The recruitment of bone marrow (BM)-derived progenitor cells to the lung is related to pulmonary remodelling and the pathogenesis of pulmonary hypertension (PH). Although sildenafil is a known target in PH treatment, the underlying molecular mechanism is still elusive. To test the hypothesis that the therapeutic effect of sildenafil is linked to the reduced recruitment of BM-derived progenitor cells, we induced pulmonary remodelling in rats by two-week exposure to chronic hypoxia (CH, 10% oxygen), a trigger of BM-derived progenitor cells. Rats were treated with either placebo (saline) or sildenafil (1.4 mg/kg/day ip) during CH. Control rats were kept in room air (21% oxygen) with no treatment. As expected, sildenafil attenuated the CH-induced increase in right ventricular systolic pressure and right ventricular hypertrophy. However, sildenafil suppressed the CH-induced increase in c-kit+ cells in the adventitia of pulmonary arteries. Moreover, sildenafil reduced the number of c-kit+ cells that colocalize with tyrosine kinase receptor 2 (VEGF-R2) and CD68 (a marker for macrophages), indicating a positive effect on moderating hypoxia-induced smooth muscle cell proliferation and inflammation without affecting the pulmonary levels of hypoxia-inducible factor (HIF)-1α. Furthermore, sildenafil depressed the number of CXCR4+ cells. Collectively, these findings indicate that the improvement in pulmonary haemodynamic by sildenafil is linked to decreased recruitment of BM-derived c-kit+ cells in the pulmonary tissue. The attenuation of the recruitment of BM-derived c-kit+ cells by sildenafil may provide novel therapeutic insights into the control of pulmonary remodelling.

Sildenafil attenuates hypoxic pulmonary remodeling by inhibiting bone marrow progenitor cells / S. Favre, E. Gambini, P. Nigro, A. Scopece, P. Bianciardi, A. Caretti, G. Pompilio, A. Corno, G. Vassalli, L. von Segesser, M. Samaja, G. Milano. - In: JOURNAL OF CELLULAR AND MOLECULAR MEDICINE. - ISSN 1582-1838. - 21:5(2017 May), pp. 871-880. [10.1111/jcmm.13026]

Sildenafil attenuates hypoxic pulmonary remodeling by inhibiting bone marrow progenitor cells

E. Gambini
Secondo
;
P. Bianciardi;A. Caretti;G. Pompilio;M. Samaja
Penultimo
;
2017

Abstract

The recruitment of bone marrow (BM)-derived progenitor cells to the lung is related to pulmonary remodelling and the pathogenesis of pulmonary hypertension (PH). Although sildenafil is a known target in PH treatment, the underlying molecular mechanism is still elusive. To test the hypothesis that the therapeutic effect of sildenafil is linked to the reduced recruitment of BM-derived progenitor cells, we induced pulmonary remodelling in rats by two-week exposure to chronic hypoxia (CH, 10% oxygen), a trigger of BM-derived progenitor cells. Rats were treated with either placebo (saline) or sildenafil (1.4 mg/kg/day ip) during CH. Control rats were kept in room air (21% oxygen) with no treatment. As expected, sildenafil attenuated the CH-induced increase in right ventricular systolic pressure and right ventricular hypertrophy. However, sildenafil suppressed the CH-induced increase in c-kit+ cells in the adventitia of pulmonary arteries. Moreover, sildenafil reduced the number of c-kit+ cells that colocalize with tyrosine kinase receptor 2 (VEGF-R2) and CD68 (a marker for macrophages), indicating a positive effect on moderating hypoxia-induced smooth muscle cell proliferation and inflammation without affecting the pulmonary levels of hypoxia-inducible factor (HIF)-1α. Furthermore, sildenafil depressed the number of CXCR4+ cells. Collectively, these findings indicate that the improvement in pulmonary haemodynamic by sildenafil is linked to decreased recruitment of BM-derived c-kit+ cells in the pulmonary tissue. The attenuation of the recruitment of BM-derived c-kit+ cells by sildenafil may provide novel therapeutic insights into the control of pulmonary remodelling.
bone marrow progenitor cells; c-kit cells; chronic hypoxia; CXCR4 receptor; pulmonary hypertension; sildenafil
Settore BIO/10 - Biochimica
mag-2017
18-nov-2016
Article (author)
File in questo prodotto:
File Dimensione Formato  
Favre_et_al-2017-Journal_of_Cellular_and_Molecular_Medicine.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 1 MB
Formato Adobe PDF
1 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/477195
Citazioni
  • ???jsp.display-item.citation.pmc??? 9
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 12
social impact