Background: Bacterial and fungal infections are common and often contribute to death in patients undergoing extracorporeal membrane oxygenation (ECMO). Drug disposition is altered during ECMO, and adsorption in the circuit is an established causative factor. Vancomycin and voriconazole are widely used, despite the lack of evidence-based prescription guidelines. Objective: The objective of this study was to determine the extraction of voriconazole and vancomycin by the Xenios/Novalung ECMO circuits. Methods: We have set up nine closed-loop ECMO circuits, consisting of four different iLAActivve® kits for neonatal, pediatric, and adult support: three iLA-ActivveMiniLung® petite kits, two iLA-ActivveMiniLung® kits, two iLA-ActivveiLA® kits, and two iLA-Activve X-lung® kits. The circuits were primed with whole blood and maintained at physiologic conditions for 24h. Voriconazole and vancomycin were injected as a single-bolus age-related dose into the circuits. Pre-membrane (P2) blood samples were obtained at baseline and after drug injection at 2, 10, 30, 180, 360 min, and 24 h. A control sample at 2 min was collected for spontaneous drug degradation testing at 24 h. Results: Seventy-two samples were analyzed in triplicate. The mean percentage of drug recovery at 24 h was 20% for voriconazole and 62% for vancomycin. Conclusions: The extraction of voriconazole and vancomycin by contemporary ECMO circuits is clinically relevant across all age-related circuit sizes and may result in reduced drug exposure in vivo.

Sequestration of Voriconazole and Vancomycin Into Contemporary Extracorporeal Membrane Oxygenation Circuits: An in vitro Study / G. Raffaeli, G. Cavallaro, K. Allegaert, B.C.P. Koch, F. Mosca, D. Tibboel, E.D. Wildschut. - In: FRONTIERS IN PEDIATRICS. - ISSN 2296-2360. - 8:(2020 Aug 27), pp. 468.1-468.7. [10.3389/fped.2020.00468]

Sequestration of Voriconazole and Vancomycin Into Contemporary Extracorporeal Membrane Oxygenation Circuits: An in vitro Study

G. Raffaeli
Primo
Writing – Original Draft Preparation
;
F. Mosca
Supervision
;
2020

Abstract

Background: Bacterial and fungal infections are common and often contribute to death in patients undergoing extracorporeal membrane oxygenation (ECMO). Drug disposition is altered during ECMO, and adsorption in the circuit is an established causative factor. Vancomycin and voriconazole are widely used, despite the lack of evidence-based prescription guidelines. Objective: The objective of this study was to determine the extraction of voriconazole and vancomycin by the Xenios/Novalung ECMO circuits. Methods: We have set up nine closed-loop ECMO circuits, consisting of four different iLAActivve® kits for neonatal, pediatric, and adult support: three iLA-ActivveMiniLung® petite kits, two iLA-ActivveMiniLung® kits, two iLA-ActivveiLA® kits, and two iLA-Activve X-lung® kits. The circuits were primed with whole blood and maintained at physiologic conditions for 24h. Voriconazole and vancomycin were injected as a single-bolus age-related dose into the circuits. Pre-membrane (P2) blood samples were obtained at baseline and after drug injection at 2, 10, 30, 180, 360 min, and 24 h. A control sample at 2 min was collected for spontaneous drug degradation testing at 24 h. Results: Seventy-two samples were analyzed in triplicate. The mean percentage of drug recovery at 24 h was 20% for voriconazole and 62% for vancomycin. Conclusions: The extraction of voriconazole and vancomycin by contemporary ECMO circuits is clinically relevant across all age-related circuit sizes and may result in reduced drug exposure in vivo.
extracorporeal membrane oxygenation; pharmacokinetics; pharmacology; antibiotics; infection; antifungals; drug disposition
Settore MED/38 - Pediatria Generale e Specialistica
27-ago-2020
Article (author)
File in questo prodotto:
File Dimensione Formato  
fped-08-00468.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 445.39 kB
Formato Adobe PDF
445.39 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/772809
Citazioni
  • ???jsp.display-item.citation.pmc??? 11
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 13
social impact