The microbiota associated with the rhizosphere is responsible for crucial processes. Understanding how the plant and its bacterial community interact is of great importance to face the upcoming agricultural and viticultural challenges. The composition of the bacterial communities associated with the rhizosphere of grapevines is the result of the interaction between many drivers: biogeography, edaphic factors, soil management and plant genotype. The experimental design of this study aimed to reduce the variability resulting from all factors except the genotype of the rootstock. This was made possible by investigating four ungrafted grapevine rootstock varieties of the same age, grown on the same soil under the same climatic conditions and managed identically. The bacterial communities associated with the rhizosphere of the rootstocks 1103 Paulsen, 140 Ruggeri, 161-49 Couderc and Kober 5BB were characterized with the amplicon based sequencing technique, targeting regions V4–V5 of 16S rRNA gene. Linear discriminant analysis effect Size (LEfSe) analysis was performed to determine differential abundant taxa. The four rootstocks showed similarities concerning the structure of the bacteria assemblage (richness and evenness). Nonetheless, differences were detected in the composition of the bacterial communities. Indeed, all investigated rootstocks recruited communities with distinguishable traits, thus confirming the role of rootstock genotype as driver of the bacteria composition.

Rootstocks shape their microbiome—bacterial communities in the rhizosphere of different grapevine rootstocks / L. Dries, S. Bussotti, C.M. Pozzi, R. Kunz, S. Schnell, O. Löhnertz, A. Vortkamp. - In: MICROORGANISMS. - ISSN 2076-2607. - 9(2021 Apr), pp. 822.1-822.12.

Rootstocks shape their microbiome—bacterial communities in the rhizosphere of different grapevine rootstocks

C.M. Pozzi;
2021

Abstract

The microbiota associated with the rhizosphere is responsible for crucial processes. Understanding how the plant and its bacterial community interact is of great importance to face the upcoming agricultural and viticultural challenges. The composition of the bacterial communities associated with the rhizosphere of grapevines is the result of the interaction between many drivers: biogeography, edaphic factors, soil management and plant genotype. The experimental design of this study aimed to reduce the variability resulting from all factors except the genotype of the rootstock. This was made possible by investigating four ungrafted grapevine rootstock varieties of the same age, grown on the same soil under the same climatic conditions and managed identically. The bacterial communities associated with the rhizosphere of the rootstocks 1103 Paulsen, 140 Ruggeri, 161-49 Couderc and Kober 5BB were characterized with the amplicon based sequencing technique, targeting regions V4–V5 of 16S rRNA gene. Linear discriminant analysis effect Size (LEfSe) analysis was performed to determine differential abundant taxa. The four rootstocks showed similarities concerning the structure of the bacteria assemblage (richness and evenness). Nonetheless, differences were detected in the composition of the bacterial communities. Indeed, all investigated rootstocks recruited communities with distinguishable traits, thus confirming the role of rootstock genotype as driver of the bacteria composition.
viticulture; metabarcode sequencing; microbiota; soil; vineyard soil
Settore AGR/07 - Genetica Agraria
apr-2021
Article (author)
File in questo prodotto:
File Dimensione Formato  
Rootstocks Shape Their Microbiome—Bacterial Communities in the Rhizosphere of Different Grapevine Rootstocks.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 4.66 MB
Formato Adobe PDF
4.66 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/835061
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 18
social impact