Diclofenac sodium, a non-steroidal anti-inflammatory drug, is an emerging water pollutant that cannot be removed by conventional wastewater treatment plants. Combined processes based on hydrodynamic cavitation (sonolysis) and heterogeneous photocatalysis are highly promising for the degradation and mineralization of refractory drugs [1,2]. Nevertheless, the use of nanoparticles as photocatalyst is not suitable in real applications for environmental and health hazard [3] as well as for the complex photocatalyst retrieval at the end of the process. For this reasons, we studied the photocatalyzed degradation of Diclofenac Na using micrometric titanium dioxide photocatalyst (Kronos 1077, 0.1 g/L), both bare and decorated with silver. Moreover, the synergic effect of pulsed ultrasound was tested. Initial concentrations of diclofenac sodium in the 25-50 ppm range were tested. Tests were performed in a batch jacketed reactor. A UVA lamp set sideway irradiated the solution with a power of 30 W/m2 and an ultrasonic horn (20 kHz) sonicated the solution. HPLC-UV and HPLC-MS determined Diclofenac degradation and the main byproducts. A total organic carbon analyzer (TOC, Shimadzu) calculated the fraction of Diclofenac mineralized. An example of photodegradation run is reported in figure. A positive synergy coupling ultrasounds with photocatalysis is confirmed, mainly with the use of Ag nanoparticles-TiO2. We observed both a faster molecule degradation and its complete mineralization.

Ultrasound-enhanced photodegradation of Diclofenac Na / D. Meroni, C.L. Bianchi, C.F. Kait, D.C. Boffito, C. Pirola. ((Intervento presentato al 4. convegno Conference of the Asia-Oceania Sochemical Society tenutosi a Nanjing nel 2019.

Ultrasound-enhanced photodegradation of Diclofenac Na

D. Meroni
;
C.L. Bianchi;C. Pirola
2019

Abstract

Diclofenac sodium, a non-steroidal anti-inflammatory drug, is an emerging water pollutant that cannot be removed by conventional wastewater treatment plants. Combined processes based on hydrodynamic cavitation (sonolysis) and heterogeneous photocatalysis are highly promising for the degradation and mineralization of refractory drugs [1,2]. Nevertheless, the use of nanoparticles as photocatalyst is not suitable in real applications for environmental and health hazard [3] as well as for the complex photocatalyst retrieval at the end of the process. For this reasons, we studied the photocatalyzed degradation of Diclofenac Na using micrometric titanium dioxide photocatalyst (Kronos 1077, 0.1 g/L), both bare and decorated with silver. Moreover, the synergic effect of pulsed ultrasound was tested. Initial concentrations of diclofenac sodium in the 25-50 ppm range were tested. Tests were performed in a batch jacketed reactor. A UVA lamp set sideway irradiated the solution with a power of 30 W/m2 and an ultrasonic horn (20 kHz) sonicated the solution. HPLC-UV and HPLC-MS determined Diclofenac degradation and the main byproducts. A total organic carbon analyzer (TOC, Shimadzu) calculated the fraction of Diclofenac mineralized. An example of photodegradation run is reported in figure. A positive synergy coupling ultrasounds with photocatalysis is confirmed, mainly with the use of Ag nanoparticles-TiO2. We observed both a faster molecule degradation and its complete mineralization.
set-2019
Settore CHIM/02 - Chimica Fisica
Settore CHIM/04 - Chimica Industriale
Asia-Oceania Sochemical Society
Ultrasound-enhanced photodegradation of Diclofenac Na / D. Meroni, C.L. Bianchi, C.F. Kait, D.C. Boffito, C. Pirola. ((Intervento presentato al 4. convegno Conference of the Asia-Oceania Sochemical Society tenutosi a Nanjing nel 2019.
Conference Object
File in questo prodotto:
File Dimensione Formato  
Meroni_AOSS4_poster.pdf

accesso aperto

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 15.64 kB
Formato Adobe PDF
15.64 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/679506
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact