We study possible systematic effects on the values of the cosmological parameters measured through strong lensing analyses of the Hubble Frontier Field galaxy cluster MACS J1149.5+2223. We use the observed positions of a large set of spectroscopically selected multiple images, including those of supernova "Refsdal"with their published time delays. Starting from our reference model in a flat ΛCDM cosmology, published in Grillo et al. (2018), we confirm the relevance of the longest measurable time delay, between SX and S1, and an approximately linear relation between its value and that of H 0. We perform true blind tests by considering a range of time delays around its original estimate of 345 ± 10 days, as an accurate measurement of this time delay is still not known at the time of analysis and writing. We investigate separately the impact of a constant sheet of mass at the cluster redshift, of a power-law profile for the mass density of the cluster main halo and of some scatter in the cluster member scaling relations. Remarkably, we find that these systematic effects do not introduce a significant bias on the inferred values of H 0 and Ωm and that the statistical uncertainties dominate the total error budget: a 3% uncertainty on the time delay of image SX translates into approximately 6% and 40% (including both statistical and systematic 1σ) uncertainties for H 0 and Ωm, respectively. Furthermore, our model accurately reproduces the extended surface brightness distribution of the supernova host. We also present the interesting possibility of measuring the value of the equation-of-state parameter w of the dark energy density, currently with a 30% uncertainty.

On the Accuracy of Time-delay Cosmography in the Frontier Fields Cluster MACS J1149.5+2223 with Supernova Refsdal / C. Grillo, P. Rosati, S.H. Suyu, G.B. Caminha, A. Mercurio, A. Halkola. - In: THE ASTROPHYSICAL JOURNAL. - ISSN 0004-637X. - 898:1(2020), pp. 87.1-87.8.

On the Accuracy of Time-delay Cosmography in the Frontier Fields Cluster MACS J1149.5+2223 with Supernova Refsdal

C. Grillo;
2020

Abstract

We study possible systematic effects on the values of the cosmological parameters measured through strong lensing analyses of the Hubble Frontier Field galaxy cluster MACS J1149.5+2223. We use the observed positions of a large set of spectroscopically selected multiple images, including those of supernova "Refsdal"with their published time delays. Starting from our reference model in a flat ΛCDM cosmology, published in Grillo et al. (2018), we confirm the relevance of the longest measurable time delay, between SX and S1, and an approximately linear relation between its value and that of H 0. We perform true blind tests by considering a range of time delays around its original estimate of 345 ± 10 days, as an accurate measurement of this time delay is still not known at the time of analysis and writing. We investigate separately the impact of a constant sheet of mass at the cluster redshift, of a power-law profile for the mass density of the cluster main halo and of some scatter in the cluster member scaling relations. Remarkably, we find that these systematic effects do not introduce a significant bias on the inferred values of H 0 and Ωm and that the statistical uncertainties dominate the total error budget: a 3% uncertainty on the time delay of image SX translates into approximately 6% and 40% (including both statistical and systematic 1σ) uncertainties for H 0 and Ωm, respectively. Furthermore, our model accurately reproduces the extended surface brightness distribution of the supernova host. We also present the interesting possibility of measuring the value of the equation-of-state parameter w of the dark energy density, currently with a 30% uncertainty.
Strong gravitational lensing; Cosmological parameters; Dark matter; Dark energy; Galaxy clusters; Hubble constant
Settore FIS/05 - Astronomia e Astrofisica
2020
Article (author)
File in questo prodotto:
File Dimensione Formato  
2001.02232-2.pdf

accesso aperto

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 565.96 kB
Formato Adobe PDF
565.96 kB Adobe PDF Visualizza/Apri
Grillo_2020_ApJ_898_87.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 828.03 kB
Formato Adobe PDF
828.03 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/790179
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 39
  • ???jsp.display-item.citation.isi??? 30
social impact