Synchrotron radiation reflectometry was used to access the transverse structure of model membranes under the action of the human sialidase NEU2, down to the Ångström length scale. Model membranes were designed to mimic the lipid composition of so-called Glycosphingolipids Enriched Microdomains (GEMs), which are membrane platforms specifically enriched in cholesterol and sphingolipids, and where also typical signalling molecules are hosted. Gangliosides, glycosphingolipids containing one or more sialic acid residues, are asymmetrically embedded in GEMs, in the outer membrane leaflet where gangliosides are claimed to interact directly with growth-factor receptors, modulating their activation and then the downstream intracellular signalling pathways. Thus, membrane dynamics and signalling could be strongly influenced by the activity of enzymes regulating the membrane ganglioside composition, including sialidases. Our results, concerning the structure of single membranes undergoing in-situ enzymatic digestion, show that the outcome of the sialidase action is not limited to the emergence of lower-sialylated ganglioside species. In fact, membrane reshaping occurs, involving a novel arrangement of the headgroups on its surface. Thus, sialidase activity reveals to be a potential tool to control dynamically the structural properties of the membrane external leaflet of living cells, influencing both the morphology of the close environment and the extent of interaction among active molecules belonging to signalling platforms.

Membrane restructuring following in situ sialidase digestion of gangliosides : complex model bilayers by synchrotron radiation reflectivity / V. Rondelli, P. Brocca, G. Fragneto, J. Daillant, C. Tringali, L. Cantù, E. Del Favero. - In: BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES. - ISSN 0005-2736. - 1859:5(2017 May 05), pp. 845-851.

Membrane restructuring following in situ sialidase digestion of gangliosides : complex model bilayers by synchrotron radiation reflectivity

V. Rondelli
Primo
;
P. Brocca
Secondo
;
C. Tringali;L. Cantù
Penultimo
;
E. Del Favero
Ultimo
2017

Abstract

Synchrotron radiation reflectometry was used to access the transverse structure of model membranes under the action of the human sialidase NEU2, down to the Ångström length scale. Model membranes were designed to mimic the lipid composition of so-called Glycosphingolipids Enriched Microdomains (GEMs), which are membrane platforms specifically enriched in cholesterol and sphingolipids, and where also typical signalling molecules are hosted. Gangliosides, glycosphingolipids containing one or more sialic acid residues, are asymmetrically embedded in GEMs, in the outer membrane leaflet where gangliosides are claimed to interact directly with growth-factor receptors, modulating their activation and then the downstream intracellular signalling pathways. Thus, membrane dynamics and signalling could be strongly influenced by the activity of enzymes regulating the membrane ganglioside composition, including sialidases. Our results, concerning the structure of single membranes undergoing in-situ enzymatic digestion, show that the outcome of the sialidase action is not limited to the emergence of lower-sialylated ganglioside species. In fact, membrane reshaping occurs, involving a novel arrangement of the headgroups on its surface. Thus, sialidase activity reveals to be a potential tool to control dynamically the structural properties of the membrane external leaflet of living cells, influencing both the morphology of the close environment and the extent of interaction among active molecules belonging to signalling platforms.
Gangliosides; NEU2; X-ray reflectometry; Single model membrane; Biomembrane; GEMs
Settore FIS/07 - Fisica Applicata(Beni Culturali, Ambientali, Biol.e Medicin)
5-mag-2017
Article (author)
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0005273617300123-main.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 1.22 MB
Formato Adobe PDF
1.22 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
V Manuscript second rev AIR.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Pre-print (manoscritto inviato all'editore)
Dimensione 888.13 kB
Formato Adobe PDF
888.13 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/502815
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact