The development of methods for quantifying meltwater from glaciated areas is very important for better management of water resources and because of the strong impact of current and expected climate change on the Alpine cryosphere. Radiative fluxes are the main melt-drivers, but they can generally not be derived from in situ measures because glaciers are usually located in remote areas where the number of meteorological stations is very low. For this reason, focusing, as a case study, on one of the few glaciers with a supraglacial automatic weather station (Forni Glacier), we investigated methods based on both satellite records and off-glacier surface observations to estimate incoming short- and long-wave radiation at the glacier surface (SWin and LWin). Specifically, for SWin, we considered CM SAF SARAH satellite gridded surface solar irradiance fields and data modeled by cloud transmissivity parametrized from both CM SAF COMET satellite cloud fractional cover fields and daily temperature range observed at the closest off-glacier station. We then used the latter two data sources to derive LWin too. Finally, we used the estimated SWin and LWin records to assess the errors obtained when introducing estimated rather than measured incoming radiation data to quantify glacier melting by means of an energy balance model. Our results suggest that estimated SWin and LWin records derived from satellite measures are in better agreement with in situ observations than estimated SWin and LWin records parametrized from observations performed at the closest off-glacier station. Moreover, we find that the former estimated records permit a significantly better quantification of glacier melting than the latter estimated ones.

Comparing Measured Incoming Shortwave and Longwave Radiation on a Glacier Surface with Estimated Records from Satellite and Off-Glacier Observations: A Case Study for the Forni Glacier, Italy / A. Senese, V. Manara, M. Maugeri, G.A. Diolaiuti. - In: REMOTE SENSING. - ISSN 2072-4292. - 12:22(2020 Nov 12), pp. 3719.1-3719.18. [10.3390/rs12223719]

Comparing Measured Incoming Shortwave and Longwave Radiation on a Glacier Surface with Estimated Records from Satellite and Off-Glacier Observations: A Case Study for the Forni Glacier, Italy

A. Senese
Primo
;
V. Manara
Secondo
;
M. Maugeri
Penultimo
;
G.A. Diolaiuti
Ultimo
2020

Abstract

The development of methods for quantifying meltwater from glaciated areas is very important for better management of water resources and because of the strong impact of current and expected climate change on the Alpine cryosphere. Radiative fluxes are the main melt-drivers, but they can generally not be derived from in situ measures because glaciers are usually located in remote areas where the number of meteorological stations is very low. For this reason, focusing, as a case study, on one of the few glaciers with a supraglacial automatic weather station (Forni Glacier), we investigated methods based on both satellite records and off-glacier surface observations to estimate incoming short- and long-wave radiation at the glacier surface (SWin and LWin). Specifically, for SWin, we considered CM SAF SARAH satellite gridded surface solar irradiance fields and data modeled by cloud transmissivity parametrized from both CM SAF COMET satellite cloud fractional cover fields and daily temperature range observed at the closest off-glacier station. We then used the latter two data sources to derive LWin too. Finally, we used the estimated SWin and LWin records to assess the errors obtained when introducing estimated rather than measured incoming radiation data to quantify glacier melting by means of an energy balance model. Our results suggest that estimated SWin and LWin records derived from satellite measures are in better agreement with in situ observations than estimated SWin and LWin records parametrized from observations performed at the closest off-glacier station. Moreover, we find that the former estimated records permit a significantly better quantification of glacier melting than the latter estimated ones.
radiative fluxes; cloud fractional cover; daily temperature range; satellite data; SARAH; COMET; AWS1-Forni station; Forni Glacier;
Settore GEO/04 - Geografia Fisica e Geomorfologia
Settore FIS/06 - Fisica per il Sistema Terra e Il Mezzo Circumterrestre
   Interdisciplinary Project for assessing current and expected climate change impacts on mountain pastures (IPCC MOUPA)
   IPCC MOUPA
   FONDAZIONE CARIPLO
   2017-1176
12-nov-2020
Article (author)
File in questo prodotto:
File Dimensione Formato  
Senese_et_al_2020_REMOTESENS-compresso.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Publisher's version/PDF
Dimensione 341.27 kB
Formato Adobe PDF
341.27 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/794224
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact