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Abstract

We cast several problems arising from digital markets and economics into an online learning framework,
where a learner sequentially interacts with an unknown environment, trying to discover its relevant
features to maximize her cumulative reward.

After an introduction to online learning in Chapter 1, we start with a study of the bilateral trade
problem in Chapter 2. Here, the learner plays the role of a broker whose goal is to increase the
value of the market by sequentially interacting with pairs of sellers and buyers, facilitating trades
between them. We show how the interplay between the feedback received by the learner and the set
of available trading mechanisms affects the attainable regret regimes, devising ad hoc solutions to
address the exploration/exploitation dilemma in various types of environments.

In Chapter 3, we present an analysis of transparency in repeated first-price auctions. Here,
the learner participates in a sequence of first-price auctions to win objects whose exact value is
revealed only when she wins the corresponding auction. We show how the level of transparency of
the auctioneer (i.e., the amount of information disclosed at the end of each auction) influences the
regret rates in different types of environments.

In Chapter 4, we study the problem of adaptive optimal taxation. Here, the learner plays the role
of a policymaker whose goal is to increase social welfare (seen as a weighted sum of private utility
and public revenue) by sequentially setting the tax rate in the labor market. Interestingly, once
framed in a formal online learning setting, this problem can be seen as a non-trivial generalization
of the classical dynamic pricing problem.

Finally, in Chapter 5, we propose an abstract framework generalizing bandits with delayed
feedback. This framework allows us to capture scenarios arising frequently in advertising campaigns,
where the feedback received comes in the form of delayed and composite income, the sources of
which depend on the actions the learner took in the past, and whose exact contributions are not
easily identifiable.
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Chapter 1

Introduction

1.1 The Online Learning Framework

Online learning is a subfield of machine learning that provides a framework for sequential decision-
making. In contrast to batch learning, where models are trained on fixed datasets provided in advance,
online learning can handle data gathered sequentially not only from stationary but also from dynamic
or even adversarial environments. However, this flexibility comes with certain challenges: unlike the
complete freedom in batch learning to use and transform data for optimal model performance, an
online learner incurs costs for each less-than-optimal decision.

At a high level, the reader can think of online learning as a paradigm to repeatedly interact
with an unknown environment in the following manner. At each time step, an agent (or, as it is
commonly called, a learner) has to perform an action, selecting it from a pool of possible actions. This
selection has to be performed based on the past collected information about the (otherwise unknown)
environment. After having performed the action, the learner earns some reward determined by how
good the action was in the current state∗ of the environment, observes some feedback, and then
moves to the next interaction. The goal of the learner is to maximize her cumulative reward over a
certain time horizon, a process formalized through the concept of regret minimization.

Regret measures the difference between two key quantities: the expected cumulative reward of
some environment-dependent benchmark strategy, and the actual expected cumulative reward the
learner earns through her actions during the learning process. Frequently, the benchmark strategy
is the best possible constant strategy in the selected environment, which is the one selecting the
best fixed action maximizing the expected cumulative reward. Notably, the best possible constant
strategy is actually the best strategy in stochastic (i.i.d.) environments, i.e., when there is a fixed
distribution according to which the state of the environment is drawn independently at any time.

Under full information (i.e., when the received feedback after each interaction is the reward
associated with every action), batch and online learning paradigms share some methods and strategies
in stochastic environments. In this setting, for example, the Empirical Risk Minimization batch
learning algorithm [165] translates effortlessly into the online learning Follow-the-Leader strategy,
together with its learning guarantees.

On the other hand, the distinction between online and batch learning paradigms becomes sharp

∗In general, the evolution of the states of the environment might or might not be dependent on the actions taken
by the learner. In this work, we consider only problems where this evolution is assumed to be oblivious to the learner’s
actions.
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1.1. The Online Learning Framework

as soon as we allow the model to be more complex, as it is highlighted by the following two aspects.
Firstly, online learning measures performance using a cumulative reward function, and hence the

costs for all suboptimal actions performed in the learning process sum up. This is in contrast to
batch learning, where performance is evaluated based on the model accuracy after processing the
entire dataset, without accumulating costs for individual decisions.

Secondly, in online learning, different actions may reveal different pieces of information about
the unknown environment in which the learner acts. This implies that the information gathered by
the learner is usually dependent on her previously performed actions. Again, this is in contrast to
batch learning, where the learner has access to the full picture from the beginning.

These two characteristics necessitate that an online learner carefully devises her strategy: engaging
in maybe (or even knowingly) suboptimal but informative actions could be an essential part of the
learning process to better understand the environment where she acts. However, excessive indulgence
in such exploration could be costly, considering that the objective to maximize is the cumulative
reward.

The balancing act between gaining knowledge (exploration) and optimizing outcomes (exploita-
tion) is a central challenge in online learning, known as the Exploration-Exploitation Trade-Off, and
several ideas have been proposed to deal with this dilemma.

For instance, Explore-then-Commit strategies (see, e.g., [123]) are often a viable option in
stochastic environments. Here, the learner initially allocates a period solely for exploratory purposes.
Upon gathering sufficient information to confidently identify a sufficiently good action, the learner
then commits to this action for subsequent decisions. While this strategy has its merits, it often
falls short in optimizing performance due to the costly initial exploration phase, and the fact that
the model ceases to be updated in the subsequent exploitation phase.

To address this problem, more nuanced approaches entangle exploration and exploitation.
Action elimination strategies (see, e.g., [87]) build confidence intervals around the expected

rewards associated with each action and stop playing them when the learner discovers that they are
suboptimal with high probability. If the set of possible actions is finite, by cycling among the still
potentially optimal actions, this approach proves to be effective in the so-called bandit problems,
i.e., problems where the information gathered during the learning process is precisely the stream of
rewards associated with the actions the learner performed.

The entanglement between the exploration and exploitation phases is perhaps better embodied
in the principle of Optimism in the face of Uncertainty. Here, the learner constructs again confidence
intervals around the expected rewards associated with each action. However, at each decision point,
the action with the highest upper confidence bound (representing the most optimistic potential
outcome) is selected. In bandit problems where the number of actions is finite, this approach leads
to the celebrated UCB algorithm and its variants [15, 17, 95, 120].

The strategies and methods previously mentioned are based on a certain level of stationarity in
the environment, a premise that is not always valid in practical applications.

Drawing from the principles of convex optimization, Follow-the-Regularized/Perturbed-Leader
strategies (see, e.g., [1] and references therein) have been developed to address the challenges of
non-stationary environments. These strategies involve devising estimates of the cumulative reward
function for each action and choosing at each time the one that maximizes a regularized/perturbed
version of these estimates, thereby introducing some form of stability into the action selection process.
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When the number of actions is K P N, using the Follow-the-Regularized-Leader strategy with
the entropic regularizer on the probability simplex ∆K leads to the widely used exponential weights
algorithms. Specifically, in the full-information setting, where there is no need for an estimation
procedure, we recover the classic Hedge algorithm [93]. In bandit settings, we recover the celebrated
Exp3 algorithm [18] by choosing importance weighting as the estimation procedure, i.e., by estimating
the instantaneous reward associated with a selected action using the observed reward divided by the
probability of choosing that specific action.

These strategies (and many others) have been extensively studied and are now classical topics of
the online learning literature, which at this point is rich in excellent books and surveys [46, 48, 97,
106, 123, 146, 164, 169].

On the applications side, the flexibility of the online learning paradigm has led to its widespread
adoption across various domains.

One notable area where online learning has demonstrated its effectiveness is in the field of
personalized recommendations and advertising. Online platforms, such as e-commerce websites and
streaming services, leverage online learning algorithms analyzing user behaviors and preferences
in real time to deliver tailored product recommendations and targeted advertisements, aiming for
improved user engagement and higher conversion rates. See, e.g., [4, 62, 63, 99, 149–151, 162, 163,
176, 177, 180, 187, 188].

Additionally, online learning has found valuable applications in fraud detection and cybersecurity.
Financial institutions and online payment systems can utilize online learning models to detect
fraudulent transactions as they occur, enabling swift responses and enhanced security measures. See,
e.g., [5, 73, 82, 112, 191].

Online learning’s versatility extends also to other domains, including healthcare and clinical
trials. For example, by continuously updating models with new patient data, healthcare providers
can make timely decisions, predict health risks, and personalize treatment plans more effectively.
On the other hand, online learning provides a principled framework for clinical trials, where
the exploration (testing new drugs) versus exploitation (treating the current patient with the
best drug discovered so far) trade-off is crucial, even from an ethical point of view. See, e.g.,
[10, 31, 32, 41, 84, 136, 137, 147, 148, 155, 157, 173, 179].

Finally, online learning has revolutionized the landscape of dynamic pricing and auctions. The
fluctuation of product prices based on demand makes dynamic pricing a natural field where to apply
online learning techniques, with the goal of optimizing prices in real time. E-commerce platforms,
ride-hailing services, and airlines use online learning to analyze customer behavior, competitor
prices, and other relevant factors to set optimal prices and maximize revenue. Notably, in the realm
of auctions, online learning techniques are a fundamental tool for designing automated bidding
strategies. More in general, by employing online learning strategies, online marketplaces can optimize
bidding decisions, improve auction outcomes, or ensure fair and competitive pricing for buyers and
sellers alike. See, e.g., [2, 3, 25, 27, 50, 52, 54, 64, 90, 98, 104, 105, 117, 126, 128, 133, 182, 189, 190].

This (non-exhaustive) list of real-world applications (for more, see, e.g., the survey [42]) highlights
the adaptability and practicality of the online learning paradigm, showcasing that its potential for
widespread application is arguably limited only by our imagination.

3



1.2. The Work in this Thesis: Online Learning for Digital Markets

1.2 The Work in this Thesis: Online Learning for Digital Markets

In this work, we focus on problems coming from digital markets and economics, analyzing them
through the lens of online learning.

Bilateral Trade. In Chapter 2, which is based on [40, 55, 57, 60], we start with bilateral trade, a
classic problem in the mechanism design literature. Bilateral trade is the study of brokerage between
a seller and a buyer. They want to trade a good for which they hold private valuations.

Ideally, the role of a broker is to design a trading mechanism where she does not subsidize or
drain money from the trade (budget balance), while ensuring that trade happens whenever it should
happen, i.e., when the seller’s valuation is less than the buyer’s one (efficiency). This mechanism
should be designed to prevent both sellers and buyers from having strategic reasons to misreport
their true valuations (incentive compatibility), while also ensuring they do not lose value in the trade
(individual rationality).

Unfortunately, a classical result by Myerson and Satterthwaite [143] states that an efficient
mechanism satisfying all these conditions does not exist in general, not even if we weaken most of
these assumptions and we know the seller’s and buyer’s valuation distributions in advance. On the
other hand, budget-balanced mechanisms ensuring incentive compatibility and individual rationality
do exist, and they are precisely fixed-price mechanisms [67].

We investigate fixed-price mechanisms in bilateral trade, studying them from an online learning
perspective where the learner plays the role of the broker.

At each time step, a new seller/buyer pair arrives. Then, the learner selects a fixed-price
mechanism, i.e., proposes the same trading price to both the seller and the buyer without asking
them for any information. A trade happens if and only if both the seller and the buyer accept the
proposed price. The learner’s goal is to bound the cumulative loss in efficiency.

We measure the efficiency quantitatively: we consider not only whether a trade happened or not,
but also how much we lose by losing a trading opportunity. Specifically, we measure our reward
using the gain from trade, which is the sum of the seller’s and buyer’s increase in value after the
interaction. Hence, losing a trade opportunity can be cheap or costly, depending on how far the
seller’s and buyer’s valuations are.

As we will see, the quality of the feedback received by the learner after each interaction plays a
crucial role in the learning process. Specifically, we consider two different types of feedback: full
feedback, where after each interaction the seller and the buyer reveal their actual valuations, and
realistic/two-bit feedback, where after each interaction we only observe whether the proposed posted
price was accepted or not by each party. We remark that realistic feedback is not even enough to
reconstruct a bandit-type of feedback, which is the cause of many learning challenges.

We first analyze how classic online learning strategies (Follow-the-Leader/Hedge) can be used
to learn under full feedback in the online bilateral trade problem. Then, in the more challenging
realistic feedback setting, where full-information or bandit strategies cannot be directly imple-
mented due to the scarcity of the feedback, we draw inspiration from online learning principles
(Explore-then-Commit/exponential weights/unbiased estimation) and problem-specific tools (Decom-
position/Representation/Approximation Lemmas) to devise tailored learning strategies to achieve
optimal regret rates.
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We conclude by providing an analysis of online learning in bilateral trade when the learner is
allowed to relax the budget balance assumption: if the learner still cannot subsidize the trade, but is
allowed to extract money from the trade by posting two different prices to the seller and the buyer,
we demonstrate that learnability can be achieved in a larger set of environments.

First-Price Auctions. In Chapter 3, which is based on [58], we move to analyze repeated first-
price auctions, which are of increasing importance due to the recent shift from second to first-auctions
in the online advertising market [171, 186].

Here, we study the problem of a learner participating in a sequence of first-price auctions to
increase her revenue by winning the auctioned objects paying them less than their actual value. We
work under the assumption that the learner discovers the value of a certain object only when she
wins the corresponding auction, a sensible assumption in a variety of scenarios arising, e.g., in the
online advertising market, where click and conversion rates can be measured only after the auction
is won and the ad displayed.

While this setting has been previously investigated from an online learning perspective [2, 90],
we are the first to provide a systematic analysis of how the level of transparency of the auctioneer
(i.e., the amount of information disclosed at the end of each auction) influences the attainable regret
regimes, and we provide this analysis in combination with a variety of different assumptions about
the underlying environment where the learner acts.

We stress that the level of transparency influences the feedback structure, with a natural and
deep connection with feedback graphs [8]. By exploiting feedback graph ideas together with problem-
specific considerations and techniques (e.g., adaptive grids), we devise algorithms providing optimal
regret rates in each case.

The Optimal Taxation Problem. In Chapter 4, which is based on [59], we proceed by studying
the problem of optimal taxation. Here, a policymaker aims at maximizing social welfare, defined as
a weighted sum of private utility and public revenue. The social welfare weights are chosen by the
policymaker, and regulate how much she values private wealth compared to public redistribution.
The policymaker interacts with the environment (e.g., the labor market) by setting some policy
parameters (e.g., the tax rate).

The common method in public finance to address the optimal taxation problem involves utilizing
past data to determine the necessary parameters, which are subsequently inserted into equations for
optimal policy selection based on theoretical models.

In contrast, we address the optimal taxation problem from an online learning perspective, where
the learner plays the role of the policymaker and has to discover the relevant features along the way.

At each time step, the learner interacts with a new individual and sets a corresponding tax rate.
Then, the learner observes only whether or not the individual participated in the labor market given
the proposed tax rate.

Interestingly, when private welfare carries no weight in the social welfare definition, the online
learning optimal taxation problem shares the same online learning structure of the classical dynamic
pricing problem [117]. However, when the private welfare weight is non-zero, the problem turns out
to be harder to analyze. This is due to the fact that, differently from the dynamic pricing problem,
the feedback provided in the optimal taxation problem is not enough to reconstruct the reward
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associated with the corresponding performed action. From this perspective, the online learning
optimal taxation problem can be seen as a non-trivial generalization of the dynamic pricing problem.

Borrowing ideas from partial monitoring [49], we devise an exponential weights strategy that
achieves optimal performance in adversarial and stochastic environments. Furthermore, in stochastic
environments where we can assume that the expected welfare is concave, we improve on previous
guarantees by devising an optimal action elimination strategy.

Nonstochastic Bandits with Composite Anonymous Feedback. In Chapter 5, which is
based on [56], we conclude by proposing an abstract framework generalizing bandit problems with
delayed feedback.

The composite anonymous feedback framework captures scenarios arising frequently, e.g., in
advertising campaigns, where the campaign manager faces the challenge of distinguishing the impact
of individual ads distributed across different channels from the total shift in sales.

In this framework, at each time step, each action is associated with a certain reward. However,
this reward is spread across d successive rounds. Hence, at each time step, the learner observes a
composite reward that is the sum of partial earnings from the last d performed actions. Furthermore,
we assume that both the rewards and the way in which the earnings are spread across the successive
d rounds can be chosen adversarially.

We devise a wrapper that converts algorithms for the nonstochastic bandit problem (with no
delays) into algorithms operating in the composite anonymous feedback setting. Then, we show that
the regret guarantees of this wrapper can be bounded in terms of the regret guarantees of the base
bandit algorithm and its stability.

We then demonstrate that the Follow-The-Regularized-Leader algorithm, coupled with the
Tsallis entropy regularizer (and importance weighting as the estimation procedure), enjoys nice
stability properties. Together with its optimal regret guarantees, the use of this algorithm as the
base algorithm in our wrapper ensures optimal regret guarantees for the nonstochastic composite
anonymous feedback setting.

Lower Bound Techniques. We conclude this introduction with some comments about the various
lower-bound constructions spread along this work. Each online learning problem we tackle has
its own specific structure and several challenges arise when it comes to proving that a proposed
algorithm is indeed optimal for a certain setting. That said, there are several recurring high-level
ideas when devising these lower bounds.

For example, in designing linear lower bounds we repeatedly resort to the idea of finding a needle
in a haystack, which occurs when the given feedback is not enough to detect the optimal action
among other infinite possibly optimal actions in due time. Another idea for linear lower bounds is
exploiting a lack of observability phenomenon, which occurs whenever there are two environments
such that each action presents the same (action-dependent) feedback distribution in both of them,
but the optimal actions in the two environments are different.

For sublinear lower bounds, we take inspiration from lower-bound constructions in other partial
monitoring or feedback graph problems (e.g., expert or bandit problems, the revealing action problem,
or the multi-apple tasting problem). However, we remark that recognizing these structures inside our
problems, where we cannot control rewards and feedback directly (but only indirectly by carefully
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devising the underlying environment), is a task rich with challenges, and requires the developing
of several information theoretical methods (e.g., the Embedding and Simulations lemmas, or the
one-bit/two-environments inverse-transformation representability result) to prove reductions to the
aforementioned online learning problems formally.
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Chapter 2

Online Learning in Bilateral Trade

2.1 Introduction

In the bilateral trade problem, two strategic agents —a seller and a buyer— wish to trade a good.
They both privately hold a personal valuation for it and strive to maximize their respective quasi-
linear utility. The burden of designing a mechanism to reach an agreement is usually delegated to a
third party. This scenario arises naturally in brokerage in over-the-counter (OTC) markets,∗ where
the role of the broker is to ensure that trades are executed smoothly in absence of a centralized
organism, and in many internet applications, such as ridesharing systems like Uber or Lyft where
trades between sellers (drivers) and buyers (riders) are managed by a mechanism designed by the
platform.

In general, an ideal mechanism for the bilateral trade problem would optimize the efficiency, i.e.,
the social welfare resulting from trading the item, while enforcing incentive compatibility (IC) and
individual rationality (IR). The assumption that makes two-sided mechanism design more complex
than the one-sided counterpart is budget balance (BB): the mechanism cannot subsidize or make a
profit from the market.

Unfortunately, as Vickrey observed in his seminal work [178], the optimal incentive-compatible
mechanism maximizing social welfare for bilateral trade may not be budget-balanced. A more
general result due to Myerson and Satterthwaite [143] shows that a fully efficient mechanism for
bilateral trade that satisfies IC, IR, and BB may not exist at all. This impossibility result holds even
if prior information on the buyer and seller’s valuations is available, the truthful notion is relaxed to
Bayesian incentive compatibility (BIC), and the exact budget balance constraint is loosened to weak
budget balance (WBB).

To circumvent this obstacle, a long line of research has focused on designing approximating
mechanisms that satisfy the above requirements while being nearly efficient. These approximation
results build on a Bayesian assumption: seller and buyer’s valuations are drawn from two distributions
known to the mechanism designer. The drawback is that, while in some sense necessary —without
any information on the priors there is no way to extract any meaningful approximation result [86]—
this assumption is unrealistic in practice.

∗OTC markets are decentralized alternatives to traditional financial exchanges that are an indispensable part of
the global financial ecosystem: in the US, the value of assets traded in OTC markets surpassed a staggering 50,000
billion USD, exceeding centralized markets by over 20,000 billion USD in 2020 [183], with a steady growth trend
documented since 2016 [92].
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Online Pricing Protocol for Bilateral Trade
for time t “ 1, 2, . . . do

A new seller/buyer pair arrives with (hidden) valuations pSt, Btq P r0, 1s2

The learner posts a price Pt P r0, 1s

The learner receives a (hidden) reward GFTtpPtq P r0, 1s

The learner observes some feedback Zt

In this work, we focus on fixed-price mechanisms, a class of particular importance in bilateral
trade because, on the one hand, they are the only direct revelation mechanisms that are IC, IR, and
BB [67], and on the other hand, they enjoy the desirable features of being simple to implement and
of asking the agents for very little information.

Inspired by a recent line of research [50, 72, 107, 129], we study fixed-price mechanisms in a
regret minimization setting, with the aim of bounding the total loss in efficiency.

At each time step t, a seller and a buyer arrive with privately held valuations: St P r0, 1s for the
seller and Bt P r0, 1s for the buyer. Then, the learner posts a price Pt P r0, 1s and a trade occurs if
and only if both the seller and the buyer are satisfied with the proposed price, i.e., St ď Pt ď Bt.
The efficiency of the learner is measured by the increase in utility of the system, the so-called gain
from trade. Specifically, defining the gain-from-trade function as

gft : r0, 1s ˆ r0, 1s2 Ñ r0, 1s,
`

p, ps, bq
˘

ÞÑ pb´ sq ¨ I ts ď p ď bu

and, for any time t, the gain from trade at time t as

GFTt : r0, 1s Ñ r0, 1s, p ÞÑ gft
`

p, pSt, Btq
˘

,

the gain from trade of the market at time t if the learner posts Pt P r0, 1s is defined as

p Bt ´ Pt
looomooon

buyer’s net gain

` Pt ´ St
loomoon

seller’s net gain

q ¨ ItSt ď Pt ď Btu
looooooooomooooooooon

whenever a trade happens

“ pBt ´ Stq ¨ I tSt ď Pt ď Btu “ GFTtpPtq .

After each interaction, instead of observing directly the gain from trade from having posted Pt,
the learner has only access to some feedback Zt. The nature of the sequence of valuation pairs
pS1, B1q, pS2, B2q, . . . and feedback Z1, Z2, . . . depends on the specific instance of the problem and is
described below.

Selecting the gain from trade as the target reward function,† the regret at time horizon T of a
learner following a strategy α to generate the sequence of prices Pt (as in the Learning Protocol)
against an environment β generating the sequence of (random) pairs pSt, Btq is defined by

RT pα, βq – max
pPr0,1s

E

«

T
ÿ

t“1

GFTtppq ´

T
ÿ

t“1

GFTtpPtq

ff

, ‡

†Another well-studied quantity considered in the bilateral trade literature is social welfare. It is worthwhile
noticing that had we chosen social welfare SWtppq – St ` pBt ´ StqItSt ď p ď Btu instead of the gain from trade
nothing would have changed in the regret definition. In fact, since SWtppq “ St ` GFTtppq, the term St would have
appeared twice as an additive term, with opposite signs, and hence canceled out. The reason why we chose the gain
from trade is that we believe it provides a more transparent presentation in the following discussion.

‡a proof of the fact that this maximum is actually achieved can be found in Appendix A.1.
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where the expectation is taken with respect to any randomness present in the environment and
(possibly) the internal randomization used by the learner’s strategy.

Notice that the regret is the difference between the expected total performance of the learner’s
strategy, who can only learn sequentially about the environment characteristics, and the expected
performance of a reference benchmark p‹ P r0, 1s, corresponding to the best constant fixed-price
strategy operating with full knowledge about the distribution governing the environment.

The goal of the learner is to determine a strategy for achieving sublinear regret in the time horizon
T , uniformly with respect to any environment belonging to a certain class of interest. Specifically, we
aim to upper bound the regret RS

T pαq of a learning strategy α in a class of environments S, which is
defined as the supremum over all environments β P S of RT pα, βq. A lower bound on the achievable
guarantees for any learner operating in a class of environment S is provided by the minimax regret
RS
T , which is defined as the infimum over all learning strategies α of RS

T pαq.
To complete the description of the problem, we need to specify the feedback obtained by the

mechanism after each sequential round and the characteristics of the environment in which the
learner has to operate.

Environment. We assume that the environment is oblivious to the learner, and we model the
possible different classes of environments S by considering several generation models for the r0, 1s2-
valued stochastic sequence of seller/buyer valuations pSt, BtqtPN.

‚ Adversarial (adv): pSt, BtqtPN could be any deterministic sequence pst, btqtPN.

‚ Independent valuations (iv): pSt, BtqtPN could be any stochastic sequence such that, for each
t P N, the random variables St and Bt are independent of each other.

‚ Bounded density (bd): For some fixed constant M ą 0, pSt, BtqtPN could be any stochastic
sequence such that, for each t P N, the random pair pSt, Btq admits a joint density (with
respect to the Lebesgue measure on r0, 1s2) bounded by M .

‚ Independently and identically distributed (iid): pSt, BtqtPN could be any i.i.d. sequence.

We analyze how (the various combinations of) the previous assumptions influence the regret regimes.

Feedback models. Crucial in casting the learning problem is the specification of the feedback Zt
that the platform receives after posting a price at time t. We consider the following two models.

• Full feedback. In the full-feedback model, the pair pSt, Btq is revealed as Zt to the mechanism
after the t-th trading round. The information collected by this feedback model corresponds to
direct revelation mechanisms, where the agents publicly declare their valuations in each round,
but the price proposed by the mechanism at time t only depends on past bids.

• Realistic feedback (Two-bits feedback). In the more challenging realistic-feedback model, only
the relative order between St and Pt and between Bt and Pt are revealed after the t-th round:
the feedback Zt received at time t is the pair

`

ItSt ď Ptu, ItPt ď Btu
˘

. This model corresponds
to posted-price mechanisms, where seller and buyer separately accept or refuse the posted price.
The price computed at time t only depends on past bids, and the values St and Bt are never
revealed to the mechanism.
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adv iv bd iid iv+bd iv+iid bd+iid iv+bd+iid
Full T T T 1{2 T 1{2 T 1{2 T 1{2 T 1{2 T 1{2

Realistic T T T T T T T T 2{3

Table 2.1: Summary of the regret regimes for fixed-price mechanisms. The rates are both upper and lower
bounds (up to logarithmic factors).

2.1.1 Overview of our Results

In Section 2.2, we investigate the class of adversarial environments, while in Sections 2.3 and 2.4 we
explore the various classes of environments arising from the combination of the (iv), (bd), and (iid)
assumptions, showing how regret bounds change depending on the quality of the received feedback.
In all cases, we provide matching upper and lower bounds in the time horizon (up to logarithmic
factors). In particular, our positive results are constructive: explicit algorithms are given in each
case. For a summary of the obtained regret regimes, see Table 2.1.

In Section 2.5, we show how to improve significantly the regret rates (
?
T to logpT q in the

full-feedback case, and T 2{3 to
?
T in the realistic feedback case) when, on top of the (iv), (bd) and

(iid) assumptions, we also assume that sellers’ and buyers’ valuations are identically distributed,
which is a case of particular interest in certain brokerage scenarios where sellers’ and buyers’ roles
are not strictly defined.

Finally, in Section 2.6, we depart from the budget balance setting in which the learner posts the
same price to both the seller and the buyer. By considering a weak budget balance (WBB) setting
in which (possibly) distinct prices p ď q can be posted, p to the seller, and q to the buyer, we show
that we can break the linear lower bound under the (bd) assumption, achieving a T 3{4 regret rate.
Surprisingly, this rate is tight in the time horizon (up to logarithmic factors), even if both the (bd)
and (iid) assumptions hold.

2.1.2 Technical Challenges

In this section, we sum up the technical challenges for various instances of our problem.

Adversarial setting. When the valuations of the buyer and the seller form an arbitrary determin-
istic process generated by an oblivious adversary, learning is impossible. Indeed, using a construction
vaguely inspired by the Cantor ternary set, we show that even when the learner receives full feedback,
no strategy can lead to a sublinear worst-case regret (Theorem 1).

Full feedback. The full-feedback model fits nicely in the learning with expert advice framework [48].
Each price p P r0, 1s can be viewed as an expert, and the revelation of St and Bt allows the mechanism
to compute GFTtppq for all p, including the mechanism’s own reward GFTtpPtq. This unlocks several
possibilities to attack the problem, e.g., exponential weights (Hedge) or Follow-the-Leader strategies.

Existing analyses for continuous versions of Hedge assume reward functions are Lipschitz [119, 130].
Unfortunately, the reward function GFTtp¨q is not (even one-sided) Lipschitz, nor continuous (except
for trivial cases). We get around this roadblock by leveraging the bounded density assumption
to guarantee the Lipschitzness of the expected reward function ErGFTtp¨qs (Lemma 1). Then, we
prove that having reward functions that are Lipschitz in expectation is enough to obtain rOp

?
T q

11



2.1. Introduction

regret guarantees for the continuous version of Hedge (Corollary 3). This seemingly small difference
(Lipschitz vs Lipschitz in expectation) entails a significant technical issue in the analysis that we
bypass by proving a log-exp analogous of Minkowski’s integral inequality (Lemma 16), which we
believe is a result of independent interest.

The Follow-the-Leader approach proves to be effective in the case where the pairs of seller and
buyer’s valuations form an independently and identically distributed sequence. Here, the full feedback
received in each new round is used to refine the estimate of the expected gain from trade as a function
of the price, while the posted prices are chosen so as to maximize this estimate. The Decomposition
Lemma (Lemma 2) allows us to exploit the structure of the reward function E

“

GFTtp¨q
‰

by leveraging
uniform concentration inequalities to obtain a better regret bound (by a log factor, Theorem 3) with
respect to the bounded-density case, even when the underlying distribution does not admit a density.

The main challenge in designing the lower bound is that the shape of the (expected) gain from
trade cannot be chosen arbitrarily: we can only control it indirectly as a function of the seller/buyer
pair distribution. By designing a suitable family of such distributions, we build a reduction showing
that the full-feedback bilateral trade problem when the environment satisfies the (iv), (bd), and (iid)
assumptions is harder than a corresponding 2-action partial monitoring game with a known Ω

`
?
T
˘

lower bound (Theorem 4).

Realistic Feedback. Here, at the end of time t, only ItSt ď Ptu and ItPt ď Btu are revealed to
the learner. In contrast to the full-feedback model, this is not enough to reconstruct the gain from
trade GFTt at time t: if the trade does not occur, it is unclear which prices would have resulted in a
trade. Moreover, in contrast to bandit problems [48], this feedback is not even enough to determine
GFTtpPtq: if the trade occurs, there is no way to infer the difference Bt ´ St. Thus, we cannot
directly rely on known bandits tools to tackle the two competing goals of estimating the underlying
distributions (exploration) while optimizing the estimated gain from trade (exploitation). Instead,
using the Decomposition Lemma (Lemma 2), we show how to decompose the expected gain from
trade at any price p into a global part that can be uniformly estimated via a Monte Carlo method by
sampling on the r0, 1s interval, and a local part that can be learned by posting p. Theorem 5 shows
that our Algorithm 3 (Scouting Bandits) can take advantage of this decomposition by relying on
any bandit algorithm to learn the local part of the expected gain from trade. We derive a sublinear
regret of OpT 2{3q whenever the environment satisfies the (iv), (bd), and (iid) assumptions.

The lower bounds present challenges similar to those of the full-feedback model, with additional
hurdles due to the specific nature of the realistic feedback. When only realistic feedback is available
and the environment satisfies the (iv), (bd), and (iid) assumptions, by designing a suitable family
of distributions, we build a reduction showing that this bilateral trade problem is harder than a
corresponding instance of the so-called revealing action partial monitoring game [48], with a known
Ω
`

T 2{3
˘

lower bound (Theorem 6). Dropping the (iv) or (iid) assumption leads to a pathological
lack of observability phenomenon, in which it is impossible to distinguish between two scenarios with
significantly different optimal prices (Theorems 7 and 9). Dropping the (bd) assumption amounts to
finding a needle in a haystack, a different pathological phenomenon in which all prices but one suffer
a high regret, and it is essentially impossible to detect this optimal price among a continuum of
suboptimal prices (Theorem 8).
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Faster rates when sellers and buyers share the same distribution. Central to achieving
faster rates are the Approximation and Representation Lemmas (Lemmas 3 and 4). Together, they
establish that if the seller and buyer’s valuations are independent of each other and share the same
distribution with a bounded density, the corresponding expected gain from trade is maximized at the
(common) expectation of their valuations. As a consequence, when the environment satisfies the (iv),
(bd), and (iid) assumptions, if sellers and buyers share the same distribution, the learner might try
to follow the strategy of posting prices that are believed to be good approximations of the expected
seller/buyer valuations. This can be done directly in the full-feedback case by posting the empirical
mean of the observed past seller/buyer valuations. Instead, in the realistic-feedback case, due to the
scarcity of available information, the learner faces an exploration/exploitation dilemma. A viable
approach is to try an Exploit-then-Commit strategy, spending a certain period trying to estimate
the expectation of the seller/buyer valuations, then commit to the obtained estimation when it
is believed to be good enough. Despite their simplicity, both strategies are extremely effective in
their respective settings, unlocking significantly better regret guarantees than the ones obtainable
without assuming that sellers and buyers share the same distribution. Specifically, OplogpT qq vs
Op

?
T q in the full-feedback case (Theorem 11), and Op

?
T q vs OpT 2{3q in the realistic-feedback

case (Theorem 14). These guarantees can be proven again by leveraging the Approximation and
Representation Lemmas, which together imply that, by posting a certain price p, the learner regrets
no more than a quantity proportional to the square of the distance of p from the (common) expected
seller/buyer valuation.

We build a single family of hard distributions to show that the guarantees provided by the
previous two strategies are optimal in their respective settings (up to constant terms). In the full
feedback case, this family is used to show that the problem is harder than a full-feedback sequential
Bayesian problem where the goal is to estimate the expectation of a certain random variable, and
the loss function is the square of the distance from the expectation (Theorem 12). In the realistic
feedback case, the same family is used to mimic a revealing action problem. Here, we obtain a
Ωp

?
T q (instead of a ΩpT 2{3q) regret lower bound due to the fact that, by posting a certain price p,

the learner pays only order of the square of the distance of p from the actual optimum (Theorem 15).

Breaking Linear Lower Bounds in the Realistic Case. If the learner is allowed to post
two different prices at each interaction, say p to the seller and q to the buyer, with the constraint
p ď q to forbid subsidizing the market, we show that the (bd) assumption is enough to learn in the
realistic-feedback case. Again, this result relies on the fact that the (bd) assumption implies the
Lipschitzness of the expected gain from trade (Lemma 1). By discretizing the action space r0, 1s and
leveraging again the Decomposition Lemma (Lemma 2), we devise an exponential weight algorithm
(Algorithm 6) enjoying rOpT 3{4q regret guarantees (Theorem 16).

We prove that this rate is optimal (up to logarithmic factors) in the time horizon, even adding the
(iid) assumption (Theorem 17), by showing that the bilateral trade with partial feedback contains
instances that are closely related to instances of online learning with feedback graphs [8]. The
corresponding feedback graph GK is over 2K actions: K of them are “exploring” and the others
are “exploiting”. Exploring actions are costly and reveal feedback on the corresponding exploiting
actions. One of the exploiting actions is optimal, but none of them returns any feedback. We build
“hard” instances so that any algorithm is forced to spend a long time playing each one of the many
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2.1. Introduction

exploring actions in order to learn which one of the exploiting actions is the actual optimal action.
By selecting optimally the number of arms in the reduction and the difference in reward between
exploiting actions, we obtain the T 3{4 rate. This proof sketch hides many technical challenges:
crucially, we need to carefully design distributions with bounded density with the desired properties.
This presents two problems: on the one hand, the gain from trade achievable at different prices
are related (while in usual lower bound constructions for online learning with feedback graphs, the
rewards can be chosen independently, [8]); on the other hand, the embedding needs to preserve the
feedback structure, which is significantly different from the standard bandit or expert feedback and
requires subtle arguments. To address this second challenge, we prove a general information-theoretic
result (Theorem 44, in Appendix A.15) that may be of independent interest for further lower-bound
constructions in related problems.

Lower Bound Techniques. Due to their technical nature, most proofs of the lower bounds are
only sketched in the main text. Detailed versions are provided in the Appendix, where we also
present a general partial monitoring framework for sequential games (Appendix A.5). Within this
setting, we build reductions by mapping instances of our bilateral trade problem to other known
partial monitoring games. These reductions rely on two key lemmas, introduced in Appendix A.6:
our Embedding and Simulation Lemmas (Lemmas 19 and 20) are useful tools to manipulate rewards
and feedback, allowing to build chains of progressively easier games leading to games with known
minimax regrets.

Relation with Dynamic Pricing and Auctions.

Before moving on, we spend some words highlighting the differences between the one-sided dynamic
pricing problem (see, e.g., [117]) and ours (in its realistic-feedback version). In the former, the
learner posts a price p to a buyer with valuation b, receives the bit Itp ď bu, and extracts revenue
p ¨ Itp ď bu. In our case, the learner posts price p, receives feedback pIts ď pu, Itp ď buq and obtain
gain from trade pb´ sqIts ď p ď bu. While the structures of the two feedback models share some
similarities (in particular the considerations relative to the buyers in the two scenarios are exactly
equivalent), the objectives are extremely different. In particular, the one-sided problem is easier than
a bandit problem: if the trade happens then the learner gets the price it posts, otherwise, it gets
nothing. On the other hand, our problem is harder: if the agents accept a price, let’s say 1{2, then
the learner has no indication of the relative gain from trade, which could range from 1 (s “ 0, b “ 1)
to 0 (s “ b “ 1{2).

2.1.3 Further Related Work

The study of the bilateral trade problem dates back to the already mentioned seminal works of
Vickrey [178] and Myerson and Satterthwaite [143]. A more recent line of research focuses on
Bayesian mechanisms that achieve the IC, BB, and IR requirements while approximating the optimal
social welfare or the gain form trade. Blumrosen and Dobzinski [38] proposed the median mechanism
that sets a posted price equal to the median of the seller distribution and shows that this mechanism
obtains an approximation factor of 2 to the optimal social welfare. Subsequent work by the same
authors [39] improved the approximation guarantee to e{pe´ 1q through a randomized mechanism
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2.1. Introduction

whose prices depend on the seller distribution in a more intricate way. Kang et al. [111] recently
showed that it is possible in general to strictly improve on the e{pe´ 1q guarantee, but that such
bound is tight when the mechanism only knows the seller’s distribution. In Colini-Baldeschi et al.
[67] it is demonstrated that all IC mechanisms that are BB and IR must post a fixed price to the
buyer and to the seller. The same result has been previously proven under stronger assumptions in
[100]. Recently, Braun and Kesselheim [43] have used tools from the prophet inequality literature to
tackle welfare maximization in two-sided markets, i.e., the natural generalization of bilateral trade
where multiple sellers intend to trade with multiple buyers.

In a different research direction aimed to characterize the information theoretical requirements
of two-sided market mechanisms, Dütting et al. [86] prove that setting the price equal to a single
sample from the seller distribution gives a 2-approximation to the optimal social welfare; the same
mechanism is shown to yield a 4{3-approximation when seller and buyer share the same distribution
[111]. In a parallel line of work, the harder objective of approximating the gain from trade has been
considered. An asymptotically tight fixed-price O

`

log 1
r

˘

approximation bound is also achieved in
[68], with r being the probability that a trade happens (i.e., the value of the buyer is higher than the
value of the seller). A BIC 2-approximation of the second best with a simple mechanism is obtained
in [45]. Very recently, Deng et al. [79] have presented the first (BIC) constant factor approximation
to the first best. Their analysis has then been tightened by Fei [88].

In the following, we discuss the relationship between the approximation results mentioned above
and the regret analysis we develop in this work that compares online learning mechanisms against the
best ex-ante fixed-price mechanism. First of all, in the realistic feedback setting, the approximation
mechanisms for bilateral trade cannot be easily implemented. For example, the single sample
2-approximation to the optimal social welfare [86] requires multiple rounds of interaction in order to
obtain, approximately, a random sample from the distribution. The median mechanism of Blumrosen
and Dobzinski [38] requires an even larger number of rounds in order to estimate the median of the
seller distribution. Furthermore, here we note that these two more demanding approaches may yield
worse performances than the best ex-ante fixed price§. This implies that there are instances where
our online learning approach converges to a mechanism that is strictly better than the median or
sample mechanisms, even assuming they have full knowledge of the underlying distributions.

There is a vast body of literature on regret analysis in (one-sided) dynamic pricing and online
posted price auctions — see, e.g., the excellent survey published by den Boer [76] and the tutorial
slides by Slivkins and Zeevi [170]. In their seminal paper, Kleinberg and Leighton prove a OpT 2{3q

upper bound (ignoring logarithmic factors) on the regret in the adversarial setting [117]. Later works
show simultaneous multiplicative and additive bounds on the regret when prices have range r1, hs

[36, 37]. These bounds have the form εG‹
T `O

`

ph lnhq{ε2
˘

ignoring ln lnh factors, where G‹
T is the

total revenue of the optimal price p‹. Recent improvements on these results prove that the additive
term can be made Opp‹

`

lnhq{ε2
˘

, where the linear scaling is now with respect to the optimal price
rather than the maximum price h [47]. Other variants consider settings in which the number of
copies of the item to sell is limited [7, 21, 24], buyers act strategically in order to maximize their
utility in future rounds [11, 80, 83, 142], or there are features associated with the goods on sale
[66]. In the stochastic setting, previous works typically assume parametric [44], locally smooth [117],

§Consider a seller with value ε ą 0 or 0 with equal probability and a buyer with value 1. The best fixed price has
welfare of 1. For small ε, the median and the sample mechanism, respectively, obtains a welfare close to 1{2 and 3{4.
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2.2. The Adversarial Setting

or piecewise constant demand curves [54, 77]. For further related work on this literature, see also
Section 3.1.3.

Finally, in recent follow-up work, Azar et al. [20] study the sequential bilateral trade problem
in the adversarial setting. In particular, they generalize Theorem 1 to hold for α-regret for any
α P r1, 2q and show that sublinear 2-regret is achievable even with realistic feedback.

2.2 The Adversarial Setting

In this section, we prove that, even in the full-feedback case, no strategy can achieve worst-case
sublinear regret in an adversarial environment. The idea of the proof is to build, for any strategy,
a hard sequence of sellers and buyers’ valuations ps1, b1q, ps2, b2q, . . . which causes the learner to
suffer linear regret for any horizon T . This sequence is built in a way that, at each time step, the
achievable gain from trade is approximately 1

2 , the probability that the learner’s strategy misses the
corresponding trading opportunity is at least 1

2 and, finally, that there exists a fixed price p‹ P r0, 1s

that allows the trades between sellers and buyers at every time step.

Theorem 1. In the full-feedback adversarial (adv) setting where the class of environments S
is represented by all deterministic sequences ps1, b1q, ps2, b2q, . . . P r0, 1s2 of sellers’ and buyers’
valuations, the minimax regret RS

T satisfies

RS
T ě cT ,

where c ě 1{4.

Proof. We begin by fixing any strategy α of the learner. This is a sequence of functions pαtqtPN,
such that, for each t, αt maps the past feedback ps1, b1q, . . . , pst´1, bt´1q, together with some internal
randomization, to the price Pt to be posted by the learner at time t. In other words, the strategy
maintains a distribution νt over the prices that is updated after observing each new pair pst, btq

and used to draw each new price Pt. We will show how to constructively determine a sequence of
seller/buyer valuations that is hard for α to learn. This sequence is oblivious to the prices P1, P2, . . .

posted by α, in the sense it does not have access to the realizations of its internal randomization. The
idea is, at any time t, to determine a seller/buyer pair pst, btq either of the form pct, 1q or p0, dtq, with
ct « 1

2 « dt, such that the probability νt that the strategy picks a price Pt P rst, bts (i.e., that there
is a trade) is at most 1{2 and, at the same time, there is common price p‹ which belongs to rst, bts for
all times t.¶ This way, since bt ´ st « 1

2 for all t, the regret of α with respect to ps1, b1q, ps2, b2q, . . .

is at least (approximately) greater than or equal to T{4.
The construction proceeds inductively as follows. Let ε P

`

0, 1
18

˘

. Let

$

&

%

c1 – 1
2 ´ 3

2ε, d1 – 1
2 ´ 1

2ε, s1 – 0, b1 – d1, if ν1
““

0, 12 ´ 1
2ε
‰‰

ď 1
2 ,

c1 – 1
2 ` 1

2ε, d1 – 1
2 ` 3

2ε, s1 – c1, b1 – 1, otherwise.

Then, for any time t, given that ci, di, si, bi are defined for all i ď t and recalling that νt`1 is
the distribution over the prices at time t ` 1 (of the strategy α after observing the feedback

¶If the reader has doubts about the obliviousness of the pst, btqtPN sequence, see Appendix A.11 where the
(oblivious) formal definition of the distributions ν1, ν2, . . . is provided.
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2.3. The Full Feedback Case

ps1, b1q, . . . , pst, btq), let
$

&

%

ct`1 – ct, dt`1 – dt ´ 2ε
3t , st`1 – 0, bt`1 – dt`1, if νt`1

““

0, ct ` ε
3t

‰‰

ď 1
2 ,

ct`1 – ct ` 2ε
3t , dt`1 – dt, st`1 – ct`1, bt`1 – 1, otherwise.

Then the sequence of seller/buyer valuations ps1, b1q, ps2, b2q, . . . defined above by induction satisfies:

• νt
“

rst, bts
‰

ď 1
2 , for each time t.

• There exists p‹ P r0, 1s such that p‹ P rst, bts, for each time t (e.g., p‹ – limtÑ8 ct).

• bt ´ st ě 1´3ε
2 , for each time t.

This implies, for any horizon T ,

RT
`

α, pst, btqtPN
˘

“

T
ÿ

t“1

gft
`

p‹, pst, btq
˘

´

T
ÿ

t“1

E
“

gft
`

Pt, pst, btq
˘‰

ě

T
ÿ

t“1

pbt ´ stq
`

1 ´ νt
“

rst, bts
‰˘

ě
1 ´ 3ε

4
T.

The fact that ε and α were chosen arbitrarily yields immediately RS
T ě T {4.

A more detailed analysis can be found in Appendix A.11.
Before concluding this section, we notice that Theorem 1 immediately implies two things. First,

if S is the set of all (iv) environments, then also RS
T ě T {4. In fact, if pSt, BtqtPN is a deterministic

sequence pst, btqtPN, then St is clearly independent of Bt, which means that any (adv) environment
is also an (iv) environment. Second, given that full feedback is enough to reconstruct realistic
feedback, the same impossibility results hold under realistic feedback. Hence, we have already filled
the columns under (adv) and (iv) in Table 2.1.

2.3 The Full Feedback Case

In this section, we explore various learning strategies in the full feedback case. We propose two
different strategies to learn depending on the properties of the environment where the learner has to
act. When the environment satisfies the (bd) assumption we show that the Hedge algorithm in the
continuum achieves rOp

?
T q regret guarantees, while if the environment satisfies the (iid) assumption

we show that a Follow-the-Leader strategy achieves Op
?
T q regret guarantees. We complement these

results by showing that any strategy that strives to compete against all environments satisfying
simultaneously the (iv), (bd) and (iid) assumptions has to suffer at least Ωp

?
T q regret in some

instances.

2.3.1 Bounded Density yields Lipschitzness in Expectation

We first prove that, although the gain from trade is discontinuous in general, its expectation is
M -Lipschitz, whenever the underlying pair of seller/buyer valuations admits a density bounded by
some constant M ą 0.
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2.3. The Full Feedback Case

Lemma 1 (Lipschitzness). Let pS,Bq be a pair of random variables on r0, 1s2 admitting a density
(with respect to the Lebesgue measure on r0, 1s2) bounded by M ą 0. Then, the induced gain from
trade GFTp¨q – gft

`

¨, pS,Bq
˘

is such that its expectation is M -Lipschitz:

|E rGFTpyqs ´ E rGFTpxqs| ď M |y ´ x|, @x, y P r0, 1s (2.1)

Proof. Without loss of generality we may (and do!) assume that x ą y. Let U and V two independent
uniform random variables in r0, 1s. We have the following chain of inequalities:

|E rGFTpyqs ´ E rGFTpxqs| “ |E rpB ´ SqpItS ď y ď Bu ´ ItS ď x ď Buqs|

“ |E rpB ´ SqpItS ď y ď B ď xu ´ Ity ď S ď x ď Buqs|

ď P rS ď y ď B ď xs ` P ry ď S ď x ď Bs

“ P
“

pS,Bq P r0, ys ˆ ry, xs
‰

` P
“

pS,Bq P ry, xs ˆ rx, 1s
‰

ď M ¨ P
“

pU, V q P r0, ys ˆ ry, xs
‰

`M ¨ P
“

pU, V q P ry, xs ˆ rx, 1s
‰

“ M ¨
`

y ¨ px´ yq ` p1 ´ xqpx´ yq
˘

ď Mpx´ yq “ M |x´ y|

Note that in the second to last inequality we used the fact that pS,Bq admits a bounded density
bounded by M with respect to the Lebesgue measure on r0, 1s2.

2.3.2 Hedge in the Continuum

We now propose an algorithm to deal with the full-feedback case when the environment is only
known to satisfy the (bd) assumption, i.e., when there exists a certain constant M ą 0 such that the
seller/buyer pairs pS1, B1q, pS2, B2q, . . . form a sequence of r0, 1s2-valued random variables, and each
of these pairs admits a (possibly different) density bounded by M , without any further assumptions
on their distribution (in particular, the sequence pS1, B1q, pS2, B2q, . . . is not necessarily i.i.d. and,
for any time t, St and Bt could be arbitrarily correlated).

We show that running Hedge [93] on the continuum of arms/prices in r0, 1s gives a regret rate
of order rOp

?
T q, featuring also a mild dependence in the upper bound M on the densities of the

buyer/seller pairs. The algorithm Continuous-Price Hedge (CPH) is a version of the classic Hedge
algorithm played on a continuum of prices where, at time t, a price Pt is drawn according to the
continuous distribution µt with density ft defined on r0, 1s as follows:

ftppq “
exp

`

η ¨
řt´1
s“1GFTsppq

˘

ş

r0,1s
exp

`

η ¨
řt´1
s“1GFTspxq

˘

dx
“

exp
`

η ¨
řt´1
s“1GFTsppq

˘∥∥∥exp`η ¨
řt´1
s“1GFTsp¨q

˘

∥∥∥
1

We refer to the pseudocode for further details. Crucially, it is possible to efficiently sample prices
from the distributions ft because the function

řt´1
s“1GFTs (and consequently, the density ft) is

piecewise constant with Θptq discontinuities.
While continuous versions of Hedge have already been studied, to the best of our knowledge, we

are the first to provide positive results under the assumption that expected rewards are Lipschitz.
Previous work [119, 130] assumes Lipschitzness of the rewards for any realization. The latter
assumption is, however, not applicable to the gain from trade, which is discontinuous and not even
one-sided Lipschitz in general. This seemingly small difference —from a rewards family that is
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realization-wise Lipschitz to one that is regular only in expectation— entails a technical issue in the
analysis that we bypass by proving a log-exp analogous of Minkowski’s integral inequality (Lemma 16
in Appendix A.3) that we believe is of independent interest. Using this tool, we prove Theorem 35 in
Appendix A.2, whose corollary (Corollary 3) provides the general guarantees of Hedge when rewards
are Lipschitz in expectation. The proof of the following result is thus an immediate corollary of
Lemma 1 and Corollary 3.

Algorithm 1 Continuous-Price Hedge (CPH) - Full Feedback
Input: Learning rate η P p0, 1q

Initialization: Initialize W1pxq – 1, for all x P r0, 1s

for time t “ 1, 2, . . . do
Let µt be a distribution with pdf defined by ftpxq –

Wtpxq

∥Wt∥1
, for all x P r0, 1s

Post price Pt drawn according to distribution µt
Update Wt`1pxq – Wtpxq ¨ exp

`

ηGFTtpxq
˘

, for each x P r0, 1s

Theorem 2. Consider the problem of repeated bilateral trade in the full-feedback model. Let M ą 0.
Suppose that S is the set of environments such that, for each t P N, the pair pSt, Btq admits a density
bounded by M (with respect to the Lebesgue measure on r0, 1s2). If we run Continuous-Price Hedge
with learning rate η P p0, 1q, then, for each time horizon T P N, we have that

RS
T pCPHq ď

1

η
ln

ˆ

ηT maxpM, 2q

1 ´ e´ηT

˙

` pe´ 2qηT .

In particular, if η “

b

lnp2T q

pe´2qT we have

RS
T pCPHq ď

a

pe´ 2qT lnp2T q ¨

˜

5

2
`

ln
`

maxpM, 2q
˘

lnp2T q

¸

.

The bound in Theorem 2 is optimal in the time horizon (see Theorem 4) up to logarithmic
terms. Furthermore, we note that the bound exhibits an extremely mild dependence on M without
requiring any knowledge of M to tune the parameter learning rate η. On the other hand, the learning
parameter η does depend on the time horizon T . If the time horizon is unknown, we can obtain the
same order of regret with a standard doubling trick [48].

We conclude this section with a brief discussion of an alternative approach. The reader might
question why we do not adopt a simpler method to address this problem, which involves initially
constructing a uniform grid on the interval r0, 1s with K elements, and then applying the standard
Hedge algorithm to these points, treating them as arms. In fact, in the light of Lemma 1, this more
elementary approach actually works (see also Claim 1), and the corresponding guarantees on the
regret are of the form O

´

MT
K `

a

logpKqT
¯

. Even though it is true that this would lead to optimal
guarantees in the time horizon T , it is equally clear that, when it also comes to the dependence
on the density parameter M , comparable guarantees to those provided by Theorem 2 require the
learner to tune K knowing M in advance, which is a clear drawback of this alternative approach.
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2.3.3 The Decomposition Lemma

In this section, we present a key lemma whose purpose is to decompose the gain from trade into
terms that depend only on the outcome of yes/no questions. This result allows leveraging DKW
inequalities (see Appendix A.12) in the proofs of our upper bounds. Moreover, it shows how to use
the limited feedback available to reconstruct the expected gain from trade in the realistic feedback
settings. Furthermore, it leads to an easy proof of the existence of the maximum of the expected
gain from trade, under no assumptions on the seller and buyer distributions (see Appendix A.1).

Lemma 2 (Decomposition lemma). Fix any price p P r0, 1s. Then, for any s, b P r0, 1s,

gft
`

p, ps, bq
˘

“

ż

rp,1s

Its ď p ď λ ď bu dλ`

ż

r0,ps

Its ď λ ď p ď bu dλ. (2.2)

Furthermore, let S and B be two r0, 1s-valued random variables.

• Then

E
“

gft
`

p, pS,Bq
˘‰

“

ż

rp,1s

PrS ď p ď λ ď Bsdλ`

ż

r0,ps

PrS ď λ ď p ď Bsdλ. (2.3)

• If U is uniform on r0, 1s and independent of pS,Bq, then

E
“

gft
`

p, pS,Bq
˘‰

“ PrS ď p ď U ď Bs ` PrS ď U ď p ď Bs. (2.4)

• If U is uniform on r0, 1s and S,B,U are independent, then

E
“

gft
`

p, pS,Bq
˘‰

“ PrS ď psPrp ď U ď Bs ` Prp ď BsPrS ď U ď ps. (2.5)

• If U is uniform on rp, 1s, V is uniform on r0, ps and pU, V q is independent of pS,Bq, then

E
“

gft
`

p, pS,Bq
˘‰

“ E
“

p1 ´ pqItS ď p ď U ď Bu
‰

` E
“

pItS ď V ď p ď Bu
‰

. (2.6)

Proof. We begin by proving Equation (2.2). For any s, b P r0, 1s, we have

gft
`

p, ps, bq
˘

“ pb´ sqIts ď p ď bu “

ż b

s
dλ ¨ Its ď p ď bu “

ż

r0,1s

Its ď p ď buIts ď λ ď bu dλ

“

ż

rp,1s

Its ď p ď λ ď bu dλ`

ż

r0,ps

Its ď λ ď p ď bu dλ.

Equation (2.3) is an immediate consequence of Equation (2.2) and Fubini’s theorem.
We now prove Equation (2.4). Under the assumptions, Equation (2.3) implies

PrS ď p ď U ď Bs “ P
”

tS ď pu X tU ď Bu X
␣

U P rp, 1s
(

ı

“

ż

rp,1s

P
“

tS ď pu X tU ď Bu | U “ λ
‰

dPU pλq “

ż

rp,1s

PrS ď p ď λ ď Bsdλ.

The equality PrS ď U ď p ď Bs “
ş

r0,ps
PrS ď λ ď p ď Bsdλ can be shown analogously, proving

Equation (2.4).
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Equation (2.5) is an immediate consequence of Equation (2.4), leveraging independence.
We now prove Equation (2.6). If p P t0, 1u, the result follows from Equation (2.5). Thus, assume

p P p0, 1q. Then

E
“

gft
`

p, pS,Bq
˘‰

“

ż

rp,1s

P
“

S ď p ď λ ď B
‰

dλ`

ż

r0,ps

P
“

S ď λ ď p ď B
‰

dλ.

For the first addend, we have,
ż

rp,1s

P
“

S ď p ď λ ď B
‰

dλ “ p1 ´ pq

ż

rp,1s

P
“

S ď p ď λ ď B
‰

dPU pλq

“ p1 ´ pq

ż

rp,1s

PrS ď p ď U ď B | U “ λsdPU pλq

“ p1 ´ pqPrS ď p ď U ď Bs

“ E
“

p1 ´ pqItS ď p ď U ď Bu
‰

.

Analogously, one shows
ş

r0,ps
P
“

S ď λ ď p ď B
‰

dλ “ E
“

p ¨ ItS ď V ď p ď Bu
‰

, which gives
Equation (2.6).

2.3.4 Follow the Best Price (FPB)

We now consider the full-feedback model in an (iid) environment, i.e., when the seller/buyer pairs
pS1, B1q, pS2, B2q, . . . form an i.i.d. sequence of r0, 1s2-valued random variables, all with the same law
as some pS,Bq, without any further assumptions on their common distribution (in particular, S and
B could be arbitrarily correlated and the pair pS,Bq does not necessarily admit a bounded density).

We show that a Follow-the-Leader approach, which we call Follow the Best Price (FBP, Algo-
rithm 2), achieves a O

`
?
T
˘

regret upper bound. The Follow the Best Price (FBP) algorithm consists
in posting the best price with respect to the samples that have been observed so far. Notably, it
does not need preliminary knowledge of the time horizon T .

Algorithm 2 Follow the Best Price (FBP) - Full Feedback

Let P1 – 1{2
for t “ 1, 2, . . . do

Post price Pt
Pick Pt`1 P argmaxpPr0,1s

1
t

řt
i“1 gft

`

p, pSi, Biq
˘

For each time t, given pS1, B1q, . . . , pSt, Btq, one can reconstruct the gain from trade func-
tion gft

`

¨, pSi, Biq
˘

at each time step i ď t and compute (one of) the best price(s) Pt`1 P

argmaxpPr0,1s
1
t

řt
i“1 gft

`

p, pSi, Biq
˘

. Note that 1
t

řt
i“1 gft

`

¨, pSi, Biq
˘

is a step-wise constant func-
tion that attains its maximum at one of the observed sellers’ valuations S1 . . . , St.‖ Hence, even a
naive enumeration approach is computationally efficient.

On a technical note, prices Pt`1 should be defined in a measurable way in order for the regret to
be well defined. For example, this can be done by picking Pt`1 as Si, where i is the smallest index
among all the indices j such that Sj P argmaxpPr0,1s

1
t

řt
t“1 gft

`

p, pSi, Biq
˘

.

‖By the symmetry of the problem, the maximum is also attained at one of the buyers’ valuations.
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2.3. The Full Feedback Case

The main idea of the analysis of Algorithm 2 is to show that the approximation of the expected
gain from trade with its empirical means is uniform over all possible seller/buyer distributions and
prices. An alternative way to achieve this result is through a pseudo-dimension argument (e.g., see
Li et al. [125, Introduction and Theorem 5]). However, this approach requires subtler measurability
considerations. We will show that one could get around these measurability issues altogether by
leveraging the Decomposition lemma (Lemma 2) and a bivariate DKW inequality (Theorem 42).

Theorem 3. Consider the problem of repeated bilateral trade in the full-feedback model. Suppose
that S is the set of environments such that the sequence pS1, B1q, pS2, B2q, . . . is independent and
identically distributed (iid), all with the same law as some pS,Bq. If we run Follow the Best Price,
then, for each time horizon T P N, we have that

RS
T pFBPq ď

1

2
` c

?
T ´ 1.

where c P p0, 1144240q is a universal constant.

Proof. Without loss of generality, assume that T ě 2. Fix any t P rT ´ 1s. For any p P r0, 1s define
the random variable

Htppq –
1

t

t
ÿ

i“1

GFTippq ´ E
“

GFTppq
‰

,

where we recall that GFTippq “ gft
`

p, pSi, Biq
˘

, while we defined GFTppq – gft
`

p, pS,Bq
˘

. Lever-
aging the definition of Pt`1 and the independence of Pt`1 and pSt`1, Bt`1q, the Freezing Lemma
(Lemma 17) yields

E
“

GFTt`1pp‹q
‰

´ E
“

GFTt`1pPt`1q
‰

ď E

«

1

t

t
ÿ

i“1

GFTipPt`1q

ff

´ E
“

GFTt`1pPt`1q
‰

“ E

«

1

t

t
ÿ

i“1

GFTipPt`1q ´ E
“

GFTt`1pPt`1q | Pt`1

‰

ff

“ E
“

HtpPt`1q
‰

“: p˚q.

Then, by the Decomposition lemma (2.2)-(2.3), we get

HtpPt`1q ď sup
pPr0,1s

˜

1

t

t
ÿ

i“1

GFTippq ´ E
“

GFTppq
‰

¸

(2.7)

“ sup
pPr0,1s

˜

1

t

t
ÿ

i“1

˜

ż

rp,1s

I tSi ď p ď λ ď Biu dλ`

ż

r0,ps

I tSi ď λ ď p ď Biu dλ

¸

´

˜

ż

rp,1s

PrS ď p ď λ ď Bsdλ`

ż

r0,ps

PrS ď λ ď p ď Bsdλ

¸¸

“ sup
pPr0,1s

˜

ż

r0,ps

˜

1

t

t
ÿ

i“1

ItSi ď λ,´Bi ď ´pu ´ PrS ď λ,´B ď ´ps

¸

dλ

`

ż

rp,1s

˜

1

t

t
ÿ

i“1

ItSi ď p,´Bi ď ´λu ´ PrS ď p,´B ď ´λs

¸

dλ

¸

ď 2 sup
x,yPR

∣∣∣∣∣1t
t
ÿ

i“1

ItSi ď x,´Bi ď yu ´ PrS ď x,´B ď ys

∣∣∣∣∣ . (2.8)
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2.3. The Full Feedback Case

Letting m0, c1, c2 as in Theorem 42, εt –
a

m0{t, taking expectations to the left and right hand
side of Equation (2.8), and applying the bivariate DKW inequality (Theorem 42), we get

p˚q ď E

«

2 sup
x,yPR

∣∣∣∣∣1t
t
ÿ

i“1

ItSi ď x,´Bi ď yu ´ PrS ď x,´B ď ys

∣∣∣∣∣
ff

ď 2εt ` 2

ż

rεt,1s

P

«

sup
x,yPR

∣∣∣∣∣1t
t
ÿ

i“1

ItSi ď x,´Bi ď yu ´ PrS ď x,´B ď ys

∣∣∣∣∣ ą ε

ff

dε (2.9)

ď 2εt ` 2

ż 1

εt

c1 exp
`

´c2tε
2
˘

dε ď 2εt `
c1

?
c2t

ż 8

0
e´uu´1{2 du “

ˆ

2
?
m0 ` c1

c

π

c2

˙

1
?
t
.

Being t arbitrary, using the fact that
řT´1
t“1 t

´1{2 ď 2
?
T ´ 1, and letting c – 2

´

2
?
m0 ` c1

b

π
c2

¯

ă

1144265, we have that

RT
`

FBP, pSt, BtqtPN
˘

ď
1

2
`

T´1
ÿ

t“1

´

E
“

GFTt`1pp‹q
‰

´E
“

GFTt`1pPt`1q
‰

¯

ď
1

2
`
c

2

T´1
ÿ

t“1

1
?
t

“
1

2
`c

?
T ´ 1 ,

which concludes the proof.

The loose bound on the constant c appearing in the statement is due to the (likely suboptimal)
large constants appearing in Theorem 42: any improvement on the bivariate DKW inequality would
result in an improvement of this constant. For example, it is conjectured (see, e.g., Naaman [144, Sec-
tion 5]) that the tightest bound for the bivariate DKW inequality is (with the same notation as Theo-
rem 42), for all m P N and ε ą 0, P

“

supx,yPR
∣∣ 1
m

řm
k“1 ItXk ď x, Yk ď yu ´ PrX ď x, Y ď ys

∣∣ ą ε
‰

ď

4 exp
`

´2mε2
˘

. If this was the case, we could replace Equation (2.9) with

p˚q ď 2

ż

r0,1s

P

«

sup
x,yPR

∣∣∣∣∣1t
t
ÿ

i“1

ItSi ď x,´Bi ď yu ´ PrS ď x,´B ď ys

∣∣∣∣∣ ą ε

ff

dε ď 2
?
2π

1
?
t
.

leading to a significantly smaller constant c – 2 ¨ 2
?
2π ă 11.

2.3.5
?
T Lower Bound (iv) + (bd) + (iid) in Full Feedback

In this section, we show that the upper bounds on the minimax regret we proved in Section 2.3.2
and Section 2.3.4 are essentially tight. No strategy can beat the O

`
?
T
˘

rate when the seller/buyer
pair pSt, Btq is drawn i.i.d. from an unknown fixed distribution, even under the further assumptions
that the valuations of the seller and buyer are independent of each other and have bounded densities.
In particular, this implies that we have completed the first row in Table 2.1. For a full proof of the
following theorem, see Appendix A.7.

Theorem 4. In the full-feedback model, for all horizons T , the minimax regret RS
T satisfies

RS
T ě c

?
T ,

where c ě 1{
`

8
?
2π

˘

, and S is the set of all environments such that

(iv) for each t P N, St and Bt are independent of each other.
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2.4. The Realistic Feedback Case

(a) Distributions fS˘ε (red/blue) and fB (green) (b) Expected GFT relative to `ε (red) and ´ε (blue)

Figure 2.1: The best posted price is 1{4 (resp., 3{4) in the `ε (resp., ´ε) case. By posting 1{4, the player
suffers a Ωpεq regret in the ´ε case, and the same is true posting 3{4 if in `ε case.

(bd) for each t P N, the pair pSt, Btq admits a joint density bounded by M ě 4.

(iid) pS1, B1q, pS2, B2q, . . . is an i.i.d. sequence.

Proof sketch. We build a family of distributions µ˘ε for the seller/buyer pair parameterized by
ε P r0, 1s. For the seller, for any ε P r0, 1s, we define the density

fS,˘ε – 2p1 ˘ εqIr0, 14 s ` 2p1 ¯ εqIr 1
2
, 3
4 s. (Figure 2.1a, in red/blue)

For the buyer, we define a single density (independently of ε)

fB – 2Ir 1
4
, 1
2 sYr 3

4
,1s. (Figure 2.1a, in green)

In the `ε (resp., ´ε) case, the optimal price belongs to the region r0, 1{2s (resp., p1{2, 1s, see
Figure 2.1b). By posting prices in the wrong region p1{2, 1s (resp., r0, 1{2s) in the `ε (resp., ´ε)
case, the learner incurs a Ωpεq regret. Thus, the only way to avoid suffering ΩpεT q regret is to
identify the sign of ˘ε and play accordingly. However, by information-theoretic arguments, this task
requires « 1

ε2
rounds, during which we pay at least « ε in each of them. Tuning ε « 1?

T
, leads to

the conclusion.
The reader might have noticed that this construction closely resembles the lower bound of online

learning with expert advice. Actually, a technical proof (see Appendix A.7), shows that our setting
is harder (i.e., it has a higher minimax regret) than an instance of an expert problem (with two
experts), which has a known lower bound on its minimax regret of 1

8
?
2π

?
T [70].

2.4 The Realistic Feedback Case

In this section, we tackle the problem in the more challenging realistic-feedback model. We recall
that in the realistic-feedback model, the only information collected by the learner at the end of each
round t consists of I tSt ď Ptu and I tPt ď Btu.
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2.4. The Realistic Feedback Case

2.4.1 Scouting Bandits: from Realistic Feedback to Multi-Armed Bandits

We start by studying the problem under the assumption that the seller/buyer pairs pS1, B1q, pS2, B2q, . . .

are r0, 1s2-valued i.i.d. random variables (iid), all with the same law as some pS,Bq, where S and B
are independent (iv) and have bounded densities (bd).

The main challenge in designing low-regret algorithms with realistic feedback lies in the fact that
posting a price does not reveal the corresponding gain from trade. We can observe this phenomenon
by looking at the Decomposition lemma (2.5). While the local terms PrS ď ps and Prp ď Bs can be
reconstructed by simply posting the same price p multiple times, the integral terms are inherently
global: they depend on all values in pp, 1s and r0, pq, and thus estimating them requires posting
prices that are far from p. This prevents direct application of well-established algorithms, such as
action elimination or UCB [169], and suggests that this problem is harder than multiarmed bandits
(as in fact it is: see Section 2.4.2).

A naive approach to tackle this issue could be estimating the CDFs of S and B on a suitable
grid of prices and using this information to reconstruct both the global and the local terms of
E
“

gft
`

¨, pS,Bq
˘‰

. This would lead to an rO
`

T 3{4
˘

regret. Instead, our Algorithm 3 (Scouting Bandits)
exploits better the decomposition in Equation (2.5) by learning separately the global and local parts
of the gain from trade. First, a global exploration phase is run (scouting phase), in which prices
uniformly sampled in r0, 1s are posted and used to simultaneously estimate the integral terms on a
suitable grid of K points. Once this is done, by replacing the integrals in Equation (2.5) with their
approximations pFk and pGk for each price qk in the grid, we obtain the estimate

E
“

gft
`

qk, pS,Bq
˘‰

« PrS ď qks pFk ` Prqk ď Bs pGk

“ E
“

ItS ď qku pFk ` Itqk ď Bu pGk | H
‰

“: E
“

Zpkq | H
‰

,

where H consists of the estimates pFj , pGj (for all j) at the the end of the global exploration phase. We
are now only left to solve a bandit problem on K arms with reward function Z: the only quantities
to learn are the two local terms PrS ď qks and Prqk ď Bs, which can be estimated with the available
feedback by posting the price qk.

Algorithm 3 Scouting Bandits - Realistic Feedback
input: exploration time T0, grid size K, and K-armed bandit algorithm α
initialization: qk – k{pK ` 1q, pFk – 0, pGk – 0, for all k P rKs

for t “ 1, 2, . . . , T0 do Ź (scouting phase)
post Ut drawn uniformly at random in r0, 1s

let pFk – pFk ` 1
T0
Itqk ď Ut ď Btu, and pGk – pGk ` 1

T0
ItSt ď Ut ď qku, for all k P rKs

for t “ T0 ` 1, T0 ` 2, . . . do Ź (bandit phase)
generate the next arm It with α
post price qIt
feed α the reward ZtpItq – ItSt ď qItu pFIt ` ItqIt ď Btu pGIt

The independence of S and B (iv) is required for applying Equation (2.5), while the bounded
density assumption (bd) implies the Lipschitzness of the expected gain from trade (Lemma 1), which
in turns allows to discretize the problem.

We are now ready to state and prove the main result of this section.
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2.4. The Realistic Feedback Case

Theorem 5. Consider the problem of repeated bilateral trade in the realistic-feedback model. Suppose
that S is the set of environments such that the sequence of evaluations pS1, B1q, pS2, B2q, . . . is
independent and identically distributed (iid), all with the same law as some pS,Bq admitting a density
(with respect to the Lebesgue measure on r0, 1s2) bounded by some constant M (bd), and such that S
and B are independent of each other (iv). If we run Scouting Bandits (SB) with parameters T0, K,
and α, then, for any time horizon T ě T0, we have

RS
T pSBq ď T0 `

ˆ

M

K ` 1
`

c

2π

T0

˙

pT ´ T0q ` RT´T0pαq ,

where Rτ pαq is a distribution-free upper bound on the regret after τ rounds of α in the stochastic
i.i.d. setting with r0, 1s-valued rewards.

In particular, if for each K we have a bandit algorithm αK over K arms such that Rτ pαKq “

O
`
?
Kτ

˘

(e.g., if αK is the MOSS algorithm over K arms [15]), then tuning the parameters
T0 –

P

T 2{3
T

and K –
P

T 1{3
T

gives the regret bound RT pSBq “ O
`

MT 2{3
˘

.

Proof. Let H – p pFk, pGkqkPrKs and denote its range space r0, 1s2K by H. For each h “ pfk, gkqkPrKs P

H, let pIh,tqtěT0`1 be the sequence of arms pulled by α (possibly using some internal randomization)
on the sequence of rewards pZh,tqtěT0`1 defined for any time t ě T0 ` 1 and all arms k P rKs by

Zh,tpkq – ItSt ď qkufk ` Itqk ď Btugk.

Let p‹ P argmaxpPr0,1s E
“

gft
`

p, pS,Bq
˘‰

and k‹ be the index of a point in the grid tq1, . . . , qKu closest
to p‹. Let Pt be the price posted by SB at each time t. Then

RT
`

SB, pSt, BtqtPN
˘

ď T0 `

T
ÿ

t“T0`1

E
“

GFTtpp
‹q ´ GFTtpPtq

‰

“ T0 `

T
ÿ

t“T0`1

´

E
“

GFTtpp
‹q
‰

´ E
“

GFTtpqk‹q
‰

¯

`

T
ÿ

t“T0`1

´

E
“

GFTtpqk‹q
‰

´ E
“

ZH,tpk
‹q
‰

¯

` E

«

T
ÿ

t“T0`1

ZH,tpk
‹q ´

T
ÿ

t“T0`1

ZH,tpIH,tq

ff

`

T
ÿ

t“T0`1

´

E
“

ZH,tpIH,tq
‰

´ E
“

GFTtpPtq
‰

¯

“: T0 ` pIq ` pIIq ` pIIIq ` pIVq. (2.10)

We bound the four terms separately.
For the term pIq, by the M -Lipschitzness of the gain from trade (Lemma 1) and the fact that

the step size of the grid is 1{pK ` 1q, we get

pIq “

T
ÿ

t“T0`1

´

E
“

GFTtpp
‹q
‰

´ E
“

GFTtpqk‹q
‰

¯

ď M |p‹ ´ qk‹ |pT ´ T0q ď
M

K ` 1
pT ´ T0q.

For the term pIIq, for any t ě T0 ` 1, by the independence of H and pSt, Btq, we have

E
“

ZH,tpk
‹q
‰

“ E
“

ItSt ď qk‹u pFk‹ ` Itqk‹ ď Btu pGk‹

‰

“ PrSt ď qk‹sPrqk‹ ď Ut ď Bts ` Prqk‹ ď BtsPrSt ď Ut ď qk‹s “ E
“

GFTtpqk‹q
‰

,
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2.4. The Realistic Feedback Case

where the last identity follows from Equation (2.5), and in turn implies that pIIq “ 0.
For the term pIIIq, using the fact that for PH -almost every h P H, the sequence pZh,tqtěT0`1 is

included in r0, 1s, we obtain

pIIIq “ E

«

E

«

T
ÿ

t“T0`1

ZH,tpk
‹q ´

T
ÿ

t“T0`1

ZH,tpIH,tq

ff

| H

ff

p˚q

ď

ż

H
E

«

T
ÿ

t“T0`1

Zh,tpk
‹q ´

T
ÿ

t“T0`1

Zh,tpIh,tq

ff

dPHphq ď RT´T0pαq

where p˚q follows from the independence of pIh,t, St, Btq and H (for any h P H and all t ě T0 ` 1)
and in the last inequality we upper bounded (for PH -almost every h P H) the regret of α when run
on the sequence of rewards pZh,tqtěT0`1 with RT´T0pαq.

Finally, we upper bound the last term pIVq. If the K-armed bandit algorithm α is randomized,
let Vt be its internal randomization of at each time step t ě T0 ` 1; otherwise, omit all references to
pVtqtěT0`1. Define, for each time step t ě T0 ` 1,

Lt – pH,VT0`1, ST0`1, BT0`1, . . . , Vt´1, St´1, Bt´1, Vtq

and Pt – Pr¨ | Lts. Then take a uniform random variable Ut on r0, 1s independent of pLt, Bt, Stq.
Now, for all t ě T0 ` 1, leveraging the measurability of qIH,t

, pFIH,t
, pGIH,t

with respect to σpLtq, the
independence of Lt and pSt, Btq, and the Decomposition lemma (2.5), we get

E
“

ZH,tpIH,tq
‰

´ E
“

GFTtpPtq
‰

“ E
”

E
“`

ItSt ď qIH,t
u pFIH,t

` ItqIH,t
ď Btu pGIH,t

˘

´ GFTpqIH,t
, St, Btq | Lt

‰

ı

“ E
“

PtrSt ď qIH,t
s
`

pFIH,t
´ PtrqIH,t

ď Ut ď Bts
˘‰

` E
“

PtrqIH,t
ď Bts

`

pGIH,t
´ PtrSt ď Ut ď qIH,t

s
˘‰

ď E
„

max
kPrKs

∣∣ pFk ´ Prqk ď U1 ď B1s
∣∣ȷ ` E

„

max
kPrKs

∣∣ pGk ´ PrS1 ď U1 ď qks
∣∣ȷ “: pVq ` pVIq

For the first addend, applying the univariate DKW inequality (Theorem 41), we have

pVq “

ż

r0,1s

P
„

max
kPrKs

∣∣ pFk ´ Prqk ď U1 ď B1s
∣∣ ą ε

ȷ

dε

“

ż

r0,1s

P

«

max
kPrKs

∣∣∣∣∣ 1T0
T0
ÿ

i“1

I
␣

´UiItUi ď Biu ď ´qk
(

´ P
“

´U1ItU1 ď B1u ď ´qk
‰

∣∣∣∣∣ ą ε

ff

dε

ď

ż

r0,1s

P

«

sup
xPR

∣∣∣∣∣ 1T0
T0
ÿ

i“1

I
␣

´UiItUi ď Biu ď x
(

´ P
“

´U1ItU1 ď B1u ď x
‰

∣∣∣∣∣ ą ε

ff

dε

ď

ż 1

0
2 exp

`

´2T0ε
2
˘

dε ď
1

?
2T0

ż 8

0
e´uu´1{2 du “

c

π

2

1
?
T0
.

Similarly, one can show that pVIq ď
a

π
2

1?
T0

which in turn yields pIVq ď

b

2π
T0

pT ´ T0q.
Putting the bounds on pIq-pIVq together in (2.10) gives the first part of the result. Substituting

the stated choice of the parameters yields the second.
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2.4. The Realistic Feedback Case

(a) Distributions fS,˘ε (red/blue) and fB (green) (b) Expected GFT relative to `ε (red) and ´ε (blue)

Figure 2.2: The only three regions where it makes sense for the learner to post prices are a1, a2, a3. Prices in
a1 reveal information about the sign of ˘ε suffering a Ωp1q regret; prices in a2 are optimal if the distribution
of the seller is the red one p`εq but incur Ωpεq regret if it is the blue one p´εq; the converse happens in a3.

Note that to achieve a regret of order OpMT 2{3q we tuned the parameters T0 and K of Scouting
Bandits as a function of T . If the time horizon is unknown, we can obtain the same order of regret
with a standard doubling trick [48]. In addition, note that if we allow tuning the parameters as a
function of the Lipschitz constant M (which is however unknown in general), the regret rate would
improve to order OpM1{3T 2{3q. This can be achieved by taking T0 –

P

T 2{3
T

and K –
P

M2{3T 1{3
T

.

2.4.2 T 2{3 Lower Bound under Realistic Feedback (iv) + (bd) + (iid)

In this section, we show that the upper bound on the minimax regret we proved in Section 2.4.1 is
tight in the time horizon. No strategy can beat the OpT 2{3q rate when the seller/buyer pair pSt, Btq

is drawn i.i.d. from an unknown fixed distribution, even under the further assumptions that the
valuations of the seller and buyer are independent of each other and have bounded densities. For a
full proof of the following theorem, see Appendix A.8.

Theorem 6. In the realistic-feedback model, for all horizons T , the minimax regret satisfies

RS
T ě cT 2{3 ,

where c ě 11{672, and S is the set of all environments such that

(iv) for each t P N, St and Bt are independent of each other.

(bd) for each t P N, the pair pSt, Btq admits a joint density bounded by M ě 24.

(iid) pS1, B1q, pS2, B2q, . . . is an i.i.d. sequence.

Proof sketch. We build a family of distributions µ˘ε of the seller/buyer pair parameterized by
ε P r0, 1s. For the seller, for any ε P r0, 1s, we define the density

fS,˘ε –
1

4ϑ

´

p1 ˘ εqIr0,ϑs ` p1 ¯ εqIr 1
6
, 1
6

`ϑs ` Ir 1
4
, 1
4

`ϑs ` Ir 2
3
, 2
3

`ϑs

¯

, (Figure 2.2a, in red/blue)
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2.4. The Realistic Feedback Case

where ϑ – 1{48 is a normalization constant. For the buyer, we define a single density (independently
of ε)

fB –
1

4ϑ

´

Ir 1
3

´ϑ, 1
3 s ` Ir 3

4
´ϑ, 3

4 s ` Ir 5
6

´ϑ, 5
6 s ` Ir1´ϑ, 1s

¯

. (Figure 2.2a, in green)

In the `ε (resp., ´ε) case, the optimal price belongs to a region a2 (resp., a3, see Figure 2.2b).
By posting prices in the wrong region a3 (resp., a2) in the `ε (resp., ´ε) case, the learner incurs
Ωpεq regret. Thus, the only way to avoid suffering ΩpεT q regret is to identify the sign of ˘ε and
play accordingly. Clearly, the feedback received from the buyer gives no information on ˘ε. Since
the feedback received from the seller at time t by posting a price p is ItSt ď pu, one can obtain
information about (the sign of) ˘ε only by posting prices in the costly (Ωp1q-regret each time)
sub-optimal region a1, where, by information-theoretic arguments, we need to post « 1

ε2
times to

collect reliable information about (the sign of) ˘ε. Tuning ε « T´1{3 leads to the desired lower
bound.

The reader might have noticed that this construction closely resembles the learning dilemma
present in the so-called revealing action partial monitoring game [48]. Actually, a technical proof
(see Appendix A.8), shows that our setting is harder (i.e., it has a higher minimax regret) than an
instance of a revealing action problem, which has a known lower bound on its minimax regret of
11
96

`

1
7T

2{3
˘

[49].

2.4.3 Linear Lower Bound under Realistic Feedback (bd) + (iid)

In this section, we show that no strategy that can achieve worst-case sublinear regret when the
seller/buyer pair pSt, Btq is drawn i.i.d. from an unknown fixed distribution, even under the further
assumption that the valuations of the seller and buyer have bounded densities. This is due to a lack
of observability. For a full proof of the following theorem, see Appendix A.9.

Theorem 7. In the realistic-feedback model, for all horizons T , the minimax regret RS
T satisfies

RS
T ě cT ,

where c ě 1{24, and S is the set of all environments such that

(bd) for each t P N, the pair pSt, Btq admits a joint density bounded by M ě 24.

(iid) pS1, B1q, pS2, B2q, . . . is an i.i.d. sequence.

Proof sketch. Consider the two joint densities f and g of the seller/buyer pair as the normalized
indicator functions of the red and blue squares in Figure 2.3a. Formally

f –
64

3

´

Ir0{8, 1{8sˆr3{8, 4{8s ` Ir2{8, 3{8sˆr7{8, 8{8s ` Ir4{8, 5{8sˆr5{8, 6{8s

¯

and gps, bq – fp1 ´ b, 1 ´ sq. In the f (resp., g) case, the optimal price belongs to the region r0, 1{2s

(resp., p1{2, 1s, see Figure 2.3b). By posting prices in the wrong region p1{2, 1s (resp., r0, 1{2s) in the
f (resp., g) case, the learner incurs at least a 1{3 ´ 1{4 “ 1{12 regret. Thus, the only way to avoid
suffering linear regret is to determine if the valuations of the seller and buyer are generated by f
or g. For each price p P r0, 1s, consider the four rectangles with opposite vertices pp, pq and pui, viq,
where tpui, viqui“1,...,4 are the four vertices of the unit square. Note that the only information on the
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2.4. The Realistic Feedback Case

(a) Supports of distributions f (blue) and g (red) (b) Expected GFT relative to f (blue) and g (red)

Figure 2.3: Under realistic feedback, the two densities f and g are indistinguishable. The optimal price p‹

for f gives constant regret under g and q‹ does the converse.

distribution of pSt, Btq that the learner can gather from the realistic feedback
`

ItSt ď pu, Itp ď Btu
˘

received after posting a price p is (an estimate of) the area of the portion of the support of the
distribution included in each of these four rectangles. However, these areas coincide in the cases f
and g. Hence, under realistic feedback, f and g are completely indistinguishable. Therefore, given
that the optimal price in the f (resp., g) case is 3{8 (resp., 5/8), the best that the learner can do is to
sample prices uniformly at random in the set t3{8, 5{8u, incurring a regret of T{24. For a formalization
of this argument leveraging the techniques we described in the introduction, see Appendix A.9.

2.4.4 Linear Lower Bound under Realistic Feedback (iv) + (iid)

In this section, we prove that in the realistic-feedback case, no strategy can achieve sublinear regret
without any limitations on how concentrated the distributions of the valuations of the seller and
buyer are, not even if they from an independent and identically distributed sequence (iid) and are
independent of each other (iv).

At a high level, if the two distributions of the seller and the buyer are very concentrated in a
small region, finding an optimal price is like finding a needle in a haystack. For a full proof of the
following theorem, see Appendix A.10.

Theorem 8. In the realistic-feedback model, for all horizons T , the minimax regret satisfies

RS
T ě cT ,

where c ě 1{8, and S is the set of all environments such that

(iv) for each t P N, St and Bt are independent of each other.

(iid) pS1, B1q, pS2, B2q, . . . is an i.i.d. sequence.

Proof sketch. Consider the family of seller/buyer i.i.d. sequences pSx, Bxq, pSx1 , B
x
1 q, pSx2 , B

x
2 q, . . . ,

parameterized by x P I, where I is a small interval centered in 1{2, Sx and Bx are independent of
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2.4. The Realistic Feedback Case

(a) Distributions of Sx (red) and Bx (green) (b) Expected gain from trade relative to Sx and Bx

Figure 2.4: All prices but x have high regret. However, under realistic feedback, finding x in finite time is
impossible.

each other, and they satisfy

Sx “

$

&

%

x with probability 1
2

0 with probability 1
2

, Bx “

$

&

%

x with probability 1
2

1 with probability 1
2

.

The distributions and the corresponding gain from trade are represented in Figure 2.4a and Figure 2.4b,
respectively. A direct verification shows that the function p ÞÑ E

“

gft
`

p, pSx, Bxq
˘‰

is maximized at
p “ x. Furthermore, by posting any other prices, the learner incurs a regret of approximately 1{2

with probability 1{4. Now, under realistic feedback, no strategy can locate (exactly!) each possible
x P I in a finite number of steps. This results, for any strategy, in regret of at least (approximately)
T {8. See Appendix A.10 for a more detailed analysis.

2.4.5 Linear Lower Bound under Realistic Feedback (iv) + (bd)

In this section, we prove that in the realistic-feedback case, assuming only that at each time t
the evaluation of the seller St is independent of the valuation of the buyer Bt (iv) and that their
distribution admits densities that are uniformly bounded (bd) is not enough to allow sublinear regret.
The construction is based on ideas analogous to the one already proposed in section Section 2.4.3.

Theorem 9. In the realistic-feedback model, for all horizons T , the minimax regret satisfies

RS
T ě cT ,

where c ě 1{24, and S is the set of all environments such that

(iv) for each t P N, St and Bt are independent of each other.

(bd) for each t P N, the pair pSt, Btq admits a joint density bounded by M ě 64.

Proof. Consider the six squares depicted in Figure 2.3:

Q1 –
“

0, 18
‰

ˆ
“

3
8 ,

1
2

‰

, Q2 –
“

1
4 ,

3
8

‰

ˆ
“

7
8 , 1

‰

, Q3 –
“

1
2 ,

5
8

‰

ˆ
“

5
8 ,

3
4

‰

,

Q4 –
“

1
2 ,

5
8

‰

ˆ
“

7
8 , 1

‰

, Q5 –
“

0, 1
8

‰

ˆ
“

5
8 ,

3
4

‰

, Q6 –
“

1
4 ,

3
8

‰

ˆ
“

3
8 ,

1
2

‰

.
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2.4. The Realistic Feedback Case

To each square Qi, we associate a uniform probability distribution over it: we say that the random
valuations pS,Bq are distributed uniformly over Qi under Pi and Ei, for each i “ 1, . . . , 6. Starting
from these distributions, we construct two other distributions: the “red” one and the “blue” one.
When pS,Bq is sampled from the blue one, it is sampled uniformly at random from the union of the
blue squares Q1, Q2 and Q3. In formula, the probability measure Pblue is just a uniform mixture of
P1, P2 and P3. The same can be done for the red distribution over the red squares Q4, Q5 and Q6.
Note that both the red and the blue distributions admit a density bounded by 64.

From Theorem 7, we know that any learning strategy α to post prices Pt suffers linear regret
against at least one of the following i.i.d. instance: the environment is the one corresponding to the
red or the blue distribution, and extracts valuations from it i.i.d. over the rounds. In formula:

max
colorPtred,blueu

ˆ

max
pPr0,1s

T
ÿ

t“1

Ecolor“GFTtppq ´ GFTtpptq
‰

˙

ě
1

24
T. (2.11)

We cannot use this construction directly for our result, as seller and buyer valuations are not
independent in the blue and red distributions. However, we can generate an equivalent random
sequence of distributions admitting a bounded density such that each one of them has independent
seller and buyer valuations.

