties configuring or embedding facility’s
services in the service workflow to be deployed.

Recipes are generated for each service of the workflow in M̂
and contain the operational instructions for the deployment of
both the service and the supporting facility’s components/ser-
vices. In particular, a recipe consists of three parts: i) the
deployment configuration of the service, including the image
to be used and resources to be allocated; ii) a description
of the support components/services to be integrated and their
parameters (e.g., for an authentication component it includes
the list of user credentials); iii) modality of integration (i.e.,
none, interception or wrapper).

Example III.4 (Deployment Recipe). Considering the selected
matching M̂ in Example III.3, according to our methodology
the relative deployment recipes are generated for all the
services si ∈ M̂ . For simplicity let us focus on s4 recipe only.
Figure 4 shows an excerpt of the s4 recipe provided to the
deployment agent in f3, along with the final deployment graph
for M̂ . According to the recipe, the agent, in order to guarantee
integrity, has to deploy an additional facility’s service (service:
sI ) that intercepts (mode: interception) incoming data from
s3, computes and adds to data a cryptographic checksum, and
delivers it to s4 for storing.

We note that details on how the recipes are generated out
of the given selected matching M̂ is out of the scope for
this paper. We will further investigate this topic in our future
works.



facility:
name: f3
services:
- name: s4

kubernetes_template:
apiVersion: apps/v1
kind: Deployment
metadata:

name: s4
spec:

replicas: 1
template:

spec:
containers:
- name: s4

image: local.registry/s4
ports:
- containerPort: 80

capabilities:
- property: integrity

attribute: rest
operation: "="
implementation:

service: sI
mode: interception

s1

s2

s3

sI

s4

f1

f2

f3

Fig. 4: Deployment Recipe for facility f3.

IV. Experimental Evaluation
In this section we first describe our experimental settings

realizing the scenario in Section II and then present a prelim-
inary performance evaluation.

A. Experimental setup
We realized the Edge-Cloud Continuum of our scenario

in Section II as follows. The software stack used in the
Cloud facility was based on MicroK8s. It allowed to simulate
cloud-hosted VPS nodes in a cluster formation supporting
auto-scaling as we expect by a Cloud provider. The Telco-
Edge facility was implemented based on Open Source MANO
(OSM)1, Free5GC2 and MicroK8s3, respectively implementing
the MEC, a simulated 5G core network, and the resource man-
ager. OSM was designed to integrate with the core network, ex-
posing the services hosted in Kubernetes to the users and other
nodes as Network Functions. The on-premises facility was
based on MicroK8s, configured to handle limited resources.
All the nodes were hosted in the same data center, and were
equipped with 4 virtual cores clocked at 2.09GHz and 32 GB
of RAM and running Linux 5.4.0 (Ubuntu 20.04 LTS). All the
nodes of the continuum were empowered by our deployment
agents communicating with our Deployment Engine using the
same virtualized network used by the continuum node.

Our Deployment Engine was implemented using Python
3.10.9 and has been executed on a machine running Linux
5.15.102 (NixOS) equipped with an AMD 5900x and 32 GB
of RAM.

B. Performance evaluation
The computational effort needed to deploy a given service

workflow using our Deployment Engine is clearly dominated

1https://osm.etsi.org/
2https://www.free5gc.org
3https://microk8s.io
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Fig. 5: Execution time with increasing number of services sj
in the workflow and considering 3, 4 and 5 facilities fj .

by the effort required by our matching function that can be
estimated as O(|F ||S|) where |F | and |S| are the cardinality of
Continuum facilities and services in the workflow respectively.

Figure 5 shows the execution time requested by the matching
function varying the number of services si ∈ S in the
workflow and the number of facilities fj ∈ F of the continuum
using logarithmic scale. The performances were computed on
the average of 5 executions for each combination of services
and facilities. For each execution we randomly generated
facilities’ capabilities and services’ requirements. As expected
the number of services |S| dominates the exponential growth
of execution time.

The matching algorithm terminates in less than one second
when evaluating the cases of 6 services in 5 facilities and 8
services in 3 facilities. As the number of services increases,
the time of execution grows rapidly: the execution time with 12
services and 3 facilities is 8.11s, which is the last experiment
configuration to terminate under 10s. The cases 8 services in 5
facilities and 10 services in 4 facilities terminate respectively
in 12.6s and 22.1s. With larger numbers of facilities and
services the algorithm becomes too slow for practical use: the
configuration 11 services in 4 facilities terminates in 91.7s.
The last configuration shown in Figure 5 considers 12 services
in 5 facilities and has terminated in 13143s.

V. Conclusions
In this paper we described a novel methodology for deploy-

ing composed services in Edge-Cloud Continuum focused on
guaranteeing advanced QoS requirements. The main idea is to
exploit the capabilities and the peculiarities of the different
continuum landing platforms to ensure QoS at deployment
time. Our deployment methodology is based on a machine-
readable description of the service composition annotated
with the QoS requirements and a meta-description of the

https://osm.etsi.org/
https://www.free5gc.org
https://microk8s.io


capabilities of the landing platforms involved in the continuum.
Based on these machine-readable descriptions, a set of feasible
deployment solution are generated and the relative deployment
recipes for the service composition are selected according to
a given policy. We show the feasibility of our solution in our
preliminary experimental evaluation. In our future works, we
plan to investigate different deployment optimization solutions
and consider a more complex experimental scenario involving
migrations of service and data as well as changes at the
network topology level.
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