Cannabis remains one of the most widely used illicit drugs during pregnancy. The main psychoactive component of marijuana (Δ9-tetrahydrocannabinol, THC) is correlated with untoward physiological effects in the offspring. Neurobehavioral and cognitive impairments have been reported in longitudinal studies on children and adolescents prenatally exposed to marijuana, and a link to psychiatric disorders has been proposed. Interestingly, the deleterious effects of prenatal cannabis use are similar to those observed in adult rats prenatally exposed to (L)-kynurenine, the direct bioprecursor of the neuroactive metabolite kynurenic acid (KYNA). We therefore investigated whether alterations in KYNA levels in the rat brain might play a role in the long-term consequences of prenatal cannabinoid exposure. Pregnant Wistar rats were treated daily with THC [5 mg/kg, p.o.] from gestational day (GD)5 through GD20. Using in vivo microdialysis in the medial prefrontal cortex, adult animals were then used to determine the extracellular levels of KYNA and glutamate. Compared to controls, extracellular basal KYNA levels were higher, and basal glutamate levels were lower, in prenatally THC-exposed rats. These rats also showed abnormal short-term memory. Following an additional acute challenge with a low dose of kynurenine (5 mg/kg i.p.) in adulthood, the increase in extracellular KYNA levels in the mPFC was more pronounced in in prenatally THC-exposed rats. These effects could be causally related to the cognitive dysfunction seen in prenatally THC-exposed rats. In the translational realm, these experiments raise the prospect of prevention of KYNA neosynthesis as a promising novel approach to combat some of the detrimental long-term effects of prenatal cannabis use.

Prenatal THC exposure raises kynurenic acid levels in the prefrontal cortex of adult rats / S. Beggiato, A. Ieraci, M.C. Tomasini, R. Schwarcz, L. Ferraro. - In: PROGRESS IN NEURO-PSYCHOPHARMACOLOGY & BIOLOGICAL PSYCHIATRY. - ISSN 0278-5846. - 100(2020 Jun 08).

Prenatal THC exposure raises kynurenic acid levels in the prefrontal cortex of adult rats

A. Ieraci
Secondo
;
2020

Abstract

Cannabis remains one of the most widely used illicit drugs during pregnancy. The main psychoactive component of marijuana (Δ9-tetrahydrocannabinol, THC) is correlated with untoward physiological effects in the offspring. Neurobehavioral and cognitive impairments have been reported in longitudinal studies on children and adolescents prenatally exposed to marijuana, and a link to psychiatric disorders has been proposed. Interestingly, the deleterious effects of prenatal cannabis use are similar to those observed in adult rats prenatally exposed to (L)-kynurenine, the direct bioprecursor of the neuroactive metabolite kynurenic acid (KYNA). We therefore investigated whether alterations in KYNA levels in the rat brain might play a role in the long-term consequences of prenatal cannabinoid exposure. Pregnant Wistar rats were treated daily with THC [5 mg/kg, p.o.] from gestational day (GD)5 through GD20. Using in vivo microdialysis in the medial prefrontal cortex, adult animals were then used to determine the extracellular levels of KYNA and glutamate. Compared to controls, extracellular basal KYNA levels were higher, and basal glutamate levels were lower, in prenatally THC-exposed rats. These rats also showed abnormal short-term memory. Following an additional acute challenge with a low dose of kynurenine (5 mg/kg i.p.) in adulthood, the increase in extracellular KYNA levels in the mPFC was more pronounced in in prenatally THC-exposed rats. These effects could be causally related to the cognitive dysfunction seen in prenatally THC-exposed rats. In the translational realm, these experiments raise the prospect of prevention of KYNA neosynthesis as a promising novel approach to combat some of the detrimental long-term effects of prenatal cannabis use.
Cognition; Kynurenic acid; Kynurenine; Prefrontal cortex; Prenatal; THC
Settore BIO/13 - Biologia Applicata
Settore BIO/14 - Farmacologia
Settore BIO/09 - Fisiologia
Settore BIO/10 - Biochimica
Settore BIO/11 - Biologia Molecolare
Settore BIO/12 - Biochimica Clinica e Biologia Molecolare Clinica
8-giu-2020
4-feb-2020
Article (author)
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0278584620300014-main.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 1.1 MB
Formato Adobe PDF
1.1 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/727376
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 16
social impact