Consider the following family S0 Ă S of environments: each β P S0 is characterized by a color
red or blue, and a sequence pitq

T
t“1 of T indices, where red environments have it P t4, 5, 6u and blue

environments have it P t1, 2, 3u. We denote with Sred
0 the set of all red environments and with Sblue

0

the set of all blue environments. Any β in the sequence generates the valuations as follows: pSt, Btq

is drawn independently and uniformly at random from Qit . Note that any β P S0 enjoys the property
that the distribution chosen at each time step has independent seller and buyer. We argue that any
learning strategy α suffers linear regret against at least one of these adversaries. In fact:

RS
T pαq ě max

βPS0

«

max
pPr0,1s

˜

T
ÿ

t“1

Eit rGFTtppq ´ GFTtpptqs

¸ff

“ max
colorPtred,blueu

max
βPScolor

0

«

max
pPr0,1s

˜

T
ÿ

t“1

Eit rGFTtppq ´ GFTtpptqs

¸ff

ě max
colorPtred,blueu

«

max
pPr0,1s

˜

T
ÿ

t“1

Ecolor rGFTtppq ´ GFTtpptqs

¸ff

(2.12)

Note that the it are the indices induced by β. The previous inequality, combined with Equation (2.11)
concludes the proof. The only delicate step we need to clarify is the last inequality in Equation (2.12).
To this end, fix any color, say red (the same argument holds for blue). The regret of α against the
worst sequence in Sred

0 is at least the expected regret of α against a randomized environment that
is obtained by drawing uniformly at random β from Sred

0 . Now, the crucial argument is that the
sequence of valuations pSt, Btq obtained by choosing uniformly at random an environment β from
Sred
0 follows the exact same distribution as drawing pSt, Btq i.i.d. from the red distribution. In fact,

the valuations at different steps are independent and every square has the same probability of being
chosen at each time step.
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2.5. Unlocking Faster Rates in Bilateral Trade: the S „ B Case.

2.4.6 Beyond Realistic Feedback - Learning with One Bit

In this brief section, we discuss the (im)possibility of learning with less than realistic feedback.
Specifically, we investigate whether the single bit ItSt ď Pt ď Btu is sufficient for obtaining sublinear
regret bounds. This is not the case: even under the (iv), (bd), and (iid) assumptions simultaneously,
a single bit is not enough to provide sufficient observability. Indeed, consider a first instance in which
the seller S and buyer B have uniform distributions on r0, 1s, independent of each other. In this
case, the only maximizer of the expected gain from trade is p‹ “ 1{2. As a second instance, consider
two independent distributions of the seller S1 and buyer B1 with densities (bounded by 2 and even
infinitely differentiable) fS1psq – 4p4 ´ 2s3 ` s2q{ps3 ´ s2 ` 4q2 and fB1pbq – bpb ´ 1{2qpb ´ 1q ` 1

respectively. Then, for all p P r0, 1s, we have PrS ď p ď Bs “ PrS1 ď p ď B1s. Therefore, the two
instances are indistinguishable under the single-bit feedback, but a direct verification shows that in
the second instance, p‹ “ 1{2 is not a maximizer of the expected gain from trade. Leveraging these
facts and the continuity of the gain from trade in the two instances leads to a linear minimax regret,
using, for example, the same ideas as in Theorem 7.

2.5 Unlocking Faster Rates in Bilateral Trade: the S „ B Case.

In this section, we explore the case when sellers and buyers share the same distribution. In this case,
we show that under the (iv), (bd), and (iid) assumptions faster rates are achievable both under full
and realistic feedback. Interestingly, the upper and the lower bounds proposed in this section are
matching (up to constants) not only in the time horizon but even in the density parameter M .

2.5.1 Brokerage with no Designated Seller’s and Buyer’s Roles

Sellers and buyers play starkly different roles in bilateral trade. It is understandable, therefore, that
a reader might question the significance of the arguably artificial scenario where sellers and buyers
possess identical distributions for their valuations. To address these concerns, we start by proposing
real-world motivations for analyzing this case.

In several over-the-counter (OTC) markets (see Footnote ∗), traders do not have definite roles of
sellers and buyers, but they may decide to sell or buy depending on the prevailing market conditions
[168]. These markets encompass a wide array of asset trades, including stocks, derivatives, art,
collectibles, precious metals and minerals, energy commodities like gas and oil, as well as digital
currencies (cryptocurrencies), among others.

The interaction between brokers and traders in this scenario can be modeled in the following
way. At each time t P N,

1. Two traders arrive with private valuations V2t´1 and V2t.

2. The broker proposes a trading price Pt.

3. If the price Pt falls between the lowest∗∗ V2t´1 ^ V2t and highest V2t´1 _ V2t valuations (i.e.,
if the trader with the smallest valuation is eager to sell at price Pt and the other is willing
to buy at Pt), the trader with the highest valuation buys the item from the trader with the
lowest valuation paying the brokerage price Pt.

∗∗We denote the minimum (resp., maximum) of any two real numbers x, y P R by x ^ y (resp., x _ y).
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2.5. Unlocking Faster Rates in Bilateral Trade: the S „ B Case.

4. Some feedback is revealed (full or realistic).

Accordingly, the gain from trade function for this problem becomes

Ăgft : r0, 1s ˆ r0, 1s2 Ñ r0, 1s,
`

p, pv1, v2q
˘

ÞÑ |v2 ´ v1| ¨ I tv1 ^ v2 ď p ď v1 _ v2u

while the gain from trade at time t becomes

ĆGFTt : r0, 1s Ñ r0, 1s, p ÞÑ Ăgft
`

p, pV2t´1, V2tq
˘

.

Notice that this problem can be cast into the previously proposed bilateral trade framework in
Section 2.1 by defining, for each time t, St – V2t´1 ^ V2t and Bt – V2t´1 _ V2t. This way, for each
t P N, we have the identity

GFTt “ ĆGFTt .

Furthermore, the corresponding notions of full (resp., realistic) feedback for this new setting are
enough to reconstruct the corresponding full (resp., realistic) feedback in the old setting. This is
surely a feasible way to solve the problem with the tools we already provided in previous sections,
but we now provide a different and fruitful perspective.

Suppose the sequence pVtqtPN is independent and identically distributed (a sensible way to model
large and stable markets). Then, for any p P r0, 1s

ErĆGFTtppqs “ E
“

pV2t´1 ´ V2tqItV2t ď p ď V2t´1u ` pV2t ´ V2t´1qItV2t´1 ď p ď V2tu
‰

“ 2E
“

pV2t ´ V2t´1qItV2t´1 ď p ď V2tu
‰

“ 2E
”

gft
`

p, pV2t´1, V2tq
˘

ı

.

Hence, by defining instead St – V2t´1 and Bt – V2t, we obtain, for each p P r0, 1s,

ErĆGFTtppqs “ 2ErGFTtppqs .

With this different definition, the two sequences pStqtPN and pBtqtPN are i.i.d. and, for each t P N, St
and Bt share the same distribution and they are independent of each other. Moreover, notice that if
the elements in the sequence pVtqtPN admit a bounded density, the same holds also for those in the
sequences pStqtPN and pBtqtPN.

We believe that this last reduction provides sufficient motivation to study the standard bilateral
trade problem of Section 2.1 under the (iv) and (iid) assumptions when sellers’ and buyers’ evaluations
share the same distribution, and to further investigate the role played by the (bd) assumption in
this setting.

2.5.2 The Approximation and Representation Lemmas

In this section, we present two key results for the case when sellers and buyers are independent of
each other, and they share the same distribution that admits a bounded density.

We first fix some notation. The Dirac measure based at x P R is denoted by δx, i.e., δx is the
measure defined via the equation δxrAs “ Itx P Au for any set A. For any (signed) measure µ and
any measurable set E, we will write µE rather than µrEs whenever this does not cause confusion.
For any measure µ over r0, 1s, we let µ̄ –

ş

r0,1s
xdµpxq, and we define the functions rρpµq and ρpµq,
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for all p P r0, 1s, by

rρpµqppq –

ż p

0

`

µr0, λs ` µr0, λq
˘

dλ`
`

µr0, ps ` µr0, pq
˘

pµ̄´ pq ,

ρpµqppq – rρpµqppq ` µtpu

ˆ
ż p

0
µr0, λsdλ`

ż 1

p
µrλ, 1sdλ

˙

.

The following lemma shows that µ̄ maximizes rρpµq (in general) and ρpµq (if µ has a bounded density),
and the cost of approximating µ̄.

Lemma 3 (Approximation). If µ is a probability measure on r0, 1s, then rρpµqpµ̄q “ maxpPr0,1s rρpµqppq

and, for any p P r0, 1s, rρpµqpµ̄q ´ rρpµqppq ď 2|µ̄ ´ p|. If µ has a density bounded by M ą 0, then
ρpµq “ rρpµq and

0 ď ρpµqpµ̄q ´ ρpµqppq ď M |µ̄´ p|2 , @p P r0, 1s .

Proof. For λ P r0, 1s, let mpλq – µr0, λs ` µr0, λq and note that m is a r0, 1s-valued non-decreasing
function of λ. For any p P r0, 1s,

0 ď

ż µ̄

p

`

mpλq ´mppq
˘

dλ “ rρpµqpµ̄q ´ rρpµqppq “

ż µ̄

p

`

mpλq ´mppq
˘

dλ ď 2|µ̄´ p| , (2.13)

which implies that rρpµqpµ̄q “ maxpPr0,1s rρpµqppq. Next, note that for all p P r0, 1s,
∣∣
rρpµqppq ´

ρpµqppq
∣∣ ď µtpu, which, if µ has a density f bounded by a constant M , implies rρpµqppq “ ρpµqppq

and

ρpµqpµ̄q ´ ρpµqppq “ rρpµqpµ̄q ´ rρpµqppq
(2.13)

“

ż µ̄

p

`

mpλq ´mppq
˘

dλ

“ 2

ż µ̄

p

ż λ

p
fpxq dx dλ ď 2M

∣∣∣∣ż µ̄
p
|λ´ p| dλ

∣∣∣∣ “ M |µ̄´ p|2 .

The next lemma provides a crucial representation of the objective p ÞÑ E
“

GFTtppq
‰

. Its long
and (somewhat) tedious proof is deferred to Appendix A.13.

Lemma 4 (Representation). Let S and B be two r0, 1s-valued random variables independent of each
other with common distribution ν. Then, the induced gain from trade GFTp¨q – gft

`

¨, pS,Bq
˘

is
such that, for any p P r0, 1s,

E
“

GFTppq
‰

“
1

2
ρpνqppq .

The following is an immediate corollary of Lemmas 3 and 4.

Theorem 10. Suppose the sequence pSt, BtqtPN of sellers and buyers’ evaluations is i.i.d., and that,
for each t P N, the evaluation St and Bt are independent of each other and they share the same
distribution ν having a density bounded by some constant M ą 0. Then, for any t P N and any
p P r0, 1s, it holds that

0 ď E
“

GFTt
`

ν̄
˘‰

´ E
“

GFTtppq
‰

ď
M

2
¨
∣∣ν̄ ´ p

∣∣2 ,
and, in particular, maxpPr0,1s E

“

GFTtppq
‰

“ E
“

GFTt
`

ν̄
˘‰

.
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The previous theorem gives much intuition on the problem under the (iv), (bd) and (iid)
assumptions, when sellers’ and buyers’ evaluations share the same distribution ν. It proves that the
optimal action is to post the (unknown) expected value ν̄ of the valuations. Moreover, it suggests
the strategy of approximating this value (on the basis of the available feedback), since posting a
price close to the expectation has only a quadratic cost in the approximation.

2.5.3 Full Feedback - Upper Bound

In this section, we provide a logarithmic upper bound in the full feedback case under the (iv), (bd)
and (iid) assumptions when sellers and buyers share the same distribution.

Following the intuition provided by Theorem 10, we introduce the Follow the Mean algorithm
(FTM), which simply posts the empirical average of the past valuations.

Algorithm 4 Follow the Mean (FTM) - Full Feedback

Let P1 – 1{2
for t “ 1, 2, . . . do

Post price Pt
Let Pt`1 – 1

2t

řt
i“1pSi `Biq

The next theorem shows that FTM enjoys an M log T regret, where M is an upper bound on
the density of the distribution shared by sellers and buyers.

Theorem 11. Consider the problem of repeated bilateral trade in the full-feedback model. Suppose
that S is the set of environments such that the sequence of evaluations pS1, B1q, pS2, B2q, . . . is
independent and identically distributed (iid), all with the same law as some pS,Bq, where S and B
are independent (iv) of each other and share the same distribution µ having a density (with respect
to the Lebesgue measure on r0, 1s), bounded by some constant M (bd). If we run Follow the Mean
(FTM), then, for any time horizon T ě 2, we have

RS
T pFTMq ď

1

2
`
M

8

`

1 ` lnpT ´ 1q
˘

.

Proof. For notational convenience, let V a random variable with the same distribution of S (and
hence, B). For all time horizons T ě 2, we have

RS
T

`

FTM, pSt, BtqtPN
˘

´
1

2
ď

T
ÿ

t“2

´

E
“

GFTt
`

ErV s
˘‰

´ E
“

GFTtpPtq
‰

¯

plq
“

T
ÿ

t“2

E
„

”

E
“

GFTt
`

ErV s
˘

´ GFTtppq
‰

ı

p“Pt

ȷ

ptq
ď

T
ÿ

t“2

E
„

”M

2

∣∣p´ ErV s
∣∣2ı

p“Pt

ȷ

“
M

2

T
ÿ

t“2

E
”∣∣Pt ´ ErV s

∣∣2ı
pfq
“
M

2

T
ÿ

t“2

ż 8

0
P
”∣∣Pt ´ ErV s

∣∣2 ě ε
ı

dε
phq

ď
M

2

T´1
ÿ

t“1

ż 8

0
2e´8tε dε

“
M

8

T´1
ÿ

t“1

1

t
ď
M

8

ˆ

1 `

ż T´1

1

1

s
ds

˙

ď
M

8

`

1 ` lnpT ´ 1q
˘

,
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Figure 2.5: On the left, the density fε of a “hard” instance used to prove the lower bounds in Theorems 12
and 15. A base uniform distribution is warped in the intervals r1{7, 2{7s (green) and r3{7, 4{7s (blue+red).
The density on r1{7, 2{7s is split into two uneven parts, differing by ε from the original. The mass on r3{7, 4{7s

is concentrated in a small set JM of size Θp1{Mq around 1{2. The corresponding gain from trade, on the
right, has a smooth spike of height ΘpM |ε|2q situated in JM , at a distance Θp|ε|q from 1{2. When ε ă 0
(resp., ε ą 0), the spike is left (resp., right) of 1{2, and posting 1{2 is better than posting any price after
(resp., before) 1{2. In the two-bit feedback lower bound, the only way to gather usable feedback is to post
prices in r1{7, 2{7s, which give rewards Θp1q-away from the optimal one.

where plq follows from the Freezing Lemma (Lemma 17) after observing that Pt is independent of
pSt, Btq and GFTtpPtq “ gft

`

Pt, pSt, Btq
˘

; ptq from Theorem 10; pfq follows from Fubini’s Theorem;
and phq from Hoeffding’s inequality.

2.5.4 Full Feedback - Lower Bound

In this section, we prove the optimality of the FTM algorithm by showing a matching M log T lower
bound. To this end, we build a family of distributions to show that the problem is harder than a
full-feedback sequential Bayesian problem where the goal is to estimate the expectation of a certain
random variable, and the loss function is the square of the distance from the expectation.

Theorem 12. Consider the problem of repeated bilateral trade in the realistic-feedback model. There
exists two numerical constants c1, c2 ą 0 such that, for any M ě 2 and any time horizon T ě c2M

4,
the minimax regret satisfies

RS
T ě c1M log T ,

where S is the set of all environments such that, for each t P N, St and Bt share the same distribution
ν and

(iv) for each t P N, St and Bt are independent of each other.

(bd) for each t P N, ν admits a density bounded by M .

(iid) pS1, B1q, pS2, B2q, . . . is an i.i.d. sequence.

Proof. Given that we are in a stochastic i.i.d. setting, we can restrict this proof to deterministic
strategies without loss of generality. LetM ě 2, JM –

“

1
2´ 1

14M ,
1
2` 1

14M

‰

, f – Ir0, 37 s`MIJM `Ir 4
7
,1s,

and, for any ε P r´1, 1s, gε – ´εIr 1
7
, 3
14 s ` εIp 3

14
, 2
7 s and fε – f ` gε (see Figure 2.5, left). For any

ε P r´1, 1s, note that 0 ď fε ď M and
ş1
0 fεpxqdx “ 1, hence fε is a valid density on r0, 1s
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bounded by M , and we will denote the corresponding probability measure by νε. Consider for
each q P r0, 1s, an i.i.d. sequence pDq,tqtPN of Bernoulli random variables of parameter q, an i.i.d.
sequence p rDtqtPN of Bernoulli random variables of parameter 1{7, an i.i.d. sequence pUtqtPN of
uniform random variables on r0, 1s, a uniform random variable E on r´εM , εM s where εM :“ 7

M ,

such that
´

pDq,tqtPN,qPr0,1s, p rDtqtPN, pUtqtPN, E
¯

is an independent family. Let φ : r0, 1s Ñ r0, 1s be
such that, if U is a uniform random variable on r0, 1s, then the distribution of φpUq has density
7
6 ¨ f ¨ Ir0,1szr1{7,2{7s (which exists by the Skorokhod representation theorem [185, Section 17.3]). For
each ε P r´1, 1s and t P N, define

Sε,t –

ˆ

2 ` U2t´1

14
p1 ´D 1`ε

2
,2t´1q `

3 ` U2t´1

14
D 1`ε

2
,2t´1

˙

rD2t´1 ` φpU2t´1qp1 ´ rD2t´1q ,

Bε,t –

ˆ

2 ` U2t

14
p1 ´D 1`ε

2
,2tq `

3 ` U2t

14
D 1`ε

2
,2t

˙

rD2t ` φpU2tqp1 ´ rD2tq . (2.14)

Straightforward computations show that, for each ε P r´1, 1s the sequence pSε,t, Bε,tqtPN is i.i.d. and
for each t P N the random variables Sε,t and Bε,t are independent of each other with commonly
shared distribution given by νε. Furthermore, for each ε P r´1, 1s the sequence pSε,t, Bε,tqtPN is
independent of E. For any ε P r´1, 1s, p P r0, 1s, and t P N, let GFTε,tppq – gft

`

p, pSε,t, Bε,tq
˘

(for
a qualitative representation of its expectation, see Figure 2.5, right). For any ε P r´1, 1s and t P N,
a direct computation shows that ν̄ε “ ErVε,ts “ 1

2 ` ε
196 . By Lemmas 3 and 4, we have, for all

ε P r´1, 1s, t P N, and p P r0, 1s,

E
“

GFTε,tppq
‰

“

ż p

0

ż λ

0
fεpsqds dλ` pν̄ε ´ pq

ż p

0
fεpsq ds ,

which, together with the fundamental theorem of calculus —[29, Theorem 14.16], noting that
p ÞÑ E

“

GFTε,tppq
‰

is absolutely continuous with derivative defined a.e. by p ÞÑ pν̄ε´pqfεppq— yields,
for any p P JM ,

E
“

GFTε,tpν̄εq
‰

´ E
“

GFTε,tppq
‰

“
M

2
|ν̄ε ´ p|2 . (2.15)

Note also that for all ε P r´εM , εM s, t P N, and p P r0, 1szJM ,

E
“

GFTε,tppq
‰

ď E rGFTε,t p1{2qs . (2.16)

Fix any arbitrary deterministic strategy for the full feedback setting prαtqtPN, i.e., a sequence of
functions rαt :

`

r0, 1s ˆ r0, 1s
˘t´1

Ñ r0, 1s mapping past feedback into prices (with the convention
that rα1 is just a number in r0, 1s). For each t P N, define αt :

`

r0, 1s ˆ r0, 1s
˘t´1

Ñ JM equal to
rαt whenever rαt takes values in JM , and equal to 1{2 otherwise. Defining Z – 1`E

2 , and RνT as
the regret of the strategy prαtqtPN at time T when the underlying sequence of sellers’ and buyers’
evaluations follows the distribution ν, we have that the regret RS

T pprαtqtPNq is lower bounded by

sup
εPr´εM ,εM s

T
ÿ

t“1

E
”

GFTε,tpν̄εq ´ GFTε,t
`

rαt
`

pSε,1, Bε,1q, . . . , pSε,t´1, Bε,t´1q
˘˘

ı

p2.16q

ě sup
εPr´εM ,εM s

T
ÿ

t“1

E
”

GFTε,tpν̄εq ´ GFTε,t
`

αt
`

pSε,1, Bε,1q, . . . , pSε,t´1, Bε,t´1q
˘˘

ı
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♠
“
M

2
sup

εPr´εM ,εM s

T
ÿ

t“1

E
”∣∣ν̄ε ´ αt

`

pSε,1, Bε,1q, . . . , pSε,t´1, Bε,t´1q
˘∣∣2ı

ě
M

2

T
ÿ

t“1

E
”∣∣ν̄E ´ αt

`

pSE,1, BE,1q, . . . , pSE,t´1, BE,t´1q
˘∣∣2ı

♥
ě
M

2

T
ÿ

t“1

E
”∣∣ν̄E ´ Erν̄E | pSE,1, BE,1q, . . . , pSE,t´1, BE,t´1qs

∣∣2ı
“

M

384

T
ÿ

t“1

E
”∣∣E ´ ErE | pSE,1, BE,1q, . . . , pSE,t´1, BE,t´1qs

∣∣2ı
♦
ě

M

384

T
ÿ

t“1

E
”∣∣E ´ ErE | D 1`E

2
,1, . . . , D 1`E

2
,2pt´1q

s
∣∣2ı “

“
M

196

T
ÿ

t“1

E
”∣∣Z ´ ErZ | DZ,1, . . . , DZ,2pt´1qs

∣∣2ı
where ♠ follows from (2.15) and the fact that αt takes values in JM ; ♥ from the fact that the
minimizer of the L2pPq-distance from ν̄E in σ ppSE,1, BE,1q, . . . , pSE,t´1, BE,t´1qq is the random
variable Erν̄E | pSE,1, BE,1q, . . . , pSE,t´1, BE,t´1qs (see, e.g., [185, Section 9.4]); ♦ follows from the
fact that, by Equation (2.14) and the independence of E from

´

pDq,tqtPN,qPr0,1s, p rDtqtPN, pUtqtPN

¯

,
the conditional expectation ErE | pSE,1, BE,1q, . . . , pSE,t´1, BE,t´1qs is a measurable function of
D 1`E

2
,1, . . . , D 1`E

2
,2pt´1q

, together with the same observation made in ♥ about the minimization of
L2pPq distance.

Finally, the general term of this last sum is the expected squared distance between the random
parameter (drawn uniformly over rp1 ´ εM q{2, p1 ` εM q{2s) of an i.i.d. sequence of Bernoulli random
variables and the conditional expectation of this random parameter given 2pt ´ 1q independent
realizations of these Bernoullis. A probabilistic argument shows that there exist two universal
constants rc, c2 ą 0 such that, for all t ě c2M

4,

E
”∣∣Z ´ ErZ | DZ,1, . . . , DZ,2pt´1qs

∣∣2ı ě rc
1

t´ 1
. (2.17)

At a high level, this is because, in an event of probability Ωp1q, if t is large enough, the conditional
expectation ErZ | DZ,1, . . . , DZ,2pt´1qs is very close to the empirical average 1

2pt´1q

ř2pt´1q

s“1 DZ,s,
whose expected squared distance from Z is Ω

`

1{pt ´ 1q
˘

. For a formal proof (2.17) with explicit
constants, see the appendix Appendix A.14. Summing over t and putting everything together gives
the result.

What if we remove the (bd) assumption?

We conclude this section by showing that assuming that sellers’ and buyers’ evaluations are inde-
pendent of each other, together with the (iv) and (iid) assumptions, is not enough to achieve faster
rates than those already obtained in Section 2.3.

Theorem 13. Consider the problem of repeated bilateral trade in the full-feedback model. There
exists a numerical constant c ą 0 such that, for any time horizon T , the minimax regret satisfies

RS
T ě c

?
T ,
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where S is the set of all environments such that, for each t P N, St and Bt share the same distribution
ν and

(iv) for each t P N, St and Bt are independent of each other.

(iid) pS1, B1q, pS2, B2q, . . . is an i.i.d. sequence.

Proof sketch. For each ε P
“

´1
4 ,

1
4

‰

, consider the distribution

νε –
1

4
δ0 `

ˆ

1

4
` ε

˙

δ1{3 `

ˆ

1

4
´ ε

˙

δ2{3 `
1

4
δ1 .

Consider for each ε P
“

´1
4 ,

1
4

‰

an i.i.d. sequence pDε,tqtPN of Bernoulli random variables of parameter
1
2 ` 2ε, and consider two i.i.d. sequences pDtqtPN, p rDtqtPN of parameter 1{2, such that the family of

random variables
´

pDε,tqεPr´ 1
4
, 1
4

s,tPN, pDtqtPN, p rDtqtPN

¯

is an independent family. For each t P N and

each ε P r´1
4 ,

1
4 s, define

Sε,t –
1

3
p1 ´D2t´1qDε,2t´1 `

2

3
p1 ´D2t´1qp1 ´Dε,2t´1q `D2t´1

rD2t´1 ,

Bε,t –
1

3
p1 ´D2tqDε,2t `

2

3
p1 ´D2tqp1 ´Dε,2tq `D2t

rD2t .

and, for each ε P
“

´1
4 ,

1
4

‰

, notice that pSε,tqtPN and pBε,tqtPN are two i.i.d sequences, such that for
each t P N the two random variables Sε,t and Bε,t are independent of each other with common
distribution νε. For any ε P

“

´1
4 ,

1
4

‰

, p P r0, 1s, and t P N, let GFTε,tppq – gft pp, pSε,t, Bε,tqq. For
each ε P

“

´1
8 ,

1
8

‰

and each t P N, note that:

max
pPt 1

3
, 2
3u

E
“

GFTε,tppq
‰

“ max
pPr0,1s

E
“

GFTε,tppq
‰

(2.18)

min
pPt 1

3
, 2
3u

E
“

GFTε,tppq
‰

´ max
pPr0,1szt 1

3
, 2
3u

E
“

GFTε,tppq
‰

“ Ωp1q (2.19)

E
“

GFTε,tp1{3q
‰

´ E
“

GFTε,tp2{3q
‰

“ sgnpεq ¨ Ω
`

|ε|
˘

(2.20)

Fix a time horizon T P N and select ε – T´1{2. We will show that for each strategy for the
full-feedback setting and each time horizon T , if RνT is the regret of the strategy at time horizon T
when the underlying distribution of the traders’ valuations is ν, then max

`

R
ν´ε

T , R
ν`ε

T

˘

“ Ω
`
?
T
˘

.
Notice that, by posting prices in the wrong region r0, 1szt1{3u (resp., r0, 1szt2{3u) in the `ε (resp.,
´ε) case, the learner incurs a Ωpεq “ Ω

`

1{
?
T
˘

instantaneous regret by (2.18), (2.19), and (2.20).
Then, in order to attempt suffering less than Ω

`

1{
?
T ¨ T

˘

“ Ω
`
?
T
˘

regret, the algorithm would
have to detect the sign of ˘ε and play accordingly. However, the algorithm has no means to gather
enough information to accomplish this task in due time. In fact, notice that the feedback received
from the two traders at time t after having posted a price p is S˘ε,t and B˘ε,t, which can’t give more
information about ˘ε than the information carried by the two Bernoullis D˘ε,2t´1 and D˘ε,2t. Since
(via an information-theoretic argument) in order to distinguish the sign of ˘ε having access to i.i.d.
Bernoulli random variables of parameter 1

2 ˘ 2ε requires Ωp1{ε2q “ ΩpT q samples, the algorithm will
have already suffered a regret Ω

`

T
˘

¨ Ωp1{
?
T q “ Ω

`
?
T
˘

before having the chance to distinguish
the sign of ˘ε.
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2.5.5 Realistic Feedback - Upper Bound

In this section, we provide a
?
MT upper bound in the realistic feedback case under the (iv), (bd)

and (iid) assumptions when sellers and buyers share the same distribution.
Motivated once more by the intuition provided by Theorem 10, we begin this section by giving a

way to approximate the expected value of traders’ valuations on the basis of the two-bit feedback
and quantify the approximation power of this strategy.

Lemma 5. For any random variable X on r0, 1s and any T0 P N,

0 ď ErXs ´
1

T0

T0
ÿ

t“1

P
„

t

T0
ď X

ȷ

ď
1

T0

Proof. Notice that

1

T0

T0
ÿ

t“1

P
„

t

T0
ď X

ȷ

“

T0
ÿ

t“1

ż t
T0

t´1
T0

P
„

t

T0
ď X

ȷ

dλ

ď

T0
ÿ

t“1

ż t
T0

t´1
T0

P rλ ď Xs dλ

ď

T0
ÿ

t“1

ż t
T0

t´1
T0

P
„

t´ 1

T0
ď X

ȷ

dλ “
1

T0

T0
ÿ

t“1

P
„

t´ 1

T0
ď X

ȷ

dλ .

Since by Fubini’s Theorem,

ErXs “

ż 1

0
Prλ ď Xsdλ “

T0
ÿ

t“1

ż t
T0

t´1
T0

Prλ ď Xsdλ ,

we obtain

0 ď T0ErXs ´

T0
ÿ

t“1

P
„

t

T0
ď X

ȷ

ď

T0
ÿ

t“1

ˆ

P
„

t´ 1

T0
ď X

ȷ

´ P
„

t

T0
ď X

ȷ˙

“

T0
ÿ

t“1

P
„

t´ 1

T0
ď X ă

t

T0

ȷ

“ Pr0 ď X ă 1s ď 1 .

The previous lemma suggests the design of a simple Explore-then-Commit (ETC) strategy
(Algorithm 5), where the learner spends an initial phase of length T0 trying the common expectation
of the sellers’ and buyers’ evaluations and then posts this estimate every round up to the time
horizon T .

ETC algorithms are of great practical importance due to their easy implementability and
interpretability. This usually comes at a cost of performance. As the following result (together with
Theorem 15, in the next section) will show, our ECT algorithm is free of this flaw.

Theorem 14. Consider the problem of repeated bilateral trade in the realistic-feedback model.
Suppose that S is the set of environments such that the sequence of evaluations pS1, B1q, pS2, B2q, . . .

is independent and identically distributed (iid), all with the same law as some pS,Bq, where S and B
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Algorithm 5 Explore-then-Commit (ETC) - Realistic Feedback
input: Exploration time T0 P N
for t “ 1, 2, . . . , T0 do

Post price Pt – t{T0

for t “ T0 ` 1, T0 ` 2, . . . do
Post Pt – 1

2T0

řT0
i“1

`

ItPs ď Siu ` ItPs ď Biu
˘

are independent (iv) and share the same distribution µ having a density (with respect to the Lebesgue
measure on r0, 1s), bounded by some constant M (bd). If we run Explore-then-Commit (ETC) with
parameter T0 P N, then, for any time horizon T , we have

RS
T pETCq ď T0 ´

1

2
`
M

2
pT ´ T0q

ˆ

2

T 2
0

`
1

T0

˙

Tuning the parameter T0 –
P

b

MT
2

T

yields

RS
T pETCq ď 2.5 `

?
2MT .

Proof. For notational convenience, let V be another random variable with the same distribution as S
(and hence, also as B). Fix any T0 P N and let p0 – 1

T0

řT0
s“1 P

”

s
T0

ď V
ı

. By Hoeffding’s inequality
and Fubini’s theorem, we get

E
”

|p0 ´ PT0`1|2
ı

“

ż `8

0
P
”

|p0 ´ PT0`1|2 ě ε
ı

dε ď

ż `8

0
2 expp´4εT0q dε “

1

2T0
,

from which, leveraging also Lemma 5, it follows that

E
”∣∣ErV s ´ PT0`1

∣∣2ı ď 2 |ErV s ´ p0|2 ` 2E
”

|p0 ´ PT0`1|2
ı

ď
2

T 2
0

`
1

T0
.

Proceeding as in the proof of Theorem 11, we obtain, for all t P N,

E
”

GFTt
`

ErV s
˘

´ GFTtpPtq
ı

ď
M

2
E
”∣∣ErV s ´ Pt

∣∣2ı .
Putting everything together, we get, for all T ě T0 ` 1

RT
`

ETC, pSt, BtqtPN
˘

´ T0 `
1

2
ď

T
ÿ

t“T0`1

E
”

GFTt
`

ErV s
˘

´ GFTtpPtq
ı

ď
M

2

T
ÿ

t“T0`1

E
”∣∣ErV s ´ Pt

∣∣2ı “
M

2

T
ÿ

t“T0`1

E
”∣∣ErV s ´ PT0`1

∣∣2ı
ď
M

2
pT ´ T0q

ˆ

2

T 2
0

`
1

T0

˙

.

Substituting the selected parameters in the final expression yields the second part of the result.
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2.5.6 Realistic Feedback - Lower Bound

In this section, we prove the optimality of the ETC algorithm by showing a matching
?
MT lower

bound. The same family of distribution used in Theorem 12 is here used to mimic a revealing action
problem. The reason why we obtain a Ωp

?
T q regret regime (instead of a ΩpT 2{3q) is due to the fact

that, as shown in Theorem 10, by posting a certain price p, the learner pays only order of the square
of the distance of p from the actual optimum.

Theorem 15. Consider the problem of repeated bilateral trade in the realistic-feedback model. There
exists two numerical constants c1, c2 ą 0 such that, for any M ě 2 and any time horizon T ě c2M

3,
the minimax regret satisfies

RS
T ě c1

?
MT ,

where S is the set of all environments such that, for each t P N, St and Bt share the same distribution
ν and

(iv) for each t P N, St and Bt are independent of each other.

(bd) for each t P N, ν admits a density bounded by M .

(iid) pS1, B1q, pS2, B2q, . . . is an i.i.d. sequence.

Proof sketch. Fix M ě 2 and T P N. We will use the same random variables, distributions, densities,
and notation as in the proof of Theorem 12. We will show that for each strategy for the realistic
feedback setting and each time horizon T , if RνT is the regret of that strategy at time horizon
T when the underlying common distribution of the sellers’ and buyers’ evaluations is ν, then
max

`

R
ν´ε

T , R
ν`ε

T

˘

“ Ω
`
?
MT

˘

if T “ ΩpM3q.
Note that for all ε ą 0, t P N, and p ă 1

2

E rGFTε,t p1{2qs ě E
“

GFTε,tppq
‰

. (2.21)

Similarly, for all ε ă 0, t P N, and p ą 1
2 ,

E rGFTε,t p1{2qs ě E
“

GFTε,tppq
‰

. (2.22)

Furthermore, a direct verification shows that, for each ε P r´1, 1s and t P N,

max
pPr0,1s

E
“

GFTε,tppq
‰

´ max
pPr 1

7
, 2
7

s

E
“

GFTε,tppq
‰

ě
1

100
“ Ωp1q . (2.23)

Now, assume that T ě M3{144 so that, defining ε – pMT q´1{4, we have that the maximizer of the
expected gain from trade 1

2 ` ε
196 belongs to the spike region JM . In the `ε (resp., ´ε) case, the

optimal price belongs to the region
`

1
2 ,

1
2 ` 1

14M

‰

(resp.,
“

1
2 ´ 1

14M ,
1
2

˘

). By posting prices in the wrong
region

“

0, 12
‰

(resp.,
“

1
2 , 1

‰

) in the `ε (resp., ´ε) case, the learner incurs a ΩpMε2q “ Ω
`
a

M{T
˘

instantaneous regret by (2.15) and (2.21) (resp., (2.15) and (2.22)). Then, in order to attempt
suffering less than Ω

`
a

M{T ¨ T
˘

“ Ω
`
?
MT

˘

regret, the algorithm would have to detect the sign
of ˘ε and play accordingly. We show now that even this strategy will not improve the regret of
the algorithm (by more than a constant) because of the cost of determining the sign of ˘ε with the
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available feedback. Since the feedback received from the two traders at time t by posting a price p is
Itp ď S˘ε,tu and Itp ď B˘ε,tu, the only way to obtain information about (the sign of) ˘ε is to post in
the costly (Ωp1q-instantaneous regret by Equation (2.23)) sub-optimal region r17 ,

2
7 s (see Figure 2.5).

However, posting prices in the region r17 ,
2
7 s at time t can’t give more information about ˘ε than the

information carried by S˘ε,t and B˘ε,t, which, in turn, can’t give more information about ˘ε than
the information carried by the two Bernoullis D 1˘ε

2
,2t´1 and D 1˘ε

2
,2t. Since information-theoretic

arguments imply that in order to distinguish the sign of ˘ε having access to i.i.d. Bernoulli random
variables of parameter 1˘ε

2 requires Ωp1{ε2q “ Ω
`
?
MT

˘

samples, we are forced to post at least
Ω
`
?
MT

˘

prices in the costly region
“

1
7 ,

2
7

‰

suffering a regret of Ω
`
?
MT

˘

¨Ωp1q “ Ω
`
?
MT

˘

. Putting
everything together, each strategy pays at least Ω

`
?
MT

˘

regret.

What if we remove the (bd) assumption?

We conclude this section by showing that assuming that sellers’ and buyers’ evaluations are indepen-
dent of each other, together with the (iv) and (iid) assumptions, is not enough to achieve sublinear
regret rates.

The lower-bound construction is another needle in a haystack pathology and closely resembles
the one in Theorem 8. In fact, with the same notation as in the proof sketch of Theorem 8, it
is enough to modify the distribution of the random variables Sx and Bx such that they have the
following common distribution:

νx –
1

3
δ0 `

1

3
δx `

1

3
δ1 ,

where, for any a P R, we recall that δa is the Dirac measure centered in a. This construction leads
to a minimax regret RS

T ě T
9 . A formalization of these ideas can be carried out following the same

proof scheme of Appendix A.9.

2.6 Weakly Budget Balanced Results

In this section, we propose a way to break linear lower bounds in the realistic feedback case.
We start by recalling that in Section 2.4 we showed that Algorithm 3 achieves learnability

assuming (iv), (bd), and (iid). There, we saw also that there were two major obstructions preventing
us from achieving learnability if we wanted to remove even just one of these assumptions. One
obstruction was the lack observability (Theorems 7 and 9), while the other one was the needle in a
haystack phenomenon (Theorem 8).

On the other hand, since the Lipschitzness of the expected gain from trade opens us the door to
the use discretization methods, Lemma 1 guarantees that we can get rid of the needle in a haystack
pathology just assuming (bd). Moreover, if we get a closer look at Lemma 2, we see that the
feedback available in the realistic feedback case is almost enough to achieve the observability of the
expected gain from trade. Specifically, if U is a random variable uniform on rp, 1s and V is a random
variable uniform on r0, ps, both independent on the r0, 1s2-valued random pair pS,Bq, we have that
Equation (2.6) tells us that E

“

gft pp, pS,Bqq
‰

“ Erp1´pqItS ď U ď p ď Bus`ErpItS ď p ď V ď Bus.
This suggests that the missing piece to achieve observability under realistic feedback is allowing
the learner to ask two different prices, one to the seller and the other to the buyer, in the same
interaction. While this would violate the budget-balanced condition, we see that we need just to
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propose two different prices p1 ď p2, where p1 is proposed to the seller while p2 is proposed to the
buyer. In other words, to achieve observability, we do not need to subsidize but we might need
to extract money from the trade. Mechanisms enjoying this weaker form of the budget balance
condition are called weakly budget-balanced mechanisms. It is then natural to ask whether allowing
the learner to use weakly budget-balanced posted price mechanisms yields learnability in the realistic
feedback case just under the (bd) assumption.

We now proceed to make this problem formal. In this new setting, rather than posting a single
price, the learner can post two (possibly distinct) prices 0 ď p ď q ď 1, p to the seller, and q to the
buyer. Naturally, this changes the benchmark: if the learner posts a pair pp, qq P r0, 1s2 and the
valuations of the seller and the buyer are ps, bq P r0, 1s2, the net gain of the seller is p´ s while that
of the buyer is b ´ q. Thus, if we define the upper triangle U – tpp, qq P r0, 1s2 | p ď qu, we can
overload the gain from trade function by defining

gft : U ˆ r0, 1s2 Ñ r0, 1s ,

pp, q, s, bq ÞÑ pb´ q ` p´ sqIts ď p ď q ď bu,

we can overload the gain from trade at any time t by defining

GFTt : U Ñ r0, 1s, pp, qq ÞÑ gft
`

pp, qq, pSt, Btq
˘

,

and finally, with these definitions, the gain from trade of the market at time t if the learner posts
pPt, Qtq P U becomes

p Bt ´Qt
looomooon

buyer’s net gain

` Pt ´ St
loomoon

seller’s net gain

q ¨ ItSt ď Pt ď Qt ď Btu
looooooooooooomooooooooooooon

whenever a trade happens

“ GFTtpPt, Qtq .
††

Now, the following observation is crucial.

Remark 1. The only reason for a budget-balanced strategy to post two different prices is to obtain
more information. A direct verification shows that the expected gain from trade can always be
maximized by posting the same price to both the seller and the buyer.

This last remark has two crucial consequences.
First, there is no point in posting two different prices when full feedback is available. Hence, all

the full feedback results we have achieved in Section 2.3 apply verbatim to weakly budget-balanced
mechanisms, and the only interesting case to study is the realistic feedback one.

Second, the notion of regret stays nearly unchanged. Precisely, noting that for ps, bq P r0, 1s2

and any p P r0, 1s it holds that gft
`

pp, pq, ps, bq
˘

“ gft
`

p, ps, bq
˘

, the regret at time horizon T of a
learner following a strategy α to generate the sequence of prices pPt, Qtq P U against an environment
β generating the sequence of (random) pairs pSt, Btq becomes

RT pα, βq – max
pp,qqPU

E

«

T
ÿ

t“1

GFTtpp, qq ´

T
ÿ

t“1

GFTtpPt, Qtq

ff

††Other works consider the following alternative definition for the gain from trade:
p Bt ´ Qt

looomooon

buyer’s net gain

` Qt ´ Pt
looomooon

broker’s net gain

` Pt ´ St
looomooon

seller’s net gain

q ¨ ItSt ď Pt ď Qt ď Btu
looooooooooooomooooooooooooon

whenever a trade happens

“ pBt ´ StqItSt ď Pt ď Qt ď Btu. Our

results translate with minimal effort to this definition.
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Estimation procedure of GFT using two prices and one-bit feedback
Input: price p
Environment: fixed pair of seller and buyer valuations ps, bq
Toss a biased coin with probability p of Heads
if Heads then draw V uniformly at random in r0, ps and set pp – V , pq – p
else draw U uniformly at random in rp, 1s and set pp – p, pq – U
Post price pp to the seller and pq to the buyer and observe the one-bit feedback Its ď pp ď pq ď bu

Return zGFTppq – Its ď pp ď pq ď bu Ź Unbiased estimator of GFTppq

“ max
pPr0,1s

E

«

T
ÿ

t“1

GFTtppq ´

T
ÿ

t“1

GFTtpPt, Qtq

ff

.

where, again, the expectation is taken with respect to any randomness present in the environment
and (possibly) the internal randomization used by the learner’s strategy.

2.6.1 Realistic Feedback - T 3{4 Upper Bound via Blind-Exp3

In this section, we introduce the algorithm Blind-Exp3, which achieves a rOpT 3{4q regret rate whenever
it works in a (bd) environment.

We first formalize, as an easy corollary of Lemma 1, that the (bd) assumption allows us to
discretization methods. In fact, for any fixed grid of prices G in r0, 1s, it is possible to relate the
expected gain from trade of the best price in G with that of the best fixed price in r0, 1s, paying
a discretization error that depends on the upper bound M on the densities of the elements in the
sequence pSt, BtqtPN. For notational convenience, for any finite grid G, we define the parameter δpGq

as follows:
δpGq “ max

pPr0,1s
min
gPG

|p´ g|.

Claim 1 (Discretization error). Let G be any finite grid of prices in r0, 1s. Then, for any sequence
of r0, 1s2-valued random variables pS1, B1q, . . . , pST , BT q, each of them admitting a density (with
respect to the Lebesgue measure on r0, 1s2) bounded by some M ą 0, we have the following:

max
pPr0,1s

E

«

T
ÿ

t“1

GFTtppq

ff

´ max
gPG

E

«

T
ÿ

t“1

GFTtpgq

ff

ď MδpGqT .

Proof. Let p‹ be the best fixed price in hindsight in r0, 1s with respect to the sequence pS1, B1q, . . . , pST , BT q.
We have two cases. If p‹ P Q, then there is nothing to prove. If this is not the case, then there exists
pG P G, such that |p‹ ´ pG| ď δpGq. We have the following:

E

«

T
ÿ

t“1

GFTtpp
‹q

ff

´ max
pPG

E

«

T
ÿ

t“1

GFTtppq

ff

ď

T
ÿ

t“1

`

E rGFTtpp
‹qs ´ E rGFTtppGqs

˘

ď M |p‹ ´ pQ|T ď MδpGqT,

where, in the second to last inequality, we used the Lipschitz property of the expected gain from
trade as in Lemma 1.

A key technique that we use is a Monte Carlo estimation procedure zGFT (see pseudocode for
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details) that allows us to estimate the expected gain from trade E
“

GFT
`

p, pSt, Btq
˘‰

of a price p, by
posting two different prices ppp, pqq and receiving one bit of feedback.

