
An open-source modular framework for quantum

computing

S. Carrazza1,2,3, S. Efthymiou3, M. Lazzarin3, A. Pasquale1,3

1 Dipartimento di Fisica, Università degli Studi di Milano and INFN Sezione di Milano.
2 CERN, Theoretical Physics Department, CH-1211 Geneva 23, Switzerland.
3 Quantum Research Center, Technology Innovation Institute, Abu Dhabi, UAE.

E-mail: stefano.carrazza@cern.ch

Abstract. In this proceedings we describe the current development status and recent technical
achievements of Qibo, an open-source framework for quantum simulation. After a concise
overview of the project goal, we introduce the modular layout for backend abstraction released
in version 0.1.7. We discuss the advantages of each backend choice with particular emphasis on
hardware accelerators for quantum state vector simulation. Finally, we summarize the primitives
and models currently available.

1. Introduction
Quantum computing is a new paradigm whereby quantum phenomena are harnessed to perform
computations. The current availability of noisy intermediate-scale quantum (NISQ) computers
[1], combined with recent advances towards quantum computational supremacy [2, 3], has led to
a growing interest in these devices to perform computational tasks faster than classical machines.
Among many of the near-term applications [4, 5], the field of Quantum Machine Learning
(QML) [6, 7] is held as one promising approach to make use of NISQ computers, including
applications to evolving research fields such as High-Energy Physics [8, 9].

Nowadays, quantum processing units (QPUs) are based on two major approaches. The first
one is based on quantum circuit and quantum logic gate-based model processors, as implemented
most popularly by Google [10], IBM [11], Rigetti [12] or Intel [13]. The second employs annealing
quantum processors such as D-Wave [14, 15] among others. The development of these devices
and the achievement of quantum advantage [16] are indicators that a technological revolution
in computing will occur in the coming years. However, in parallel to the development of QPU
technology, we still have to perform classical simulation of quantum computing, which has
been at the cornerstone of quantum research, to elaborate new algorithms and applications.
From a theoretical perspective it serves as the basic tool for testing and developing quantum
algorithms, while from an experimental point of view it provides a platform for benchmarks and
error simulation.

Circuit-based quantum computers can be classically simulated using Schrödinger’s or
Feynman’s approach [17, 18]. The former is based on keeping track of the full quantum state and
applying gates via specialized matrix multiplication routines. The latter, inspired by Feynman’s
path integrals, can be used to calculate amplitudes of the final state by summing over different
histories (paths). Schrödinger’s approach is memory intensive as it requires storing the full

ar
X

iv
:2

20
2.

07
01

7v
2 

 [
qu

an
t-

ph
] 

 1
3 

Ju
l 2

02
2



High level API

Quantum algorithms

NumPy TensorFlow

qibotf qibojit

Abstraction layer (Base backend)

TensorFlow + custom ops

Numba

CuPy
Custom ops

CuQuantum

CPU CPU / GPU

Qibo stack

Figure 1. Schematic view of structure design in Qibo version 0.1.7.

quantum state consisting of 2n complex numbers for n qubits, however its run time is linear on
the number of gates in the circuit. Feynman’s approach memory requirements scale linearly with
the number of qubits and gates, however its run time grows exponentially with the number of
gates [19, 20]. Hybrid methods exploiting both approaches to achieve a run time vs performance
trade-off have also been explored [21].

Qibo [22, 23] is an open-source framework for quantum computing which supports general
purpose quantum simulation based on Schrödinger’s approach. The source code of Qibo,
available at https://github.com/qiboteam/qibo, provides a high-level API for writing
quantum circuits and gates, abstraction layers for simulation and hardware control backends
and a collection of pre-coded quantum algorithms and research inspired examples. Its structure
is visualized in Fig. 1 and will be discussed in the next sections using as reference the latest
release version 0.1.7.

2. Quantum simulation backends
A system of n qubits is described by a state vector ψ of 2n complex numbers, which represent
the probability amplitudes in the computational basis. A gate targeting ntar qubits can
be represented as a 2ntar × 2ntar complex matrix G. In Schrödinger’s approach of quantum
simulation, each gate is applied to the state via the following matrix multiplication

ψ′(τ , q) =
∑
τ ′

G(τ , τ ′)ψ(τ ′, q) (1)

where τ and q denote bitstrings of length ntar and n− ntar respectively and the sum runs over
all possibile bitstrings τ ′ of length ntar. From a computational point of view, such paradigm
opens the possibility to use different techniques and hardware to achieve efficient simulation of
the final state.

The Qibo package, distributed from PyPI1 and conda-forge2, is shipped with two basic
simulators (numpy and tensorflow) which can efficiently simulate circuits of up to 20 qubits.

1 https://pypi.org/project/qibo/
2 https://anaconda.org/conda-forge/qibo

https://github.com/qiboteam/qibo
https://pypi.org/project/qibo/
https://anaconda.org/conda-forge/qibo


This base package provides an abstraction layer written in Python which defines an abstract
backend class with a minimal set of methods for linear algebra manipulation and gate application.
The numpy simulator is based on NumPy [24] primitives supporting only single thread CPU, while
the tensorflow simulator replaces these primitives with those of TensorFlow [25]. These choices
allow the simple execution of quantum circuits on multi-threading CPU and GPU configurations.
The multiplications in Eq. 1 are implemented using the numpy.einsum and tensorflow.einsum

methods that provide a generic algorithm with moderate performance. Despite the performance
limitation, the numpy backend is relevant for cross-platform deployment. NumPy supports a high
number of architectures, including arm64, allowing the numpy backend to be deployed in several
contexts, such as laboratories developing QPUs, where servers do not always match the x86 64

architecture. In addition, the tensorflow backend provides automatic gradient evaluation for
gradient descent optimization. This combination allows the development of variational quantum
circuits for quantum machine learning. This choice opens the possibility to develop novel hybrid
classical-quantum models such as quantum generative adversarial networks [9].

Additional backends are available as add-on packages and provide higher performance for
larger circuits. The qibotf package3 was the first high performance backend included in the
first Qibo release (0.1.0). It is based on TensorFlow custom operators written in C++ and
CUDA. In contrast to TensorFlow primitives, custom operators perform in-place updates, i.e.,
the state is not duplicated during circuit execution. This reduces both memory requirements and
execution time. The main disadvantages associated with qibotf are the need to maintain C++
code, and the compilation of custom operators before execution which slows down development
and complicates installation by reducing the target of potential devices that could benefit from
pre-compiled binaries.

To address these issues, we developed the qibojit backend [26] package4 which supports
execution on multi-threading CPU, GPU, and multi-GPU configurations. The CPU part of
qibojit uses custom operators like qibotf, which are now written in Python and compiled just-
in-time using Numba [27]. The loop over the state elements is parallelized using OpenMP [28]
via Numba’s numba.prange method. Each element is updated according to the rule defined in
Eq. 1. The proper indices for each update, which depend on target qubit index, are generated
on-the-fly during the loop using fast binary operations. Gates that target multiple qubits and
controlled gates can be applied similarly after modifying the index generation accordingly. The
GPU part uses CUDA kernels that follow the same approach as CPU but are written in C++
and compiled just-in-time using CuPy [29]. The kernels are exposed to Python using CuPy’s
RawModule. Compatibility with CuPy also allowed us to incorporate to qibojit the recently
released quantum simulation library cuQuantum [30] by NVIDIA. Exploiting Numba and Cupy
capabilities simplifies the code without sacrificing performance. It also makes the installation
on different platforms easier. Exhaustive performance benchmarks between the just-in-time
and pre-compiled approaches for quantum simulation together with a technical explanation of
techniques used to accellerate simulation performance are addressed in Sections II and III in
Ref. [31].

3. Primitives and models
In Figure 2 we show the current components available when installing the base Qibo 0.1.7
package. At the current stage, the framework supports quantum simulation using circuits and
annealing paradigms, which are most likely the two representations that can be deployed on real
QPU devices.

The quantum circuit representation is composed of a set of primitives which allow the user

3 https://github.com/qiboteam/qibotf
4 https://github.com/qiboteam/qibojit

https://github.com/qiboteam/qibotf
https://github.com/qiboteam/qibojit


Figure 2. Models and primitives in Qibo version 0.1.7.

to allocate quantum circuits with gates based on single-, two-, and three-qubits. The simulation
of measurements is provided through special sampling kernels for each backend. We have
integrated classical optimization algorithms based on the approximate Hessian approach [32],
evolutionary strategies [33] and gradient descent optimization through TensorFlow. In terms
of built-in models, we provide variational gate layers which can be efficiently trained using the
optimizers mentioned above. Furthermore, we include circuits such as the quantum Fourier
transform (QFT), Grover’s algorithm and the variational quantum eigensolver (VQE) for fast
implementation and benchmark. Finally, we provide models for quantum machine learning,
generative adversarial networks (style-qGAN) [9], quantum regressors [8] and several tutorials
involving quantum classifiers [34].

Concerning the quantum annealing paradigm, we provide primitives for Hamiltonian
representation, for both numerical and analytic representations. These objects are interfaced
with a time evolution solver and the possibility to use the Trotter decomposition, as presented in
Sec. 4.1 of [35]. We provide a large codebase of pre-coded Hamiltonians, such as non-interacting
Pauli-X/Y/Z, transverse field Ising model, MaxCut, and Heisenberg XXZ. Furthermore, we
include pre-coded models for adiabatic evolution [36], with the possibility to determine the
best parametric scheduling function, and adiabatically assisted variational quantum eigensolver
(AAVQE) [37], quantum approximate optimization algorithms (QAOA) [38], and the feedback-
based algorithm for quantum optimization (FALQON) [39].

4. Outlook
The latest Qibo release (0.1.7) includes a modular approach to quantum simulation engines with
support on multi-threading CPU, GPU, and multi-GPU hardware setups. We provide backends
for multiple architectures, including those which are popular in experimental laboratories
developing QPU technologies. The primitives and models implemented in the code are in
continuous expansion and are driven by the requirements and feedback from users developing
spin-off projects involving quantum computing.

In the future we are planning to explore the implementation of alternative approaches to state
vector simulation (Schrödinger’s approach). Furthermore, we will start testing the framework on
real quantum hardware by expanding the current portfolio of backends to experimental setups.



References
[1] J. Preskill, Quantum computing in the NISQ era and beyond, Quantum 2 (2018) 79. doi:10.22331/

q-2018-08-06-79.
URL http://dx.doi.org/10.22331/q-2018-08-06-79

[2] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends, R. Biswas, S. Boixo, F. G. S.
L. Brandao, D. A. Buell, et al., Quantum supremacy using a programmable superconducting processor,
Nature 574 (7779) (2019) 505–510. doi:10.1038/s41586-019-1666-5.
URL http://doi.org/10.1038/s41586-019-1666-5

[3] H.-S. Zhong, H. Wang, Y.-H. Deng, M.-C. Chen, L.-C. Peng, Y.-H. Luo, J. Qin, D. Wu, X. Ding, Y. Hu,
et al., Quantum computational advantage using photons, Science 370 (6523) (2020) 1460–1463.

[4] M. Cerezo, A. Arrasmith, R. Babbush, S. C. Benjamin, S. Endo, K. Fujii, J. R. McClean, K. Mitarai,
X. Yuan, L. Cincio, et al., Variational quantum algorithms, Nature Reviews Physics 3 (2021) 625–644.

[5] K. Bharti, A. Cervera-Lierta, T. H. Kyaw, T. Haug, S. Alperin-Lea, A. Anand, M. Degroote, H. Heimonen,
J. S. Kottmann, T. Menke, et al., Noisy intermediate-scale quantum (NISQ) algorithms, arXiv preprint
arXiv:2101.08448 (2021).

[6] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, S. Lloyd, Quantum machine learning, Nature
549 (7671) (2017) 195–202.

[7] M. Schuld, F. Petruccione, Supervised learning with quantum computers, Vol. 17, Springer, 2018.
[8] A. Pérez-Salinas, J. Cruz-Martinez, A. A. Alhajri, S. Carrazza, Determining the proton content with a

quantum computer, Physical Review D 103 (3) (Feb 2021). doi:10.1103/physrevd.103.034027.
URL http://dx.doi.org/10.1103/PhysRevD.103.034027

[9] C. Bravo-Prieto, J. Baglio, M. Cè, A. Francis, D. M. Grabowska, S. Carrazza, Style-based quantum generative
adversarial networks for Monte Carlo events (2021). arXiv:2110.06933.

