The nature of bosonic excitations in disordered materials has remained elusive due to the difficulties in defining key concepts such as quasi-particles in the presence of disorder. We report on an experimental observation of phonon-polaritons in glasses, including a prominent boson peak (BP), i.e., excess of THz modes over the Debye law. A theoretical framework based on the concept of diffusons is developed to describe the broadening linewidth of the polariton due to disorder-induced scattering. It is shown here for the first time that the BP frequency and the Ioffe-Regel (IR) crossover frequency of the polariton collapse onto the same power-law decay with the diffusivity of the bosonic excitation. This analysis dismisses the hypothesis of the BP being caused by a relic of the van Hove singularity. The presented framework establishes a new methodology to analyze bosonic excitations in amorphous media, well beyond the traditional case of acoustic phonons, and establishes the IR crossover as the fundamental physical mechanism behind the BP.

Physics of Phonon-Polaritons in Amorphous Materials / L. Casella, M. Baggioli, T. Mori, A. Zaccone. - In: THE JOURNAL OF CHEMICAL PHYSICS. - ISSN 0021-9606. - 154:1(2021), pp. 014501.1-014501.11. [10.1063/5.0033371]

Physics of Phonon-Polaritons in Amorphous Materials

A. Zaccone
Ultimo
Investigation
2021

Abstract

The nature of bosonic excitations in disordered materials has remained elusive due to the difficulties in defining key concepts such as quasi-particles in the presence of disorder. We report on an experimental observation of phonon-polaritons in glasses, including a prominent boson peak (BP), i.e., excess of THz modes over the Debye law. A theoretical framework based on the concept of diffusons is developed to describe the broadening linewidth of the polariton due to disorder-induced scattering. It is shown here for the first time that the BP frequency and the Ioffe-Regel (IR) crossover frequency of the polariton collapse onto the same power-law decay with the diffusivity of the bosonic excitation. This analysis dismisses the hypothesis of the BP being caused by a relic of the van Hove singularity. The presented framework establishes a new methodology to analyze bosonic excitations in amorphous media, well beyond the traditional case of acoustic phonons, and establishes the IR crossover as the fundamental physical mechanism behind the BP.
Time-domain spectroscopy; boson peak; thermal-conductivity; scattering
Settore FIS/02 - Fisica Teorica, Modelli e Metodi Matematici
Settore FIS/03 - Fisica della Materia
2021
Article (author)
File in questo prodotto:
File Dimensione Formato  
JCP20-AR-04106.pdf

accesso aperto

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 2.38 MB
Formato Adobe PDF
2.38 MB Adobe PDF Visualizza/Apri
5.0033371.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 3.9 MB
Formato Adobe PDF
3.9 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/802450
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact