PURPOSE: To examine the degree of neuromuscular fatigue development along with changes in muscle metabolism during two work-matched high-intensity intermittent exercise protocols in trained individuals. METHODS: In a randomized, counter-balanced, crossover design, 11 endurance-trained men performed high-intensity intermittent cycle exercise protocols matched for total work and including either multiple short-duration (18 × 5 s; SS) or long-duration (6 × 20 s; LS) sprints. Neuromuscular fatigue was determined by preexercise to postexercise changes in maximal voluntary contraction force, voluntary activation level and contractile properties of the quadriceps muscle. Metabolites and pH were measured in vastus lateralis muscle biopsies taken before and after the first and last sprint of each exercise protocol. RESULTS: Peak power output (11% ± 2% vs 16% ± 8%, P < 0.01), maximal voluntary contraction (10% ± 5% vs 25% ± 6%, P < 0.05), and peak twitch force (34% ± 5% vs 67% ± 5%, P < 0.01) declined to a lesser extent in SS than LS, whereas voluntary activation level decreased similarly in SS and LS (10% ± 2% vs 11% ± 4%). Muscle [phosphocreatine] before the last sprint was 1.5-fold lower in SS than LS (P < 0.001). Preexercise to postexercise intramuscular accumulation of lactate and H was twofold and threefold lower, respectively, in SS than LS (P < 0.001), whereas muscle glycogen depletion was similar in SS and LS. Rate of muscle glycolysis was similar in SS and LS during the first sprint, but twofold higher in SS than LS during the last sprint (P < 0.05). CONCLUSIONS: These findings indicate that, in endurance-trained individuals, multiple long-sprints induce larger impairments in performance along with greater degrees of peripheral fatigue compared to work-matched multiple short-sprints, with these differences being possibly attributed to more extensive intramuscular accumulation of lactate/H and to lower rates of glycolysis during multiple long-sprint exercise.

Neuromuscular Fatigue and Metabolism during High-Intensity Intermittent Exercise / M. Fiorenza, M. Hostrup, T.P. Gunnarsson, Y. Shirai, F. Schena, F.M. Iaia, J. Bangsbo. - In: MEDICINE AND SCIENCE IN SPORTS AND EXERCISE. - ISSN 0195-9131. - 51:8(2019 Aug), pp. 1642-1652. [10.1249/MSS.0000000000001959]

Neuromuscular Fatigue and Metabolism during High-Intensity Intermittent Exercise

F. Schena;F.M. Iaia;
2019

Abstract

PURPOSE: To examine the degree of neuromuscular fatigue development along with changes in muscle metabolism during two work-matched high-intensity intermittent exercise protocols in trained individuals. METHODS: In a randomized, counter-balanced, crossover design, 11 endurance-trained men performed high-intensity intermittent cycle exercise protocols matched for total work and including either multiple short-duration (18 × 5 s; SS) or long-duration (6 × 20 s; LS) sprints. Neuromuscular fatigue was determined by preexercise to postexercise changes in maximal voluntary contraction force, voluntary activation level and contractile properties of the quadriceps muscle. Metabolites and pH were measured in vastus lateralis muscle biopsies taken before and after the first and last sprint of each exercise protocol. RESULTS: Peak power output (11% ± 2% vs 16% ± 8%, P < 0.01), maximal voluntary contraction (10% ± 5% vs 25% ± 6%, P < 0.05), and peak twitch force (34% ± 5% vs 67% ± 5%, P < 0.01) declined to a lesser extent in SS than LS, whereas voluntary activation level decreased similarly in SS and LS (10% ± 2% vs 11% ± 4%). Muscle [phosphocreatine] before the last sprint was 1.5-fold lower in SS than LS (P < 0.001). Preexercise to postexercise intramuscular accumulation of lactate and H was twofold and threefold lower, respectively, in SS than LS (P < 0.001), whereas muscle glycogen depletion was similar in SS and LS. Rate of muscle glycolysis was similar in SS and LS during the first sprint, but twofold higher in SS than LS during the last sprint (P < 0.05). CONCLUSIONS: These findings indicate that, in endurance-trained individuals, multiple long-sprints induce larger impairments in performance along with greater degrees of peripheral fatigue compared to work-matched multiple short-sprints, with these differences being possibly attributed to more extensive intramuscular accumulation of lactate/H and to lower rates of glycolysis during multiple long-sprint exercise.
all-out exercise; central fatigue; performance; peripheral fatigue; repeated sprints; sprint interval training (SIT)
Settore M-EDF/02 - Metodi e Didattiche delle Attivita' Sportive
ago-2019
Article (author)
File in questo prodotto:
File Dimensione Formato  
Neuromuscular_Fatigue_and_Metabolism_during.10.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 810.69 kB
Formato Adobe PDF
810.69 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/693197
Citazioni
  • ???jsp.display-item.citation.pmc??? 15
  • Scopus 39
  • ???jsp.display-item.citation.isi??? 40
social impact