[10] Google Research, Google AI Quantum (2017).
URL https://research.google/teams/applied-science/quantum/

[11] IBM Research, IBM Quantum Experience (2016).
URL https://www.ibm.com/quantum-computing/

[12] Rigetti, Rigetti Computing (2017).
URL https://www.rigetti.com/

[13] Intel Corporation, Intel Quantum Computing (2017).
URL https://www.intel.com/content/www/us/en/research/quantum-computing.html

[14] D-Wave Systems, The Quantum Computing Company (2011).
URL https://www.dwavesys.com/

[15] D-Wave Systems, D-Wave Neal.
URL https://github.com/dwavesystems/dwave-neal

[16] F. A. et al., Quantum supremacy using a programmable superconducting processor, Nature 574 (2019) pp.
505–510. doi:10.1038/s41586-019-1666-5.

[17] S. Boixo, S. V. Isakov, V. N. Smelyanskiy, H. Neven, Simulation of low-depth quantum circuits as complex
undirected graphical models (2017). arXiv:1712.05384.

[18] J. Chen, et al., Classical simulation of intermediate-size quantum circuits (2018). arXiv:1805.01450.
[19] E. Bernstein, U. Vazirani, Quantum complexity theory, SIAM Journal on Computing 26 (5) (1997) 1411–

1473. arXiv:https://doi.org/10.1137/S0097539796300921, doi:10.1137/S0097539796300921.
URL https://doi.org/10.1137/S0097539796300921

[20] S. Aaronson, L. Chen, Complexity-theoretic foundations of quantum supremacy experiments, in: Proceedings
of the 32nd Computational Complexity Conference, CCC ’17, Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, Dagstuhl, DEU, 2017.

[21] I. L. Markov, A. Fatima, S. V. Isakov, S. Boixo, Quantum supremacy is both closer and farther than it
appears, arXiv preprint arXiv:1807.10749 (2018).

[22] S. Efthymiou, S. Ramos-Calderer, C. Bravo-Prieto, A. Pérez-Salinas, D. Garćıa-Mart́ın, A. Garcia-Saez, J. I.
Latorre, S. Carrazza, Qibo: a framework for quantum simulation with hardware acceleration, Quantum
Science and Technology 7 (1) (2021) 015018. doi:10.1088/2058-9565/ac39f5.
URL https://doi.org/10.1088/2058-9565/ac39f5

[23] The Qibo team, qiboteam/qibo: Qibo. doi:10.5281/zenodo.3997194.
URL https://doi.org/10.5281/zenodo.3997194

[24] T. Oliphant, Guide to NumPy, 2006.
[25] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin,

S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur,
J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner,
I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden,

http://dx.doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79
http://dx.doi.org/10.22331/q-2018-08-06-79
http://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/s41586-019-1666-5
http://doi.org/10.1038/s41586-019-1666-5
http://dx.doi.org/10.1103/PhysRevD.103.034027
http://dx.doi.org/10.1103/PhysRevD.103.034027
https://doi.org/10.1103/physrevd.103.034027
http://dx.doi.org/10.1103/PhysRevD.103.034027
http://arxiv.org/abs/2110.06933
https://research.google/teams/applied-science/quantum/
https://research.google/teams/applied-science/quantum/
https://www.ibm.com/quantum-computing/
https://www.ibm.com/quantum-computing/
https://www.rigetti.com/
https://www.rigetti.com/
https://www.intel.com/content/www/us/en/research/quantum-computing.html
https://www.intel.com/content/www/us/en/research/quantum-computing.html
https://www.dwavesys.com/
https://www.dwavesys.com/
https://github.com/dwavesystems/dwave-neal
https://github.com/dwavesystems/dwave-neal
https://doi.org/10.1038/s41586-019-1666-5
http://arxiv.org/abs/1712.05384
http://arxiv.org/abs/1805.01450
https://doi.org/10.1137/S0097539796300921
http://arxiv.org/abs/https://doi.org/10.1137/S0097539796300921
https://doi.org/10.1137/S0097539796300921
https://doi.org/10.1137/S0097539796300921
https://doi.org/10.1088/2058-9565/ac39f5
https://doi.org/10.1088/2058-9565/ac39f5
https://doi.org/10.1088/2058-9565/ac39f5
https://doi.org/10.5281/zenodo.3997194
https://doi.org/10.5281/zenodo.3997194
https://doi.org/10.5281/zenodo.3997194


M. Wattenberg, M. Wicke, Y. Yu, X. Zheng, TensorFlow: Large-scale machine learning on heterogeneous
systems, software available from tensorflow.org (2015).
URL https://www.tensorflow.org/

[26] S. Efthymiou, S. Carrazza, qiboteam/qibojit: qibojit. doi:10.5281/zenodo.5071354.
URL https://doi.org/10.5281/zenodo.5071354

[27] S. K. Lam, A. Pitrou, S. Seibert, Numba: A llvm-based python jit compiler, in: Proceedings of the Second
Workshop on the LLVM Compiler Infrastructure in HPC, 2015, pp. 1–6.

[28] The OpenMP development team, OpenMP website.
URL https://www.openmp.org/

[29] R. Okuta, Y. Unno, D. Nishino, S. Hido, C. Loomis, CuPy: A NumPy-compatible library for NVIDIA GPU
calculations, in: Proceedings of Workshop on Machine Learning Systems (LearningSys) in The Thirty-first
Annual Conference on Neural Information Processing Systems (NIPS), 2017.
URL http://learningsys.org/nips17/assets/papers/paper_16.pdf

[30] NVIDIA, cuQuantum SDK (2021).
URL https://developer.nvidia.com/cuquantum-sdk

[31] S. Efthymiou, M. Lazzarin, A. Pasquale, S. Carrazza, Quantum simulation with just-in-time compilation (3
2022). arXiv:2203.08826.

[32] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson,
W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J.
Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, İ. Polat, Y. Feng, E. W. Moore, J. VanderPlas,
D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H.
Ribeiro, F. Pedregosa, P. van Mulbregt, SciPy 1.0 Contributors, SciPy 1.0: Fundamental algorithms for
scientific computing in Python, Nature Methods 17 (2020) 261–272. doi:10.1038/s41592-019-0686-2.

[33] N. Hansen, yoshihikoueno, ARF1, K. Nozawa, M. Chan, Y. Akimoto, D. Brockhoff, Cma-es/pycma (Jun.
2021). doi:10.5281/zenodo.5002422.
URL https://doi.org/10.5281/zenodo.5002422

[34] A. Pérez-Salinas, A. Cervera-Lierta, E. Gil-Fuster, J. I. Latorre, Data re-uploading for a universal quantum
classifier, Quantum 4 (2020) 226. doi:10.22331/q-2020-02-06-226.
URL http://dx.doi.org/10.22331/q-2020-02-06-226

[35] S. Paeckel, et al., Time-evolution methods for matrix-product states, Annals of Physics 411 (2019) pp. 167998.
doi:10.1016/j.aop.2019.167998.

[36] E. Farhi, J. Goldstone, S. Gutmann, M. Sipser, Quantum computation by adiabatic evolution (2000).
arXiv:quant-ph/0001106.

[37] A. Garcia-Saez, J. I. Latorre, Addressing hard classical problems with adiabatically assisted variational
quantum eigensolvers (2018). arXiv:1806.02287.

[38] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm (2014). arXiv:

1411.4028.
[39] A. B. Magann, K. M. Rudinger, M. D. Grace, M. Sarovar, Feedback-based quantum optimization (2021).

arXiv:2103.08619.

https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://doi.org/10.5281/zenodo.5071354
https://doi.org/10.5281/zenodo.5071354
https://doi.org/10.5281/zenodo.5071354
https://www.openmp.org/
https://www.openmp.org/
http://learningsys.org/nips17/assets/papers/paper_16.pdf
http://learningsys.org/nips17/assets/papers/paper_16.pdf
http://learningsys.org/nips17/assets/papers/paper_16.pdf
https://developer.nvidia.com/cuquantum-sdk
https://developer.nvidia.com/cuquantum-sdk
http://arxiv.org/abs/2203.08826
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.5281/zenodo.5002422
https://doi.org/10.5281/zenodo.5002422
https://doi.org/10.5281/zenodo.5002422
http://dx.doi.org/10.22331/q-2020-02-06-226
http://dx.doi.org/10.22331/q-2020-02-06-226
https://doi.org/10.22331/q-2020-02-06-226
http://dx.doi.org/10.22331/q-2020-02-06-226
https://doi.org/10.1016/j.aop.2019.167998
http://arxiv.org/abs/quant-ph/0001106
http://arxiv.org/abs/1806.02287
http://arxiv.org/abs/1411.4028
http://arxiv.org/abs/1411.4028
http://arxiv.org/abs/2103.08619

