Hydrogen is considered one of the most promising energy vectors in order to match the current energy and environmental issues. Bioethanol steam reforming is a sound opportunity and close to the industrialization considering an integrated biorefinery concept. MgAl2O4 was selected as a stable support, with improved activity, selectivity and stability due to negligible acidity. Increasing the Ni loading from 1.5 to 10 wt% over MgAl2O4 improved the conversion of ethanol as well as the yield of hydrogen, while the carbon deposition and yield of byproducts decreased. Small acidity characterised the samples, attributed exclusively to the Ni active phase. This prevented extensive catalyst coking due to ethylene formation and subsequent polymerisation. Consequently, small coke amount was found on the spent catalysts, mainly amorphous, allowing rather easy regeneration. DRIFT analysis of adsorbed ethanol at variable temperature evidenced the intermediates of reaction and their evolution with temperature, allowing to suggest the main reaction paths. Acetaldehyde was found as intermediate, rapidly evolving to reformate. Among the possible evolution paths of acetaldehyde, the oxidation to acetate and carbonate species (likely stabilised by the support) was preferred with respect to decomposition to methane and CO. This is reflected in the products distribution evidenced through activity testing.

Steam reforming of ethanol over Ni/MgAl2O4 catalysts / A. Di Michele, A. Dell'Angelo, A. Tripodi, E. Bahadori, F. Sànchez, D. Motta, N. Dimitratos, I. Rossetti, G. Ramis. - In: INTERNATIONAL JOURNAL OF HYDROGEN ENERGY. - ISSN 0360-3199. - 44:2(2019 Jan 08), pp. 952-964. [10.1016/j.ijhydene.2018.11.048]

Steam reforming of ethanol over Ni/MgAl2O4 catalysts

A. Dell'Angelo
Secondo
;
A. Tripodi;E. Bahadori;N. Dimitratos;I. Rossetti
Penultimo
;
2019

Abstract

Hydrogen is considered one of the most promising energy vectors in order to match the current energy and environmental issues. Bioethanol steam reforming is a sound opportunity and close to the industrialization considering an integrated biorefinery concept. MgAl2O4 was selected as a stable support, with improved activity, selectivity and stability due to negligible acidity. Increasing the Ni loading from 1.5 to 10 wt% over MgAl2O4 improved the conversion of ethanol as well as the yield of hydrogen, while the carbon deposition and yield of byproducts decreased. Small acidity characterised the samples, attributed exclusively to the Ni active phase. This prevented extensive catalyst coking due to ethylene formation and subsequent polymerisation. Consequently, small coke amount was found on the spent catalysts, mainly amorphous, allowing rather easy regeneration. DRIFT analysis of adsorbed ethanol at variable temperature evidenced the intermediates of reaction and their evolution with temperature, allowing to suggest the main reaction paths. Acetaldehyde was found as intermediate, rapidly evolving to reformate. Among the possible evolution paths of acetaldehyde, the oxidation to acetate and carbonate species (likely stabilised by the support) was preferred with respect to decomposition to methane and CO. This is reflected in the products distribution evidenced through activity testing.
Bioethanol conversion to chemicals; Ethylene; Hydrogen; Ni catalysts; Steam reforming; Renewable Energy, Sustainability and the Environment; Fuel Technology; Condensed Matter Physics; Energy Engineering and Power Technology
Settore ING-IND/25 - Impianti Chimici
8-gen-2019
Article (author)
File in questo prodotto:
File Dimensione Formato  
Anna Cardiff_revised_2018-10-17_unmarked.pdf

Open Access dal 23/03/2021

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 2.03 MB
Formato Adobe PDF
2.03 MB Adobe PDF Visualizza/Apri
ESR_Ni-MgAl2O4_int J H2 en.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 2.81 MB
Formato Adobe PDF
2.81 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/618330
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 67
  • ???jsp.display-item.citation.isi??? 53
social impact