The X-linked CDKL5 gene codes for a kinase whose mutations have been associated with a suite of neurodevelopmental disorders generally characterized by early-onset epileptic encephalopathy and severe intellectual disability. The impact of these mutations on CDKL5 functions and brain development remain mainly unknown, although the importance of maintaining the catalytic activity is generally recognized. Since no cure exists for CDKL5 disorders, the demand for innovative therapies is a real emergency. The recent discovery that CDKL5 is dosage sensitive poses concerns on conventional protein and gene augmentative therapies. Thus, RNA-based therapeutic approaches might be preferred. We studied the efficacy of read-through therapy on CDKL5 premature termination codons (PTCs) that correspond roughly to 15% of all mutations. Our results provide the first demonstration that all tested CDKL5 nonsense mutations are efficiently suppressed by aminoglycoside drugs. The functional characterization of the restored full-length CDKL5 reveals that read-through proteins fully recover their subcellular localization, but only partially rescue their catalytic activity. Since read-through can cause amino acid substitution, CDKL5 patients carrying the PTC outside the catalytic domain might benefit more from a nonsense suppression therapy. Eventually, we demonstrate that non-aminoglycoside drugs, such as Ataluren (PTC124) and GJ072, are unable to induce read-through activity on CDKL5 PTCs. Although these drugs might be more effective in vivo, these results question the validity of the Ataluren phase 2 clinical trial that is currently ongoing on CDKL5 patients.

Aminoglycoside drugs induce efficient read-through of CDKL5 nonsense mutations, slightly restoring its kinase activity / M. Fazzari, A. Frasca, F. Bifari, N. Landsberger. - In: RNA BIOLOGY. - ISSN 1547-6286. - 16:10(2019 Oct), pp. 1414-1423. [10.1080/15476286.2019.1632633]

Aminoglycoside drugs induce efficient read-through of CDKL5 nonsense mutations, slightly restoring its kinase activity

M. Fazzari
Primo
;
A. Frasca
Secondo
;
F. Bifari
Penultimo
;
N. Landsberger
Ultimo
2019

Abstract

The X-linked CDKL5 gene codes for a kinase whose mutations have been associated with a suite of neurodevelopmental disorders generally characterized by early-onset epileptic encephalopathy and severe intellectual disability. The impact of these mutations on CDKL5 functions and brain development remain mainly unknown, although the importance of maintaining the catalytic activity is generally recognized. Since no cure exists for CDKL5 disorders, the demand for innovative therapies is a real emergency. The recent discovery that CDKL5 is dosage sensitive poses concerns on conventional protein and gene augmentative therapies. Thus, RNA-based therapeutic approaches might be preferred. We studied the efficacy of read-through therapy on CDKL5 premature termination codons (PTCs) that correspond roughly to 15% of all mutations. Our results provide the first demonstration that all tested CDKL5 nonsense mutations are efficiently suppressed by aminoglycoside drugs. The functional characterization of the restored full-length CDKL5 reveals that read-through proteins fully recover their subcellular localization, but only partially rescue their catalytic activity. Since read-through can cause amino acid substitution, CDKL5 patients carrying the PTC outside the catalytic domain might benefit more from a nonsense suppression therapy. Eventually, we demonstrate that non-aminoglycoside drugs, such as Ataluren (PTC124) and GJ072, are unable to induce read-through activity on CDKL5 PTCs. Although these drugs might be more effective in vivo, these results question the validity of the Ataluren phase 2 clinical trial that is currently ongoing on CDKL5 patients.
aminoglycoside drugs; catalytic activity; CDKL5; encephalopathy; nonsense mutations; PTC; PTC124; read-through therapy; RNA-based therapy
Settore BIO/11 - Biologia Molecolare
   Dipartimenti di Eccellenza 2018-2022 - Dipartimento di FILOSOFIA
   MINISTERO DELL'ISTRUZIONE E DEL MERITO
ott-2019
Article (author)
File in questo prodotto:
File Dimensione Formato  
Aminoglycoside drugs induce efficient read through of CDKL5 nonsense mutations slightly restoring its kinase activity.pdf

accesso riservato

Descrizione: Aminoglycoside drugs induce efficient read through of CDKL5 nonsense mutations slightly restoring its kinase activity
Tipologia: Publisher's version/PDF
Dimensione 4.71 MB
Formato Adobe PDF
4.71 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/694489
Citazioni
  • ???jsp.display-item.citation.pmc??? 13
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 18
social impact