Microbial contamination of water represents a great threat to the public health that has attracted worldwide attention. In this work, polypyrrole magnetic nanoparticles (Fe3O4@PPy NPs) with sterilization properties were fabricated. More specifically, the Fe3O4@PPy NPs obtained via aqueous dispersion polymerization and an in situ chemical oxidative polymerization exhibited a cationic surface and high photothermal conversion efficiency. More than 50% of bacteria adsorption can be achieved at a dosage of 100 μg/mL Fe3O4@PPy NPs under magnetic field, and high photothermal sterilization efficacy (~100%) can be obtained upon NIR exposure at the same dosage for 10 min. Noteworthy, the Fe3O4@PPy NPs can be recycled by magnetism and reused without affecting their photothermal sterilization capability. This study clearly provides experimental evidence of the great potential of Fe3O4@PPy NPs as stable and reusable nanocomposite materials for bacteria adsorption and photothermal sterilization performance. The application of Fe3O4@PPy NPs can realize enviromental-friendly bacterial contaminated water treatment as well as provide stratgies for synergistical antibacterial materials design.

Magnetism and NIR dual-response polypyrrole-coated Fe3O4 nanoparticles for bacteria removal and inactivation / N. Guo, F. Cang, Z. Wang, T.-. Zhao, X.-. Song, S. Farris, Y.-. Li, Y.-. Fu. - In: MATERIALS SCIENCE AND ENGINEERING. C, BIOMIMETIC MATERIALS, SENSORS AND SYSTEMS. - ISSN 0928-4931. - 126(2021), pp. 112143.1-112143.11. [10.1016/j.msec.2021.112143]

Magnetism and NIR dual-response polypyrrole-coated Fe3O4 nanoparticles for bacteria removal and inactivation

S. Farris;
2021

Abstract

Microbial contamination of water represents a great threat to the public health that has attracted worldwide attention. In this work, polypyrrole magnetic nanoparticles (Fe3O4@PPy NPs) with sterilization properties were fabricated. More specifically, the Fe3O4@PPy NPs obtained via aqueous dispersion polymerization and an in situ chemical oxidative polymerization exhibited a cationic surface and high photothermal conversion efficiency. More than 50% of bacteria adsorption can be achieved at a dosage of 100 μg/mL Fe3O4@PPy NPs under magnetic field, and high photothermal sterilization efficacy (~100%) can be obtained upon NIR exposure at the same dosage for 10 min. Noteworthy, the Fe3O4@PPy NPs can be recycled by magnetism and reused without affecting their photothermal sterilization capability. This study clearly provides experimental evidence of the great potential of Fe3O4@PPy NPs as stable and reusable nanocomposite materials for bacteria adsorption and photothermal sterilization performance. The application of Fe3O4@PPy NPs can realize enviromental-friendly bacterial contaminated water treatment as well as provide stratgies for synergistical antibacterial materials design.
Polypyrrole magnetic nanoparticle; Cationic polymers; Pathogens bacteria; Bacteria adsorbent; Photothermal sterilization
Settore AGR/15 - Scienze e Tecnologie Alimentari
2021
Article (author)
File in questo prodotto:
File Dimensione Formato  
Pre-print.pdf

accesso aperto

Tipologia: Pre-print (manoscritto inviato all'editore)
Dimensione 1.81 MB
Formato Adobe PDF
1.81 MB Adobe PDF Visualizza/Apri
1-s2.0-S0928493121002824-main.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 3.51 MB
Formato Adobe PDF
3.51 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/852587
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 14
social impact