Plagioclase peridotites are an important marker of the shallow geodynamic evolution of the lithospheric mantle at extensional settings. Based on lowpressure experiments, a recent study by Fumagalli et al. (2017) defined and calibrated a geobarometer for peridotitic bulk compositions, based on the Forsterite-Anorthite-Ca-Tschermak-Enstatite (FACE) pressure-sensitive equilibrium. The Suvero plagioclase-bearing peridotites, on which the FACE geobarometer was calibrated, are primarily associated to plagioclase pyroxenites. Assuming that the pyroxenites record the same Pressure-Temperature evolution than the plagioclase peridotites, they represent ideal candidates to test the applicability of the FACE geobarometer on pyroxenitic compositions. As documented in the plagioclase peridotites, the pyroxenites are characterized by the development of fine-grained neoblastic assemblages, indicative of partial recrystallization under plagioclase-facies conditions. Chemical zonations in these neoblastic mineral aggregates suggest equilibration stages at variable pressure and temperature and allowed to document two re-equilibration stages corresponding to the onset of plagioclase-facies recrystallization (830-850°C, 6.9-8.1±0.5 kbar) and a shallower colder re-equilibration (770-790°C, 5.8-5.9±0.5 kbar), respectively. The decompressional evolution reported for pyroxenitic bulk compositions is consistent with the exhumation history documented in the associated Suvero peridotite, although at slightly higher equilibrium pressures (~ 1 kbar). Remarkably, the much lower XCr in pyroxenites reflects in lower Cr incorporation in pyroxenes and, consequently, in significantly higher Ca-Tschermak activity in clinopyroxene that might introduce the systematic pressure overestimation by FACE geobarometer.

Plagioclase-facies thermobarometric evolution of the External Liguride pyroxenite-bearing mantle (Suvero, Italy) / V. Bash, G. Borghini, P. Fumagalli, E. Rampone, A. Gandolfo, C. Ferrando. - In: OFIOLITI. - ISSN 0391-2612. - 45:1(2020 Jan), pp. 1-11. [10.4454/ofioliti.v45i1.529]

Plagioclase-facies thermobarometric evolution of the External Liguride pyroxenite-bearing mantle (Suvero, Italy)

G. Borghini;P. Fumagalli;
2020

Abstract

Plagioclase peridotites are an important marker of the shallow geodynamic evolution of the lithospheric mantle at extensional settings. Based on lowpressure experiments, a recent study by Fumagalli et al. (2017) defined and calibrated a geobarometer for peridotitic bulk compositions, based on the Forsterite-Anorthite-Ca-Tschermak-Enstatite (FACE) pressure-sensitive equilibrium. The Suvero plagioclase-bearing peridotites, on which the FACE geobarometer was calibrated, are primarily associated to plagioclase pyroxenites. Assuming that the pyroxenites record the same Pressure-Temperature evolution than the plagioclase peridotites, they represent ideal candidates to test the applicability of the FACE geobarometer on pyroxenitic compositions. As documented in the plagioclase peridotites, the pyroxenites are characterized by the development of fine-grained neoblastic assemblages, indicative of partial recrystallization under plagioclase-facies conditions. Chemical zonations in these neoblastic mineral aggregates suggest equilibration stages at variable pressure and temperature and allowed to document two re-equilibration stages corresponding to the onset of plagioclase-facies recrystallization (830-850°C, 6.9-8.1±0.5 kbar) and a shallower colder re-equilibration (770-790°C, 5.8-5.9±0.5 kbar), respectively. The decompressional evolution reported for pyroxenitic bulk compositions is consistent with the exhumation history documented in the associated Suvero peridotite, although at slightly higher equilibrium pressures (~ 1 kbar). Remarkably, the much lower XCr in pyroxenites reflects in lower Cr incorporation in pyroxenes and, consequently, in significantly higher Ca-Tschermak activity in clinopyroxene that might introduce the systematic pressure overestimation by FACE geobarometer.
pyroxenites; plagioclase peridotite; veined mantle exhumation; geobarometer; extending lithosphere; Suvero; Northern Apennines; Italy
Settore GEO/07 - Petrologia e Petrografia
   Melt-rock reaction and melt migration in the MORB mantle through combined natural and experimental studies
   MINISTERO DELL'ISTRUZIONE E DEL MERITO
   2015C5LN35_002
gen-2020
Article (author)
File in questo prodotto:
File Dimensione Formato  
542-704-1-PB.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 5.29 MB
Formato Adobe PDF
5.29 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/709089
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact