Leishmaniases are severe vector-borne diseases affecting humans and animals, caused by Leishmania protozoans. Over 350 million people and millions of dogs are at risk of infection. Immune polarization plays a major role in determining the outcome of Leishmania infections: hosts displaying M1-polarized macrophages are protected, while those biased on the M2 side acquire a chronic infection that could develop into a potentially deadly disease. The identification of the factors involved in M1 polarization is essential for the design of therapeutic and prophylactic interventions, including vaccines. Infection by the filarial nematode Dirofilaria immitis could be one of the factors that interfere with leishmaniasis in dogs. Indeed, filarial nematodes induce a partial skew of the immune response towards M1, likely caused by their bacterial endosymbionts, Wolbachia. Here we have examined the potential of AsaiaWSP, a bacterium engineered for the expression of the Wolbachia surface protein (WSP), as an inductor of M1 macrophage activation and Leishmania killing. Macrophages stimulated with AsaiaWSP displayed a strong leishmanicidal activity, comparable to that determined by the choice-drug amphotericin B. Additionally, AsaiaWSP determined the expression of markers of classical macrophage activation, including M1 cytokines, ROS and NO, and an increase in phagocytosis activity. Asaia not expressing WSP also induced macrophage activation, although at a lower extent compared to AsaiaWSP. In summary, the results of the present study confirm the immunostimulating properties of WSP highlighting a potential therapeutic efficacy against Leishmania parasites. Furthermore, Asaia was designed as a delivery system for WSP, thus developing a novel type of immunomodulating agent, worthy of being investigated for immuno-prophylaxis and -therapy of leishmaniases and other diseases that could be subverted by M1 macrophage activation.

Boosting immunity to treat parasitic infections: Asaia bacteria expressing a protein from Wolbachia determine M1 macrophage activation and killing of Leishmania protozoans / I. Varotto-Boccazzi, S. Epis, I. Arnoldi, Y. Corbett, P. Gabrieli, M. Paroni, R. Nodari, N. Basilico, L. Sacchi, M. Gramiccia, L. Gradoni, V. Tranquillo, C. Bandi. - In: PHARMACOLOGICAL RESEARCH. - ISSN 1043-6618. - (2020), pp. 105288.1-105288.12. [Epub ahead of print] [10.1016/j.phrs.2020.105288]

Boosting immunity to treat parasitic infections: Asaia bacteria expressing a protein from Wolbachia determine M1 macrophage activation and killing of Leishmania protozoans

I. Varotto-Boccazzi
Primo
;
S. Epis
Secondo
;
Y. Corbett;P. Gabrieli;M. Paroni;R. Nodari;N. Basilico;C. Bandi
Ultimo
2020

Abstract

Leishmaniases are severe vector-borne diseases affecting humans and animals, caused by Leishmania protozoans. Over 350 million people and millions of dogs are at risk of infection. Immune polarization plays a major role in determining the outcome of Leishmania infections: hosts displaying M1-polarized macrophages are protected, while those biased on the M2 side acquire a chronic infection that could develop into a potentially deadly disease. The identification of the factors involved in M1 polarization is essential for the design of therapeutic and prophylactic interventions, including vaccines. Infection by the filarial nematode Dirofilaria immitis could be one of the factors that interfere with leishmaniasis in dogs. Indeed, filarial nematodes induce a partial skew of the immune response towards M1, likely caused by their bacterial endosymbionts, Wolbachia. Here we have examined the potential of AsaiaWSP, a bacterium engineered for the expression of the Wolbachia surface protein (WSP), as an inductor of M1 macrophage activation and Leishmania killing. Macrophages stimulated with AsaiaWSP displayed a strong leishmanicidal activity, comparable to that determined by the choice-drug amphotericin B. Additionally, AsaiaWSP determined the expression of markers of classical macrophage activation, including M1 cytokines, ROS and NO, and an increase in phagocytosis activity. Asaia not expressing WSP also induced macrophage activation, although at a lower extent compared to AsaiaWSP. In summary, the results of the present study confirm the immunostimulating properties of WSP highlighting a potential therapeutic efficacy against Leishmania parasites. Furthermore, Asaia was designed as a delivery system for WSP, thus developing a novel type of immunomodulating agent, worthy of being investigated for immuno-prophylaxis and -therapy of leishmaniases and other diseases that could be subverted by M1 macrophage activation.
Filarial nematodes; Innate immunity; Symbionts; Vaccine vehicles
Settore VET/06 - Parassitologia e Malattie Parassitarie degli Animali
   Il batterio chimerico Asaia-WSP, nuovo agente immunostimolante, per la prevenzione vaccinale e la terapia della leishmaniosi viscerale
   FONDAZIONE CARIPLO
   2017-1656
2020
4-nov-2020
Article (author)
File in questo prodotto:
File Dimensione Formato  
Varotto-Boccazzi et al., 2020.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 4.91 MB
Formato Adobe PDF
4.91 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/789762
Citazioni
  • ???jsp.display-item.citation.pmc??? 10
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 13
social impact