Lemma 6 (Lemma 1 of Azar et al. [20]). Fix any agents’ valuations ps, bq P r0, 1s2. For any
price p P r0, 1s, it holds that zGFTppq is an unbiased estimator of gft

`

p, ps, bq
˘

, i.e., E
”

zGFTppq

ı

“

gft
`

p, ps, bq
˘

, where the expectation is with respect to the randomness of the estimation procedure.

The proof of Lemma 6 follows immediately from Equation (2.6).
Once we have this procedure, we can present our algorithm. At a high level, the algorithm

mimics the behavior of Exp3 on a fixed discretization of K prices, but the estimation procedure
is used to perform the uniform exploration step. Our algorithm is “blind” because—unlike what
happens in the bandit case—posting a price does not reveal the corresponding gain from trade. With
a careful analysis, we show that the uniform exploration term is indeed enough to achieve the tight
regret bound of order rOpT 3{4q whenever the (bd) assumption holds.

Algorithm 6 Blind-Exp3 - Realistic Feedback
input: Learning rate η ą 0, exploration rate γ P p0, 1q, grid of prices G, with |G| “ K
initialization: Set w1piq to 1 for all i P rKs and W1 – K
for time t “ 1, 2, . . . do

Let πtpiq –
wtpiq
Wt

for all i P rKs

Toss a biased coin with probability γ of Heads
if Tails then Ź Exploitation step

Post price Pt drawn according to distribution πt and set prtpiq – 0 for all i P rKs

else Ź Exploration step
Draw a price gIt uniformly at random in G
Use the estimation procedure on price gIt and receive zGFTtpgItq

Set prtpItq – K
γ ¨ zGFTtpgItq and prtpjq – 0 for all j ‰ It.

Let wt`1piq – wtpiq ¨ exp
`

ηprtpiq
˘

for all i P rKs Ź Exponential weight update
Let Wt`1 –

ř

piPG
wt`1piq

Theorem 16. Consider the problem of repeated bilateral trade in the weakly budget-balanced realistic-
feedback model.‡‡ Let M ą 0. Suppose that S is the set of environments such that, for each t P N,
the pair pSt, Btq admits a density bounded by M (with respect to the Lebesgue measure on r0, 1s2). If
we run Blind-Exp3 with exploration rate γ P p0, 1q, learning rate η ą 0, and the uniform K-grid G
such that 2ηK

γ ď 1 then, for each time horizon T P N, we have that

RS
T pBlind-Exp3q ď

lnK

η
`

ˆ

γ ` η
K

γ
`
M

K

˙

T.

In particular, if T ě 16, tuning the number of grid points K “
X

T 1{4
\

, the exploration rate γ “
plnT q1{3

T 1{4 ,

and the learning rate η “ 1
2

plnT q
2{3

T 3{4
, then RS

T pBlind-Exp3q ď 2
`

M ` plnT q1{3
˘

¨ T 3{4 .

Proof. The analysis of Blind-Exp3 needs to carefully take into account many sources of randomness:
the internal randomness of the algorithm, of the estimation procedures, and the randomness governing

‡‡Interestingly —and in contrast to what happens in the budget balanced case (Section 2.4.6)— Blind-Exp3 would
work even having access to just one-bit of feedback, i.e., observing just ItSt ď Pt ď Qt ď Btu after each interaction.
The same guarantees stated in this theorem holds also for the one-bit feedback case.
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the sequence of sellers’ and buyers’ evaluations. Fix any exploration rate γ P p0, 1q, learning rate
η ą 0 and number of grid points K P N such that 2ηK{γ ď 1. Fix also any time horizon T P N. In
the following, we use the random variables pPt, Qtq to denote the randomized prices posted by the
algorithm at time t.

Fix any history of the algorithm (i.e. realization of all the randomness involved). We have the
following:

ln

ˆ

WT`1

W1

˙

“ ln

˜

T
ź

t“1

Wt`1

Wt

¸

“

T
ÿ

t“1

ln

ˆ

Wt`1

Wt

˙

“

T
ÿ

t“1

ln

¨

˝

ÿ

iPrKs

πtpiq exp pηprtpiqq

˛

‚

ď

T
ÿ

t“1

ln

¨

˝1 ` η
ÿ

iPrKs

πtpiqprtpiq ` η2
ÿ

iPrKs

πtpiq
`

prtpiq
˘2

˛

‚

ď η
T
ÿ

t“1

ÿ

iPrKs

πtpiqprtpiq ` η2
T
ÿ

t“1

ÿ

iPrKs

πtpiq
`

prtpiq
˘2 (using prtpiq ď K

γ )

ď η
T
ÿ

t“1

ÿ

iPrKs

πtpiqprtpiq

ˆ

1 ` η
K

γ

˙

. (2.24)

Crucially, we can use the standard exponential and logarithmic inequalities exppxq ď 1 ` x ` x2

(valid whenever x ď 1), and lnp1 ` xq ď x (valid whenever x ą ´1) only because the particular
choice of the parameters p2ηK{γ ď 1q implies that ηprtpiq ď 1 and

η
ÿ

iPrKs

πtpiqprtpiq ` η2
ÿ

iPrKs

πtpiq
`

prtpiq
˘2

ď 2η
ÿ

iPrKs

πtpiqprtpiq ď
K

γ
.

Inequality 2.24 is the pivot of our analysis, as we construct upper and lower bounds to its two
extremes. We start from its first term, take the expectation with respect to the whole randomness
of the process and consider any price gi in the grid G:

E
„

ln

ˆ

WT`1

W1

˙ȷ

“ E rln pWT`1qs ´ lnK ě E rln pwT`1piqqs ´ lnK

“ η
T
ÿ

t“1

E rprtpiqs ´ lnK “ η
T
ÿ

t“1

E rGFTtpgiqs ´ lnK. (2.25)

The only delicate passage of the previous formula is the last equality, where we used that E rprtpiqs “

E rGFTtpgiqs. To see why the latter holds, consider the filtration tFtut relative to the story of the
process: Ft is the σ-algebra generated by all the random variables involved in the process up to time
t (excluded). Moreover, let E it be the event that at round t the coin toss results in Heads and the
price selected u.a.r. for exploration is gi. We have the following:

E rprtpiq | Fts “ E
”

IEi
t
prtpiq | Ft

ı

prtpiq “ IEi
t
prtpiq

“ E
”

IEi
t
E
“

prtpiq | Ft, E it
‰

| Ft
ı

Law of total exp.

“
K

γ
E
”

IEi
t
E
”

zGFTtpgiq | Ft, E it
ı

| Ft
ı

Def. of prtpiq
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“
K

γ
PrE it | FtsE rGFTtpgiq | Fts Lemma 6 and pSt, Btq indep. of E it

“ E rGFTtpgiq | Fts

For the final step, note that, conditioned on Ft, the event E it has probability γ{K: the random
coin gives Tails with probability γ and price gi is chosen (independently) u.a.r. as the one to
be actually explored with probability 1{K. Taking the expectation with respect to Ft gives that
E rprtpiqs “ E rGFTtpgiqs.

Let’s go back to Equation (2.24) and focus on the last term. Conditioning with respect to Ft:

E rπtpiqprtpiq | Fts “ πtpiqE rprtpiq | Fts “ πtpiqE rGFTtpgiq | Fts .

Taking the expectation with respect to Ft and summing over all the gi P G, we have the following:

E rGFTtpPt, Qtqs ě p1 ´ γq
ÿ

iPrKs

E rπtpiqGFTtpgiqs “ p1 ´ γq
ÿ

iPrKs

E rπtpiqprtpiqs , (2.26)

where the first inequality follows from the fact that with probability 1 ´ γ the learner at time t
chooses exploitation and thus posts a price in the grid G according to distribution πt. We can plug
Equation (2.25) and Equation (2.26) into Equation (2.24) to obtain the following:

η
T
ÿ

t“1

E rGFTtpgiqs ´ lnK ď
η

1 ´ γ

ˆ

1 ` η
K

γ

˙ T
ÿ

t“1

E rGFTtpPt, Qtqs

Multiplying everything by p1´γq{η, rearranging, and using that the gain from trade is always upper
bounded by 1, we get:

T
ÿ

t“1

E rGFTtpgiqs ´

T
ÿ

t“1

E rGFTtpPt, Qtqs ď
lnK

η
`

ˆ

γ ` η
K

γ

˙

T

The argument so far holds for any environment β and any choice of price on the grid gi. This,
together with the discretization result Claim 1 gives the desired bound:

RT pBlind-Exp3, βq ď
lnK

η
`

ˆ

γ ` η
K

γ
`
M

K

˙

T

when the environment β is such that, for each t P N, the pair pSt, Btq admits a density bounded by
M .

2.6.2 Realistic Feedback - T 3{4 Lower Bound via Multi-Apple Tasting

In this section, we prove that Blind-Exp3 is an almost optimal algorithm for the realistic feedback
case under the (bd) assumption. This result is proven by the means of an exotic lower bound of
order T 3{4, which has two notable implications. First, it provides a formalization to the intuition
that the realistic feedback is strictly less informative than the bandit feedback (see the discussion in
Section 2.1.2), being the regret of the latter of order at most T 2{3.§§ Second, noting that the hard

§§Although our decision space is two-dimensional, one can see that, with bandit feedback in a (bd) environment,
a regret of order T 2{3 can be obtained by running an optimal bandit algorithm (e.g., MOSS Audibert and Bubeck
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instances constructed in the proof of Theorem 17 are i.i.d., we see that adding the (iid) assumption
to the (bd) assumption does not help to improve regret rates.¶¶

Theorem 17. Consider the problem of repeated bilateral trade in the weakly budget-balanced realistic-
feedback model. There exists a numerical constants c ą 50´3 such that, for any time horizon
T ě 8008, the minimax regret satisfies

RS
T ě cT 3{4 ,

where S is the set of all environments such that

(bd) for each t P N, the pair pSt, Btq admits a density bounded above by M ě 9.

(iid) pS1, B1q, pS2, B2q, . . . is an i.i.d. sequence.

The rest of the section is devoted to sketching the proof of the theorem (for a full proof, see
Appendix A.16). The sketch is divided into three steps: first, we construct a hard instance of the
repeated bilateral trade problem; then, we present a related problem on a discrete set of actions that
preserves the relevant features of the original problem while allowing for an easier analysis of the
regret; finally, we show how the minimax regret of the second problem leads to a T 3{4 regret for
bilateral trade.

The construction of a hard family of adversaries

Here, we construct the family of distributions with bounded densities for the seller/buyer evaluation
pair that we use to prove the lower bound. We consider an i.i.d. environment: i.e., the valuations
pSt, Btq are drawn i.i.d. according to a fixed distribution. We build this family of distributions by
suitable perturbations over a base distribution, whose support is given by the union of the six squares
Q1, . . . , Q6 (see Figure 2.6, left). The squares are obtained by translating r0, 1{6s2, respectively, by
p0, 13q, p0, 12q, p0, 56q, p56 ,

5
6q, p56 , 0q, p12 ,

2
3q. Letting a – 2 lnp27{16q, the probability density function f

of the base distribution is

fpx, yq –
36

1 ` 8a
¨

ˆ

5 ´ 6py ` xq

6py ´ xq
IQ1px, yq ` aIQ2px, yq ` 2aIQ3YQ4YQ5px, yq ` IQ6px, yq

˙

.

The perturbations to this base distribution are parametrized by two terms: a translation v P
`

1
3 ,

1
2

˘

and a scale ε P
`

0, 1
12

˘

such that 1
3 ` ε ď v ď 1

2 ´ ε. We denote the set of these parameters by Ξ.
Each perturbed distribution has density fv,ε :“ f ` gv,ε, where gv,ε is defined as follows:

gv,εpx, yq –
36

1 ` 8a
¨

´

IR1
v,εYR4

v,ε
px, yq ´ IR2

v,εYR3
v,ε

px, yq

¯

,

and the rectangles Riv,ε (see Figure 2.6, left/center) have the following analytic expression: R1
v,ε “

rv ´ ε, vq ˆ
“

3
4 ,

5
6

‰

, R2
v,ε “ rv ´ ε, vq ˆ

“

2
3 ,

3
4

˘

, R3
v,ε “ rv, v ` εs ˆ

“

3
4 ,

5
6

‰

, R4
v,ε “ rv, v ` εs ˆ

“

2
3 ,

3
4

˘

.
Note that the rectangles Riv,ε are included in Q6 for all i P r4s and pv, εq P Ξ.

15, whose upper bound on the regret is of order
?
KT ) on a discretization of K “ ΘpT 1{3

q equispaced prices on the
diagonal tpp, qq P U | p “ qu, thanks to Claim 1. Similar results appeared, e.g., in Auer et al. [19], Kleinberg [116].

¶¶Actually, the (iid) assumption does not seem to play any role for weakly budget balanced posted prices when it
comes to time horizon regret guarantees: the same needle in a haystack pathology in Theorem 7 implies that the (iid)
assumption alone is not enough to achieve sublinear regret even if weakly budget balanced posted prices are allowed.
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Q1

Q2

Q3

Q4

Q5

Q6

0 v 1

R1
v,ε

R2
v,ε

R3
v,ε

R4
v,ε

Q6

p
0 v 2{3 1

Θpεq

Θpεq

Θp1q

Figure 2.6: Left/center: The six squares Q1, . . . , Q6 (in green) are the support of the base density f ,
and the four rectangles R1

v,ε, . . . , R
4
v,ε (in red and blue) inside Q6 are the regions where the density is

perturbed with gv,ε. Right: The corresponding qualitative plots of p ÞÑ ErGFTpp, S,Bqs (black, dotted) and
p ÞÑ Ev,εrGFTpp, S,Bqs (red, solid).

Let P (resp., Pv,ε, for all pv, εq P Ξ) be a probability measure such that the sequence of seller/buyer
evaluations pS,Bq, pS1, B1q, pS2, B2q, . . . is i.i.d. and the distribution of pS,Bq has probability
density function f (resp., fv,ε). We denote the expectation with respect to P (resp., Pv,ε) by E
(resp., Ev,ε). Note that, for each pv, εq P Ξ, the density fv,ε is upper bounded by M “ 9. Given the
explicit form for the base distribution, we can compute the corresponding expected value of the
gain from trade E

“

gft
`

p, pS,Bq
˘‰

obtained by posting price p P r0, 1s to both agents, when pS,Bq

is drawn from the base distribution. The analytic expression of E
“

gft
`

¨, pS,Bq
˘‰

can be found in
Appendix A.16 (Equation (A.8)), and a plot is reported in Figure 2.6 (right, dotted black). What
is relevant to our argument is that the function p ÞÑ E

“

gft
`

p, pS,Bq
˘‰

is continuous, maximized at
every point of the plateau region

“

1
6 ,

1
2

‰

, and its value at 2
3 is bounded away from the maximum.

We can explicitly compute the expected gain from trade Ev,ε
“

gft
`

p, pS,Bq
˘‰

obtainable by posting
any price p P r0, 1s to both agents, when pS,Bq is drawn from the distribution with perturbation
parameters v and ε. We have the following:

Ev,ε
“

gft
`

p, pS,Bq
˘‰

“ E
“

gft
`

p, pS,Bq
˘‰

`
1

864p1 ` 8aq

`

ε ¨ Λv,εppq ` 12ε2 ¨ Λ 3
4
, 1
12

ppq
˘

where Λu,r is the tent map centered at u with radius r defined as Λu,rpxq – p1 ´ |x´ u|{rq
` . Thus,

for each pv, εq P Ξ, the plot of Ev,ε
“

gft
`

¨, pS,Bq
˘‰

coincides with that of E
“

gft
`

¨, pS,Bq
˘‰

up to two
small deviations (around v and 3{4), and it is maximized at v (see Figure 2.6, right).

We now focus our attention on the feedback received by a learner that posts prices pp, qq, when
the underlying distribution corresponds to perturbations parameters pv, εq P Ξ.

Claim 2. Fix any pv, εq P Ξ, pp, qq P Uz
Ť

iPr4s R
i
v,ε, and let Z –

`

ItS ď pu, Itq ď Bu
˘

. Then Z

follows the same distribution under both P and Pv,ε.

Proof. Here we consider only the event
␣

Z “ p0, 0q
(

; for a full proof, see Claim 6 in Appendix A.16.

Pv,ε
“

Z “ p0, 0q
‰

“ P0
“

Z “ p0, 0q
‰

`

ż

pp,1sˆr0,qq

gv,εpx, yqdx dy .

If pp, qq is not in Rv,ε, by symmetry, the integral term is 0.

Claim 2 implies that if the learner wants to locate v P
“

1
3 ` ε, 12 ´ ε

‰

observing samples of the
two-bit feedback Z drawn according to the distribution Pv,ε, they have to post prices in the region
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Figure 2.7: Left: The feedback graph of multi-apple tasting for K “ 4. Right: The map ι.

Q6. However, in doing so, they suffer constant instantaneous regret. Indeed, a direct verification
shows that for any pv, εq P Ξ and all pp, qq P Q6,

Ev,ε
“

gft
`

v, pS,Bq
˘‰

´ Ev,ε
“

gft
`

pp, qq, pS,Bq
˘‰

ě E
“

gft
`

1
2 , pS,Bq

˘

´ gft
`

2
3 , pS,Bq

˘‰

“ Θp1q .

So far, we built a family of i.i.d. adversaries for our bilateral trade problem such that the optimal
pair of prices belongs to Dopt –

␣

pp, qq P U | p “ q P r1{3, 1{2s
(

, but, when the underlying distribution
is determined by one of the probability measures Pv,ε, in order not to suffer regret ΩpεT q, the learner
has to detect an ε-spike inside Dopt. As observed in Claim 2, this can only be accomplished by
posting prices in Q6, which, as shown above, has an instantaneous regret of order Ωp1q. The missing
piece is now to quantify how long the learner can be forced to spend time posting prices in Q6. To
this end, we build a reduction from a simplified online learning with feedback graph problem on
2K arms that highlights the underlying structure of our problem. Our goal is to show that for any
algorithm α for the repeated bilateral trade problem there exists an algorithm rα for the new problem
such that the regret suffered by the latter is a lower bound on the regret suffered by the former.

The multi-apple tasting problem

In this section, we introduce an auxiliary online learning problem on a discrete set of actions that we
call multi-apple tasting : it will be easier to analyze than our original bilateral trade problem while
still capturing its difficulties. The multi-apple tasting problem has the following form: there are
2K actions, the first K are called the exploration arms, while the others are the exploitation arms.
Playing an exploitation arm yields no feedback, while an exploration arm i gives information about
the performance of the corresponding exploitation arm i`K. The reader familiar with the notion
of online learning with directed feedback graphs [8] will recognize that the feedback model described
here corresponds to the simple (weakly observable) feedback graph in Figure 2.7 (left).

The rewards. We now describe the random rewards of K ` 1 instances of the multi-apple tasting
problem associated to K`1 probability measures P0, . . . ,PK . Set cprob to be 7{p2aq and consider the
i.i.d. sequence of random vectors Y, Y1, Y2, . . . , YT such that Y P t0, 1u2K and, for each k P t0, . . . ,Ku

and i P rKs, it holds that Y pi`Kq – Y1pi`Kq – ¨ ¨ ¨ – YT pi`Kq “ 0 and

Pk
“

Y piq “ 1
‰

–

$

&

%

1
2 if i P rKsztku

1
2 ` cprob ¨ ε if i “ k
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2.6. Weakly Budget Balanced Results

The random vectors Y1, Y2, . . . , YT control the rewards the learner gets in this new problem. Formally,
a learner playing action i P r2Ks at time t gets reward ρtpiq – ρpi, Ytq where

ρpi, yq –

$

&

%

0 if j P rKs

cplat `
cspike
cprob

¨
`

ypj ´Kq ´ 1
2

˘

otherwise

cplat – a
2p1`8aq

, cspike – 1
6p1`8aq

¨ 1
144 , and, for any i P rKs, we denoted i-th component of y by ypiq.

Observe that for all k P t0, . . . ,Ku and i P tK ` 1, . . . , 2Ku, we have

Ek
“

ρpi, Y q
‰

“

$

&

%

cplat if k ‰ i´K

cplat ` cspike ¨ ε otherwise

The feedback. The learner in multi-apple tasting receives two types of feedback. If they play
action i ě K ` 1 (an exploitation arm) at time t, then they receive no feedback (modeled by
Ytpiq “ 0). If instead, they play action i ď K (an exploration arm), they receive feedback Ytpiq.
This feedback structure describes an instance of online learning with feedback graphs, where the
underlying graph is the one in Figure 2.7 (left). The rewards incurred by the exploring arms are
fixed and known irregardless of the action played, while the only way to learn the expected value of
ρtpiq for i ą K is to play the corresponding exploring action i´K.

The minimax regret. Leveraging a standard information-theoretic argument, it can be proved
that any algorithm for the multi-apple tasting problem has to suffer a regret of order at least
Ω
`

minpK
ε2
, εT q

˘

on at least one of the instances induced by P0, . . . ,PK . Intuitively, in order to
prevent losing εT , the learner has to play each one of the K exploring arms at least Ωp1{ε2q times.

Relating the two problems

We have described multi-apple tasting, and K`1 distributions to generate the sequence of rewards for
it. We now show how to simulate any distribution of the feedback in instances Pvk,

ε
6 of the bilateral

trade problem using the random variables Y (and some extra random seeds). Let K “
P

T 1{4
T

and
ε “ 1

2K , and consider the baseline instance and the K perturbed instances of the repeated bilateral
trade problem above, each corresponding to pvk,

ε
6q for vk “ 1

3 ` p2k´ 1q ε6 and k P rKs. For each one
of these instances, we construct an instance of multi-apple tasting that can be used to simulate it.

As a first step, we explain how to associate each pair of prices in the upper triangle (i.e., the set
of actions in the bilateral trade problem) to one of the 2K actions in the feedback graph problem.
We partition the upper triangle U of the unit square r0, 1s2 into 2K subsets, each corresponding to
areas of “similar” behavior:

• Jk – rvk ´ ε
6 , vk ` ε

6q ˆ r23 ,
5
6 s, @k P rK ´ 1s, and JK – rvK ´ ε

6 , vK ` ε
6 s ˆ r23 ,

5
6 s.

• Jk`K – tpp, qq P U | vk ´ ε
6 ď p ă vk ` ε

6 and q ă 2
3u, @k P rK ´ 1s, and J2K – Uz

Ť2K´1
k“1 Jk.

Given the partition, we can introduce the map ι which associates each pp, qq P U with the unique
i P r2Ks such that pp, qq P Ji (see Figure 2.7, right, for a pictorial representation of ι). Then, we
introduce an i.i.d. sequence V, V1, V2, . . . , VT of uniform random variables in r0, 1s, independent of
the sequence of Y s. Both the Y and the V sequences are independent of the sequence of valuations
pS1, B1q, pS2, B2q, . . . , pST , BT q.
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2.7. Conclusions

The next claim is the core of our reduction: it can be proved by applying our novel information-
theoretic result (Theorem 44, Appendix A.15). To do it, one can verify that, for all k P rKs, the
Radon-Nikodym derivative of the distribution of the feedback

`

IpS ď pq, Itq ď Bu
˘

under Pvk,
ε
6 with

respect to its distribution under P is bounded from above (resp., below) by the maximum (resp.,
minimum) of the Radon-Nikodym derivative of the distribution of Y pιpp, qqq under Pk with respect
to its distribution under P0. For a proof, see Claim 7 in Appendix A.16.

Claim 3. For any pp, qq P U there exists a function φp,q : t0, 1u ˆ r0, 1s Ñ t0, 1u2 such that, for all
k P rKs, the distribution of φp,qpY pιpp, qqq, V q under P0 (resp., Pk, for all k P rKs) is the same as
that of

`

IpS ď pq, Itq ď Bu
˘

under P (resp., Pvk,
ε
6 ).

We now proceed as follows. Let α be any strategy for the original bilateral trade problem. We
show how to simulate its behavior over the instances P and Pvk,

ε
6 , for k P rKs, using a strategy rα for

multi-apple tasting (together with the sequence of random seeds V1, V2, . . . , VT ) over the distributions
P0 and Pk, for k P rKs. When the strategy α chooses prices ppt, qtq P U at time t, then rα plays
the action ιppt, qtq P r2Ks, receives reward ρtpιppt, qtqq and observes the feedback Ytpιppt, qtqq. The
strategy α is then fed the feedback φpt,qt

`

Ytpιppt, qtqq, Vt
˘

P t0, 1u2 which it uses to select its new
action ppt`1, qt`1q. Crucially, leveraging Claim 3 and the structure of the rewards in two problems,
one can prove that the regret R0

T pαq (resp., RkT pαq, for any k P rKs) that algorithm α suffers under
probability P (resp., Pvk,

ε
6 ) in the repeated bilateral trade problem is at least the regret rR0

T prαq

(resp., rRkT prαq) that the strategy rα suffers under probability P0 (resp., Pk) in the multi-apple tasting
problem. Finally, the proof can be concluded by putting together the lower bound Ω

`

minpK
ε2
, εT q

˘

for the multi-apple tasting problem with our choices of K and ε to obtain that the minimax regret
for the bilateral trade problem is at least of order ΩpT 3{4q.

2.7 Conclusions

In this chapter, we provided a thorough study of the bilateral trade problem in a regret minimization
framework. We proved tight bounds on the regret rates that can be achieved under various
feedback, private valuation models, and various budget-balanced conditions. Our work opens several
possibilities for future investigation.

First, with the exceptions of the (iv) + (bd) + (iid) case when sellers and buyers share the same
distribution, and the full-feedback (bd) case, we have obtained tight (up to constant or logarithmic
factors) regret rates in the time horizon only. In the other cases where the (bd) assumption plays a
crucial role in learning, the problem of obtaining tight regret dependencies in the time horizon and
the (bd) density parameter M simultaneously is still open.

Second, it would be interesting to study the contextual version of the bilateral trade problem,
where a context related to the traders’ valuations is available to the broker/learner before making a
decision, and, possibly, multiple traders arrive at each time step.

Finally, an interesting research direction is the study of different reward functions. For example,
in the case of weakly budget-balanced mechanisms, a sensible problem is to consider the amount of
money extracted in the trade by the broker as the reward function, or perhaps weighted versions of
the gain from trade.
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Chapter 3

The Role of Transparency in Repeated
First-Price Auctions with Unknown
Valuations

3.1 Introduction

The online advertising market has recently transitioned from second to first-price auctions. A recent
remarkable example is Google AdSense’s move at the end of 2021 [186], following the switch made by
Google AdManager and AdMob. Earlier examples also include OpenX, AppNexus, Index Exchange,
and Rubicon [171]. With the purpose of increasing transparency, some platforms (like AdManager)
have a single bidding session for each available impression (unified bidding) and require all partners
to share and receive bid data; in particular, bidders receive the minimum bid price which would
have won them the impression after the first-price auction closes [33].

In practice, advertisers face multiple sources of uncertainty at the moment of bidding. Besides
ignoring the value of the competing bids, they also ignore the actual value of the impression they
are bidding on. Indeed, clicks and conversion rates can only be measured after the auction is won
and the ad is displayed, can vary wildly over time, or be highly correlated with competing bids. We
remark that ignoring the value of the impression has a strong effect on the utility of the bidder: it
may lead to overbidding for an impression of low value or, conversely, underbidding and losing a
valuable one. To cope with this uncertainty, advertisers rely on auto-bidders that use the feedback
provided in the auctions to learn good bidding strategies. We study the learning problem faced by a
single bidder within the framework of regret minimization according to the following protocol:

Online Bidding Protocol for Repeated First-Price Auctions with Unknown Valuations
for time t “ 1, 2, . . . do

The valuation Vt P r0, 1s and the highest competing bid Mt P r0, 1s are privately generated
The learner posts a bid Bt P r0, 1s and gets utility UtiltpBtq “ pVt ´BtqItBt ě Mtu

The learner observes some feedback Zt

In this work, we are specifically interested in understanding how the “transparency” of the
auctions—i.e., the amount of information on competing bids disclosed by the auctioneer after the
auction takes place—affects the learning process. There is a clear tension regarding transparency:
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3.1. Introduction

on the one hand, bidders want to receive as much information as possible about the environment to
learn the competitor’s bidding strategies, while revealing as little as possible about their (private)
bids. On the other hand, the publisher may not want to publicly reveal her revenue (i.e., the
winning bid). It is the auctioneer’s choice to decide the level of transparency to motivate bidders and
publishers to participate in the auctions. The role of transparency in repeated first-price auctions
has been investigated by Bergemann and Hörner [30], but mostly from a game-theoretic viewpoint.
In particular, they study the impact of the feedback policy on the bidders’ strategy and show how
disclosing the bids at the end of each round affects the equilibria of a bidding game with infinite
horizon. In contrast, we want to characterize the impact of different amounts of feedback (or degrees
of transparency) on the learner’s regret, which is measured against the optimal fixed bid in hindsight.
To model the level of transparency, we distinguish four natural types of feedback Zt (see the table
below here), specifying the conditions under which the highest competing bid Mt and the bidder’s
valuation Vt are revealed to the bidder after each round t.

Mt Vt

Full Always observed

Transparent Always observed

Semi-Transparent Observed if the auction is lost Observed if the auction is won

Bandit Never observed

In the transparent feedback setting, Mt is always observed after the auction is concluded, while Vt
is only known if the auction is won, that is when Bt ě Mt. In the semi-transparent setting, instead,
Mt is only observed when the auction is lost. In other words, in the semi-transparent setting, each
bidder only observes the highest bid, whereas, in the transparent setting, the winning bidder also
observes the second highest bid. We also consider two extreme settings: full feedback (Mt and Vt are
always observed irrespective of the auction’s outcome) and bandit feedback (Mt is never observed
while Vt is only observed by the winning bidder). Note that the learner can compute the value of the
utility UtiltpBtq at time t with any type of feedback, including bandit feedback. In this chapter, we
characterize the learner’s minimax regret not only with respect to the degree of transparency of the
auction, but also with respect to the nature of the process generating the sequence of pairs pVt,Mtq.
In particular, we consider four types of environments: stochastic i.i.d., adversarial, and their smooth
versions (see the end of Section 3.1.3 for a discussion about smoothness, and Section 3.2 for the
formal definition). We refer to Table 3.1 for a summary of our results.

3.1.1 Overview of our Results

In the following discussion we ignore logarithmic factors.

Stochastic i.i.d. settings

• In both the full and transparent feedback models, the minimax regret is of order
?
T (Theorems 21

and 22), and adding the smoothness requirement leaves this rate unchanged.

• In the semi-transparent feedback model, the minimax regret is of order T 2{3 (Theorems 19 and 20).
Also in this case, adding the smoothness requirement leaves this rate unchanged.

• In the bandit feedback model, smoothness is crucial to achieve a sublinear regret (Theorem 18).
In particular, smoothness implies a minimax regret of T 2{3 (this is obtained by combining the

56



3.1. Introduction

Stochastic i.i.d. Adversarial
Smooth General Smooth General

Full Thm 22: Ωp
?
T q Thm 25: ΩpT q

Transparent Thm 21: Op
?
T q Thm 24: rOp

?
T q

Semi-Transparent Thm 20: Ω
`

T 2{3
˘

Thm 19: rO
`

T 2{3
˘

Bandit Thm 18: ΩpT q Thm 23: O
`

T 2{3
˘

Table 3.1: Summary of our results. The rows correspond to feedback models and the columns to
environments. The minimax regret of every problem has been characterized, resulting in one of the
following three regimes: rΘp

?
T q (green squares), rΘpT 2{3q (yellow squares) and rΘpT q (red squares).

upper bound in Theorem 23 and the lower bound in Theorem 20).

Adversarial settings

• Without smoothness, sublinear regret cannot be achieved, even with full feedback (Theorem 25).

• In both the full and transparent feedback model, the minimax regret in a smooth environment is
of order

?
T (combining the lower bound in Theorem 22 and the upper bound in Theorem 24).

• Both with semi-transparent and bandit feedback, the minimax regret in a smooth environment is
of order T 2{3 (combining the lower bound in Theorem 20 and the upper bound in Theorem 23).

The minimax regret rates for first-price auctions mirror the allowed regret regimes in finite
partial monitoring games [28] and in online learning with feedback graphs [9]. However, as shown by
Lattimore [122] —and as we already seen in Section 2.6— games with continuous outcome/action
spaces allow for a much larger set of regret rates.

Table 3.1 reveals some interesting properties of the minimax regret for this problem: full feedback
and transparent feedback are essentially equivalent while semi-transparent feedback and bandit
feedback differ only in the stochastic i.i.d. setting. Moreover, while smoothness is key for learning in
the adversarial setting, in the stochastic case smoothness is only relevant for bandit feedback.

3.1.2 Technical Challenges

The utility function. The utility functions b ÞÑ Utiltpbq “ pVt ´ bqItMt ď bu are defined over a
continuous decision space r0, 1s and are not Lipschitz (even the weaker property that the expected
cumulative reward b ÞÑ

ř

tPrT s E
“

Utiltpbq
‰

is one-sided Lipschitz does not hold in general). We
address this problem by developing techniques designed to control the approximation error incurred
when discretizing the bidding space. In the stochastic i.i.d. setting, the approximation error is
controlled by adaptively building a non-uniform grid. This allows us to estimate the distribution of
these competing bids, uniformly over the subintervals of r0, 1s. In the adversarial setting, instead, we
use the smoothness assumption to guarantee that the expected utility is Lipschitz. In this case, the
approximation error is controlled using a uniform grid with an appropriate grid-size (Lemma 10).

The feedback models. Our feedback models interpolate between bandit (only the bidder’s utility
is observed) and full feedback (Vt and Mt are always observed). In the stochastic i.i.d. case, the
different levels of transparency are crucial to the process of building the non-uniform grids used
to control the discretization error. In the adversarial case, when there are only K allowed bids,
the optimal rates are

?
T lnK and

?
KT under full and bandit feedback, respectively. While the
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semi-transparent feedback is not enough to improve the bandit rate, the transparent one can be
exploited via a more sophisticated approach. To this end, we design an algorithm, Exp3.FPA,
enjoying the full feedback regret rate

?
T lnK while only relying on the weaker transparent feedback.

Lower bounds. The linear lower bounds (Theorems 18 and 25) exploit a “needle in a haystack”
phenomenon, where there is a hidden optimal bid b‹ (the needle) in the r0, 1s interval (the haystack)
and the learner has no way of finding b‹ using the feedback she has access to. This is indeed the
case in the non-smooth adversarial full-feedback setting and in the non-smooth i.i.d. bandit setting.
To prove the remaining lower bounds, we design careful embeddings of known hard instances into
our framework. In particular, in Theorem 22 we embed the hard instance for prediction with two
experts and in Theorem 20 the hard instance for K (with K “ ΘpT 1{3q) bandits.

3.1.3 Related Work

The role of transparency in first-price auctions, where the winning bid is disclosed at the end of each
auction, has been studied in Bergemann and Hörner [30] with a focus on how transparency affects
the equilibria of the repeated bidding game.

Although the problem of regret minimization in first-price auctions has been studied before,
only few papers consider the setting of unknown valuations. Feng et al. [90] introduce a general
framework for the study of regret in auctions where a bidder’s valuation is only observed when the
auction is won. In the special case of first-price auctions, their setting is equivalent to our transparent
feedback when the sequence of pairs pVt,Mtq is adversarially generated. Following a parameterization

introduced by Weed et al. [182], Feng et al. [90] provide a O
`

b

T lnmaxt∆´1
0 , T u

˘

regret bound,
where ∆0 “ mintăt1 |Mt ´Mt1 | is controlled by the environment. In the stochastic i.i.d. case, their
results translate into distribution-dependent guarantees not providing any worst-case sublinear bound
(we obtain a

?
T rate). In the adversarial case, their guarantees are still worst-case linear (we obtain

?
T bounds leveraging the smoothness assumption). Achddou et al. [2] consider a stochastic i.i.d.

setting with the additional assumption that Vt and Mt are independent. Their main result is a
bidding algorithm with distribution-dependent regret rates (of order T 1{3`ε or

?
T , depending on

the assumptions on the underlying distribution) in the transparent setting. Again, this result is not
comparable to ours because of the independence assumption and the distribution-dependent rates
(which do not allow to recover our minimax rates).

Other works consider regret minimization in repeated second-price auctions with unknown
valuations. Dikkala and Tardos [81] investigate a repeated bidding setting, but do not consider
regret minimization. Weed et al. [182] derive regret bounds for the case when Mt are adversarially
generated, while Vt are stochastically or adversarially generated and the feedback is transparent.

Considerably more work study first-price auctions when the valuation Vt is known to the bidder at
the beginning of each round t. Note that these results are not directly comparable to ours. Balseiro
et al. [27] look at the case when the Vt are adversarial and the Mt are either stochastic i.i.d. or
adversarial. In the bandit feedback case (when Mt is never observed), they show that the minimax
regret is rO

`

T 2{3
˘

in the stochastic case and rO
`

T 3{4
˘

in the adversarial case. Han et al. [105] prove
a rO

`
?
T
˘

regret bound in the semi-transparent setting (Mt observed only when the auction is lost)
with adversarial valuations and stochastic bids. Han et al. [104] focus on the adversarial case, when
Vt and Mt are both generated adversarially. They prove a rO

`
?
T
˘

regret bound in the full feedback
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setting (Mt always observed) when the regret is defined with respect to all Lipschitz shading policies.
This setup is extended in Zhang et al. [190] where the authors consider the case in which the bidder
is provided access to hints before each auction. Zhang et al. [189] also study the full information
feedback setting and design a space-efficient variant of the algorithm proposed by Han et al. [104].
Badanidiyuru et al. [25] introduce a contextual model in which Vt is adversarial and Mt “ xθ, xty `εt

where xt P Rd is contextual information available at the beginning of each round t, θ P Rd is an
unknown parameter, and εt is drawn from an unknown log-concave distribution. They study regret
in bandit and full feedback settings.

A different thread of research is concerned with the convergence property of the regret min-
imization dynamics in first-price auctions (or, more specifically, with the learning dynamics of
mean-based regret minimization algorithms). Feldman et al. [89] show that with continuous bid
levels, coarse-correlated equilibria exist whose revenue is below the second price. Feng et al. [91]
prove that regret minimizing bidders converge to a Bayesian Nash equilibrium in first-price auctions
when bidder values are drawn i.i.d. from a uniform distribution on r0, 1s. Kolumbus and Nisan [118]
show that if two bidders with finitely many bid values converge, then the equilibrium revenue of the
bidder with the highest valuation is the second price. Deng et al. [78] provide a characterization
of the equilibria of the learning dynamics depending on the number of bidders with the highest
valuation. Their characterization is for both time-average and last-iterate convergence.

Finally, smoothed analysis of algorithms, originally introduced by Spielman and Teng [172] and
later formalized for online learning by Rakhlin et al. [153] and Haghtalab et al. [101], is a known
approach to the analysis of algorithms in which the instances at every round are generated from a
distribution that is not too concentrated. Recent works on the smoothed analysis of online learning
algorithms include Haghtalab et al. [101], Haghtalab et al. [103], Block et al. [35], Durvasula et al.
[85], and the papers on bilateral trade [40, 55, 57, 60] upon which Chapter 2 is based (where we
used a smoothness parameterization via the bounded density parameter M).

3.2 The Learning Model

We introduce formally the repeated bidding problem in first-price auctions. At each time step t,
a new item arrives for sale, for which the learner holds some unknown valuation Vt P r0, 1s. The
learner bids some Bt P r0, 1s and, at the same time, a set of competitors bid for the same object.
We denote their highest competing bid by Mt P r0, 1s. The learner gets the item at cost Bt if she
wins the auction (i.e., if Bt ě Mt), and does not get it otherwise. Then, the learner observes some
feedback Zt and gains utility UtiltpBtq, where, for all b P r0, 1s, Utiltpbq “ pVt ´ bqItb ě Mtu (see the
online bidding protocol in Section 3.1). Crucially, at time t the learner does not know her valuation
Vt for the item before bidding, implying that her bid Bt only depends on her past observations
Z1, . . . , Zt´1 (and, possibly, some internal randomization). The goal of the learner is to design a
learning algorithm α that maximizes her utility. More precisely, we measure the performance of an
algorithm α by its regret RS

T pαq against the worst environment β in a certain class S, where

RS
T pαq – sup

βPS
RT pα, βq , RT pα, βq – sup

bPr0,1s

E

«

T
ÿ

t“1

Utiltpbq ´

T
ÿ

t“1

UtiltpBtq

ff

,
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and the expectation is taken with respect to the randomness of the algorithm α which selects Bt,
and (possibly) the randomness of the environment β generating the pVt,Mtq pairs.

The environments. In this chapter we consider both stochastic i.i.d. and adversarial environments.

• Stochastic i.i.d.: The pairs pV1,M1q, pV2,M2q, . . . are a stochastic i.i.d. process.

• Adversarial: The sequence pV1,M1q, pV2,M2q, . . . is generated by an oblivious adversary.

Following previous works in online learning (see Section 3.1.3), we also study versions of the above
environments that are constrained to generate the sequence of pVt,Mtq values using distributions
that are “not too concentrated”. To this end, we introduce the notion of smooth distributions.

Definition 1 ([102]). Let X be a domain that supports a uniform distribution ν. A measure µ on X
is said to be σ-smooth if for all measurable subsets A Ď X , we have µpAq ď

νpAq

σ .∗

We thus also consider the following two types of environments.

• The σ-smooth stochastic i.i.d. environment, which is a stochastic i.i.d. environment where the
distribution of each pair pV1,M1q, pV2,M2q, . . . is σ-smooth.

• The σ-smooth adversarial setting, where the pairs pV1,M1q, pV2,M2q, . . . form a stochastic process
such that, for each t, the distribution of the pair pVt,Mtq is σ-smooth.

The feedback. Once we have described the types of environments we study, we specify the types
of feedback the learner receives at the end of each round, from the richest to the less informative.

• Full Feedback. The learner observes her valuation and the highest competing bid: Zt “ pVt,Mtq.

• Transparent Feedback. The learner always observes Mt, but Vt is only revealed if she gets the
item: Zt is equal to p‹,Mtq if Bt ă Mt and pVt,Mtq otherwise.

• Semi-Transparent Feedback†. The learner observes Vt if she gets the item and Mt otherwise: Zt is
equal to p‹,Mtq if Bt ă Mt and pVt, ‹q otherwise.

• The bandit feedback‡. The learner observes Vt if she gets the item and the symbol ‹ otherwise:
Zt is ‹ if Bt ă Mt and Vt otherwise.

3.3 The Stochastic i.i.d. Setting

In this section, we investigate the problem of repeated bidding in first-price auctions with unknown
valuations, when the pairs of valuations and highest competing bids are drawn i.i.d. from a fixed
but unknown distribution. We study the different feedback models separately. We start by proving
in Section 3.3.1 that it is not possible to achieve sublinear regret under the bandit feedback model
without any assumption on the distribution of the environment. Then, in Section 3.3.2 we give
matching upper and lower bounds of order T 2{3 in the semi-transparent feedback model. Notably,
the latter lower bound holds for smooth distributions, while the upper bound works for any (possibly

∗It is worthwhile noticing that µ being σ-smooth is equivalent to µ being absolutely continuous with respect to
ν with the further requirement that the Radon-Nikodym derivative satisfies dµ

dν
ď 1

σ
. In Chapter 2, to control the

smoothness of a distribution we used the (bd) assumption, with the different but equivalent parameterization M “ 1
σ
.

†This feedback is similar to the winner-only feedback in Han et al. [105].
‡We call this the bandit feedback because it is equivalent to receiving UtiltpBtq (with the extra information ‹ to

distinguish between losing the item and winning it with Vt “ Bt).
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non-smooth) distributions. Finally, in Section 3.3.3 we prove that both the full and transparent
feedback yield the same minimax regret regime of order

?
T , regardless of the regularity of the

distribution.

3.3.1 Stochastic i.i.d. Environment with Bandit Feedback

In the bandit feedback model, at each time step, the learner observes the valuation Vt (and nothing
else) when she wins, she observes nothing at all when she loses the auction. The crucial difference
with the other (richer) types of feedback is the amount of information received about Mt, which, in
the bandit case, is just the relative position with respect to Bt (i.e., whether Mt ď Bt or Bt ă Mt).
This allows to hide in the interval r0, 1s an optimal bid b‹ which cannot be uncovered by the learner
over a finite time horizon. Following this idea, a difficult environment should be one which randomizes
between two scenarios: a good scenario with large value Vt “ 1 and Mt slightly smaller than b‹ and
a bad one with poor value Vt “ 0 and Mt slightly larger than b‹. This way, not to suffer linear
regret, the learner has to find this tiny interval around b‹ (the “needle in a haystack”).

Theorem 18. Consider the problem of repeated bidding in first-price auctions with bandit feedback.
Suppose that S is the set of stochastic i.i.d. environments. Then, for any learning algorithm α and
any time horizon T , it holds

RS
T pαq ě

1

20
T .

Proof. We construct a randomized i.i.d. environment β, such that any deterministic algorithm α

suffers linear regret against it. By Yao’s Minimax principle, this concludes the proof.
The randomized environment is simple: before starting the sequence, a uniform seed b‹ is

drawn uniformly at random in p13 ,
1
2 ´ εq, where ε is a small parameter we set later. Then the i.i.d.

sequence pV1,M1q, pV2,M2q, . . . is drawn as follows: at each time step t with probability 1
2 we have

pVt,Mtq “ p1, b‹q, otherwise p0, b‹ ` εq. The bid b‹ is the best bid in hindsight, yielding an overall
expected utility of T

2 p1 ´ b‹q, which is at least T
4 because b‹ belongs to the interval p13 ,

1
2q.

We now upper bound the utility achievable by any deterministic algorithm α against β. Fix any
such algorithm, and consider its bids against any environment that selects the valuations Vt to be
either 0 or 1 (as the one constructed). At each time step, the feedback that α receives is either 0, 1
or ‹ (when the item is allocated to one of the competitors), so that the history of the bids posted by
α is naturally described by a ternary decision tree of height T , where each level corresponds to a
time step and any node to a bid. Crucially, the leaves of this tree are finite (at most 3T ), which
means that the algorithm α only posts bids in a finite subset N of r0, 1s. Now, let ε “ 3´2T {12; we
have that, with probability at least 1 ´ 6Nε

1´6ε ě 1 ´ e´T , the set rb‹, b‹ ` εs does not intersect N .
Note: the randomness is with respect to the uniform seed b‹ drawn by β, while the bound on the
probability holds independently to the choice of the deterministic algorithm α.

The total utility of α when rb‹, b‹ ` εs does not intersect N is easy to analyze: every time
that α posts bids smaller than b‹, then it never wins the item (zero utility). Instead, if it posts
bids larger than b‹ ` ε, then it always gets the item (whose average value is 1

2), paying at least
b‹ ` ε ě 1

3 . Putting these two cases together, we have proved that at each time step the expected
utility earned by the learner is at most 1

6 “ 1
2 ´ 1

3 , when rb‹, b‹ ` εs X N “ ∅ does not intersect
N (which happens with probability at least 1 ´ e´T ). Finally, by combining the lower bound
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Collect Bids (CB) - Semi-Transparent Feedback
1: input: Time horizon T0
2: Let X0 – 0 and M p0q – 0
3: for time t “ 1, 2, . . . , T0 do
4: Post bid Bt – 0 and observe the highest competing bid Mt

5: Sort the observed highest competing bids in increasing order: M p1q ď M p2q ď ¨ ¨ ¨ ď M pT0q

6: if M pT0q “ 0 then return candidate bid X0

7: for i “ 1, 2, . . . do
8: Let j‹

i´1 – max
␣

j P t0, . . . , T0u | Xi´1 “ M pjq
(

, ji – min
␣

j‹
i´1 `

P?
T0
T

, T0
(

, Xi – M pjiq

9: if ji “ T0 then let K – i and break;
10: return Candidate bids X0, X1, X2, . . . , XK

on the performance of b‹ with the upper bound on the expected utility of the learner, we get
RT pα, βq ě p1 ´ e´T qpT {4 ´ T {6q ě T {20.

3.3.2 Stochastic i.i.d. Environment with Semi-Transparent Feedback

In this section, we prove two results settling the minimax regret for the semi-transparent feedback
where the environment is i.i.d. (and, possibly, smooth). First, we construct a learning algorithm,
Collecting Bandit, achieving T 2{3 regret against any i.i.d. environment. Then, we complement it
with a lower bound of the same order (up to log terms) obtained even in a smooth i.i.d. environment.

A T 2{3 upper bound for the i.i.d. environment

Our learning algorithm Collecting Bandit is composed of two phases. First, for T0 “ ΘpT 2{3q rounds,
it collects samples from the highest competing bid random variables M1,M2, . . . ,MT0 by posting
dummy bids B1 “ B2 “ ¨ ¨ ¨ “ BT0 “ 0. Among these values (plus the value X0 “ 0), the algorithm
selects Θp

?
T0q bids according to their ordering, in a manner that the empirical frequencies of bids

M1,M2, . . . ,MT0 landing strictly in between two consecutive selected values are at most Θp1{
?
T0q

(see the pseudo-code of Collect Bids for details). Second, for the remaining time steps, it runs any
bandit algorithm, using as candidate bids the ones collected in the first phase (see Collecting Bandit
for details). Note that, in this second phase, the (less informative) bandit feedback would be enough
to run the algorithm: we only used the additional information provided by the semi-transparent
feedback in the initial “collecting bids” phase.

We first state a simple concentration result pertaining the i.i.d. process M,M1,M2, . . . ,MT0 , for
T0 P N. If I is the family of all the subintervals of r0, 1s and δ P p0, 1q, we define

ET0δ –
Ş

IPI

"∣∣∣ 1
T0

řT0
t“1 ItMt P Iu ´ PrM P Is

∣∣∣ ă 8
b

lnp1{δq

T0

*

.

Lemma 7. For every T0 P N and δ P p0, 1q, we have PrET0δ s ě 1 ´ δ.

Proof. The family I of all the subintervals of r0, 1s has VC dimension 2 (see, e.g., Chapter 14.2.
of Mitzenmacher and Upfal [141]). Therefore we get the desired result by directly applying the
standard sample complexity bound for ε-samples (see, e.g., Theorem 14.15 of Mitzenmacher and

Upfal [141]) for T0 samples and ε “ 8
b

lnp1{δq

T0
.
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To lighten future notation, we introduce the following

Notation 1. If K P N, 0 “ x0 ă x1 ă ¨ ¨ ¨ ă xK ď 1 ă xK`1 “ 2, and X “ tx0, . . . , xKu, we denote
by kX : r0, 1s Ñ t0, 1, . . . ,Ku the function that maps each b P r0, 1s to the unique k P t0, 1, . . . ,Ku

such that x P rxk, xk`1q.

We now prove another lemma that allows us to control the expected cumulative utility of any bid
in r0, 1s with that of the best bid in a discretization (without relying on any smoothness assumption).

Lemma 8. Assume that the process M,M1,M2, . . . of the highest competing bids form an i.i.d.
sequence. Let also 0 “ x0 ă x1 ă ¨ ¨ ¨ ă xK ď 1 ă xK`1 “ 2 and X “ tx0, . . . , xKu. For all b P r0, 1s

and T0, T1 P N with T0 ă T1, we have:

E

«

T1
ÿ

t“T0`1

Utiltpbq

ff

ď E

«

T1
ÿ

t“T0`1

Utilt
`

xkX pbq

˘

ff

` pT1 ´ T0qP
“

xkX pbq ă M ă xkX pbq`1

‰

.

Proof. Fix any b P r0, 1s, T0, T1 P N with T0 ă T1, and a time step t P tT0 ` 1, . . . , T1u. Then

E
“

Utiltpbq
‰

“ E
“

pVt ´ bqItb ě Mtu
‰

ď E
“

pVt ´ xkX pbqq
`

ItxkX pbq ě Mtu ` Itb ě Mt ą xkX pbqu
˘‰

ď E
“

UtiltpxkX pbqq
‰

` PrxkX pbq ă Mt ď bs ď E
“

UtiltpxkX pbqq
‰

` PrxkX pbq ă Mt ă xkX pbq`1s .

Summing over t and recalling that Mt and M shares the same distribution, yields the conclusion.

As a corollary of Lemmas 7 and 8 we obtain similar discretization error guarantees when the
grid of points X is random.

Lemma 9. Fix any T0 P N and δ P p0, 1q. Let X “ tX0, . . . , XKu be a random set containing
a random number K of points satisfying 0 “ X0 ă X1 ă ¨ ¨ ¨ ă XK ď 1 ă XK`1 “ 2. Assume
that the random variables K,X0, X1, . . . , XK`1 are HT0-measurable, where HT0 is the history up
to and including time T0. Assume that the process pV1,M1q, pV2,M2q, . . . of the valuations/highest
competing bids form an i.i.d. sequence. Then, for all b P r0, 1s and T1 P N with T1 ą T0, we have:

E

«

T1
ÿ

t“T0`1

Utiltpbq

ff

ď E

«

T1
ÿ

t“T0`1

Utilt
`

XkX pbq

˘

ff

` pT1 ´ T0qE

«

1

T0

T0
ÿ

t“1

I
␣

XkX pbq ă Mt ă XkX pbq`1

(

ff

` pT1 ´ T0q

˜

8

d

lnp1{δq

T0
` δ

¸

.

We are now ready to present the main theorem of this section.

Theorem 19. Consider the problem of repeated bidding in first-price auctions with semi-transparent
feedback. Suppose that S is the set of stochastic i.i.d. environments. Then there exists a learning
algorithm α such that

RS
T pαq ď 16

`

13 `
?
lnT

˘

T 2{3 .

Proof. We prove that Collecting Bandit yields the desired bound when its learning routine rα is (a
rescaled version of) MOSS [15]: since MOSS is designed to run with gains in r0, 1s while the utilities
we observe are in r´1, 1s, we first apply the reward transformation x ÞÑ x`1

2 to the observed utilities.
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Collecting Bandit (CoBa) - Semi-Transparent Feedback

1: input: Time horizon T and a bandit algorithm rα for gains in r´1, 1s

2: T0 – rT 2{3s

3: Run Collect Bids with time horizon T0 and obtain X0, X1, . . . , XK

4: Initialize rα on K ` 1 actions (one for each candidate bid Xi) and T ´ T0 as time horizon
5: for time t “ T0 ` 1, T0 ` 2, . . . , T do
6: Receive from rα the arm It P t0, 1, . . . ,Ku

7: Post bid Bt – XIt and observe semi-transparent feedback Zt
8: Reconstruct UtiltpBtq from Zt and feed it to rα as the reward associated to It

This will cost a multiplicative factor of 2 on the regret guarantees of MOSS. Leveraging the fact
that the empirical frequency between two consecutive Xk and Xk`1 generated by Collect Bids is at
most 2{

?
T0 by design and applying Lemma 9 with T1 “ T to the random variables X0, X1, . . . , XK ,

we obtain, for all b P r0, 1s

E

«

T
ÿ

t“T0`1

Utiltpbq

ff

ď E

«

T
ÿ

t“T0`1

Utilt
`

XkX pbq

˘

ff

` pT ´ T0q

˜

2
?
T0

` 8

d

lnp1{δq

T0
` δ

¸

“ p‹q .

Now, applying the tower rule to the expectation on the right-hand side conditioning to the history
HT0 up to time T0, we can use the fact that the regret of the rescaled version of MOSS is upper
bounded by 98

a

pK ` 1qpT ´ T0q and the number of points K ` 1 collected by Collect Bids is at
most

?
T0 ` 1 to obtain

p‹q ď E

«

T
ÿ

t“T0`1

UtiltpBtq

ff

` 98

b

p
a

T0 ` 1qpT ´ T0q ` pT ´ T0q

˜

2
?
T0

` 8

d

lnp1{δq

T0
` δ

¸

.

Finally, tuning δ “ 1{T0, upper bounding the cumulative regret over the first T0 rounds with T0,
and recalling that T0 “ rT 2{3s, yields the conclusion.

A T 2{3 lower bound for the smooth i.i.d. environment

We prove here that the rOpT 2{3q bound achieved by Collecting Bandit is indeed optimal in the i.i.d.
setting (up to logarithmic terms), even if we further impose that the environment is smooth. Our
lower bound consists in carefully embedding into our model a hard multiarmed bandit instance with
K “ ΘpT 1{3q arms, which entails a lower bound of order Ωp

?
KT q “ ΩpT 2{3q. Note that the proof

agenda we have presented is rich of challenges: we want to embed a discrete construction on K

independent actions into our continuous framework, where the utility of different bids are correlated,
while enforcing smoothness. Furthermore, the feedback models are different. We report here a proof
sketch and refer the interested reader to Appendix B.1 for the missing details.

Theorem 20. Consider the problem of repeated bidding in first-price auctions with semi-transparent
feedback. Suppose that S is the set of σ-smooth i.i.d. environments, with σ P p0, 1

66 s. Then, for any
learning algorithm α and any time horizon T ě 8, it holds

RS
T pαq ě

3

104
T 2{3 .
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Figure 3.1: Left/center: The support of the base density f lies inside the yellow and green regions. The perturbation
gw,ε of f occurs inside the green region, where the four rectangles R1

w,ε, . . . , R
4
w,ε (in red and blue) lie. Right: The

corresponding qualitative plots of b ÞÑ ErUtiltpbqs (black, dotted) and p ÞÑ Ew,ε
rUtiltpbqs (red, solid).

Proof sketch. Define, for all v,m P r0, 1s, the density

fpv,mq – Ir 7
8
, 1spvq

ˆ

1

pv ´mq2
Ir 1

4
, v´ 1

8
spmq `

4

v ´ 1{4
Ir0, 1

4
qpmq

˙

.

Let P0 be a probability measure such that pV,Mq, pV1,M1q, pV2,M2q, . . . is a P-i.i.d. sequence where
each pair pV,Mq has common probability density function f . Denoting by E0 the expectation with
respect to P0, we have, for any bid b P r0, 1s and any t

E0
“

Utiltpbq
‰

“ b

ˆ

1

2
` p1 ´ 4bq ln

6

5

˙

Ir0, 1
4

qpbq`
1

8
Ir 1

4
, 3
4

qpbq´

ˆ

4b2 ´ 6b`
17

8

˙

Ir 3
4
, 7
8

qpbq`

ˆ

15

16
´ b

˙

Ir 7
8
,1spbq .

This function grows with b on r0, 1{4q, it has a plateau of maximizers r1{4, 3{4s, then decreases on
p3{4, 1s (see Figure 3.1, right). Now, let Ξ –

␣

pw, εq P r0, 1s2 : w ´ ε ě 1{4 and w ` ε ď 3{4
(

and
define, for all pw, εq P Ξ, the four rectangles R1

w,ε – r15{16, 1s ˆ rw ´ ε, wq, R2
w,ε – r15{16, 1s ˆ

rw, w`εq, R3
w,ε – r7{8, 15{16qˆrw´ε, wq, R4

w,ε – r7{8, 15{16qˆrw, w`εq, and, for all v,m P r0, 1s,
the perturbation

gw,εpv,mq –
16

9

`

IR1
w,εYR4

w,ε
pv,mq ´ IR2

w,εYR3
w,ε

pv,mq
˘

.

For all pw, εq P Ξ, define fw,ε – f ` gw,ε (see Figure 3.1, left/center) and note that it is a valid
probability density function, i.e., fw,ε ě 0 and

ş

r0,1s2
fw,εpv,mqdvdm “ 1. For all pw, εq P Ξ, let

Pw,ε be a probability measure such that pV,Mq, pV1,M1q, pV2,M2q, . . . is a Pw,ε-i.i.d. sequence where
each pair pV,Mq has common probability density function fw,ε. Denoting by Ew,ε the expectation
with respect to Pw,ε, we have, for any bid b P r0, 1s and any t

Ew,ε
“

Utiltpbq
‰

“ E0
“

Utiltpbq
‰

`
ε

144
Λw,εpbq

where Λu,r is the tent map centered at u with radius r defined as Λu,rpxq – max t1 ´ |x´ u|{r, 0u.
In words, in a perturbed scenario Pw,ε the expected utility is maximized at the peak of a spike
centered at w with length and height Θpεq perturbing the plateau area r1{4, 3{4s of maximum height
(see Figure 3.1, right). Define, for all times t P N, the feedback function

ψt : r0, 1s Ñ
`

r0, 1s ˆ t‹u
˘

Y
`

t‹u ˆ r0, 1s
˘

, b ÞÑ

$

&

%

pVt, ‹q if b ě Mt

p‹,Mtq if b ă Mt
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and note that, in our semi-transparent feedback model, the feedback Zt received after bidding Bt at
time t is ψtpBtq. Then, for each pw, εq P Ξ and each b P r0, 1szrw´ε, w`εs, note that the distribution
of ψtpbq under Pw,ε coincides with the distribution of ψtpbq under P0, i.e., in push-forward notation
(for a refresher on push-forward measures, see Appendix A.15),

Pw,εψtpbq “ P0
ψtpbq . (3.1)

Now, let K P N, ε “ 1{p4Kq, wk “ 1{4`p2k´1qε and Pk “ Pwk,ε (for each k P rKs). At a high level,
we built a problem in which we know in advance the region where the optimal bid belongs to (i.e., the
interval r1{4, 3{4s), but, when the underlying scenario is determined by the probability measure Pk

for some k P rKs, in order not to suffer regret ΩpεT q, the learner has to detect inside this potentially
optimal region where a spike of height (and length) Θpεq in the reward occurs. This last task can
be accomplished only by locating where the perturbation in the base probability measure occurs,
which, given the feedback structure, can only be done by playing in the interval rwk ´ ε, wk ` εq if
the underlying probability is Pk, suffering instantaneous regret of order ε whenever the underlying
probability is Pj , with j ‰ k. Given that we partitioned the potentially optimal region r1{4, 3{4s

into Θp1ε q disjoint intervals where these perturbations can occur, the feedback structure implies that
each of these intervals deserves its own dedicated exploration.

To better highlight this underlying structure, we will show (see Appendix B.1) that our problem
is no easier than a simplified K-armed stochastic bandit problem, where the instances we consider
are determined by the probability measures P1, . . . ,PK . In this bandit problem, when the underlying
probability measure is induced by some Pk, the corresponding arm k has an expected reward Θpεq

larger than the others. Then, via an information-theoretic argument, we can show that any learner
would need to spend at least order of 1{ε2 rounds to explore each of the K arms (paying Ωpεq

each time) or else, she would pay a regret ΩpεT q. Hence, the regret of any learner, in the worst
case, is lower bounded by Ω

`

K
ε2
ε ` εT

˘

“ Ω
`

K2 ` T {K
˘

(recalling our choice of ε “ 1{p4Kq).
Picking K “ ΘpT 1{3q yields a lower bound of order T 2{3. For all missing technical details, see
Appendix B.1.

3.3.3 Stochastic i.i.d. Environment with Transparent and Full Feedback

This section completes the study of the stochastic i.i.d. environment by determining the minimax
regret when the learner has access to full or transparent feedback.

A
?
T upper bound for the i.i.d. environment

While with semi-transparent feedback, we had to rely on dummy bids B1 “ ¨ ¨ ¨ “ BT0 “ 0 to gather
information about the distribution of the highest competing bids, with the transparent one, this
information is collected for free at each bidding round. To use this extra information, we present a
wrapper W.T.FPA (for a sequence of base learning algorithms for the transparent feedback model)
whose purpose is restarting the learning process with a geometric cadence to update the set of
candidate bids. We assume that each of the wrapped base algorithms rατ can take as input any finite
subset X Ă r0, 1s and returns bids in X . Furthermore, for all T 1, we let RT 1prατ ,X q be an upper
bound on the regret over T 1 rounds of rατ with input X against the best fixed x P X . Formally, we
require that for any two times T0 ă T1 such that T 1 “ T1 ´ T0, the quantity RT 1prατ ,X q is an upper
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upper bound on maxxPX E
“
řT1
t“T0`1Utiltpxq ´

řT1
t“T0`1UtiltpBtq

‰

, where Bt P X is the sequence
of prices played by rατ (with input X ) when started at round t “ T0 ` 1 and ran up to time T1.
Without loss of generality, we assume that T 1 ÞÑ RT 1prατ ,X q is non-decreasing.

W.T.FPA (Wrapper for Transparent First-Price Auctions) - Transparent Feedback
1: input: Base algorithms rα1, rα2, . . .
2: initialization: Let s – 0
3: for each epoch τ “ 1, 2, . . . do
4: Let Xτ – t0u Y tM1, . . . ,Msu (with the understanding that X1 – t0u)
5: Start rατ with input Xτ and run it for rounds t “ s` 1, . . . , s` 2τ´1

6: Update s – s` 2τ´1

Proposition 1. Consider the problem of repeated bidding in first-price auctions with transparent
feedback. Suppose that S is the set of stochastic i.i.d. environments. Then, for any time horizon T ,
the regret of W.T.FPA run with base algorithms rα1, rα2, . . . satisfies

RS
T pW.T.FPAq ď

rlog2pT`1qs
ÿ

τ“2

R2τ´1

`

rατ ,Xτ
˘

` 3 ` 16
`
?
2 ` 2

˘

?
T lnT .

Proof. Fix an arbitrary epoch τ P
␣

2, . . . , rlog2pT ` 1qs
(

(the first epoch will be upper bounded
separately). With respect to the notation in Lemma 9, let X “ Xτ , K`1 “ |X |, T0 “

řτ´1
τ 1“1 2

τ 1´1 “

2τ´1 ´ 1 (the time passed from the beginning of epoch 1 up to and including the end of epoch τ ´ 1),
T1 “ mintT0 ` 2τ´1, T u (the end of epoch τ), and let X0 ă X1 ă ¨ ¨ ¨ ă XK be the distinct elements
of X in increasing order, where we note that X0 “ 0, XK ď 1, and we set XK`1 “ 2. Let also HT0

be the history up to and including time T0 and recall Notation 1. Applying first Lemma 9 (together
with the fact that the empirical frequency between any two consecutive values Xk and Xk`1 is 0 by
design), then exploiting the monotonicity of T 1 ÞÑ RT 1prατ ,Xτ q for the last epoch (if T0 ` 2τ´1 ą T ),
we obtain, for all b P r0, 1s and δ P p0, 1q,

E

»

–

mintT0`2τ´1,T u
ÿ

t“T0`1

Utiltpbq

fi

fl ď E

»

–

mintT0`2τ´1,T u
ÿ

t“T0`1

Utilt

´

XkX pbq

¯

fi

fl ` 2τ´1

˜

8

d

lnp1{δq

T0
` δ

¸

ď E

»

–

mintT0`2τ´1,T u
ÿ

t“T0`1

UtiltpBtq

fi

fl ` R2τ´1

`

rατ ,Xτ
˘

` 2τ´1

˜

8

c

lnp1{δq

2τ´1 ´ 1
` δ

¸

.

Summing over epochs τ P
␣

2, . . . , rlog2pT ` 1qs
(

, upper bounding by 1 the regret incurred in the
first epoch, and tuning δ “ 1{T , yields the conclusion.

Now we are only left to design appropriate base algorithms rα1, rα2, . . . for the transparent feedback
to wrap W.T.FPA around.

The Exp3.FPA algorithm. To this end, we introduce the Exp3.FPA algorithm (designed to
run with transparent feedback), which borrows ideas from online learning with feedback graphs [9].
Similar algorithms for related settings have been previously proposed by Weed et al. [182] and Feng
et al. [90]. For the familiar reader, note that our setting can be seen as an instance of online learning
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with strongly observable feedback graphs. In contrast to a black-box application of feedback-graph
results, we shave off a logarithmic term (in the time horizon) by using a dedicated analysis. For any
x P r0, 1s, we denote by δx the Dirac distribution centered at x.

Exp3.FPA - Transparent Feedback
1: input: Finite set X Ă r0, 1s with maximum x̄ and exploration rate γ P p0, 1q

2: For all x P X , let w1pxq – 1
3: for time t “ 1, 2, . . . do
4: Post bid Bt „ pt – p1 ´ γq wt

∥wt∥1
` γδx̄

5: For all x P X , define the reward estimate pgtpxq – pVt ´ xqItx ě Mtu
ItMtďBtu

ř

yěMt
ptpyq

6: For all x P X , update the weight wt`1pxq – wtpxq exp
`

γpgtpxq
˘

Note that the transparent feedback is sufficient to compute the reward estimates in Line 5. We
defer the proof of the following proposition to Appendix B.2.

Proposition 2. Let X Ă r0, 1s be a finite set, T P N a time horizon, and tune the exploration rate
as γ “

a

lnp|X |q{pe´ 1qT . Then, the regret of Exp3.FPA against the best fixed bid in X is

max
xPX

E

«

T
ÿ

t“1

Utiltpxq ´

T
ÿ

t“1

UtiltpBtq

ff

ď 2
b

pe´ 1q ln
`

|X |
˘

T

Putting together Propositions 1 and 2 yields the desired optimal rate.

Theorem 21. Consider the problem of repeated bidding in first-price auctions with transparent feed-
back. Suppose that S is the set of stochastic i.i.d. environments. Then the regret of W.T.FPA run with
the base algorithm of each epoch τ being Exp3.FPA tuned with γ “ γpτq “

a

lnp|Xτ |q{ ppe´ 1q2τ´1q,
satisfies

RS
T pW.T.FPAq ď 3 ` 2

`
?
2 ` 2

˘`

a

2pe´ 1q ` 8
˘

?
T lnT .

Proof. Plugging the guarantees of Proposition 2 into those of Proposition 1 and recalling that
|Xτ | ď 2τ´1 for each epoch τ “ 2, 3, . . . , gives the result (after straightforward computations).

A
?
T lower bound for the i.i.d. environment

We complement the positive result of Theorem 21 with a matching lower bound of order
?
T , that

holds even if we further assume that the underlying environment is smooth. The idea underlying
our hard instance is to embed the well-known lower bound for prediction with (two) experts into
our framework: we construct two smooth distributions that are “similar” but have two different
optimal bids whose performance is separated. We then formally prove that no learner can identify
the correct distribution without suffering less than

?
T regret.

Theorem 22. Consider the problem of repeated bidding in first-price auctions with full feedback.
Suppose that S is the set of σ-smooth i.i.d. environments, with σ P p0, 1

19 s. Then, for any learning
algorithm α and for time horizon T , it holds

RS
T pαq ě

1

2048

?
T .
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0 1{4 3{4 1

1{4

1{2

1

(a) Support of f˘ε.

0 1
8

1
4

1

I`

I´

(b) Utility under P0, P`ε, and
P´ε.

Figure 3.2: Supporting figures of the Proof of Theorem 22. Figure 3.2a represents the support of the density
functions f˘ε: the two squares Q` and Q´. Figure 3.2b represents the expected utility function for three
different distributions: P0 in violet, P` in orange and P` in green.

Proof. We prove the Theorem by Yao’s principle: we show that there exists a distribution over
stochastic σ-smooth environments such that any deterministic learning algorithm α suffers Ωp

?
T q

regret against it, in expectation. We do that in two steps. First, for every ε P p0, 12q we construct a
pair of 1

9 -smooth distributions that are hard to discriminate for the learner. Then, we prove that,
for the right choice of ε, any learner suffers the desired regret against at least one of them. For
visualization, we refer to Figure 3.2.

As a tool for our construction, we introduce a baseline probability measure P0, such that the
sequence pV,Mq, pV1,M1q, pV2,M2q, . . . is P0-i.i.d., and pV,Mq has a distribution P0

pV,Mq
(for a

refresher on push-forward measures, see Appendix A.15) whose density function is as follows:

f0pv,mq – 8Itpv,mq P Q`u ` 8Itpv,mq P Q´u,

where Q` – p0, 14q ˆ p0, 14q and Q´ – p34 , 1q ˆ p14 ,
1
2q (see Figure 3.2a). A convenient way to visualize

this distribution is to draw a uniform random variable Ut in the square Q` and then toss an unbiased
coin. If the coin yields heads, then pVt,Mtq is equal to Ut, otherwise pVt,Mtq coincides with Ut

translated by p34 ,
1
4q. With some simple (but tedious) computation, it is possible to explicitly compute

the expected utility of posting any bid b P r0, 1s, when pVt,Mtq is drawn following the distribution
P0 (with expectation E0):

E0rUtiltpbqs “

$

’

’

’

&

’

’

’

%

b
4p1 ´ 8bq if b P r0, 14q

´1
8p16b2 ´ 14b` 3q if b P r14 ,

1
2q

1
2p1 ´ 2bq if b P r12 , 1s

The function E0rUtiltpbqs has two global maxima in r0, 1s, of value 1
128 , attained in 1

16 and 7
16 (see

the red line in Figure 3.2b).
For any ε P p0, 12q, we also define two additional (perturbed) probability measures P˘ε, such that

the sequence pV,Mq, pV1,M1q, pV2,M2q, . . . is P˘ε-i.i.d. and the distribution P˘ε
pV,Mq

of pV,Mq has
density:

f˘εpv,mq – 8p1 ˘ εqItpv,mq P Q`u ` 8p1 ¯ εqItpv,mq P Q´u.

Note, ||f˘ε||8 ă 9, while ||f0||8 “ 8, therefore all the distributions considered in this proof are
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1
9 -smooth. To visualize this new perturbed distributions, recall the construction of P0

pV,Mq
using the

coin toss and the uniform random variable U : in this case the coin is biased and the probability of
getting tail is p1 ˘ εq{2. It is still possible to compute explicitly the expected utility under these
perturbed distributions for any bid b P r0, 1s:

E˘εrUtiltpbqs “

$

’

’

’

&

’

’

’

%

b
4p1 ´ 8bq ˘ ε b4p1 ´ 8bq if b P r0, 14q

´1
8p16b2 ´ 14b` 3q ˘ ε

4p8b2 ´ 11b` 2q if b P r14 ,
1
2q

1
2p1 ´ 2b¯ 3

4εq if b P r12 , 1s

(3.2)

We refer to Figure 3.2b for visualization. The crucial property of the distributions we constructed is
that the instantaneous regret of not playing in the “correct” region is Ωpεq; formally we have the
following result. For the sake of readability, we postpone the proof of this Claim to Appendix B.3.

Claim 4. There exists two disjoint intervals I` and I´ in r0, 1s such that, for any ε P p0, 12q and
any time t, the following inequalities hold:

max
xPr0,1s

E˘εrUtiltpxqs ě E˘εrUtiltpbqs `
1

128
ε, for all b R I˘

Since the two distributions are “ε-close”§, any learner needs at least 1
ε2

rounds to discriminate
which ones of the two distributions she is actually facing, paying each error with an instantaneous
regret of Ωpεq (Claim 4). All in all, any learner suffers a regret that is Ωpε ¨ 1

ε2
` εT q, which is of the

desired Ωp
?
T q order for the right choice of ε « T´1{2.

As the last step of the proof, we formalize the above argument. Fix ε “ 1{p4
?
T q and rename

P`ε “ P1 and P´ε “ P2, given our choice of ε; similarly, denote with I1 and I2 the two intervals
I` and I´ as in the statement of Claim 4. For each j P t0, 1, 2u, consider the run of α against the
stochastic environment which draws pV1,M1q, pV2,M2q, . . . i.i.d. from Pj . Let N1 be the random
variable that counts the number of times that algorithm α posts a bid in I1. Similarly, N2 counts
the number of times that it posts a bid in I2. For i “ 1, 2, we have the following crucial relation
between the expected value of Ni under Pi. Note, the results hold because the two distributions are
so similar that the deterministic algorithm α bids in the wrong region a costant fraction of the time
steps. For the formal proof of we refer the reader to Appendix B.3.

Claim 5. The following inequality hold:

1

2

ÿ

i“1,2

Ei rNis ď
3

4
T.

We finally have all the ingredients to conclude the proof. Consider an environment that selects
uniformly at random either P1 or P2 and then draws the pVt,Mtq i.i.d. following it. We prove
that the algorithm α suffers linear regret against this randomized environment and, by a simple
averaging argument, against at least one of them. Specifically, if b‹

i is the optimal bid in the scenario

§In Appendix B.3 we formally prove that their total variation is at most Θpεq.
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determined by Pi, for i P t1, 2u, we have

RT pαq ě
1

2

ÿ

i“1,2

Ei
«

T
ÿ

t“1

Utiltpb
‹
i q ´

T
ÿ

t“1

UtiltpBtq

ff

ě
1

1024
?
T

ÿ

i“1,2

Ei rT ´Nis (By Claim 4 and choice of ε)

ě
1

512
?
T

ˆ

T ´
3

4
T

˙

(By Claim 5)

“

?
T

2048
.

3.4 The Adversarial Setting

In this section we complete the perspective on repeated bidding in first-price auction by investigating
the adversarial model. In particular, we consider two models: the standard one, where the sequence
pV1,M1q, pV2,M2q, . . . is chosen up front in a deterministic oblivious way, and the smooth environ-
ment, where the sequence pV1,M1q, pV2,M2q, . . . is any σ-smooth stochastic process. In Section 3.4.1
we construct an algorithm achieving T 2{3 regret in the bandit feedback model under the smoothness
assumption; this result, together with the lower bound of the same order for the semi-transparent
feedback (Theorem 20) settles the problem for these two feedback regimes. Then, in Section 3.4.2 we
provide another upper bound, namely an algorithm achieving

?
T regret in the transparent feedback

model under the smoothness assumption; this result, together with the lower bound of the same
order for the semi-transparent feedback (Theorem 22) settles the problem for these two feedback
regimes. Finally, in Section 3.4.3 we provide a lower bound proving that the non-smooth adversarial
environment is too hard to learn, even when the learner has access to full feedback.

3.4.1 Bandit Feedback against the Smooth Environment

The smoothness assumption regularizes the objective function. In particular, if pVt,Mtq is smooth,
then the corresponding expected utility is Lipschitz.

Lemma 10 (Lipschitzness). Let pVt,Mtq be a σ-smooth random variable in r0, 1s. Then the induced
expected utility function E rUtiltp¨qs is 2{σ-Lipschitz in r0, 1s:

|E rUtiltpyq ´ Utiltpxqs | ď
2

σ
|y ´ x|, @x, y P r0, 1s. (3.3)

Proof. Let x ą y be any two bids in r0, 1s, we have the following:

|E rUtiltpxq ´ Utiltpyqs | “ |E rpVt ´ xqItMt ď xu ´ pVt ´ yqItMt ď yus |

“ |E rpVt ´ xqIty ă Mt ď xu ` py ´ xqItMt ď yus |

ď P
“

Mt P rx, ys
‰

` px´ yq ď
2

σ
px´ yq.
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As an interesting fact, note that we only need the marginal distribution of Mt to be σ-smooth
for the previous lemma to hold.

This Lipshitzness property has the immediate corollary that any fine enough discretization of
r0, 1s contains a bid whose utility is close the the optimal one.

Lemma 11 (Discretization Lemma). Let X be any finite grid of bids in r0, 1s, and let δpX q be the
largest distance of a point in r0, 1s to X (i.e., δpX q “ maxpPr0,1s minxPX |p´ x|), then if each pair of
random variables pV1,M1q, . . . , pVT ,MT q is σ-smooth, we have the following:

max
bPr0,1s

E

«

T
ÿ

t“1

Utiltpbq

ff

´ max
xPX

E

«

T
ÿ

t“1

Utiltpxq

ff

ď 2
δpX q

σ
T .

Proof. Fix any such sequence and let b‹ be the corresponding best fixed bid in hindsight. If b‹ is in
X there is nothing to prove, otherwise these exists x‹ P X such that |b‹ ´ x‹| ď δpX q (by definition
of δpX q). We have the following:

E

«

T
ÿ

t“1

Utiltpb
‹q

ff

´ E

«

T
ÿ

t“1

Utiltpx
‹q

ff

“

T
ÿ

t“1

E rUtiltpb
‹q ´ Utiltpx

‹qs

ď

T
ÿ

t“1

2

σ
|b‹ ´ x‹| (By Lipschitzness, Lemma 10)

ď 2
δpX q

σ
T

We can combine in a natural way the above discretization Lemma with any (optimal) bandit
algorithm to obtain the desired bound on the regret. For details we refer to the pseudocode of
Discretized Bandit.

Discretized Bandit - Bandit Feedback
1: input: Time horizon T , bandit algorithm rα for gains in r´1, 1s, and grid of K bids X
2: Initialize rα on K actions, one for each bid x P X , and time horizon T
3: for time t “ 1, 2, . . . , T do
4: Receive from rα the bid Bt P X
5: Post bid Bt and observe bandit feedback Zt
6: Reconstruct UtiltpBtq from Zt and feed it to rα as the reward associated to the arm Bt

Theorem 23. Consider the problem of repeated bidding in first-price auctions with bandit feedback.
Suppose that S is the set of adversarial σ-smooth environments. Then there exists a learning algorithm
α such that

RS
T pαq ď

27

σ
T 2{3 .

Proof. We prove that algorithm Discretized Bandit with the right choice of learning algorithm rα and
grid of bids X achieves the desired bound on the regret. As learning algorithm rα we use (a rescaled
version of) the Poly INF algorithm [16]: since Poly INF is designed to run with gains in r0, 1s while
the utilities we observe are in r´1, 1s, we first apply the reward transformation x ÞÑ x`1

2 to the
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observed utilities. This transformation will cost a multiplicative factor of 2 in the regret guarantees
of Poly INF.

The analysis builds on the discretization result in Lemma 11, by choosing as X the uniform
grid of rT 2{3s ` 1 equally spaced bids on r0, 1s (note, δpX q becomes T´1{3). Fix any σ-smooth
environment β, we have the following:

max
bPr0,1s

E

«

T
ÿ

t“1

Utiltpbq

ff

ď max
xPX

E

«

T
ÿ

t“1

Utiltpxq

ff

`
4

σ
T 2{3 (Lemma 11)

ď E

«

T
ÿ

t“1

UtiltpBtq

ff

`
4

σ
T 2{3 ` 23T 2{3 ď

27

σ
T 2{3,

where the second inequality follows from the guarantees of (the rescaled version of) Poly INF
(Theorem 11 of Audibert and Bubeck [16]).

3.4.2 Transparent Feedback against the Smooth Environment

For transparent feedback we combine two tools we have already used: the discretization Lemma (11)
and the algorithm Exp3.FPA for learning with transparent feedback on a finite grid. Note: using
any other

?
KT black box learning algorithm (like in the previous section for bandits) would yield a

suboptimal regret bound of T 2{3.

Theorem 24. Consider the problem of repeated bidding in first-price auctions with transparent
feedback. Suppose that S is the set of adversarial σ-smooth environments. Then there exists a
learning algorithm α such that

RS
T pαq ď 4

ˆ

1

σ
`

?
lnT

˙

?
T .

Proof. Consider algorithm Exp3.FPA on the uniform grid X of r
?
T s ` 1 bids, with δpX q ď

?
T .

For any fixed σ-smooth environment β, we have the following:

max
bPr0,1s

E

«

T
ÿ

t“1

Utiltpbq

ff

ď max
xPX

E

«

T
ÿ

t“1

Utiltpxq

ff

`
4

σ

?
T (Lemma 11)

ď E

«

T
ÿ

t“1

UtiltpBtq

ff

` 2
a

pe´ 1qT lnT `
4

σ

?
T

ď E

«

T
ÿ

t“1

UtiltpBtq

ff

` 4

ˆ

1

σ
`

?
lnT

˙

?
T ,

where the second inequality follows from the guarantees of Proposition 2.

3.4.3 The (Non-Smooth) Adversarial Model is Hopeless

In the previous sections, we have been able to provide positive results under one of two conditions:
either the environment is stochastic and the learner has at least the semi-transparent feedback
(Theorem 18 says that bandit feedback is not enough) or the environment uses smooth distributions.
Both these settings allow the learner to compute efficiently a discrete class of representative bids
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where the learning may happen. In this final section, we formally complete the proof of the fact that
learning is impossible if any of these assumptions are dropped. Specifically, the standard adversarial
environment that generates arbitrarily the sequence without any smoothness constraint is too strong.
In particular, we construct a randomized sequence pV1,M1q, pV2,M2q, . . . that induces any learner
to suffer at least linear regret. This construction shares some similarities with the lower bound
construction in Theorem 18, the main difference being that the best bid b‹ is randomized and hidden
in such a way that even a learner having access to full feedback cannot pin-point it.

Theorem 25. Consider the problem of repeated bidding in first-price auctions with full feedback.
Suppose that S is the set of adversarial environments. Then, for any learning algorithm α and any
time horizon T , it holds

RS
T pαq ě

T

24
.

Proof. We prove the result via Yao’s principle, showing that there exists a randomized environment
β such that any deterministic learning algorithm suffers 1

24 ¨ T regret against it.
The random sequence posted by β is based on two randomized auxiliary sequences L1, L2, . . . and

U1, U2, . . . defined as follows. They are initiated to L0 “ 1
2 , U0 “ 2

3 . Then, they evolve recursively
following the rule

$

&

%

Lt “ Lt´1 ` 2
3∆t´1 and Ut “ Ut´1, with probability 1

2 ,

Ut “ Ut´1 ´ 2
3∆t´1 and Lt “ Lt´1, with probability 1

2 ,

where ∆t´1 “ Ut´1 ´ Lt´1.
For each realized sequence of the pLt, Utq pairs, the actual sequence of the pMt, Vtq selected

by β is constructed as follows. At each time step t, the environment selects pMt, Vtq “ pLt, 1q or
pUt, 0q, uniformly at random. Note, the distribution is characterized by two levels of independent
randomness: the auxiliary sequence of shrinking intervals and the choice between pLt, 1q and pUt, 0q.

We move our attention to the expected performance of the best fixed price in hindsight. For
each realization of the random auxiliary sequence, there exists a bid B˚ such that piq it wins all the
auctions pVt,Mtq of the form pLt, 1q (which we may call “good auctions” because they bring positive
utility when won) and piiq it loses all the auctions pVt,Mtq of the form pUt, 0q (which we may call
“bad auctions” because they bring negative utility). Thus its expected utility at each time step is
at least 1

6 : with probability 1
2 the environment selects a good auction, which induces an utility of

p1 ´ Ltq ě 1
3 . All in all, the optimal bid achieves an expected utility of at least T

6 .

Consider now the performance of any deterministic algorithm α: for any fixed time t ą 1

and possible realization of the past observations, the learner posts some deterministic bid Bt. If
Bt ă Lt´1, then it gets 0 utility, so we only consider the following cases:

• If Bt P rLt´1, Lt´1 ` 1
3∆t´1q, then the bidder gets the item with probability 1

4 (Lt “ Lt´1, Vt
is set to 1 and Mt “ Lt) with an expected utility of 1

4p1 ´ Ltq ď 1
8 .

• If Bt P rLt´1 ` 1
3∆t´1, Lt´1 ` 2

3∆t´1q, the bidder gets the item with probability 1
2 (when Lt “

Lt´1 and Ut “ Ut´1 ´ 2
3∆t´1) for an expected utility of 1

4p1´Lt´1q´ 1
4pLt´1 ` 1

3∆t´1q ď 0 ď 1
8

• If Bt P rLt´1 ` 2
3∆t´1, Ut´1q the bidder gets the item with probability 3

4 (when Lt “ Lt´1

and when Ut “ Ut´1, Vt “ 1 and Mt “ Lt) for an expected utility of 1
4p1 ´ Lt´1q ´ 1

4pLt´1 `

1
3∆t´1q ` 1

4p1 ´ Lt´1 ´ 2
3∆t´1q ď 0 ` 1

8 “ 1
8
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• If Bt ě Ut´1 then the bidder always gets the item, with an expected utility smaller than 0

(which is in turn smaller than 1
8).

All in all, we have that the expected utility of any deterministic algorithm is at most 1
8T . If we

compare this quantity with the lower bound on the expected utility of the best bid in hindsight we
get the desired result:

E rRT pα, βqs ě
T

6
´
T

8
“

T

24
.

A final observation: the crucial ingredient in the proof is the possibility of constructing this
elaborate auxiliary sequence. To this end, we only needed the non-smoothness of Mt, while we may
have chosen the valuations Vt to be smooth (and even i.i.d.), say uniformly in r0, 14 s for the bad
auctions and in r34 , 1s for the good ones.

3.5 Conclusions

Motivated by the recent shift from second to first-price auctions in online advertising market, in this
chapter we offered a comprehensive analysis of the online learning problem of repeated bidding in
first-price auction under the realistic assumption that the bidder does not know her valuation before
bidding. We have characterized the minimax regret achievable for different levels of transparency in
the auction format and for different data generation models, considering both the stochastic i.i.d.
and the standard adversarial model, with a focus also on smoothness. Although all our regret rates
are tight in their dependence on the time horizon T , a natural open problem consists in studying
their minimax dependence in the smoothness parameter σ.

This work belongs to the long line of research that studies economic problems from the online
learning perspective; an intriguing open problem there is to offer a unified framework to characterize
in a satisfying way all these games with partial feedback, similar to what has been done for partial
monitoring and feedback graph.
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Chapter 4

Adaptive Maximization of Social Welfare

4.1 Introduction

Consider a policymaker who aims to maximize social welfare, defined as a weighted sum of utility
across individuals. The policymaker can choose a policy parameter such as a sales tax rate, an
unemployment benefit level, a health-insurance copay rate, etc. The policymaker does not directly
observe the welfare resulting from her policy choices. She does, however, observe behavioral outcomes
such as the consumption of taxed goods, labor market participation, or health care expenditures.
She can revise her policy choices over time in light of observed outcomes.

How should such a policymaker act? To address this question, we bring together insights from
welfare economics (in particular optimal taxation [26, 65, 140, 154, 159]) with insights from machine
learning (in particular online learning and multi-armed bandits [46, 123, 169]).

In our baseline model, individuals arrive sequentially and make a single binary decision. In
each period, the policymaker chooses a tax rate that applies to this binary decision. Then, she
observes the individual’s response. We remark that the policymaker never observes the individual’s
private utility. Social welfare is given by a weighted sum of private utility and public revenue. Later,
we extend our model to nonlinear income taxation, where welfare weights vary as a function of
individual earnings capacity, and sketch an extension to commodity taxation, where individual
decisions involve a continuous consumption vector.

Our goal is to give guidance to the policymaker. We propose algorithms to maximize cumulative
social welfare, and we provide guarantees for the performance of these algorithms. In doing so, we
also show that welfare maximization is a harder learning problem than reward maximization in the
multi-armed bandit setting. Private utility in our baseline model is equal to consumer surplus, which
is given by the integral of the demand function. To learn this integral, we need to learn the demand
for counterfactual, suboptimal tax rates. This drives the difficulty of the learning problem.

A lower bound on regret Our main theorems provide lower and upper bounds on the regret.
The regret is defined as the difference in cumulative welfare between the chosen sequence of policies
and the best possible constant policy. We consider both stochastic and adversarial regret. The
former assumes that preference parameters are drawn i.i.d. from some distribution, whereas the
latter allows for arbitrary sequences of preference parameters.

We first prove a stochastic (and thus also adversarial) lower bound on the regret, for any
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possible algorithm. Our proof of this lower bound constructs a family of possible distributions for
preferences. This family is such that two candidate policies are potentially optimal. The difference in
welfare between these two policies depends on the integral of the demand function over intermediate
policy values. To learn which of these two candidate policies is optimal, we need to learn behavioral
responses for intermediate strictly suboptimal policies. Because of the need to probe these suboptimal
policies sufficiently often, we obtain a lower bound on regret which grows at a rate of T 2{3, even
if we restrict our attention to settings with finite, known support for preference parameters and
policies. We remark that this rate is worse than the worst-case rate for bandits of T 1{2.

A matching upper bound on adversarial regret for modified Exp3 We next propose an
algorithm for the adaptive maximization of social welfare. Our algorithm is a modification of the
well-known Exp3 algorithm [18]. Exp3 is based on an unbiased estimate of cumulative welfare
for each policy. The probability of choosing a given policy is proportional to the exponential of
this estimate of cumulative welfare, times some rate parameter. Relative to Exp3, we require two
modifications for our setting. First, we need to discretize the continuous policy space. Second, and
more interestingly, we need additional exploration of counterfactual policies, including some policies
that are clearly sub-optimal, in order to learn welfare for the policies that are contenders for the
optimum. This need for additional exploration again arises because of the dependence of welfare on
the integral of the demand over counterfactual policy choices. For our modified Exp3 algorithm, we
prove an adversarial (and thus also stochastic) upper bound on the regret. We show that, for an
appropriate choice of tuning parameters, the worst-case cumulative regret over all possible sequences
of preference parameters grows at a rate of T 2{3, up to a logarithmic term. The algorithm thus
achieves the best possible rate.∗

Improved stochastic bounds for concave social welfare The proof of our lower bound on
regret is based on the construction of a distribution of preferences that delivers a non-concave social
welfare function. If we restrict attention to the stochastic setting, where preferences are i.i.d. over
time, and if we assume that social welfare is concave, then we can improve upon this bound on
regret. In the stochastic case, assuming the concavity of the expected utility function, we prove a
Ωp

?
T q lower bound on the regret. We then propose a dyadic search algorithm achieving this rate,

up to logarithmic terms. This dyadic search algorithm maintains an “active interval”, containing the
optimal policy with high probability, which is narrowed down over time. Only policies within the
active interval are sampled.

Extensions to non-linear income taxation and to commodity taxation Our discussion up
to this point focuses on the somewhat stylized case of an optimal tax problem, where individual
actions are binary, and the policy imposes a tax on this binary action. Our arguments generalize,
however, to more complicated and practically relevant settings. This includes optimal nonlinear
income taxation (see Section 4.5), as in Mirrlees [140] and Saez [159]. For nonlinear income taxation,

∗Since stochastic regret (averaged over sequences of willingness to pay) is always less or equal to adversarial regret
(for the worst-case sequence), the stochastic lower bound immediately implies a corresponding adversarial lower bound,
and the adversarial upper bound implies a corresponding stochastic upper bound. Since the rates for our stochastic
lower and adversarial upper bound coincide, up to a logarithmic term, we have a complete characterization of learning
rates for the welfare maximization problem.
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different tax rates apply at different income levels, and welfare weights depend on individual earnings
capacity. In Section 4.5, we discuss an extension of our tempered Exp3 algorithm to nonlinear
income taxation, and characterize its regret.

We propose a different generalization in Appendix C.1, where commodity taxation for a bundle of
goods is discussed, as in Ramsey [154]. For commodity taxation, different tax rates apply to different
goods, and consumption decisions are continuous vectors. However, we still do not know whether
our arguments generalize beyond the one-dimensional case for this problem (see the discussion in
Appendix C.1), and we leave its investigation open for future research.

Roadmap The rest of this chapter proceeds as follows. We conclude this introduction with a
discussion of some related work and relevant references. Section 4.2 introduces our setup, formally
defines the adversarial and stochastic settings, and compares our setup to related learning problems.
Section 4.3 provides lower and upper bounds on regret in the adversarial and stochastic settings.
Section 4.4 restricts attention to the stochastic setting with concave social welfare, and provides
improved regret bounds for this setting. Section 4.5 discusses an extension of our baseline model
to non-linear income taxation. Appendix C.1 sketches another extension of our baseline model to
commodity taxation. All proofs can be found in Appendix C.2.

4.1.1 Background and Literature

To put our work in context, it is useful to contrast our framework with the standard approach in
public finance and optimal tax theory, and with the frameworks considered in machine learning and
the multi-armed bandit literature.

Optimal taxation Optimal tax theory, and optimal policy theory more generally, is concerned
with the maximization of social welfare, where social welfare is understood as a (weighted) sum of
subjective utility across individuals [26, 65, 113, 140, 154, 159]. A key tradeoff in such models is
between, first, redistribution to those with higher welfare weights, and second, the efficiency cost of
behavioral responses to tax increases. Such behavioral responses might reduce the tax base.

Optimal tax problems are defined by normative parameters (such as welfare weights for different
individuals), as well as empirical parameters (such as the elasticity of the tax base with respect
to tax rates). The typical approach in public finance uses historical or experimental variation to
estimate the relevant empirical parameters (causal effects, elasticities). These estimated parameters
are then plugged into formulas for optimal policy choice, which are derived from theoretical models.
The implied optimal policies are finally implemented, without further experimental variation.

Multi-armed bandits The standard approach of public finance, which separates elasticity
estimation from policy choice, contrasts with the adaptive approach that characterizes decision-
making in many branches of AI, including online learning, multi-armed bandits, and reinforcement
learning. In particular, multi-armed bandit algorithms trade off exploration and exploitation over
time to maximize a stream of rewards [46, 123, 169]. Exploration here refers to the acquisition
of information for better future policy decisions, while exploitation refers to the use of currently
available information for optimal policy decisions at the present moment.
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Online Taxation Protocol
for time i “ 1, 2, . . . do

A new individual arrives with (hidden) valuation vi P r0, 1s

The learner posts a tax rate xi P r0, 1s

The learner receives a (hidden) reward Uipxiq, where Uipxq – x ¨I tx ď viu`λ ¨maxpvi´x, 0q

The learner observes feedback yi – I txi ď viu P t0, 1u

We remark that bandit algorithms (and similarly, adaptive experimental designs for informing
policy choice, as in [114, 158]) are not directly applicable to social welfare maximization problems,
such as those of optimal tax theory. The reason is that bandit algorithms maximize a stream
of observed rewards. By contrast, social welfare as conceived in welfare economics is based on
unobserved subjective utility.

Bandit approaches for economic problems Even though we already discussed this topic in
previous chapters, we briefly recall the relevant information for the sake of the reader.

Bandit-type approaches have been applied to a number of other economic and financial scenarios
in the literature where rewards are observable. These include dynamic pricing [117] (see also
the survey [76] and the related work Section 2.1.3), second-price auctions [50, 52, 182], first-price
auctions [2, 90, 91, 104, 105, 118]—see also Chapter 3 and the related work Section 3.1.3 therein—and
combinatorial auctions [72]. Bandit-type approaches have also been applied to settings where rewards
are not directly observable, including bilateral trade (that we already discussed in Chapter 2) and,
e.g., the newsvendor problem [127].

4.2 Setup

At each time i “ 1, 2, . . . , T , one individual arrives who is characterized by an unknown willingness
to pay vi P r0, 1s. This individual is exposed to a tax rate xi, and makes a binary decision
yi “ I txi ď viu. The implied public revenue is xi ¨ yi. The implied private welfare is maxpvi ´ xi, 0q.
We define social welfare as a weighted sum of public revenue and private welfare, with a weight
λ P p0, 1q for the latter, fixed by the policymaker depending on her preferences for redistribution.
Social welfare for time period i is therefore given by Uipxiq, where xi is the policy chosen by the
learner at time i, and for any x P r0, 1s, we have defined

Uipxq – x ¨ I tx ď viu
loooooomoooooon

Public revenue

` λ ¨ maxpvi ´ x, 0q
looooooomooooooon

Private welfare

. (4.1)

After period i, the learner observes yi and nothing else. In particular, the learner does not observe
welfare Uipxiq. See also the Learning Protocol.

We can rewrite social welfare Uipxq as follows. Denote the individual demand function by
Gipxq “ I tvi ě xu, so that yi “ Gipxiq. Then, private welfare can be written as maxpvi ´ x, 0q “
ş1
xGipx

1qdx1 . That is, private welfare can be obtained by integrating the demand function.† This

†This reflects the absence of income effects in our model, which implies that private utility, consumer surplus,
compensating variation, and equivalent variation all coincide.
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representation of private welfare implies

Uipxq “ x ¨Gipxq
looomooon

Public revenue

` λ ¨

ż 1

x
Gipx

1qdx1

loooooomoooooon

Private welfare

. (4.2)

We consider algorithms for the choice of xi which might depend on the observable history pxj , yjq
i´1
j“1,

as well as possibly a randomization device.

Notation For the adversarial setting, we will consider cumulative demand and welfare, denoted
by boldface letters, summing across j “ 1, . . . , i. Specifically,

Gipxq –
ÿ

jďi

Gipxq, Uipxq –
ÿ

jďi

Uipxq, Ui –
ÿ

jďi

Ujpxjq.

Gipxq and Uipxq are cumulative demand and welfare for a counterfactual, fixed policy x. Ui, without
an argument, is the cumulative welfare for the policies xj actually chosen.

For the stochastic setting (where we recall that the sequence pviqiPN is independent and identically
distributed), we will analogously consider expected demand and expected welfare, denoted by
blackboard bold letters. The expectation is taken across some stationary distribution µ of vi, where
vi is statistically independent of xi, and of vj for j ‰ i. Specifically, for any x, we define the expected
demand and the expected utility as

Gpxq – ErGipxqs, Upxq – ErUipxqs ,

and we note explicitly that this definition is independent of the choice of the time i.

4.2.1 Regret

The adversarial case Following the literature, we consider regret for both the adversarial and
the stochastic setting. In the adversarial setting, we allow for arbitrary sequences of willingness to
pay, tviu

T
i“1. We compare the expected performance of any given algorithm α for choosing txiu

T
i“1 to

the performance of the best possible constant policy x. This comparison yields cumulative expected
regret, which is given by

RT
`

α, tviu
T
i“1

˘

– sup
xPr0,1s

E rUT pxq ´ UT s . (4.3)

The expectation in this expression is taken over any possible randomness in the tax rates xi chosen
by the algorithm; there is no other source of randomness.

The stochastic case We also consider the stochastic setting. In this setting, we add structure
by assuming that the vi are i.i.d. draws from some distribution µ on r0, 1s, with implied demand
function Gpxq “ Prvi ě xs. This demand function is identified by the regression

Gpxq “ Eryi|xi “ xs.
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The expectation in this expression is taken over the distribution of vi, which is presumed to be
statistically independent of the tax rate xi. Expected welfare for this distribution of vi is given by

Upxq “ x ¨ Gpxq ` λ ¨

ż 1

x
Gpx1qdx1.

For an algorithm α, cumulative expected regret in the stochastic case equals

RT pα,Gq – sup
xPr0,1s

E rUT pxq ´ UT s “ T ¨ sup
xPr0,1s

Upxq ´ E

«

ÿ

iďT

Upxiq

ff

. (4.4)

The expectation in this expression is taken over any possible randomness in the tax rates xi, and
over the i.i.d. draws of vi.

Lower and upper bounds Below, we will derive lower and upper bounds for adversarial and
stochastic regret. A lower bound on adversarial (resp., stochastic) regret requires that, for any
algorithm, there exists some sequence tviu

T
i“1 (resp., some stationary distribution µ) over which

the algorithm has to suffer at least a certain amount of regret. A lower bound on stochastic regret
immediately implies a lower bound on adversarial regret, since the supremum over sequences tviu

T
i“1

exceeds the expectation over such sequences, generated from any distribution µ.
An adversarial upper bound on regret has to hold for a given algorithm and any sequence tviu

T
i“1.

Such an adversarial upper bound again immediately implies a stochastic upper bound on regret, by
the same argument as above. When an adversarial upper bound coincides with a stochastic lower
bound, in terms of rates of regret, it follows that the proposed algorithm is rate efficient, for both
stochastic and adversarial regret.

4.2.2 Comparison to Related Learning Problems

Before proceeding with our analysis of regret, we take a step back, and compare our learning problem
to two related problems that have received some attention in the literature. The first of these is the
dynamic pricing problem; see for instance [117]. This problem is equivalent to our setting when we
set λ “ 0, interpret x as a price, and UDP

i as monopolist profits (neglecting production costs):

UDP
i pxq – xi ¨ I txi ď viu “ x ¨Gipxq.

loooomoooon

Monopolist revenue

(4.5)

As in our adaptive taxation setting, the feedback received at the end of period i is

yi “ Gipxiq “ I txi ď viu .

The other related problem is price setting for bilateral trade, which was the topic of Chapter 2.
We recall that, in this problem, welfare UBT

i pxq is given by the sum of seller and buyer welfare.
Trade happens if and only if both sides agree to transact at the proposed price. Buyer willingness to
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pay is given by vbi , while the seller is willing to trade at prices above vsi .

UBT
i pxq – I

␣

vbi ě x
(

¨ maxpx´ vsi , 0q ` I tvsi ď xu ¨ maxpvbi ´ x, 0q

“ Gbipxq ¨

ż x

0
Gsi px

1qdx1

loooooomoooooon

Seller welfare

` Gsi pxq ¨

ż 1

x
Gbipx

1qdx1

loooooomoooooon

Buyer welfare

. (4.6)

Realistic feedback for bilateral trade is a little richer with respect to the one available in the taxation
problem. We observe whether the buyer and the seller accepted the posted price,

ybi – Gbipxiq – Itxi ď vbi u and ysi – Gsi pxiq – Itxi ě vsi u.

Lipschitzness and information requirements The difficulty of the learning problem in each
of these models critically depends on (i) the Lipschitz properties of the welfare function, and (ii)
the information required to evaluate welfare at a point. We say that a generic welfare function
W : r0, 1s Ñ R is one-sided Lipschitz if W px` εq ď W pxq ` ε for all 0 ď x ď 1 and all 0 ď ε ď 1´x.
We say that learning W p¨q requires only pointwise information if W pxq is a function of Gpxq, and
does not depend on Gp¨q otherwise. One-sided Lipschitzness allows us to bound the approximation
error of a learning algorithm operating on a finite subset of the set of policies. Pointwise information
allows us to avoid exploring policies that are clearly suboptimal, when we aim to learn the optimal
policy.

Now, it can be easily seen that the following holds:

1. For dynamic pricing, welfare UDP
i pxq is one-sided Lipschitz and only depends on Gipxq point-

wise.

2. For optimal taxation, welfare Uipxq is one-sided Lipschitz and depends on both Gipxq at the
given x (pointwise), and on an integral of Gipx1q for a range of values of x1 (non-pointwise).

3. For bilateral trade, welfare UBT
i pxq is not one-sided Lipschitz and depends on both Gbipxq and

Gsi pxq (pointwise), as well as the integrals of Gbipx
1q and Gsi px

1q (non-pointwise).

These properties suggest a ranking in terms of the difficulty of the corresponding learning problems,
and in particular in terms of the rates of divergence of cumulative regret: the information requirements
of optimal taxation are stronger than those of dynamic pricing, but its continuity properties are
more favorable than those of bilateral trade.

Comparison with multi-armed bandits We may also compare these problems to conventional
multi-armed bandits. It is worth emphasizing that there are two distinct reasons for the slower
regret rates with respect to multi-armed bandits. First, the continuous support of x, as opposed
to a finite number of arms, which alone is already enough to slow down convergence with respect
to the

?
T bandit rate. Second, the requirement of additional exploration of clearly sub-optimal

policies to estimate the reward of other more promising policies. This happens both in bilateral
trade and in optimal taxation but is completely missing in the dynamic price problem. Even more,
this phenomenon shows up even if we restrict our attention to a discrete set of feasible policies x. In
fact, while then dynamic pricing reduces to a multi-armed bandit problem (with a minimax regret
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Figure 4.1: Construction for proving the lower bound on regret

Notes: This figure illustrates our construction for proving the lower bound on regret. The relative social welfare of
policies 1 and .25 depends on the sign of ε. The dark line corresponds to ε “ ´1, the bright line to ε “ 1. In order to
distinguish between these two, we must learn demand in the intermediate interval r.5, .75s.

rate of
?
T ), the optimal tax problem still has a regret rate of T 2{3 even if we restrict our attention

to the case of finite known support for v and x, as shown by the proof of Theorem 26 below.

4.3 Stochastic and Adversarial Regret Bounds

We now turn to our main theoretical results, lower and upper bounds on stochastic and adversarial
regret for the problem of social welfare maximization. We first prove a lower bound on stochastic
regret, which applies to any algorithm, and which immediately implies a lower bound on adversarial
regret. We then introduce the algorithm Tempered Exp3 for Social Welfare. We show that, for an
appropriate choice of tuning parameters, this algorithm achieves the rates of the lower bound on
regret, up to a logarithmic term. Formal proofs of these bounds can be found in section C.2.

4.3.1 Lower Bound

Theorem 26 (Lower bound on regret). Consider the setup of Section 4.2. There exists a constant
C ą 0 such that, for any randomized algorithm α for the choice of x1, x2, . . . and any time horizon
T P N, the following holds.

1. There exists a distribution µ on r0, 1s with associated expected demand function G for which
the stochastic cumulative expected regret RT pα,Gq is at least C ¨ T 2{3.

2. There exists a sequence pv1, . . . , vT q P r0, 1sT for which the adversarial cumulative expected
regret RT

`

α, tviu
T
i“1

˘

is at least C ¨ T 2{3.

The proof of Theorem 26 can be found in section C.2. The adversarial lower bound follows
immediately from the stochastic lower bound, since worst case regret (over possible sequences of vi)
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is bounded below by average regret (over i.i.d. draws of vi), for any distribution of vi.

Sketch of proof To prove the stochastic lower bound we construct a family of distributions
pµεqεPr´1,1s for vi, indexed by a parameter ε P r´1, 1s. The distributions in this family have four
points of support, p1{4, 1{2, 3{4, 1q. The probability of these points is given by

`

a, p1 ` εqb, p1 ´ εqb, 1 ´ a´ 2b
˘

.

The values of a and b are chosen such that (i) the two middle points 1{2, 3{4 are far from optimal, for
any value of ε, and (ii) learning which of the two end points p1{4, 1q is optimal requires sampling
from the middle.‡ For each ε P r´1, 1s, denote the demand function associated to µε by Gε, and
the expected social welfare associated to Gε by Uε. Property (ii) holds because of the integral term
ş1
1
4
Gεpx1qdx1, which shows up in Uεp1q ´ Uεp1{4q. This construction is illustrated in Figure 4.1. This

figure shows plots of Gε and of Uε for λ “ .95 and ε P t˘1u.
The difference in welfare Uεp1q ´Uεp1{4q of the two candidates optimal policies 1{4 and 1 depends

on the sign of ε. In order not to suffer regret of order |ε| ¨ T , any learning algorithm needs to sample
policies from points that are informative about the sign of ε. The only points that are informative
are those in the region p1{2, 3{4s, where welfare is bounded away from optimal welfare.

More specifically, due to information-theoretic arguments, a learning algorithm has to sample on
the order of |ε|´2 times from the region p1{2, 3{4s to be able to detect the sign of ε, incurring regret
on the order of |ε|´2 in the process. Any learning algorithm therefore incurs regret on the order of
min

`

|ε|´2, |ε| ¨ T
˘

, which, for ε “ ΘpT´1{3q, leads to the conclusion.

4.3.2 An Algorithm that Achieves the Lower Bound

We next introduce an algorithm that allows us to essentially achieve the lower bound on regret,
in terms of rates. Algorithm 7 is a modification of the well-known Exp3 algorithm. Conventional
Exp3, for the multi-armed bandit setting, uses inverse probability weighting to construct an unbiased
estimator pUk of the cumulative payoff of each arm k. Apart from some constant fixed probability of
exploration, any given arm is then chosen with probability proportional to exppη ¨ pUikq, where η is a
tuning parameter.

Modifications relative to standard Exp3 Relative to this standard algorithm, we require three
modifications. First, we discretize the continuous support r0, 1s of x, restricting attention to the grid
of policy values rxk “ pk ´ 1q{K. Second, since welfare Uipxq is not directly observed for the chosen
policy x, we need to estimate it indirectly. In particular, we first form an estimate pGik of cumulative
demand for each of the policy values rxk, using inverse probability weighting. We then use this
estimated demand, interpolated using a step-function, to form estimates of cumulative social welfare,
pUik “ rxk ¨ pGik ` λ

K ¨
ř

k1ąk
pGik1 . Third, we require additional exploration, relative to Exp3. Since

social welfare depends on demand for counterfactual policy choices, we need to explore policies that
are away from the optimum, in order to learn the relative welfare of approximately optimal policy
choices. The mixing weight γ, which determines the share of policies sampled from the uniform

‡Specifically, a –
p1´λq¨p136´99¨λq

2¨p4´3¨λq¨p24´17¨λq
, and b – 1´λ

2¨p24´17¨λq
. These two constants are strictly greater than zero, and

satisfy 1 ´ a ´ 2 ¨ b ą 0.
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Algorithm 7 Tempered Exp3 for Social Welfare
input: Tuning parameters K, γ and η
initialization: Calculate evenly spaced grid-points rxk – pk ´ 1q{K and initialize pG1k – 0 and
pU1k “ 0 for k “ 1, . . . ,K ` 1
for individual i “ 1, 2, . . . , T do

For all k “ 1, 2, . . . ,K ` 1, set Ź Assignment probabilities

pik – p1 ´ γq ¨
exppη ¨ pUikq

ř

k1 exppη ¨ pUik1q
`

γ

K ` 1
(4.7)

Choose ki at random according to the probability distribution ppi,1, . . . , pi,K`1q

Set xi – rxki , and query yi accordingly
For all k “ 1, 2, . . . ,K ` 1, set Ź Estimated demand

pGi`1,k – pGi,k ` yi ¨
I tki “ ku

pik
(4.8)

For all k “ 1, 2, . . . ,K ` 1, set Ź Estimated welfare

pUi`1,k – rxk ¨ pGi`1,k ` λ
K ¨

ÿ

k1ąk

pGi`1,k1 (4.9)

distribution, needs to be larger relative to conventional Exp3, to ensure sufficient exploration away
from the optimum.

Theorem 27 (Adversarial upper bound on regret of Tempered Exp3 for Social Welfare). Consider
the setup of Section 4.2, and let α be Algorithm 7. Assume that pK ` 1qη ă γ.
Then for any sequence pv1, . . . , vT q P r0, 1sT the regret RT

`

α, tviu
T
i“1

˘

is bounded above by

´

γ ` η ¨ pe´ 2qK`1
K ¨

´

2K`1
6 ` λ2

γ

¯

` λ
K

¯

¨ T `
logpK`1q

η . (4.10)

Suppose additionally that c1, c2, c3 ą 0 are constants. Then, there exists a constant c4 such that, if

we set γ “ c1 ¨

´

logpT q

T

¯1{3
, η “ c2 ¨γ2, and K “ tc3{γu, the regret RT

`

α, tviu
T
i“1

˘

is bounded above by

c4 ¨ logpT q1{3T 2{3. (4.11)

As an immediate corollary of the previous theorem we get the following.

Corollary 1 (Stochastic upper bound on regret of Tempered Exp3 for Social Welfare). Under the
assumptions of Theorem 27, suppose additionally that vi is drawn i.i.d. from some distribution with
associated expected demand function G. Then the regret RT pα,Gq is bounded above by the same
expressions as in Theorem 27.

The proof of Theorem 27 can again be found in section C.2.

Tuning The statement of the theorem leaves the constants c1, c2, c3 in the definition of the tuning
parameters unspecified. Suppose we wish to choose the tuning parameters so as to optimize the
upper bound obtained in Theorem 27. Ignoring the rounding of K, an approximate solution to this
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problem is given by

η – 1{a ¨ plogpT q{T q2{3

γ – λ
a

pe´ 2q{a ¨ plogpT q{T q1{3

K –
a

3λa{pe´ 2q ¨ pT { logpT qq1{3

where
a – p9pe´ 2qq

1{3
p
a

λ{3 ` λq2{3.

This solution is obtained by taking the upper bound in Equation (4.10), approximating pK`1q{K « 1

and p2K ` 1q{6 « K{3, and solving the first order conditions with respect to the three tuning
parameters. This approximation, and the tuning parameters specified above, yield an approximate
upper bound on regret of 6 ¨ logpT q1{3T 2{3.

Unknown time horizon Note that the proposed tuning depends crucially on knowledge of the
time horizon T at which regret is evaluated. In order to extend our rate results to the case of
unknown time horizons, we can use the so-called doubling trick; cf. Section 2.3 of [48]. Consider
a sequence of epochs (intervals of time-periods) of exponentially increasing length, and re-run
Algorithm 7 for each time-period separately, tuning the parameters over the current epoch length.
This construction converts Algorithm 7 into an “anytime algorithm” which enjoys the same regret
guarantees of Theorem 27, up to a multiplicative constant factor. Another more efficient strategy
to achieve the same goal is to modify Algorithm 7, allowing the parameters η and γ to change at
each iteration, and splitting each bin associated with the discretization parameter K whenever more
precision is required.

4.4 Stochastic Regret Bounds for Concave Social Welfare

Theorem 26 in Section 4.3 provides a lower bound proportional to T 2{3 for adversarial and stochastic
regret in social welfare maximization. The proof of this lower bound constructs a distribution for the
vi. This distribution is such that expected social welfare Upxq is non-concave, as a function of x; two
global optima are separated by a region of lower welfare. In order to learn which of two candidates
for the globally optimal policy is actually optimal, it is necessary to sample policies in between.
These intermediate policies yield lower welfare, and sampling them contributes to cumulative regret.
This construction is illustrated in Figure 4.1.

Given that the construction relies on non-concavity of expected social welfare, could we achieve
lower regret if we knew that social welfare is actually concave? The answer turns out to be yes,
for the stochastic setting (in the adversarial setting, cumulative welfare is necessarily non-concave).
One reason is that concavity ensures that the function is unimodal. To estimate the difference in
social welfare between two policies it therefore suffices to sample policies that lie in the interval
between them. These in-between policies yield social welfare exceeding the minimum of the two
boundary policies. A second reason is that concavity prevents unexpected spikes in social welfare.
This property allows us to test carefully chosen triples of points for extended periods, to ensure that
one of them is suboptimal, without incurring significant regret.

For the stochastic setting with concave social welfare, we present an algorithm that achieves a
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bound on regret of order T 1{2, up to logarithmic terms. Before describing our proposed algorithm,
Dyadic Search for Social Welfare, let us formally state the improved regret bounds. The proofs of
these lower and upper bounds can again be found in Appendix C.2.

Theorem 28 (Lower bound on regret for the concave case). Consider the setup of Section 4.2.
There exists a constant C ą 0 such that, for any randomized algorithm α for the choice of x1, x2, . . .
and any time horizon T P N, there exists a distribution µ on r0, 1s with associated expected demand
function G and concave expected social welfare function U, for which the regret RT pα,Gq is at least
C ¨ T 1{2.

Theorem 29 (Stochastic upper bound on regret of Dyadic Search for Social Welfare). Consider
the stochastic setup of Section 4.2 and time horizon T P N. If α is Algorithm 8 run with confidence
parameter δ “ 1

T 5{2 , and if the expected social welfare function U is concave, then, the regret RT pα,Gq

is of order at most T 1{2, up to logarithmic terms.

Dyadic search Our algorithm is based on a modification of dyadic search, as discussed in [22, 23].
At any point in time, this algorithm maintains an active interval Iτ , which contains the optimal
policy with high probability. Only policies within this interval are sampled going forward. As
evidence accumulates, this interval is trimmed down, by excluding policies that are sub-optimal with
high probability.

The algorithm proceeds in epochs τ . At the start of each epoch, a sub-interval rl, rs Ă Iτ is
formed, with mid-point c “ pl ` rq{2. The points l, c, r are in a dyadic grid, that is, they are of the
form k{2m. After sampling from rl, rs, we calculate confidence intervals Jtpl, cq, Jtpc, rq, and Jtpl, rq

for the welfare differences ∆pl, cq, ∆pc, rq, and ∆pl, rq, where ∆px, x1q – Upx1q ´ Upxq.
If the confidence interval Jtpl, cq or Jtpl, rq lies above 0, concavity implies that the optimal policy

cannot lie to the left of l; we can thus trim the active interval Iτ by dropping all points to the left
of l. Symmetrically, if the confidence interval Jtpc, rq or Jtpl, rq lies below 0, we can trim Iτ by
dropping all points to the right of r.

Confidence intervals for welfare differences This procedure requires the construction of
confidence intervals for welfare differences of the form

∆px, x1q – Upx1q ´ Upxq “ x1 ¨ Gpx1q ´ x ¨ Gpxq ´ λ

ż x1

x
Gpx2qdx2. (4.12)

At time t, we estimate demand Gpxq, for policies x chosen in previous periods, as§

pGtpxq –
1

ntpxq

ÿ

iďt

yi ¨ I txi “ xu , ntpxq –
ÿ

iďt

I txi “ xu .

We similarly estimate integrated demand
şx1

x Gpx2qdx2 by px1 ´ xq times the average of realized
demand yi for observations xi in the open interval px, x1q. We have to be careful, however, to use a
sample of xi that is (approximately) uniformly distributed over this interval. This can be achieved

§We use the convention 0{0 “ 0 and a{0 “ `8 whenever a ą 0. Furthermore, every summation over an empty set
of indices is understood to have value 0.
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for our dyadic search procedure, as specified in Algorithm 8, by truncating the time index used to
estimate this average.¶ Let

spx, x1, tq – max

#

s ď t : log2

˜

1 `
ÿ

iďs

I
␣

xi P px, x1q
(

¸

P N

+

.

We define

pGtpx, x
1q –

1

ntpx, x1q ` 1

ÿ

iďspx,x1,tq

yi ¨ I
␣

xi P px, x1q
(

, ntpx, x
1q –

ÿ

iďspx,x1,tq

I
␣

xi P px, x1q
(

.

At each round, Algorithm 8 maintains estimates for welfare differences among three points l, c, r (for
left, center and right, respectively). The estimate of the welfare difference between x1 “ c and x “ l

(or between x1 “ r and x “ c) is given by

p∆tpx, x
1q – x1 ¨ pGtpx

1q ´ x ¨ pGtpxq ´ λ ¨ px1 ´ xq ¨ pGtpx, x
1q. (4.13)

while the estimate of the welfare difference between r and l is given by

p∆tpl, rq – p∆tpl, cq ` p∆tpc, rq. (4.14)

To construct confidence intervals for ∆px, x1q, we also need to quantify the uncertainty of our demand
estimates. We use the following interval half-lengths for confidence intervals for tax revenue at x,
and for the private welfare difference between x1 and x:

Γtpxq – x ¨

b

1
2ntpxq

log
`

2
δ

˘

, Γtpx, x
1q – λ ¨ px1 ´ xq ¨

˜

c

1

2
`

ntpx,x1q`1
˘ log

`

2
δ

˘

` 2
ntpx,x1q`1

¸

.

Using the shorthand a ˘ b “ ra ´ b, a ` bs, our confidence interval for ∆px, x1q, where x1 “ c and
x “ l (or x1 “ r and x “ c) is given by

Jtpx, x
1q – p∆tpx, x

1q ˘
`

Γtpx
1q ` Γtpxq ` Γtpx, x

1q
˘

, (4.15)

while our confidence interval for ∆pl, rq is given by

Jtpl, rq – p∆tpl, rq ˘ pΓtprq ` Γtplq ` Γtpl, cq ` Γtpc, rqq . (4.16)

With these preliminaries, we are now ready to state our algorithm, Dyadic Search for Social Welfare.
Before concluding this section, we highlight two features of Algorithm 8. First, two of the three

points l, c, r, and the corresponding estimates of demand, are kept from each epoch to the next.
Second, estimation of the integral term is performed by querying points following a fixed and balanced
design on the dyadic grid – instead of, for example, using a randomized Monte Carlo procedure
which may lead to unbalanced exploration. This implies that the points queried to estimate the
integral terms can be easily reused to obtain other integral estimates from each epoch to the next.

¶The sampling procedure in Algorithm 8 samples sequentially from the dyadic grid in the active interval, refining
the grid in subsequent iterations. spx, x1, tq provides a truncation of the time index such that one round of such dyadic
sampling has been completed.
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Algorithm 8 Dyadic Search for Social Welfare
input: Confidence parameter δ P p0, 1q

initialization: Set I1 – r0, 1s, t0 – 0, k – 0
for epochs τ “ 1, 2, . . . do

Let c – psup Iτ ` inf Iτ q{2, and d – sup Iτ ´ inf Iτ Ź Subinterval for sampling
if τ is odd then

Let l – c´ 1
4d, r – c` 1

4d
else

Let l – c´ 1
6d, r – c` 1

6d

for t “ tτ´1 ` 1, tτ´1 ` 2, . . . do
Select w P argmaxw1Ptl,c,r,pl,cq,pc,rqu Γt´1pw1q, Ź Sampling

(breaking ties following the order l, c, r, pl, cq, pc, rq)
if w P tl, c, ru then

Set xt – w.
else

Set xt – w1 ` pw2 ´ w1q ¨
k`1{2

nt´1pw1,w2q`1 , and k – pk ` 1q mod nt´1pw1, w2q ` 1.

Calculate Jtpl, cq, Jtpc, rq, and Jtpl, rq, as in Equations (4.15) and (4.16) Ź Inference
if inf

`

Jtpl, cq
˘

ě 0 or inf
`

Jtpl, rq
˘

ě 0 then
let Iτ`1 – Iτ X rl, 1s and tτ – t and break Ź Shrinking the active interval

else if sup
`

Jtpc, rq
˘

ď 0 or sup
`

Jtpl, rq
˘

ď 0 then
let Iτ`1 – Iτ X r0, rs and tτ – t and break Ź Shrinking the active interval

These two features combined ensure that Algorithm 8 recycles information very efficiently to prune
the active interval quickly.

4.5 Income Taxation

We discuss two extensions of the baseline model of optimal taxation that we introduced in Section
4.2. These extensions incorporate features that are important in more realistic models of optimal
taxation. The first extension, discussed in this section, is a variant of the Mirrlees model of optimal
income taxation [140, 159, 160]. The second extension, discussed in Appendix C.1 is a variant of the
Ramsey model of commodity taxation [154].

Our model of income taxation generalizes our baseline model by allowing for heterogeneous
wages wi, welfare weights ωpwiq, extensive-margin labor supply responses determined by the cost
of participation vi, and non-linear income taxes xi “ xpwiq. Two simplifications are maintained
in this model, relative to a more general model of income taxation. First, only extensive margin
responses (participation decisions) by individuals are allowed; there are no intensive margin responses
(hours adjustments). Second, as in the baseline model of Section 4.2, there are no income effects. In
imposing these assumptions, our model mirrors the model of optimal income taxation discussed in
Section II.2 of [160].

Setup At each time i “ 1, 2, . . . , T , one individual arrives who is characterized by (i) a potential
wage wi P r0, 1s, and (ii) an unknown cost of participation vi P r0, 1s. This individual makes a binary
labor supply decision yi. If she participates in the labor market (yi “ 1), she earns wi, but pay a tax
according to the tax rate xi “ xpwiq on her earnings wi. She furthermore incurs a non-monetary
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4.5. Income Taxation

cost of participation vi.
Her optimal labor supply decision is therefore given by yi “ I tvi ď wi ¨ p1 ´ xiqu, and private

welfare equals maxpwi ¨ p1 ´ xiq ´ vi, 0q. The implied public revenue is equal to the tax on earnings
xi ¨ wi if yi “ 1, and 0 otherwise.

We define social welfare as a weighted sum of public revenue and private welfare, with a weight
ωpwiq for the latter. Typically, ω is a decreasing function of w chosen by the policymaker (and
hence, we assume it is known to the learner), reflecting a preference for redistribution towards those
with lower earnings potential, cf. [161]. Social welfare for time period i, as a function of the tax
schedule xp¨q chosen by the learner, is therefore given by

Ui
`

xp¨q
˘

– xpwiq ¨ wi ¨ I tvi ď wi ¨ p1 ´ xpwiqqu
loooooooooooooooooooooomoooooooooooooooooooooon

Public revenue

` ωpwiq ¨ maxpwi ¨ p1 ´ xpwiqq ´ vi, 0q
looooooooooooooooomooooooooooooooooon

Private welfare

. (4.17)

After period i, we observe yi. If yi “ 1, we also observe wi. Nothing else is observed.‖

Piecewise constant tax schedules We next construct a generalization of Algorithm 7 based on
piecewise constant tax schedules, with tax rates changing at the grid-points W , where 0 P W Ă r0, 1s.
Formally, define twu – maxtw1 P W : w1 ď wu, rounding the wage w down to the nearest grid-point
in W,∗∗ Denote H – |W|, and let

XW – txp¨q : @w P r0, 1s, xpwq “ xptwuqu .

For w P W and any x P r0, 1s, denote

Gipw, xq – wi ¨ I tvi ď wi ¨ p1 ´ xqu ¨ I ttwiu “ wu ,

so that yi ¨ wi “ Gi
`

wi,xipwiq
˘

. Gipw, xq is the individual labor supply function, in monetary units,
interacted with an indicator for whether the wage wi falls into the tax bracket starting at w. With
this notation, we can rewrite

max
`

wi ¨ p1 ´ xq ´ vi, 0
˘

“

ż 1

x
Giptwiu , x

1qdx1.

For piecewise constant tax rates xp¨q we get

Uipxp¨qq “
ÿ

wPW

«

xpwq ¨Gipw,xpwqq ` ωpwiq ¨

ż 1

xpwq

Gipw, x
1qdx1

ff

. (4.18)

‖It should be noted that in this model we take the transfer x0 for individuals without other income as given. The
effective tax owed by an employed individual equals xpwiq ¨ wi ´ x0. The “unconditional basic income” x0 does not
affect labor supply, given our assumption that there are no income effects, and it enters social welfare additively. It is
therefore without loss of generality to omit x0 from our model.

∗∗Here we use slightly non-standard notation, where t¨u denotes rounding down to the nearest grid-point, rather
than the nearest integer.
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Cumulative social welfare is given by Ui –
ř

jďi Uipxip¨qq, and we correspondingly define cumulative
expected regret of an algorithm α, in the adversarial setting, as

RT
`

α, pvi, wiq
T
i“1

˘

– sup
xp¨qPXW

E rUT pxp¨qq ´ UT s .

The supremum here is taken over all tax schedules xp¨q that are piecewise constant between the
gridpoints w P W.

Algorithm Algorithm 9 generalizes Algorithm 7 to this setting. As before, we form an unbiased
estimate pGi of Gi using inverse probability weighting, map this estimate into a corresponding
estimate pUi of Ui, based on Equation (4.18), and cumulate across time periods to obtain pUi. Note
that wi is observed whenever yi “ 1. This implies that the estimate pGi is in fact a function of
observables, and the same holds for pUi.

Algorithm 9 keeps track of estimated demand and social welfare for each bin (“tax bracket”),
as defined by the gridpoints w P W. The algorithm then constructs a distribution pipx|wq over
tax rates x P X given w, using the tempered Exp3 distribution. The tax schedule xp¨q is sampled
according to these (marginal) distributions of tax rates for each bracket. Though immaterial for the
following theorem, we choose the perfectly correlated coupling, across brackets, of these marginal
distributions, which is implemented using the random variable Ai in Algorithm 9.

Algorithm 9 Tempered Exp3 for Optimal Income Taxation
input: Tuning parameters K, γ and η, and set of gridpoints W Ă r0, 1s

initialization: Calculate evenly spaced grid-points X – t0, 1
K ,

2
K , . . . , 1u, initialize pU1pw, xq – 0

for all w P W and all x P X
for individual i “ 1, 2, . . . , T do

For all x,w P X , set twu “ maxtw1 P W : w1 ď wu, and Ź Assignment probabilities

pipx|wq – p1 ´ γq ¨
exppη ¨ pUipx, twuqq

ř

x1PX exppη ¨ pUipx1, twuqq
`

γ

K ` 1
. (4.19)

Draw Ai „ U r0, 1s, for all w P r0, 1s, set

xipwq – max

$

&

%

x P X :
ÿ

x1PX ,x1ăx

pipx
1|wq ď Ai

,

.

-

, (4.20)

and query yi accordingly.
For all w P W and x P X , set Ź Estimated labor supply

pGipx,wq – yi ¨ wi ¨
I ttwiu “ w,xipwiq “ xu

pipx|wq
. (4.21)

For all w P W and x P X , set Ź Estimated welfare

pUi`1px,wq – pUipx,wq ` x ¨ pGipx,wq `
ωpwiq

K
¨

ÿ

x1PX ,x1ąx

pGipx
1, wq. (4.22)
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Theorem 30 (Adversarial upper bound on regret of Tempered Exp3 for Optimal Income Taxation).
Consider the setup of Section 4.5, and let α be Algorithm 9. Assume that pK ` 1qη ă γ, and that
ωpwq ď 1 for all w.
Then for any sequence

`

pv1, w1q, . . . , pvT , wT q
˘

P r0, 1s2T , the regret RT
`

α, pvi, wiq
T
i“1

˘

is bounded
above by

´

γ ` η ¨ pe´ 2qK`1
K ¨

´

2K`1
6 ` 1

γ

¯

` 1
K

¯

¨ T `
H logpK`1q

η . (4.23)

Suppose additionally†† that K “ c1 ¨ pT {Hq1{3, γ “ c2{pK ` 1q, and η “ c3{pK ` 1q2, for some
constants c1, c2, c3. Then the regret RT

`

α, pvi, wiq
T
i“1

˘

is bounded above by

c4 ¨H1{3 ¨ logpT q1{3T 2{3, (4.24)

for some constant c4.

4.6 Conclusions

In this chapter, we investigated the problem of adaptive optimal taxation in a regret minimization
framework from the perspective of a policymaker whose goal is to maximize social welfare. We
compared optimal taxation to dynamic pricing, bilateral trade, and (finite) multi-armed bandits, dis-
cussing the similarities and differences of these problems in the process. We provided tight upper and
lower bounds for the optimal taxation problem under various stochastic and adversarial assumptions.
Finally, we proposed two interesting generalizations of the optimal taxation problem —the income
taxation problem and the commodity taxation problem— whose regret regimes characterization we
left for future research.

††for simplicity, we assume that in the following tuning K is an integer. If not, round K to the closest integer.
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Chapter 5

Nonstochastic Bandits with Composite
Anonymous Feedback

5.1 Introduction

Multiarmed bandits, originally proposed for managing clinical trials, are now routinely applied to
a variety of other tasks, including computational advertising, e-commerce, and beyond. Typical
examples of e-commerce applications include content recommendation systems, like the recom-
mendation of products to visitors of merchant websites and social media platforms. A common
pattern in these applications is that the response elicited in a user by the recommendation system is
typically not instantaneous, and might occur some time in the future, well after the recommendation
was issued. This delay, which might depend on several unknown factors, implies that the reward
obtained by the recommender at time t can actually be seen as the combined effect of many previous
recommendations to that user.

The more specific scenario of bandits with delayed rewards has been investigated in the literature
under the assumption that the contributions of past recommendations to the combined reward is
individually discernible —see, e.g., [51, 109, 145, 176]. Pike-Burke et al. [149] revisited the problem
of bandits with delayed feedback under the more realistic assumption that only the combined
reward is available to the system, while the individual reward components remain unknown. This
model captures a much broader range of practical settings where bandits are successfully deployed.
Consider for example an advertising campaign which is spread across several channels simultaneously
(e.g., radio, tv, web, social media). A well-known problem faced by the campaign manager is to
disentangle the contribution of individual ads deployed in each channel from the overall change in
sales. Pike-Burke et al. [149] formalized this harder delayed setting in a bandit framework with
stochastic rewards, where they introduced the notion of delayed anonymous feedback to emphasize
the fact that the reward received at any point in time is the sum of rewards of an unknown subset
of past selected actions. More specifically, choosing action It P rKs at time t generates a stochastic
reward YtpItq P r0, 1s and a stochastic delay τt P t0, 1, . . . u, where

␣

Ytpiq, τt
(

iPrKs,tPN is a family
of independent random variables such that Y1piq, Y2piq, . . . have a common distribution νY piq (for
all arms i P rKs) and τ1, τ2, . . . have a common distribution ντ with expectation µτ . The delayed
anonymous feedback assumption entails that the reward observed at time t by the algorithm is the
sum of t components of the form YspIsqItτs “ t ´ su for s P t1, . . . , tu. The main result in [149] is
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no delay delayed feedback anonymous composite feedback
?
KT

a

pd`KqT
a

pd` 1qKT
[18] [51] (this chapter)

Table 5.1: Summary of the regret regimes in delayed multi-armed bandits

that, when the expected delay µτ is known, the regret is at most of order of K
`

plnT q{∆ ` µτ
˘

,
where ∆ is the suboptimality gap. This bound is of the same order as the corresponding bound for
the setting where the feedback is stochastically delayed, but not anonymous [109], and cannot be
improved in general.

In this chapter, we study a bandit setting similar to delayed anonymous feedback, but with two
important differences. First, we work in a nonstochastic bandit setting, where rewards (or losses,
in our case) are generated by some unspecified deterministic mechanism. Second, we relax the
assumption that the loss of an action is charged to the player at a single instant in the future. More
precisely, we assume that the loss for choosing an action at time t is adversarially spread over at most
d` 1 consecutive time steps t, t` 1, . . . , t` d. Hence, the loss observed by the player at time t is a
composite loss, that is, the sum of pd` 1q-many loss components ℓp0q

t pItq, ℓ
p1q

t´1pIt´1q, . . . , ℓ
pdq

t´dpIt´dq,
where ℓpsq

t´spIt´sq defines the s-th loss component from the selection of action It´s at time t´ s. Note
that in the special case when ℓ

psq

t piq “ 0 for all s ‰ dt, and ℓ
pdtq

t piq “ ℓtpiq, we recover the model
of nonstochastic bandits with delays d1, d2, ¨ ¨ ¨ ď d (which, in particular, reduces to the standard
nonstochastic bandits when d “ 0). Our setting, which we call composite anonymous feedback, can
accomodate scenarios where actions have a lasting effect which combines additively over time. Online
businesses provide several use cases for this setting. For instance, an impression that results in an
immediate clickthrough, later followed by a conversion, or a user that interacts with a recommended
item —such as media content— multiple times over several days, or the free credit assigned to a
user of a gambling platform which might not be used all at once.

Our main contribution is a general reduction technique (Composite Loss Wrapper, or CoLoWr,
Algorithm 10) turning a base nonstochastic bandit algorithm into one operating within the composite
anonymous feedback setting. We then show that the regret of CoLoWr can be upper bounded
in terms of the stability and the regret of the base algorithm (Theorem 31). Choosing as a base
algorithm Follow the Regularized Leader (FTRL) with Tsallis entropy, Theorem 31 gives an upper
bound of order

a

pd` 1qKT on the regret of nonstochastic bandits with composite anonymous
feedback (Corollary 2), where d ě 0 is a known upper bound on the delay, K is the number of actions,
and T is the time horizon. This result relies on a nontrivial stability analysis of FTRL with Tsallis
entropy that could be of independent interest (Theorem 32). Finally, we show the optimality of the
a

pd` 1qKT rate by proving a matching lower bound (up to a logarithmic factor, Theorem 34). In
particular, this shows that, in the nonstochastic case with delay d, anonymous feedback is strictly
harder than nonanonymous feedback, whose minimax regret was characterized by Cesa-Bianchi et al.
[51] as

a

pd`KqT . See Table 5.1 for a summary of results for nonstochastic K-armed bandits (all
rates are optimal ignoring logarithmic factors). We now give an idea of the proof techniques. Similar
to [149], we play the same action for a block of at least 2d ` 1 time steps, hence the feedback we
get in the last d ` 1 steps contains only loss components pertaining to the same action, so that
we can estimate in those steps the “true loss” of that action. Unfortunately, although the original
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losses are in r0, 1s, the composite losses can be as large as d` 1 (a composite loss sums d` 1 loss
components, and each component can be as large as 1). This causes a corresponding scaling in
the regret, compromising optimality. However, we observe that the total composite loss relative
to the same action over any d ` 1 consecutive steps can be at most 2d ` 1 (Lemma 12). Hence,
we can normalize the total composite loss relative to the same action over d` 1 consecutive steps,
simply dividing by 2d` 1, obtaining an average loss in the range r0, 1s. This idea leads to the right
dependence on d in the regret. The last problem is how to avoid suffering a big regret in the first
d steps of each block, where the composite losses mix loss components belonging to more than
one action. We solve this issue by borrowing an idea of Dekel et al. [75]. We build blocks with
random endpoints so that their length is (always) at least 2d` 1 and (on average) not much bigger.
This random positioning and length of the blocks is the key to prevent the oblivious adversary
from causing a large regret in the first half of each block. Moreover, as we prove in Theorem 31,
if the distribution over actions maintained by the base algorithm is stable (Definition 3), then the
algorithm is not significantly affected by the uncertainty in the positioning of the blocks. Extending
our results to the case where d is unknown, [181] show a regret bound of order T 2{3. When d is
known, however, their analysis does not guarantee our faster

?
T rate.

Further related work Online learning with delayed feedback was studied in the full information
(non-bandit) setting by Garrabrant et al. [96], Joulani et al. [109, 110], Khashabi et al. [115], Langford
et al. [121], Mann et al. [132], Mesterharm [138], Quanrud and Khashabi [152], Weinberger and
Ordentlich [184], see also [167] for an interesting variant. The bandit setting with delay was
investigated in [6, 51, 94, 108, 109, 124, 131, 145, 149, 174, 176, 177, 192]. Our delayed composite
loss function generalizes the composite loss function setting of Dekel et al. [74]—see the discussion
at the end of Section 5.2 for details—and is also related to the notion of loss functions with memory.
This latter setting has been investigated, e.g., by [14], who showed how to turn an online algorithm
with regret guarantee of OpT qq into one attaining OpT 1{p2´qqq-policy regret, also adopting a blocking
scheme. A more recent paper in this direction is [12], where the authors considered a more general
loss framework than ours, though with the benefit of counterfactual feedback, in that the algorithm
is aware of the loss it would incur had it played any sequence of d decisions in the previous d rounds,
thereby making their results incomparable to ours.

5.2 Preliminaries

We denote the set of positive integers by N and the set of integers by Z. For all n P N we denote the
set t1, . . . , nu of the first n integers by rns. We will use the handy convention that, if pctqtPZ Ă R
and m,n P Z are such that m ą n, then

řn
t“m ct “ 0 and

śn
t“m ct “ 1. For any x P R, we denote

its positive part maxtx, 0u by x`.
We start by considering a nonstochastic multiarmed bandit problem on K actions with oblivious

losses in which the loss ℓtpiq P r0, 1s at time t of an action i P rKs is defined by the sum

ℓtpiq –

d
ÿ

s“0

ℓ
psq

t piq

of pd ` 1q-many components ℓpsq

t piq ě 0 for s P t0, . . . , du. Let It denote the action chosen by the
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player at the beginning of round t. If It “ i, then the player incurs loss ℓp0q

t piq at time t, loss ℓp1q

t piq

at time t` 1, and so on until time t`d. Yet, what the player observes at time t is only the combined
loss incurred at time t, which is the sum

ℓ
p0q

t pItq ` ℓ
p1q

t´1pIt´1q ` ¨ ¨ ¨ ` ℓ
pdq

t´dpIt´dq

of the past d` 1 loss contributions, where ℓpsq

t piq “ 0 for all i and s when t ď 0. Then, we define the
d-delayed composite loss at time t of a sequence of d` 1 actions it´d, . . . , it P rKs as

ℓ˝
t pit´d, . . . , itq –

d
ÿ

s“0

ℓ
psq

t´spit´sq . (5.1)

With this notation, the d-delayed composite anonymous feedback assumption states that what the
player observes at the end of each round t is only the composite loss ℓ˝

t pIt´d, . . . , Itq. The goal of
the algorithm is to bound its regret RT against the best fixed action in hindsight,

RT – E

«

T
ÿ

t“1

ℓ˝
t pIt´d, . . . , Itq

ff

´ min
iPrKs

T
ÿ

t“1

ℓ˝
t pi, . . . , iq .

We define the regret in terms of the composite losses ℓ˝
t rather than the true losses ℓt because in our

model ℓ˝
t is what the algorithm pays overall on round t. It is easy to see that a bound on RT implies

a bound on the more standard notion of regret E
”

řT
t“1 ℓtpItq

ı

´ mink
řT
t“1 ℓtpkq up to an additive

term of at most Opdq.
Our setting generalizes the composite loss function setting of Dekel et al. [74]. Specifically, the

linear composite loss function therein can be seen as a special case of the composite loss (5.1) once we
remove the superscripts s from the loss function components. In fact, in the linear case, the feedback
in [74] allows one to easily reconstruct each individual loss component in a recursive manner. This is
clearly impossible in our more involved scenario, where the new loss components that are observed
in round t need not have occurred in past rounds.

5.3 The CoLoWr Algorithm

Our Composite Loss Wrapper algorithm (Algorithm 10) takes as input a standard K-armed bandit
algorithm α and a Boolean sequence B. The base algorithm α operates on standard (noncomposite)
losses with values in r0, 1s, producing probability distributions q1, q2, . . . over the action set rKs.
The wrapper calls the base algorithm α only in a subset of rounds determined by the Boolean
sequence B, which we call update rounds.

Definition 2 (Update round). We say that t P N is an update round with respect to a Boolean
sequence B “ pbtqtPN Ă t0, 1uN if t ě 2d` 1 and bt

ś2d
s“1p1 ´ bt´sq “ 1.

Note that if d ą 0, the condition is equivalent to bt “ 1, and bt´1 “ . . . “ bt´2d “ 0. If d “ 0, by
our convention, the condition is equivalent to bt “ 1.

To help understand our algorithm, we will also define two other types of rounds. We say that t
is a draw round if t “ 1 or the previous round t´ 1 was an update round. If t is not a draw round,

96



5.3. The CoLoWr Algorithm

ě 2d` 1 ě 2d` 1 ě 2d` 1
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Figure 5.1: Sequence of rounds the algorithm is undergoing when d “ 2. The top line contains the
values of the Boolean sequence B “ pBtqtPN. The bottom line shows the corresponding types of
rounds: each block begins with a (D)raw round, followed by a variable number of (S)tay rounds,
the last of which is also an (U)pdate round. Since a round t is an update round only if Bt “ 1 and
Bs “ 0 for the 2d previous rounds s, the length of each block is at least 2d` 1.

we say that it is a stay round. Note that, if d “ 0, both draw and stay rounds can be update rounds,
while if d ě 1, only stay rounds can be update rounds.

The CoLoWr algorithm proceeds in blocks of (random) length of at least 2d` 1 rounds in which
it constantly plays the same action (Figure 5.1). Blocks in Algorithm 10 are counted by variable nt.
Each block nt consists of a draw round followed by (2d or more) stay rounds, with the last round of
the block being also an update round. During a draw round t, CoLoWr uses its current distribution
pt to draw and play an action It. During stay rounds, it keeps playing the action that was drawn
during the latest draw round. After playing the action It for the current round t, if t is an update
round, CoLoWr asks the base algorithm α to make an update of its base distribution qnt Ñ qnt`1 as
if α played action It and observed as the loss of It the quantity 1

2d`1

řt
s“t´d ℓ

˝
spIs´d, . . . , Isq. Then,

the block ends and the distribution of CoLoWr at the beginning of the next block nt`1 “ nt ` 1 is
pt`1 “ qnt`1.

Note that if t is an update round, the quantity 1
2d`1

řt
s“t´d ℓ

˝
spIs´d, . . . , Isq that is fed back to α

relates only to the current action It, because blocks contain at least 2d ` 1 rounds and the same
action is played in all of them.

Algorithm 10 CoLoWr (Composite Loss Wrapper)
input: Base K-armed bandit algorithm A and Boolean sequence B
initialization: let n0 – 0 and q1 be the initial distribution over rKs of α
for round t “ 1, 2, . . . do

if either t “ 1 or t´ 1 was an update round (w.r.t. B) then
let nt – nt´1 ` 1, pt – qnt , and draw It „ pt Ź draw

else
let nt – nt´1, pt – pt´1, and It – It´1 Ź stay

play It and observe loss ℓ˝
t pIt´d, . . . , Itq

if t is an update round (w.r.t. B) then Ź update
feed α with arm It and loss 1

2d`1

řt
s“t´d ℓ

˝
spIs´d, . . . , Isq

use the update rule qnt Ñ qnt`1 of α to obtain a new base distribution qnt`1

The following lemma shows that this quantity is indeed in r0, 1s, so that it is a legitimate feedback
to pass to the base algorithm α.

Lemma 12. For all t ě 2d` 1 and i P rKs,

t
ÿ

τ“t´d

ℓ˝
τ pi, . . . , iq ď 2d` 1 .
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5.4. Upper Bound

Proof. For all t ě 2d` 1 and i P rKs,

t
ÿ

τ“t´d

ℓ˝
τ pi, . . . , iq “

t
ÿ

τ“t´d

d
ÿ

s“0

ℓ
psq

τ´spiq “

d
ÿ

s“0

t
ÿ

τ“t´d

ℓ
psq

τ´spiq “

d
ÿ

s“0

t´s
ÿ

ρ“t´d´s

ℓpsq
ρ piq

ď

d
ÿ

s“0

t
ÿ

ρ“t´2d

ℓpsq
ρ piq “

t
ÿ

ρ“t´2d

d
ÿ

s“0

ℓpsq
ρ piq “

t
ÿ

ρ“t´2d

ℓρpiq ď t´ pt´ 2dq ` 1 “ 2d` 1 .

As a final remark, we point out that, albeit the algorithm is parameterized with an entire sequence
B, at each time t, it does not require the knowledge of the sequence at future times t` 1, t` 2, . . . .
This implies in particular that these Boolean values could be produced and fed to CoLoWr in an
on-line fashion.

5.4 Upper Bound

We begin by formalizing the notion of stability (of the base algorithm), in terms of which we express
the performance of the CoLoWr algorithm.

Definition 3 (ξ-stability). Let ξ ą 0, α be a K-armed bandit algorithm, and pqnqnPN be the
(random) sequence of probability distributions over actions rKs produced by α during a run over
rounds t1, 2, . . . u. We say that α is ξ-stable if for any round n, we have

E

»

–

ÿ

iPrKs

`

qn`1piq ´ qnpiq
˘`

fi

fl ď ξ .

In the previous definition, note that since
ř

iPrKs qn`1piq “ 1 “
ř

iPrKs qnpiq, then∥∥qn`1 ´ qn
∥∥
1

“
∥∥qn`1 ´ qn

∥∥
1

`
ÿ

iPrKs

`

qn`1piq ´ qnpiq
˘

“ 2
ÿ

iPrKs

`

qn`1piq ´ qnpiq
˘`

.

Therefore, the ξ-stability of an algorithm is equivalent to controlling the expected ∥¨∥1-distance
between any two consecutive probability distributions produced by the algorithm. We stick to the
positive part definition as this is the quantity that naturally appears in the analysis.

We can now state our main result of this section.

Theorem 31. If we run CoLoWr with a ξ-stable base K-armed bandit algorithm α and an i.i.d.
sequence B “ pBtqtPN of Bernoulli random variables with bias β P p0, 1q (independent of the
randomization of α), then, for any time horizon T ě 2d` 1, the regret RT satisfies

RT ď 2d`
2d` 1

d` 1

ˆ

3d` 2dβp1 ´ βq2dξT `
1

βp1 ´ βq2d
RtT {p2d`1qu

˙

where RtT {p2d`1qu is the worst-case regret after
X

T {p2d` 1q
\

rounds of α (for an adversarial setting
with r0, 1s-valued losses).
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Proof. Fix an arbitrary horizon T ě 2d` 1 and an arm i‹ P rKs. Let, for all∗ t ě 2d` 1,

ct – E
“

ℓ˝
t pIt´d, . . . , Itq ´ ℓ˝

t pi
‹, . . . , i‹q

‰

, a – 2d` 1 , b – T .

Applying the elementary identity in Lemma 28 (Appendix D.2) in step p˚q below, we obtain

RT “

2d
ÿ

t“1

ct `

T
ÿ

t“2d`1

ct ď

2d
ÿ

t“1

E
“

ℓtpItq
‰

`

T
ÿ

t“2d`1

ct ď 2d`

T
ÿ

t“2d`1

ct

“ 2d`
1

d` 1

˜

a´1
ÿ

t“a´d

pt´ a` d` 1q ct ` pd` 1q

b
ÿ

t“a

ct `

b`d
ÿ

t“b`1

pb` d` 1 ´ tq ct

¸

´
1

d` 1

a´1
ÿ

t“a´d

pt´ a` d` 1q ct ´
1

d` 1

b`d
ÿ

t“b`1

pb` d` 1 ´ tq ct

p˚q
“ 2d`

1

d` 1

b`d
ÿ

τ“a

τ
ÿ

t“τ´d

ct ´
1

d` 1

a´1
ÿ

t“a´d

pt´ a` d` 1qct ´
1

d` 1

b`d
ÿ

t“b`1

pb` d` 1 ´ tqct

ď 2d`
1

d` 1

b`d
ÿ

τ“a

τ
ÿ

t“τ´d

ct `
1

d` 1

a´1
ÿ

t“a´d

pt´ a` d` 1qℓ˝
t pi

‹, . . . , i‹q

`
1

d` 1

b`d
ÿ

t“b`1

pb` d` 1 ´ tqℓ˝
t pi

‹, . . . , i‹q — pİq

Now, applying Lemma 12 in steps p˝q below, we get

pİq
p˝q

ď 2d` 2
2d` 1

d` 1
d`

1

d` 1

b`d
ÿ

τ“a

τ
ÿ

t“τ´d

ct

“ 2d` 2
2d` 1

d` 1
d`

1

d` 1

T`d
ÿ

τ“2d`1

τ
ÿ

t“τ´d

E
“

ℓ˝
t pIt´d, . . . , Itq ´ ℓ˝

t pIτ´2d, . . . , Iτ´2dq
‰

`
2d` 1

d` 1
E

«

T`d
ÿ

τ“2d`1

1

2d` 1

τ
ÿ

t“τ´d

`

ℓ˝
t pIτ´2d, . . . , Iτ´2dq ´ ℓ˝

t pi
‹, . . . , i‹q

˘

ff

p˝q

ď 2d` 3
2d` 1

d` 1
d`

1

d` 1

T`d
ÿ

τ“2d`1

τ
ÿ

t“τ´d

E
“

ℓ˝
t pIt´d, . . . , Itq ´ ℓ˝

t pIτ´2d, . . . , Iτ´2dq
‰

`
2d` 1

d` 1
E

«

T
ÿ

τ“2d`1

1

2d` 1

τ
ÿ

t“τ´d

`

ℓ˝
t pIτ´2d, . . . , Iτ´2dq ´ ℓ˝

t pi
‹, . . . , i‹q

˘

ff

— 2d` 3
2d` 1

d` 1
d` pIq `

2d` 1

d` 1
ˆ pIIq .

We upper bound the two terms pIq and pIIq separately. First, let U be the (random) set of update
rounds

U –
␣

τ P rT s : τ is an update round (w.r.t. Bq
(

.

∗Here, we refer to the infinite sequence of losses pℓ
psq

t qsPt0,...,du,tPN (and the respective composite losses pℓ˝
t qtPN). If

the problem is formalized only with a finite sequence pℓ
psq

t qsPt0,...,du,tPrT s, it is sufficient to define an arbitrary sequence
pℓ

psq

t qsPt0,...,1u,tąT with ℓ
psq

t ě 0 and
řd

s“0 ℓ
psq

t ď 1 (and the corresponding composite losses pℓ˝
t qtąT ) and proceed as

we do. This trick is needed to invoke Lemma 12, for which it is handy to sum d rounds into the future.
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5.4. Upper Bound

For the first term pIq, we have

pIq “
1

d` 1

T`d
ÿ

τ“2d`1

ÿ

iPrKs

E

«

τ
ÿ

t“τ´d

d
ÿ

s“0

ℓ
psq

t´spiq
`

pt´spiq ´ pτ´2dpiq
˘

ff

ď
1

d` 1

T`d
ÿ

τ“2d`1

ÿ

iPrKs

E
„

max
tPtτ´d,...,τu,sPt0,...,du

ppt´spiq ´ pτ´2dpiqq

ȷ τ
ÿ

t“τ´d

ℓ˝
t pi, . . . , iq

p˝q

ď
2d` 1

d` 1

T`d
ÿ

τ“2d`1

ÿ

iPrKs

E
„

max
tPtτ´d,...,τu,sPt0,...,du

ppt´spiq ´ pτ´2dpiqq

ȷ

p♥q
“

2d` 1

d` 1

T`d
ÿ

τ“2d`1

ÿ

iPrKs

E

«

I

#

τ´1
ď

σ“τ´2d

tσ P Uu

+

ppτ piq ´ pτ´2dpiqq
`

ff

“
2d` 1

d` 1

T`d
ÿ

τ“2d`1

ÿ

iPrKs

τ´1
ÿ

σ“τ´2d

E
“

Itσ P Uu ppτ piq ´ pτ´2dpiqq
`
‰

— p♦q

where p˝q follows by Lemma 12 together with the fact that the max in the previous line is always
nonnegative (to see this, simply observe that picking t “ τ ´ d and s “ d within the max makes
pt´spiq “ pτ´2dpiq), and p♥q follows by the facts that the max in the previous line is always greater
than or equal to zero, it can be strictly positive only if there is an update in a round σ with
τ ´ 2d ď σ ď τ ´ 1, and there can be at most a single update in 2d` 1 consecutive time steps. Now,
using the facts that pτ “ qnτ and that nτ “ nτ´2d ` 1 on the event tσ P Uu, we get

p♦q “
2d` 1

d` 1

T`d
ÿ

τ“2d`1

ÿ

iPrKs

τ´1
ÿ

σ“τ´2d

E
”

Itσ P Uu
`

qnτ´2d`1piq ´ qnτ´2d
piq

˘`
ı

“
2d` 1

d` 1

T`d
ÿ

τ“2d`1

ÿ

iPrKs

τ´1
ÿ

σ“τ´2d

ÿ

nPN
E
“

Itσ P UuItnτ´2d “ nu pqn`1piq ´ qnpiqq
`
‰

p♣q
“

2d` 1

d` 1

T`d
ÿ

τ“2d`1

τ´1
ÿ

σ“τ´2d

ÿ

nPN
E
“

Itσ P UuItnτ´2d “ nu
‰

E

»

–

ÿ

iPrKs

pqn`1piq ´ qnpiqq
`

fi

fl

p♠q

ď
2d` 1

d` 1
ξ

T`d
ÿ

τ“2d`1

τ´1
ÿ

σ“τ´2d

ÿ

nPN
E
“

Itσ P UuItnτ´2d “ nu
‰

“
2d` 1

d` 1
ξ

T`d
ÿ

τ“2d`1

τ´1
ÿ

σ“τ´2d

Prσ P Us ď
2d` 1

d` 1
2dβp1 ´ βq2dξT

where p♣q follows by the independence of the Bernoulli sequence B and the randomization of base
algorithm α; p♠q by the ξ-stability of α; and the last inequality by the fact that the probability that
a time step σ is an update round is 0 if σ ď 2d and βp1 ´ βq2d otherwise.

For the second term pIIq, set for brevity

rτ : rKs Ñ R , i ÞÑ
1

2d` 1

τ
ÿ

t“τ´d

`

ℓ˝
t pi, . . . , iq ´ ℓ˝

t pi
‹, . . . , i‹q

˘
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for all τ ě 2d` 1. We first note that

E

«

ÿ

τPU
rτ pIτ q

ff

“ E

«

ÿ

τPU
rτ pIτ´2dq

ff

“ E

«

T
ÿ

τ“2d`1

rτ pIτ´2dqBτ

2d
ź

s“1

p1 ´Bτ´sq

ff

“ βp1 ´ βq2d
T
ÿ

τ“2d`1

E
“

rτ pIτ´2dq
‰

where the first identity is a consequence of the fact that if τ P U , then the action Iτ played
by Algorithm 10 at round τ coincides with the actions played in the previous 2d rounds, i.e.,
Iτ “ ¨ ¨ ¨ “ Iτ´2d, while the last equality follows by the independence of Iτ´2d and the vector of
Bernoulli random variables pBτ , . . . , Bτ´2dq. Thus,

pIIq “ E

«

T
ÿ

τ“2d`1

rτ pIτ´2dq

ff

“
1

βp1 ´ βq2d
E

«

ÿ

τPU
rτ pIτ q

ff

“
1

βp1 ´ βq2d
E

«

ÿ

τPU

1

2d` 1

τ
ÿ

t“τ´d

ℓ˝
t pIτ , . . . , Iτ q ´

ÿ

τPU

1

2d` 1

τ
ÿ

t“τ´d

ℓ˝
t pi

‹, . . . , i‹q

ff

(5.2)

Now define for any τ ě 2d` 1,

rℓτ : rKs Ñ r0, 1s , i ÞÑ
1

2d` 1

τ
ÿ

t“τ´d

ℓ˝
t pi, . . . , iq .

(Note that rℓτ piq P r0, 1s for all i P rKs by Lemma 12.) Leveraging again the fact that τ P U implies
Iτ “ ¨ ¨ ¨ “ Iτ´2d, yields, for each τ P U ,

1

2d` 1

τ
ÿ

t“τ´d

ℓ˝
t pIt´d, . . . , Itq “

1

2d` 1

τ
ÿ

t“τ´d

ℓ˝
t pIτ , . . . , Iτ q “ rℓτ pIτ q .

This shows that the loss Algorithm 10 feeds the base algorithm α (in Line 10) at each update round
τ is a bandit feedback (for α) for the arm Iτ with respect to the r0, 1s-valued loss rℓτ . Therefore, by
Equation (5.2) and the regret guarantees of the base algorithm, we obtain

pIIq “
1

βp1 ´ βq2d
E

«

ÿ

τPU

rℓτ pIτ q ´
ÿ

τPU

rℓτ pi‹q

ff

ď
1

βp1 ´ βq2d
RtT {p2d`1qu

where in the last inequality we also used the monotonicity of the worst-case regret τ ÞÑ Rτ and the
fact that |U | ď

Q

T´p2d`1q`1
2d`1

U

ď

Y

T
2d`1

]

.
In conclusion, we have

RT ď 2d` 3
2d` 1

d` 1
d` pIq `

2d` 1

d` 1
¨ pIIq

ď 2d`
2d` 1

d` 1

ˆ

3d` 2dβp1 ´ βq2dξT `
1

βp1 ´ βq2d
RtT {p2d`1qu

˙

hence concluding the proof.

We can derive corollaries for various algorithms using Theorem 31. Consider for instance as
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5.4. Upper Bound

a base algorithm α the well-known Exp3 algorithm of [18]. It can be easily shown that Exp3 is
η-stable (where η is its learning rate, see Lemma 31 in Appendix D.4). Combining this fact with its
worst-case regret bound RN ď lnK

η `
η
2KN , we obtain that the horizon-T regret of the CoLoWr

algorithm with α “ Exp3pηq, η “

b

d lnK
KT , and an i.i.d. sequence B of Bernoulli random variables

with bias β “ 1
2d`1 (independent of the randomization of α), satisfies RT “ O

`
a

pd` 1qKT logK
˘

.
Using Follow the Regularized Leader (FTRL) with 1

2 -Tsallis Entropy (Algorithm 11), we can
remove the logK term in the above bound.†

Algorithm 11 Follow The Regularized Leader (FTRL) with p1{2q-Tsallis entropy
input: learning rate η ě 0
initialization: pL0 “ 0
for round n “ 1, 2, . . . do

Play action Jn drawn according to

qn P argmin
qP∆K

¨

˝

ÿ

iPrKs

pLn´1piqqpiq ´ 2η
ÿ

iPrKs

a

qpiq

˛

‚

where ∆K is the probability simplex in RK
Observe loss ℓnpJnq and update pLn “ pLn´1 ` pℓn, where

pℓnpiq “
ℓnpiq

qnpiq
ItJn “ iu @i P rKs

However, we still need to prove the stability of Algorithm 11. This is established by the following
result, whose (non-trivial) proof is given in Appendix D.3.

Theorem 32. Algorithm 11 run with any learning rate η ą 0 is ξ-stable, with

ξ ď 2
1 ` lnK

η

The worst-case regret guarantees of FTRL with 1
2 -Tsallis entropy are as follows.‡

Theorem 33 (Abernethy et al. 1). For each N P N, the worst-case regret RN after N rounds of

Algorithm 11 run with learning rate η “

b

N
2 (in an adversarial setting with r0, 1s-valued losses)

satisfies
RN ď 2

?
2KN

Combining Theorems 31 to 33, we obtain the following regret bound for composite losses.

Corollary 2. For any time horizon T P N, if we run CoLoWr using:
• As α, Algorithm 11 with learning rate η “

b

1
2 tT {p2d` 1qu

• As B, an i.i.d. sequence of Bernoulli random variables with bias β “ 1
2d`1 (independent of the

randomization of α)

†The argmin where Algorithm 11 picks each distribution qn is always a singleton if η ą 0. This is a consequence
of Lemma 29, in Appendix D.3. For the sake of convenience, we also allow the learning rate η “ 0, corresponding to a
(non-regularized) Follow The Leader algorithm. In this case, multiple minimizers could exist but, for the sake of our
results, ties could be broken in any (measurable) way.

‡The analysis of [1] is presented for a more general class of algorithms. A straightforward application of their
Corollary 3.2 shows the validity of Theorem 33 for Algorithm 11.
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then, its regret satisfies
RT ď c

a

pd` 1qKT

where c “ 2
?
2 if d “ 0, and c “ 28 otherwise.

Proof. If d “ 0, then β “ 1 and Algorithm 10 reduces to the base algorithm. The result in this case
is therefore implied immediately by Theorem 33.

For the second part, we can assume without loss of generality that T ě 2d ` 1, so that η ą 0.
Then, plugging ξ ď 21`lnK

η (Theorem 32) and ItT {p2d`1qu ď 2
a

2K tT {p2d` 1qu (Theorem 33) into
Theorem 31 gives the result.

5.5 Lower Bound

In this section we derive a lower bound for bandits with composite anonymous feedback. We do that
through a reduction from the setting of linear bandits (in the probability simplex) to our setting.
This reduction allows us to upper bound the regret of a linear bandit algorithm in terms of (a
suitably scaled version of) the regret of an algorithm in our setting. Since the reduction applies
to any instance of a linear bandit problem, we can use a known lower bound for the linear bandit
setting to derive a corresponding lower bound for our composite setting.

Let ∆K be the probability simplex in RK . At each round t, an algorithm A for linear bandit
optimization chooses an action qt P ∆K and suffers loss ℓJ

t qt, where ℓt P r0, 1sK is some unknown
loss vector. The feedback observed by the algorithm at the end of round t is the scalar ℓJ

t qt. The
regret suffered by algorithm A playing actions q1, . . . , qT is

Rlin
T “

T
ÿ

t“1

ℓJ
t qt ´ min

qP∆K

T
ÿ

t“1

ℓJ
t q “

T
ÿ

t“1

ℓJ
t qt ´ min

i“1,...,K

T
ÿ

t“1

ℓJei (5.3)

where e1, . . . , eK are the elements of the canonical basis of RK and we used the fact that a linear
function on the simplex is minimized at one of the corners. Let Rlin

T pA,∆Kq denote the worst case
regret (over the oblivious choice of ℓ1, . . . , ℓT ) of algorithm A. Similarly, let RT pAd,K, dq be the
worst case regret (over the oblivious choice of loss components ℓpsq

t piq for all t, s, and i) of algorithm
Ad for nonstochastic K-armed bandits with d-delayed composite anonymous feedback. For the sake
of clarity, we assume below that the time horizon T is a multiple of d` 1. If this is not the case, we
can straightforwardly stop at the highest multiple of d` 1 (smaller than T ) up to paying an additive
Opd` 1q regret. Our reduction shows the following.

Lemma 13. For any algorithm Ad for K-armed bandits with d-delayed composite anonymous
feedback, there exists an algorithm A for linear bandits in ∆K such that RT pAd,K, dq ě pd `

1qRlin
T {pd`1q

pA,∆Kq.

Our reduction, described in detail in the proof of the above lemma (see Appendix D.5), essentially
builds the probability vectors qt played by A based on the empirical distribution of actions played
by Ad during blocks of size d` 1. Now, an additional lemma is needed (whose proof is also given in
the Appendix D.5).

Lemma 14. The regret of any algorithm A for linear bandits on ∆K satisfies Rlin
T pA,∆Kq “

rΩ
`
?
KT

˘

.
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5.6. Conclusions

In the previous lemma, as well as the following result, the rΩ notation is only hiding a
?
log T

denominator. Using the two lemmas above we can finally prove the lower bound.

Theorem 34. For any algorithm Ad for K-armed bandits with d-delayed composite anonymous
feedback, RT pAd,K, dq “ rΩ

`
a

pd` 1qKT
˘

.

Proof. Fix an algorithm Ad. Using the reduction of Lemma 13 gives an algorithm A such that
RT pAd,K, dq ě pd`1qRlin

T {pd`1q
pA,∆Kq “ rΩ

`
a

pd` 1qKT
˘

, where we used Lemma 14 with horizon

T {pd` 1q to prove the rΩ-equality.

Although the loss sequence used to prove the lower bound for linear bandits in the simplex is
stochastic i.i.d., the loss sequence achieving the lower bound in our delayed setting is not independent
due to the deterministic loss transformation in the proof of Lemma 13 (which is defined independently
of the algorithm, thus preserving the oblivious nature of the adversary).

5.6 Conclusions

In this final chapter, we investigated the setting of d-delayed composite anonymous feedback as
applied to nonstochastic bandits. Composite anonymous feedback lends itself to formalize scenarios
where the actions performed by the online decision-maker produce long-lasting effects that combine
additively over time. A general reduction technique was introduced that enables the conversion
of a stable algorithm working in a standard bandit framework into one working in the composite
feedback framework. Applying our reduction to the FTRL algorithm with Tsallis entropy, we obtain
an upper bounded on the regret of order

a

pd` 1qKT , which we showed to be optimal.
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Appendix A

Online Learning in Bilateral Trade

A.1 Existence of the Best Price

In this section, we show that a price p‹ maximizing the expected regret always exists.

Lemma 15. If T P N and pS1, B1q, . . . , pST , BT q is a sequence of r0, 1s2-valued random variables,
the function p ÞÑ E

“
řT
t“1 gft

`

p, pSt, Btq
˘‰

is upper semicontinuous. In particular, there exists a
maximizer p‹ P r0, 1s.

Proof. Let t P rT s and let Ut be a r0, 1s-valued uniform random variable independent of pSt, Btq. By
the Decomposition lemma (2.4) and the fact that the sum of two upper semicontinuous functions is
upper semicontinuous, it is sufficient to show that

ft : R Ñ r0, 1s, p ÞÑ PrSt ď p ď Ut ď Bts and gt : R Ñ r0, 1s, p ÞÑ PrSt ď Ut ď p ď Bts

are both upper semicontinuous in order to prove that p ÞÑ E
“

gft
`

p, pSt, Btq
˘‰

is upper semicontinuous.
We now prove that ft is upper semicontinuous, i.e., that for any p P R, we have

lim sup
qÑp

ftpqq ď ftppq .

To do so, we show that for any p P R and any two sequences qn Ò p, rn Ó p, we have that

lim sup
qnÒp

ftpqnq ď ftppq and lim sup
rnÓp

ftprnq ď ftppq .

If p P Rzr0, 1s, the result is trivially true. Thus, let p P r0, 1s, qn Ò p and rn Ó p. Then,

ItSt ď qn ď Ut ď Btu Ñ ItSt ă p ď Ut ď Btu , n Ñ 8 ,

ItSt ď rn ď Ut ď Btu Ñ ItSt ď p ă Ut ď Btu , n Ñ 8 ,

pointwise everywhere. By Lebesgue’s dominated convergence theorem, it follows that, if n Ñ 8,

ftpqnq Ñ PrSt ă p ď Ut ď Bts ď PrSt ď p ď Ut ď Bts “ ftppq ,

ftprnq Ñ PrSt ď p ă Ut ď Bts “ PrSt ď p ď Ut ď Bts “ ftppq .

Being p, pqnqnPN and prnqnPN arbitrarily chosen, it follows that ft is upper semicontinuous. Analo-
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gously, one can prove that gt is upper semicontinuous. Hence, p ÞÑ E
“

gft
`

p, pSt, Btq
˘‰

“ ftppq ` gtppq

is an upper semicontinuous function. Being t arbitrarily chosen, the same conclusion holds for any
t P rT s. Hence, our target function is upper semicontinuous as well, since, by the linearity of the
expectation, it is a sum of T upper semicontinuous functions. Finally, being our target function
defined on the compact set r0, 1s, it attains its maximum at some p‹ P r0, 1s by the Weierstrass
theorem.

A.2 An Improved Analysis of Continuous Hedge

In what follows, we denote with Br0,1s, respectively Br0,`8s, the Borel σ-algebra of r0, 1s, respectively
r0,`8s, while B stands for the Borel σ-algebra of R. For any any measurable function g : r0, 1s Ñ R,
we denote with ∥g∥1 the integral with respect the Lebesgue measure of |g| on r0, 1s.

The following result implies directly theoretical guarantees for Hedge. We state the theorem
in an abstract way to highlight that its claims are really about the properties of some stochastic
processes rather than specific online learning protocols.

Theorem 35. Let pY, EYq be a measurable space. Let ρ : r0, 1s ˆ Y Ñ r0, 1s be a pEY b Br0,1sq{Br0,1s-
measurable function. Let pXt, YtqtPN be a r0, 1s ˆ Y-valued stochastic process. For any t P N, let
Ht “ σpX1, Y1, . . . , Xt´1, Yt´1q be the σ-algebra generated by the history up to the end of time t´ 1

(with the understanding that H1 “ σ
`

t∅u
˘

). Let M ě 2 and η P p0, 1q. Assume that:

• For any t P N, the conditional law PXt|Ht
of Xt given Ht admits as a density (w.r.t. the

Lebesgue measure on r0, 1s) the (random) function ftp¨q “

řt´1
s“1 exp

`

ηρp¨,Ysq

˘

ş

r0,1s

řt´1
s“1 exp

`

ηρpx,Ysq

˘

dx
(for t “ 1,

f1 “ Ir0,1s) .

• For any t P N, the two random variables Xt and Yt are conditionally independent given Ht.

• For any t P N, the function r0, 1s Ñ r0, 1s, x ÞÑ E
“

ρpx, Ytq
‰

is M -Lipschitz.

Then, for any T P N,

max
xPr0,1s

E

«

T
ÿ

t“1

ρpx, Ytq

ff

´ E

«

T
ÿ

t“1

ρpXt, Ytq

ff

ď
1

η
ln

ˆ

ηTM

1 ´ e´ηT

˙

` pe´ 2qηT .

In particular, if η “

b

lnp2T q

pe´2qT we have

max
xPr0,1s

E

«

T
ÿ

t“1

ρpx, Ytq

ff

´ E

«

T
ÿ

t“1

ρpXt, Ytq

ff

ď
a

pe´ 2qT lnp2T q ¨

ˆ

5

2
`

lnpMq

lnp2T q

˙

.

Proof. Define W1pxq “ 1 for all x P r0, 1s and, for each t P N, define by induction Wt`1p¨q “

Wtp¨q exppηρp¨, Ytqq. Then, denoting for any measurable function g : r0, 1s Ñ R, the integral with
respect the Lebesgue measure of |g| on r0, 1s by ∥g∥1, we have

ln
`

∥WT`1∥1
˘

“ ln

˜

T
ź

t“1

∥Wt`1∥1
∥Wt∥1

¸

“

T
ÿ

t“1

ln

˜

ż

r0,1s

exp
`

ηρpx, Ytq
˘

ftpxqdx

¸
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ď

T
ÿ

t“1

ln

˜

ż

r0,1s

´

1 ` ηρpx, Ytq ` pe´ 2qη2
`

ρpx, Ytq
˘2
¯

ftpxqdx

¸

“

T
ÿ

t“1

ln

˜

1 `

ż

r0,1s

´

ηρpx, Ytq ` pe´ 2qη2
`

ρpx, Ytq
˘2
¯

ftpxqdx

¸

ď η
T
ÿ

t“1

ż

r0,1s

ρpx, Ytqftpxqdx` pe´ 2qη2
T
ÿ

t“1

ż

r0,1s

`

ρpx, Ytq
˘2
ftpxqdx

ď η
T
ÿ

t“1

ż

r0,1s

ρpx, Ytqftpxqdx` pe´ 2qη2T

“ η
T
ÿ

t“1

E
“

ρpXt, Ytq | σpYt,Htq
‰

` pe´ 2qη2T ,

where the last equality follows from the Generalized Freezing Lemma (see Lemma 18 in Appendix A.4)
noticing that, for each t P rT s, Φt defined for each Borel subset A Ă r0, 1s via ΦtrAs “

ş

A ftpxq dx is
a regular conditional probability for PXt|Ht

and
ş

r0,1s
ρpx, Ytqftpxq dx “

ş

r0,1s
ρpx, Ytq dΦtpxq. Hence,

using the tower rule,

E
“

ln
`

∥WT`1∥1
˘‰

ď ηE

«

T
ÿ

t“1

ρpXt, Ytq

ff

` pe´ 2qη2T .

On the other hand, let x‹ P r0, 1s be a point belonging to argmaxxPr0,1s

řT
t“1 E

“

ρpx, Ytq
‰

, which does
exist due to the fact that this last sum, as a function of x, is MT -Lipschitz (hence continuous on
the compact set r0, 1s). Then, for any x P r0, 1s,

T
ÿ

t“1

E
“

ρpx‹, Ytq
‰

´

T
ÿ

t“1

E
“

ρpx, Ytq
‰

ď T min
`

1,M |x´ x‹|
˘

. (A.1)

Let X be a uniform random variable on r0, 1s independent of Y1, . . . , YT . It follows that

E
”

ln
`

∥WT`1∥1
˘

ı

“ E

«

ln

˜

ż

r0,1s

exp

˜

η
T
ÿ

t“1

ρpx, Ytq

¸

dx

¸ff

“ E

«

lnE

«

exp

˜

η
T
ÿ

t“1

ρpX,Ytq

¸

| X

ffff

ě lnE
„

exp

˜

E

«

η
T
ÿ

t“1

ρpX,Ytq | pY1, . . . , YT q

ff¸

ȷ

“ ln

˜

ż

r0,1s

exp

˜

E

«

η
T
ÿ

t“1

ρpx, Ytq

ff¸

dx

¸

“ η
T
ÿ

t“1

E
“

ρpx‹, Ytq
‰

` ln

˜

ż

r0,1s

exp

˜

η

˜

T
ÿ

t“1

E
“

ρpx, Ytq
‰

´

T
ÿ

t“1

E
“

ρpx‹, Ytq
‰

¸¸

dx

¸

ě η
T
ÿ

t“1

E
“

ρpx‹, Ytq
‰

` ln

˜

ż

r0,1s

exp p´ηT minp1,M |x´ x‹|qq dx

¸

“ p‹q ,

where
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• the second and the third equalities follow from the Freezing Lemma (see Lemma 17 in
Appendix A.4).

• the first inequality follows from the log-exp analogous of Minkowski’s integral inequality,
in the form of Corollary 4, with pV, EVq “

`

r0, 1s,Br0,1s

˘

, pW, EWq “ pYT ,bTEYq, V “ X,
W “ pY1, . . . , YT q, and g : r0, 1s ˆ YT Ñ r0,`8s,

`

x, py1, . . . , yT q
˘

ÞÑ η
řT
t“1 ρpx, ytq.

• the last inequality follows from Equation (A.1).

Now, if x‹ ď 1
2 , then, for any x P

“

x‹, x‹ ` 1
M

‰

we have that

minp1,M |x´ x‹|q “ M |x´ x‹|

and then, recalling that M ě 2,

p‹q ě η
T
ÿ

t“1

E
“

ρpx‹, Ytq
‰

` ln

˜

ż

rx‹,x‹` 1
M s

exp p´ηT minp1,M |x´ x‹|qq dx

¸

“ η
T
ÿ

t“1

E
“

ρpx‹, Ytq
‰

` ln

ˆ

1 ´ exp p´ηT q

ηTM

˙

The case x‹ ą 1
2 can be worked out analogously obtaining the same result. In any case, putting

everything together, we get

ηE

«

T
ÿ

t“1

ρpXt, Ytq

ff

` pe´ 2qη2T ě ηE

«

T
ÿ

t“1

ρpx‹, Ytq

ff

` ln

ˆ

1 ´ exp p´ηT q

ηTM

˙

which, dividing by η and rearranging, becomes

E

«

T
ÿ

t“1

ρpx‹, Ytq

ff

´ E

«

T
ÿ

t“1

ρpXt, Ytq

ff

ď
1

η
ln

ˆ

ηTM

1 ´ e´ηT

˙

` ηpe´ 2qT

So, if η “

b

lnp2T q

pe´2qT , we have

E

«

T
ÿ

t“1

ρpx‹, Ytq

ff

´ E

«

T
ÿ

t“1

ρpXt, Ytq

ff

ď
a

pe´ 2qT lnp2T q ¨

ˆ

5

2
`

lnpMq

lnp2T q

˙

.

In the same spirit of the previous theorem, we now obtain an immediate corollary that provides
theoretical guarantees for Hedge run for r0, 1s-armed experts (see the general online protocol of
X -armed experts and the corresponding definition of Hedge when X “ r0, 1s) with Lipschitz expected
rewards.

Corollary 3. If there exists M ě 2 such that, for all t P N, x ÞÑ ErGtpxqs is an M -Lipschitz
function, then, for any time horizon T P N, the regret of Hedge for r0, 1s-Armed Experts run with
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Online Protocol: X -Armed Experts
Instance parameters: Known action space X , unknown environment’s action space Y, unknown
reward function ρ : X ˆ Y Ñ r0, 1s

for time t “ 1, 2, . . . do
The environment secretly selects an action Yt P Y (possibly at random)
The learner secretly selects an action Xt P X (possibly at random)
The learner gains reward ρpXt, Ytq
Xt is revealed to the environment and Gtp¨q “ ρp¨, Ytq is revealed to the learner

Learning algorithm with full feedback: Hedge for r0, 1s-Armed Experts
Input: η P p0, 1q

Initialization: Initialize W1pxq “ 1, for all x P r0, 1s

for time t “ 1, 2, . . . do
Play Xt „ µt, where µt is a distribution with density defined, for all x P r0, 1s, by ftpxq “

Wtpxq

∥Wt∥1
Update Wt`1pxq “ Wtpxq ¨ exp

`

ηGtpxq
˘

, for each x P r0, 1s

parameter η P p0, 1q is∗

max
xPr0,1s

E

«

T
ÿ

t“1

ρpx, Ytq

ff

´ E

«

T
ÿ

t“1

ρpXt, Ytq

ff

ď
1

η
ln

ˆ

ηTM

1 ´ e´ηT

˙

` pe´ 2qηT .

In particular, if η “

b

lnp2T q

pe´2qT we have

max
xPr0,1s

E

«

T
ÿ

t“1

ρpx, Ytq

ff

´ E

«

T
ÿ

t“1

ρpXt, Ytq

ff

ď
a

pe´ 2qT lnp2T q ¨

ˆ

5

2
`

lnpMq

lnp2T q

˙

.

We remark that Hedge achieves an extremely mild dependence on M —disappearing completely
if T is larger than M— without requiring the knowledge of M to tune the parameter η.

Finally, we highlight a key feature of our Theorem 35 and Corollary 3: they only assume that
expected rewards are Lipschitz. This is in contrast with the classic assumption that the rewards
themselves are Lipschitz. This seemingly small difference entails a technical issue in the analysis
that we bypassed by proving a log-exp analogous of Minkowski’s integral inequality, Lemma 16.

A.3 A Log-Exp Minkowski’s Integral Inequality

In this section, we prove a log-exp analogous to Minkowski’s integral inequality. In its original form,
Minkowski’s inequality states that

ż

V

ˆ
ż

W

`

gpv, wq
˘p

dµWpwq

˙1{p

dµVpvq ě

ˆ
ż

W

ˆ
ż

V
gpv, wq dµVpvq

˙p

dµWpwq

˙1{p

,

∗Formally, we are assuming that pY, EYq is a measurable space; for all t P N, Yt is chosen in a measurable way
as a function of the information available to the environment at the beginning of time t, including its possible
randomization; and ρ is a pBr0,1s b EYq{Br0,1s-measurable function.
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A.3. A Log-Exp Minkowski’s Integral Inequality

where p ě 1, pV, EV , µVq and pW, EW , µWq are two σ-finite measure spaces† and g : V ˆW Ñ r0,`8s

is a measurable function.
We now prove a log-exp analogous of Minkowski’s Integral Inequality. To the best of our

knowledge, the following result has not been previously presented in the literature, and we believe it
may be of independent interest.

We recall that Br0,`8s denotes the Borel σ-algebra of r0,`8s.

Lemma 16 (Log-Exp Minkowski’s Integral Inequality). Let pV, EV , µVq and pW, EW , µWq be two σ-
finite measure spaces such that µV rVs ‰ 0 ‰ µW rWs. Let g : VˆW Ñ r0,`8s be a pEV bEYq{Br0,`8s

measurable function. Then (with the understanding that 0 ¨ 8 “ 0):

ż

V
ln

ˆ
ż

W
exp

`

gpv, wq
˘

dµWpwq

˙

dµVpvq ě µV rVs ln

ˆ
ż

W
exp

ˆ
ż

V
gpv, wqdµVpvq

˙

dµWpwq

˙

Proof. Assume first that both µV and µW are finite measures. Let L8pWq be the set of bounded
EW{B-measurable functions. Define

Φ: L8pWq Ñ R f ÞÑ ln

ż

W
exp

`

fpwq
˘

dµWpwq

Notice that Φ is convex. In fact, for any f1, f2 P L8pWq and any λ P p0, 1q, we have

Φ
`

p1 ´ λqf1 ` λf2
˘

“ ln

ż

W
exp

`

p1 ´ λqf1pwq ` λf2pwq
˘

dµWpwq

“ ln

ż

W

´

exp
`

f1pwq
˘

¯1´λ´

exp
`

f2pwq
˘

¯λ
dµWpwq

ď ln

˜

ˆ
ż

W
exp

`

f1pwq
˘

dµWpwq

˙1´λˆż

W
exp pf2pwqq dµWpwq

˙λ
¸

“ p1 ´ λq ln

ˆ
ż

W
exp

`

f1pwq
˘

dµWpwq

˙

` λ ln

ˆ
ż

W
exp pf2pwqq dµWpwq

˙

“ p1 ´ λqΦpf1q ` λΦpf2q ,

where the inequality follows from Hölder inequality with p “ 1
1´λ and q “ 1

λ , the monotonicity of the
integral, and the fact that ln is monotonically increasing. Now, notice that Φ is differentiable from
the Banach space pL8pWq, ∥¨∥8q to R (where ∥f∥8 “ supwPW |fpwq|), and for each f P L8pWq the
differential of Φ at any f P L8pWq satisfies

dΦpfqphq “

ş

W exp
`

fpwq
˘

hpwq dµWpwq
ş

W exp
`

fpwq
˘

dµWpwq
, for each h P L8pWq .

The convexity and the differentiability of Φ together implies that for any f1, f2 P L8pWq it holds
that

Φpf1q ě Φpf2q ` dΦpf2qpf1 ´ f2q .

†We recall that a measure space pA, EA, µAq is σ-finite if there exist a countable family A1, A2, ¨ ¨ ¨ P EA such that
µApAkq ă `8 for all k P N and

Ť

kPN Ak “ A.
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A.3. A Log-Exp Minkowski’s Integral Inequality

Now, if g P L8pV ˆ Wq (i.e., if g is bounded and pEV b EWq{Br0,`8s measurable), define

G : V Ñ L8pWq , v ÞÑ gpv, ¨q ,

and define also
f2p¨q “

ż

V
gpv1, ¨qdµVpv1q P L8pWq .

It follows that, for any v P V,

ln

ż

W
exp

`

gpv, wq
˘

dµWpwq “ ln

ż

W
exp

`

Gpvqpwq
˘

dµWpwq “ Φ
`

Gpvq
˘

ě Φpf2q ` dΦpf2q
`

Gpvq ´ f2
˘

“ ln

ˆ
ż

W
exp

ˆ
ż

V
gpv1, wq dµVpv1q

˙

dµWpwq

˙

`

ş

W

´

exp
`ş

V gpv1, wq dµVpv1q
˘ `

gpv, wq ´
ş

V gpv1, wq dµVpv1q
˘

¯

dµWpwq
ş

W exp
`ş

V gpv1, wq dµVpv1q
˘

dµWpwq
.

Given that this last inequality holds for any v P V, we can integrate both sides with respect to
dµVpvq and get

ż

V
ln

ˆ
ż

W
exp

`

gpv, wq
˘

dµWpwq

˙

dµVpvq

ě µV rVs ln

ˆ
ż

W
exp

ˆ
ż

V
gpv1, wqdµVpv1q

˙

dµWpwq

˙

`

ż

V

ş

W

´

exp
`ş

V gpv1, wqdµVpv1q
˘ `

gpv, wq ´
ş

V gpv1, wq dµVpv1q
˘

¯

dµWpwq
ş

W exp
`ş

V gpv1, wqdµVpv1q
˘

dµWpwq
dµVpvq

“ µV rVs ln

ˆ
ż

W
exp

ˆ
ż

V
gpv1, wqdµVpv1q

˙

dµWpwq

˙

where the last equality follows from Fubini’s theorem. Notice that we have proved the theorem
under the assumption that g P L8pV ˆ Wq and that µV and µW are finite measures.

Now, if g R L8pV ˆ Wq but µV and µW are finite, given that g ě 0, we can find a sequence
pgnqnPN Ă L8pV ˆ Wq such that gn Ò g pointwise, and obtain the conclusion from the monotone
convergence theorem. If µV rVs “ `8 but µW is finite, given that µV is σ-finite, we can find a
sequence A1 Ă A2 Ă . . . such that

Ť

nPNAn “ V and, for each n P N it holds that An P EV and
µV rAns ă `8 and apply the theorem to the restriction of µV to An and let n Ñ 8 to obtain the
conclusion via the monotone convergence theorem. Finally, if µW rWs “ `8, given that µW is
σ-finite, we can find a sequence B1 Ă B2 Ă . . . such that

Ť

nPNBn “ W and, for each n P N it holds
that Bn P EW and µW rBns ă `8 and apply the theorem to the restriction of µW to Bn and let
n Ñ 8 to obtain the conclusion via the monotone convergence theorem again.

As an immediate corollary of the previous lemma, we get the following.

Corollary 4 (Log-Exp Minkowski’s Integral Inequality for probability measures). Let pV, EVq and
pW, EWq be two measurable spaces and let g : V ˆ W Ñ r0,`8s be a EV b EW{Br0,`8s-measurable
function. Assume that V and W are an V-valued and a W-valued random variables, respectively,
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independent of each other. Then

E
„

lnE
”

exp
`

gpV,W q
˘

| V
ı

ȷ

ě lnE
„

exp
´

E
“

gpV,W q | W
‰

¯

ȷ

A.4 A Generalized Freezing Lemma

The classic “freezing lemma” (see, e.g., Cesari and Colomboni 61, Lemma 8) states that the conditional
expectation of a measurable function of two independent random variables given one of them can be
computed as an expectation only with respect to the other random variable followed by a composition
with the random variable in the conditioning.

Lemma 17 (The freezing lemma). Let pΩ,F ,Pq be a probability space. Let pV,FVq and pW,FWq

be two measurable spaces. Let f : V ˆ W Ñ r0,`8s, V : Ω Ñ V, W : Ω Ñ W be three measurable
functions. If V and W are P-independent, then

E
“

fpV,W q | V
‰

“

”

E
“

fpv,W q
‰

ı

v“V
(A.2)

P-almost surely, where the right hand side is the composition

”

E
“

fpv,W q
‰

ı

v“V
“

´

v ÞÑ E
“

fpv,W q
‰

¯

˝ V .

The freezing lemma is extremely useful in derivations as it allows one to isolate the random parts
that are being averaged while keeping the others fixed. Unfortunately, the freezing lemma does not
cover the case where the expectations are replaced with conditional expectation on some σ-algebra,
which is often the case in online learning, where expectations and probabilities are typically intended
as conditional on the history up to the present time. This problem cannot be solved by simply
replacing expectations with conditional expectations everywhere because of the fact that versions of
conditional expectations remain as such if changed on a probability-zero event, making the naive
extension to the right-hand side of Equation (A.2) not even well-defined. To aid us in giving a sound
statement of such a generalization of the freezing lemma, we begin by recalling the definition of
regular conditional probability.

Definition 4 (Regular conditional probability). Let pΩ,F ,Pq be a probability space. Let pX , EX q be
a measurable space. Let X : Ω Ñ X be a F{EX -measurable. Let H be a sub-σ-algebra of F . We say
that Φ: EX Ñ r0, 1sΩ is a regular conditional probability for PX|H if:

• For each A P EX , the function ω ÞÑ ΦrAspωq is H{Br0,1s-measurable.

• For each ω P Ω, the function A ÞÑ ΦrAspωq is a probability measure.

• For each A P EX and each H P H, it holds that P
“

H X tX P Au
‰

“ E
“

IHΦrAs
‰

.

Notice that the first and the third bullet imply that ΦrAs “ ErIXPA | Hs for each A P EX .
We can now state and prove a generalized version of the freezing lemma, which we believe may

be of independent interest.
We recall that Br0,`8s denotes the Borel σ-algebra of r0,`8s.
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Lemma 18 (Generalized Freezing Lemma). Let pX , EX q and pY, EYq be two measurable spaces. Let
g : X ˆ Y Ñ r0,8s be a pEX b EYq{Br0,`8s- measurable function. Let pΩ, E ,Pq be a probability space
and F ,G,H be three sub-σ-algebras of E. Let X : Ω Ñ X be a F{EX -measurable random variable.
Let Y : Ω Ñ Y be a G{EY-measurable random variable. Assume that F and G are P-conditionally
independent given H. Assume that Φ is a regular conditional probability for PX|H. Then

ż

X
gpx, Y qdΦpxq “ E

“

gpX,Y q | σpG,Hq
‰

.

Proof. First, notice that the random variable
ş

X g
`

x, Y
˘

dΦpxq is σpG,Hq-measurable. In fact, if
A P EX and B P EY we have

ż

X
IApxqIBpY qdΦpxq “ ΦrAsIBpY q,

which implies that
ş

X IApxqIBpY q dΦpxq, as a product of a H-measurable function and a G-measurable
function is σpG,Hq-measurable. Now, consider the family

C “

"

C P EX b EY |

ż

X
ICpx, Y qdΦpxq is σpG,Hq-measurable

*

.

Notice that X ˆ Y P C, that C is closed under complementation and that if pCnqnPN Ă C is such
that C1 Ă C2 Ă . . . then

Ť

nPNCn P C. Hence, C is a λ-system which contains the π-system
D “ tC P EX b EY | DA P EX , DB P EY , C “ AˆBu. Hence, by the π-λ theorem [34, Theorem 3.2]
it holds that σpDq Ă C, and since σpDq “ EX bEY it holds that C “ EX bEY . It follows that for each
C P EX b EY the random variable

ş

X ICpx, Y q dΦpxq is σpG,Hq-measurable. By pointwise monotone
increasing approximation via EX bEY -measurable simple functions‡, we get that the random variable
ş

X g
`

x, Y
˘

dΦpxq is σpG,Hq-measurable.
Now, pick A P EX , B P EY , G P G and H P H. Notice that

E
„
ż

X
IApxqIBpY qdΦpxqIGXH

ȷ

“ E
“

IGXpY PBqΦrAsIH
‰

“ E
“

E
“

IGXpY PBq | H
‰

ΦrAsIH
‰

“ E
“

E
“

IGXpY PBq | H
‰

ErIXPA | HsIH
‰

pF and G are conditionally independent given H) “ E
“

E
“

IGXpY PBqIXPA | H
‰

IH
‰

“ E
“

IGXpY PBqIXPAIH
‰

“ E rIApXqIBpY qIGXHs .

Applying twice a π-λ argument as done above, we can prove that for each C P EX b EY and each
K P σpG,Hq, it holds that

E
„
ż

X
ICpx, Y qdΦpxqIK

ȷ

“ E rICpX,Y qIKs .

Applying again a pointwise monotone approximation argument using EX b EY -measurable simple

‡We recall that simple functions are linear combinations of indicator functions.

127



A.5. Model and Notation

functions, we can prove that for each K P σpG,Hq it holds that

E
„
ż

X
gpx, Y qdΦpxqIK

ȷ

“ E rgpX,Y qIKs .

Given that we have already proved that the random variable
ş

X gpx, Y q dΦpxq is σpG,Hq-measurable,
the conclusion follows.

A.5 Model and Notation

For all T P N, we denote the set of the first T integers t1, . . . , T u by rT s. If P is a probability
measure and X is a random variable, we denote by PX the probability measure defined for any
(measurable) set E, by PXrEs :“ PrX P Es. We denote the expectation of a random variable X
with respect to the probability measure P by EPrXs. If a measure ν is absolutely continuous with
respect to another measure µ with density f , we denote ν by fµ, so that for any (measurable) set
E, pfµqrEs :“ νrEs “

ş

E fpxq dµpxq. We denote the Lebesgue measure on the interval r0, 1s by µL
and the product Lebesgue measure on r0, 1sN by µL. For any set E and x P E, we denote the Dirac
measure on x by δx (the dependence on E will always be clear from context).

A.5.1 The Learning Model

In this section, we introduce an abstract notion of sequential games which encompasses all the
settings we discussed in the main part of the bilateral trade section, providing a unified perspective.
This will be especially useful when proving lower bounds.

Definition 5 (Sequential game). A (sequential) game is a tuple G :“ pX ,Y,Z, ρ, φ,Pq, where:

• X ,Y,Z are sets called the player’s action space, adversary’s action space, and feedback space.

• ρ : X ˆ Y Ñ r0, 1s and φ : X ˆ Y Ñ Z are called the reward and feedback functions§.

• P is a set of probabilities on the set YN of sequences in Y, called the adversary’s behavior.

This definition generalizes the partial monitoring games of Bartók et al. [28], Lattimore and
Szepesvári [123] to settings with infinitely many arms and is able to model adversarial, i.i.d., and
more general stochastic settings all at once. Before proceeding, we introduce another few extra
handy definitions.

Definition 6. If G “ pX ,Y,Z, ρ, φ,Pq is a game, then we say the following. The sample space is
the set Ω :“ YNˆr0, 1sN. The adversary’s actions

`

Yt
˘

tPN and the player’s randomization
`

Ut
˘

tPN are
sequences of random variables defined, for all t P N and ω “

`

pynqnPN, punqnPN
˘

P Ω, by Ytpωq :“ yt

and Utpωq :“ ut. The set of environments S is the set of probability measures P on Ω of the form
P “ µ b µL, where µ P P.

§More precisely, we need X ,Y,Z to be non-empty measurable spaces and ρ, φ to be measurable functions. To
avoid clutter, in the following we will never mention explicitly these types of standard measurability assumptions
unless strictly needed.
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For the sake of conciseness, whenever we fix a game G , we will assume that all the objects (sets,
functions, random variables) presented in Definitions 5–6 are fixed and denoted by the same letters
without declaring them explicitly each time, unless strictly needed.

Note that this setting models an oblivious environment since the adversary’s actions are indepen-
dent of the player’s past randomization, i.e., for all t P N, PYt`1|Y1,...,Yt,U1,...,Ut

“ PYt`1|Y1,...,Yt . Note
also that we are assuming that the randomization of the player’s strategy is carried out by drawing
numbers in the interval r0, 1s independently and uniformly at random. We can restrict ourselves to
this case in light of the Skorokhod Representation Theorem [185, Section 17.3] without losing (much)
generality. We now introduce formally the strategies of the player, the resulting played actions, and
the corresponding feedback.

Definition 7 (Player’s strategies, actions, and feedback). Given a game G , we define a player’s
strategy as a sequence of functions α – pαtqtPN such that, for each t P N, αt : r0, 1st ˆ Zt´1 Ñ X .¶

Given a player’s strategy α, we define inductively (on t) the corresponding sequences of player’s
actions pXtqtPN and player’s feedback pZtqtPN by Xt :“ αtpU1, . . . , Ut, Z1, . . . , Zt´1q, Zt :“ φpXt, Ytq.
In the sequel, we will denote the set of all strategies for a game G by A pG q.

To lighten the notation, we will write A instead of A pG q if it is clear from context. We can now
extend the standard notions of regret, worst-case regret, and minimax regret to our general setting.

Definition 8 (Regret). Given a game G and a horizon T P N, we define the regret (of α P A in an
environment P P S), the worst-case regret (of α P A ), and the minimax regret (of G ), respectively,
by

RT pα,Pq :“ sup
xPX

EP

«

T
ÿ

t“1

ρpx, Ytq ´

T
ÿ

t“1

ρpXt, Ytq

ff

, RS
T pαq :“ sup

PPS
RT pα,Pq, R‹

T pG q :“ inf
αPA pG q

RS
T pαq .

If G and rG are two games and R‹
T pG q ě R‹

T prG q, we say that rG is easier than G (or equivalently,
that G is harder than rG ). When it is clear from the context, we will omit the dependence on G in
R‹
T pG q.

A.5.2 Bilateral Trade as a Game

We now formally cast the various instances of bilateral trade we introduced in the main body into our
sequential game setting.‖ In this context, we think of the learner as the player and the environments
as the corresponding adversaries.

Player’s Actions, Adversary’s Actions, and Reward

The player’s action space X is the unit interval r0, 1s. This corresponds to the player posting the
same price to both the seller and the buyer (budget balance). The adversary’s action space Y is
r0, 1s2. They are the pairs of valuations of the seller and buyer. The reward function ρ is the gain
from trade gft : r0, 1s ˆ r0, 1s2 Ñ r0, 1s,

`

p, ps, bq
˘

ÞÑ pb´ sqIts ď p ď bu.

¶When t “ 1, r0, 1s
t

ˆ Zt´1 :“ r0, 1s. In the following, we will always adopt this type of convention without
mention it.

‖Straightforwardly, the same can be done for the weak budget balance setting we studied in Section 2.6.
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Available Feedback

Full: the feedback space Z is the unit square r0, 1s2 and the feedback function is φ : r0, 1s ˆ r0, 1s2 Ñ

r0, 1s2,
`

p, ps, bq
˘

ÞÑ ps, bq. This corresponds to the seller and the buyer revealing their
valuations at the end of a trade.

Realistic: the feedback space Z is the boolean square t0, 1u2 and the feedback function is φ : r0, 1sˆ

r0, 1s2 Ñ t0, 1u2,
`

p, ps, bq
˘

ÞÑ
`

Its ď pu, Itp ď bu
˘

. This corresponds to the seller and the
buyer accepting or rejecting a trade at a price p.

Adversary’s Behavior

Independent and identically distributed (iid): the adversary’s behavior P “ Piid consists of
products of a single probability on Y “ r0, 1s2, i.e., µ P Piid if and only if there exists a
probability measure µ on r0, 1s2 such that µ “ btPN µ. This corresponds to a stochastic i.i.d.
environment, where however the valuations of the seller and the buyer could be correlated.

In this appendix, we will also investigate the following stronger assumptions.

(iid) + independent valuations (iv): the adversary’s behavior P “ Piid`iv is the subset
of Piid in which the valuations of the seller and the buyer are independent, i.e., µ P

Piid`iv if and only if there exist two probability measures µS , µB on r0, 1s such that
µ “ btPN pµS b µBq.

(iid) + bounded density (bd): for a fixed M ě 1, the adversary’s behavior P “ PM
iid`bd

is the subset of Piid in which the joint distribution of the valuations of buyer and seller
has a density bounded by M , i.e., µ P PM

iid`bd if and only if there exists a density
f : r0, 1s2 Ñ r0,M s such that µ “ btPN pfµq, where µ “ µL b µL.

(iid) + independent valuations with bounded density (iv) + (bd): for a fixed M ě

1, the adversary’s behavior P “ PM
iid`iv`bd is the subset Piid`iv X PM

iid`bd of Piid.

Adversarial (adv): the adversary’s behavior P “ Padv consists of products of Dirac measures on
Y “ r0, 1s2, i.e., µ P Padv if and only if there exists a sequence pst, btqtPN Ă r0, 1s2 such that
µ “ btPN δpst,btq. This corresponds to a deterministic, oblivious, and adversarial environment.

A.6 Two Key Lemmas on Simplifying Sequential Games

In this section we introduce some useful techniques that could be of independent interest for proving
lower bounds in sequential games. The idea is to give sufficient conditions for a given game to be
harder than another, where the second one has a known lower bound on its minimax regret.

At a high level, the first lemma shows that if the adversary’s actions are independent of each
other, a game rG is easier than game G if rG can be embedded in G in such a way that:

1. The optimal player’s actions of rG are no better than the ones in G .

2. The suboptimal player’s actions of rG no worse than the ones in G .

3. At distributional level, the quality of the feedback in rG is no worse than that in G .
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The proof is deferred to Appendix A.6.1.

Lemma 19 (Embedding). Let G :“ pX ,Y,Z, ρ, φ,Pq and rG :“ p rX , rY, rZ, rρ, rφ, rPq be two games,
S, rS their respective sets of environments, pYtqtPN, prYtqtPN their adversaries’ actions, and T P N
a horizon. Assume that Y1, . . . , YT are P-independent for any environment P P S, rY1, . . . , rYT are
rP-independent for any environment rP P rS, and that there exist rf : X Ñ rX , g : rZ Ñ Z, and h : rS Ñ S
satisfying:

1. sup
rxP rX

řT
t“1 ErP

“

rρprx, rYtq
‰

ď supxPX
řT
t“1 EhprPq

“

ρpx, Ytq
‰

for any environment rP P rS.

2. E
rP
“

rρ
`

rfpxq, rYt
˘‰

ě E
hprPq

“

ρpx, Ytq
‰

for any time t P rT s, environment rP P rS, and action x P X .

3. rP
g
´

rφ
`

rfpxq,rYt
˘¯ “

`

hprPq
˘

φpx,Ytq
for any time t P rT s, environment rP P rS, and action x P X .

Then R‹
T pG q ě R‹

T prG q.

The second lemma addresses feedback with uninformative (i.e., environment-independent) compo-
nents. At a high level, if the feedback of some of the player’s actions has one or more uninformative
components, the game can be simplified by getting rid of them. The player can achieve this by
simulating the uninformative parts of the feedback using her randomization. The proof is deferred
to Appendix A.6.1.

Lemma 20 (Simulation). Let V,W be two sets, G :“ pX ,Y,Z, ρ, φ,Pq a game with Z “ V ˆ W, S
its set of environments, pYtqtPN its adversary’s actions, π : Z Ñ V the projection on V, and T P N a
horizon. Assume that Y1, . . . , YT are P-independent for any environment P P S and that there exist
disjoint sets I,U Ă X such that I Y U “ X and

1. For any time t P rT s and action x P I there exists ψt,x : r0, 1s Ñ W such that, for all P P S,

Pφpx,Ytq “ P
π
`

φpx,Ytq

˘ b pµLqψt,x .

2. For any time t P rT s and action x P U , there exists γt,x : r0, 1s Ñ Z such that, for all P P S,

Pφpx,Ytq “ pµLqγt,x .

Let ˚ P V and define

rφ : X ˆ Y Ñ V, px, yq ÞÑ

$

&

%

π
`

φpx, yq
˘

, if x P I,

˚ , if x P U .

Define the game rG :“ pX ,Y,V, ρ, rφ,Pq. Then R‹
T pG q ě R‹

T prG q.

A.6.1 Proofs of the Lemmas

In this section, we will give a full proof of the two useful Embedding and Simulation lemmas
introduces in Appendix A.6. To lighten the notation, for any m,n P N, with m ď n and a family
pλkqkPN we let λm:n :“ pλm, λm`1, . . . , λnq and similarly λn:m :“ pλn, λn´1 . . . , λmq.

We begin by proving the Embedding lemma, that we restate for ease of reading.
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Lemma 19 (Embedding). Let G :“ pX ,Y,Z, ρ, φ,Pq and rG :“ p rX , rY, rZ, rρ, rφ, rPq be two games,
S, rS their respective sets of environments, pYtqtPN, prYtqtPN their adversaries’ actions, and T P N
a horizon. Assume that Y1, . . . , YT are P-independent for any environment P P S, rY1, . . . , rYT are
rP-independent for any environment rP P rS, and that there exist rf : X Ñ rX , g : rZ Ñ Z, and h : rS Ñ S
satisfying:

1. sup
rxP rX

řT
t“1 ErP

“

rρprx, rYtq
‰

ď supxPX
řT
t“1 EhprPq

“

ρpx, Ytq
‰

for any environment rP P rS.

2. E
rP
“

rρ
`

rfpxq, rYt
˘‰

ě E
hprPq

“

ρpx, Ytq
‰

for any time t P rT s, environment rP P rS, and action x P X .

3. rP
g
´

rφ
`

rfpxq,rYt
˘¯ “

`

hprPq
˘

φpx,Ytq
for any time t P rT s, environment rP P rS, and action x P X .

Then R‹
T pG q ě R‹

T prG q.

Proof. Fix any strategy α P A pG q. For each time t P N, define

rαt : r0, 1st ˆ rZt´1 Ñ rX , pu1, . . . , ut, rz1, . . . , rzt´1q ÞÑ rf
´

αt
`

u1, . . . , ut, gprz1q, . . . , gprzt´1q
˘

¯

.

Then rα :“ prαtqtPN P A prG q. As usual, let pYtqtPN and pUtqtPN be the adversary’s actions and the
player’s randomization in game G and pXtqtPN and pZtqtPN the player’s actions and the feedback
according to the strategy α. Let prYtqtPN, prUtqtPN, p rXtqtPN, p rZtqtPN be the corresponding objects for
the game rG and the strategy rα. Furthermore, define

pX1 “ α1prU1q, pZ1 “ g
`

rφp rX1, rY1q
˘

, pX2 “ α2prU1, rU2, pZ1q, pZ2 “ g
`

rφp rX2, rY2q
˘

, . . . .

Fix rP P rS, where rS is the set of environments of the game rG . Then rP
rU1

“
`

hprPq
˘

U1
. Now, since

X1 “ α1pU1q and pX1 “ α1prU1q, we also have that rP
pX1,rU1

“
`

hprPq
˘

X1,U1
“: Q1. Now, up to a set

with Q1-probability zero, if x1 P X and u1 P r0, 1s, we get, using Item 3:

rP
pZ1| pX1“x1,rU1“u1

“ rP
g

´

rφ
`

rfp pX1q,rY1

˘

¯

| pX1“x1,rU1“u1
“ rP

g

´

rφ
`

rfpx1q,rY1

˘

¯

“
`

hprPq
˘

φpx1,Y1q
“
`

hprPq
˘

φpX1,Y1q|X1“x1,U1“u1
“
`

hprPq
˘

Z1|X1“x1,U1“u1
.

So, if A1 Ă Z and D Ă X ˆ r0, 1s, then

rP
pZ1,
`

pX1,rU1

˘pA1 ˆDq “

ż

D
P
pZ1| pX1“x1,rU1“u1

pA1qdP
pX1,rU1

px1, u1q

“

ż

D

`

hprPq
˘

Z1|X1“x1,U1“u1
pA1q d

`

hprPq
˘

X1,U1
px1, u1q “

`

hprPq
˘

Z1,pX1,U1q
pA1 ˆDq ,

from which it follows that rP
pZ1, pX1,rU1

“
`

hprPq
˘

Z1,X1,U1
. By induction, suppose that for time t P rT ´1s

we have that
rP
pZt,..., pZ1, pXt,..., pX1,rUt,...,rU1

“
`

hprPq
˘

Zt,...,Z1,Xt,...,X1,Ut,...,U1
.

Then, using independence we have that

rP
pZt,..., pZ1, pXt,..., pX1,rUt`1,rUt,...,rU1

“
`

hprPq
˘

Zt,...,Z1,Xt,...,X1,Ut`1,Ut,...,U1
.
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Furthermore, sinceXt`1 “ αt`1pU1, . . . , Ut`1, Z1, . . . , Ztq and pXt`1 “ αt`1prU1, . . . , rUt`1, pZ1, . . . , pZtq,
we have that

rP
pZt,..., pZ1, pXt`1, pXt,..., pX1,rUt`1,rUt,...,rU1

“
`

hprPq
˘

Zt,...,Z1,Xt`1,Xt,...,X1,Ut`1,Ut,...,U1
“: Qt`1 .

Now, up to a set with Qt`1-probability zero, if x1, . . . , xt`1 P X , u1, . . . , ut`1 P r0, 1s, and z1, . . . , zt P

Z, by the rP-independence of rY1, . . . , rYt`1, Item 3, and the hprPq-independence of Y1, . . . , Yt`1, we
have

rP
pZt`1| pZt“zt,..., pZ1“z1, pXt`1“xt`1,..., pX1“x1,rUt`1“ut`1,...,rU1“u1

“ rP
g

´

rφ
`

rfp pXt`1q,rYt`1

˘

¯

| pZt“zt,..., pZ1“z1, pXt`1“xt`1,..., pX1“x1,rUt`1“ut`1,...,rU1“u1
“ rP

g

´

rφ
`

rfpxt`1q,rYt`1

˘

¯

“
`

hprPq
˘

φpxt`1,Yt`1q
“
`

hprPq
˘

φpXt`1,Yt`1q|Zt“zt,...,Z1“z1,Xt`1“xt`1,...,X1“x1,Ut`1“ut`1,...,U1“u1

“
`

hprPq
˘

Zt`1|Zt“zt,...,Z1“z1,Xt`1“xt`1,...,X1“x1,Ut`1“ut`1,...,U1“u1
.

So, if At`1 Ă Z, D Ă Zt ˆ X t`1 ˆ r0, 1st`1, we have that

rP
pZt`1,

`

pZt:1, pXt`1:1,rUt`1:1

˘pAt`1 ˆDq

“

ż

D

rP
pZt`1| pZt:1“zt:1, pXt`1:1“xt`1:1,rUt`1:1“ut`1:1

pAt`1q drP
pZt:1, pXt`1:1,rUt`1:1

pzt:1, xt`1:1, ut`1:1q

“

ż

D

`

hprPq
˘

Zt`1|Zt:1“zt:1,Ct`1:1“xt`1:1,Ut`1:1“ut`1:1
pAt`1q d

`

hprPq
˘

Zt:1,Xt`1:1,Ut`1:1
pzt:1, xt`1:1, ut`1:1q

“
`

hprPq
˘

Zt`1,
`

Zt:1,Xt`1:1,Ut`1:1

˘pAt`1 ˆDq ,

from which follows that rP
pZt`1,..., pZ1, pXt`1,..., pX1,rUt`1,...,rU1

“
`

hprPq
˘

Zt`1,...,Z1,Xt`1,...,X1,Ut`1,...,U1
. In par-

ticular, for each t P rT s we have that rP
pXt

“
`

hprPq
˘

Xt
. Hence, using the hprPq-independence of

Y1, . . . , YT , Item (2), and the rP-independence of rY1, . . . , rYT , we get

T
ÿ

t“1

E
hprPq

“

ρpXt, Ytq
‰

“

T
ÿ

t“1

ż

X
E
hprPq

“

ρpx, Ytq
‰

d
`

hprPq
˘

Xt
pxq

ď

T
ÿ

t“1

ż

X
E
rPrrρp rfpxq, rYtqsd

`

hprPq
˘

Xt
pxq

“

T
ÿ

t“1

ż

X
E
rPrrρp rfpxq, rYtqsdrP

pXt
pxq

“

T
ÿ

t“1

E
rP
“

rρp rfp pXtq, rYtq
‰

“

T
ÿ

t“1

E
rP
“

rρp rXt, rYtq
‰

.

Then, using Item (1), we have

RT
`

α, hprPq
˘

“ sup
xPX

ˆ T
ÿ

t“1

E
hprPq

“

ρpx, Ytq
‰

´

T
ÿ

t“1

E
hprPq

“

ρpXt, Ytq
‰

˙
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ě sup
rxP rX

ˆ T
ÿ

t“1

E
rP
“

rρprx, rYtq
‰

´

T
ÿ

t“1

E
rP
“

rρp rXt, rYtq
‰

˙

“ RT prα, rPq .

Since rP was arbitrary, we get

R‹
T prG q “ inf

βPA prG q

R
rS
T pβq ď R

rS
T prαq “ sup

rPP rS
RT prα, rPq ď sup

rPP rS
RT

`

α, hprPq
˘

ď sup
PPS

RT
`

α,P
˘

“ RS
T pαq ,

and since α was arbitrary, we get

R‹
T prG q ď inf

αPA pG q
RS
T pαq “ R‹

T pG q .

We now prove the Simulation lemma we introduced in Appendix A.6 showing how to get rid of
uninformative feedback.

Lemma 20 (Simulation). Let V,W be two sets, G :“ pX ,Y,Z, ρ, φ,Pq a game with Z “ V ˆ W, S
its set of environments, pYtqtPN its adversary’s actions, π : Z Ñ V the projection on V, and T P N a
horizon. Assume that Y1, . . . , YT are P-independent for any environment P P S and that there exist
disjoint sets I,U Ă X such that I Y U “ X and

1. For any time t P rT s and action x P I there exists ψt,x : r0, 1s Ñ W such that, for all P P S,

Pφpx,Ytq “ P
π
`

φpx,Ytq

˘ b pµLqψt,x .

2. For any time t P rT s and action x P U , there exists γt,x : r0, 1s Ñ Z such that, for all P P S,

Pφpx,Ytq “ pµLqγt,x .

Let ˚ P V and define

rφ : X ˆ Y Ñ V, px, yq ÞÑ

$

&

%

π
`

φpx, yq
˘

, if x P I,

˚ , if x P U .

Define the game rG :“ pX ,Y,V, ρ, rφ,Pq. Then R‹
T pG q ě R‹

T prG q.

Proof. For each number a P r0, 1s, fix a binary representation 0.a1a2a3 . . . of a and define ξpaq :“

0.a1a3a5 . . ., ζpaq :“ 0.a2a4a6 . . .. Note that the two resulting functions ξ, ζ : r0, 1s Ñ r0, 1s are
µL-independent with common (uniform) push-forward distribution pµLqξ “ µL “ pµLqζ .

Let pYtqtPN, pUtqtPN be the sequences of adversary’s actions and player’s randomization for the
sequential game G and note that they are also the same for the sequential game rG . For each t P N
define βt : X ˆ V ˆ r0, 1s Ñ Z via

px, v, uq ÞÑ

$

&

%

`

v, ψt,xpuq
˘

, if x P I ,

γt,xpuq , if x P U ,
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if t ď T , and in an arbitrary manner if t ě T ` 1. Fix α “ pαtqtPN P A pG q. Let pXtqtPN, pZtqtPN be
the sequences of player’s actions and feedback associated to the strategy α.

Fix putqtPN Ă r0, 1s and pvtqtPN Ă V . Define by induction (on t) the sequences pxtqtPN and pztqtPN

via the relationships

xt “ αt
`

ξpu1q, . . . , ξputq, z1, . . . , zt´1

˘

, zt “ βt
`

xt, vt, ζputq
˘

.

Note that for each t P N, we have that xt depends only on u1, . . . , ut, v1, . . . , vt´1, so we can define

rαtpu1, . . . , ut, v1, . . . , vt´1q :“ xt.

Being putqtPN and pvtqtPN arbitrary, this defines a sequence of functions prαtqtPN such that, for all
t P N,

rαt : r0, 1st ˆ Vt´1 Ñ X

i.e., rα :“ prαtqtPN P A prG q. Let p rXtqtPN and prVtqtPN be respectively the sequence of player’s actions
and the feedback sequence associated with the strategy rα. For each t P N, define also rZt :“

βt
`

rXt, rVt, ζpUtq
˘

. Note that for each t P N it holds that rXt “ αt
`

ξpU1q, . . . , ξpUtq, rZ1, . . . , rZt´1

˘

.
Fix a environment P P S. Note first that PξpU1q “ PU1 , and since X1 “ α1pU1q and rX1 “

rα1pU1q “ α1

`

ξpU1q
˘

, we also have that P
rX1,ξpU1q

“ PX1,U1 “: Q1. Now, up to a set with Q1-
probability zero, if x1 P X and u1 P r0, 1s, using Items (1) and (2), we have that

P
rZ1| rX1“x1,ξpU1q“u1

“ P
β1

`

rX1,rφp rX1,Y1q,ζpU1q

˘

| rX1“x1,ξpU1q“u1
“ P

β1

`

x1,rφpx1,Y1q,ζpU1q

˘

“

$

’

’

&

’

’

%

P
β1

´

x1,π
`

φpx1,Y1q

˘

,ζpU1q

¯ if x1 P I

P
β1

`

x1,˚,ζpU1q

˘ if x1 P U
“

$

’

’

&

’

’

%

P´
π
`

φpx1,Y1q

˘

,ψ1,x1

`

ζpU1q

˘

¯ if x1 P I

P
γ1,x1

`

ζpU1q

˘ if x1 P U

“

$

’

&

’

%

P
π
`

φpx1,Y1q

˘ b P
ψ1,x1

`

ζpU1q

˘ if x1 P I

P
γ1,x1

`

ζpU1q

˘ if x1 P U
“

$

’

&

’

%

P
π
`

φpx1,Y1q

˘ b
`

PζpU1q

˘

ψ1,x1
if x1 P I

`

PζpU1q

˘

γ1,x1
if x1 P U

“

$

’

&

’

%

P
π
`

φpx1,Y1q

˘ b
`

µL
˘

ψ1,x1
if x1 P I

`

µL
˘

γ1,x1
if x1 P U

“ Pφpx1,Y1q “ PφpX1,Y1q|X1“x1,U1“u1 “ PZ1|X1“x1,U1“u1 .

So, if A1 Ă Z and D Ă X ˆ r0, 1s, then

P
rZ1,
`

rX1,ξpU1q

˘pA1 ˆDq “

ż

D
P
rZ1| rX1“x1,ξpU1q“u1

pA1qdP
rX1,ξpU1q

px1, u1q

“

ż

D
PZ1|X1“x1,U1“u1pA1q dPX1,U1px1, u1q “ PZ1,pX1,U1qpA1 ˆDq ,

from which it follows that P
rZ1, rX1,ξpU1q

“ PZ1,X1,U1 . By induction, suppose that for t P rT ´ 1s we
have that

P
rZt,..., rZ1, rXt,..., rX1,ξpUtq,...,ξpU1q

“ PZt,...,Z1,Xt,...,X1,Ut,...,U1 .
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Then, using independence we have that

P
rZt,..., rZ1, rXt,..., rX1,ξpUt`1q,ξpUtq,...,ξpU1q

“ PZt,...,Z1,Xt,...,X1,Ut`1,Ut,...,U1 .

Furthermore, sinceXt`1 “ αt`1pU1, . . . , Ut`1, Z1, . . . , Ztq and rXt`1 “ rαt`1pU1, . . . , Ut`1, rV1, . . . , rVtq “

αt`1pξpU1q, . . . , ξpUt`1q, rZ1, . . . , rZtq, we have that

P
rZt,..., rZ1, rXt`1, rXt,..., rX1,ξpUt`1q,ξpUtq,...,ξpU1q

“ PZt,...,Z1,Xt`1,Xt,...,X1,Ut`1,Ut,...,U1 “: Qt`1 .

Now, up to a set with Qt`1-probability zero, if x1, . . . , xt`1 P X , u1, . . . , ut`1 P r0, 1s and z1, . . . , zt P

Z, using the P-independence of Y1, . . . , Yt`1 and Items (1)–(2), we have that

P
rZt`1| rZt“zt,..., rZ1“z1, rXt`1“xt`1,..., rX1“x1,ξpUt`1q“ut`1,...,ξpU1q“u1

“ P
βt`1

`

rXt`1,rφp rXt`1,Yt`1q,ζpUt`1q

˘

| rZt“zt,..., rZ1“z1, rXt`1“xt`1,..., rX1“x1,ξpUt`1q“ut`1,...,ξpU1q“u1

“ P
βt`1

`

xt`1,rφpxt`1,Yt`1q,ζpUt`1q

˘ “

$

’

’

&

’

’

%

P
βt`1

´

xt`1,π
`

φpxt`1,Yt`1q

˘

,ζpUt`1q

¯ if xt`1 P I

P
βt`1

`

xt`1,˚,ζpUt`1q

˘ if xt`1 P U

“

$

’

’

&

’

’

%

P´
π
`

φpxt`1,Yt`1q

˘

,ψt`1,xt`1

`

ζpUt`1q

˘

¯ if xt`1 P I

P
γt`1,xt`1

`

ζpUt`1q

˘ if xt`1 P U

“

$

’

&

’

%

P
π
`

φpxt`1,Yt`1q

˘ b P
ψt`1,xt`1

`

ζpUt`1q

˘ if xt`1 P I

P
γt`1,xt`1

`

ζpUt`1q

˘ if xt`1 P U

“

$

’

&

’

%

P
π
`

φpxt`1,Yt`1q

˘ b
`

PζpUt`1q

˘

ψt`1,xt`1
if xt`1 P I

`

PζpUt`1q

˘

γt`1,xt`1
if xt`1 P U

“

$

’

&

’

%

P
π
`

φpxt`1,Yt`1q

˘ b
`

µL
˘

ψt`1,xt`1
if xt`1 P I

`

µL
˘

γt`1,xt`1
if xt`1 P U

“ Pφpxt`1,Yt`1q “ PφpXt`1,Yt`1q|Zt“zt,...,Z1“z1,Xt`1“xt`1,...,X1“x1,Ut`1“ut`1,...,U1“u1

“ PZt`1|Zt“zt,...,Z1“z1,Xt`1“xt`1,...,X1“x1,Ut`1“ut`1,...,U1“u1 .

So, if At`1 Ă Z, D Ă Zt ˆ X t`1 ˆ r0, 1st`1, we have that

P
rZt`1,

`

rZt..., rZ1, rXt`1,..., rX1,ξpUt`1q,...,ξpU1q

˘pAt`1 ˆDq

“

ż

D
P
rZt`1| rZt:1“zt:1, rXt`1:1“xt`1:1,

`

ξpUt`1q,...,ξpU1q

˘

“ut`1:1
pAt`1qdQt`1pzt:1, xt`1:1, ut`1:1q

“

ż

D
PZt`1|Zt:1“zt:1,Xt`1:1“xt`1:1,Ut`1:1“ut`1:1

pAt`1q dQt`1pzt:1, xt`1:1, ut`1:1q

“ P
Zt`1,

`

Zt,...,Z1,Xt`1,...,X1,Ut`1,...,U1

˘pAt`1 ˆDq

from which it follows that P
rZt`1:1, rXt`1:1,

`

ξpUt`1q,...,ξpU1q

˘ “ PZt`1:1,Xt`1:1,Ut`1:1 . In particular, for each
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t P rT s we have that PXt “ P
rXt

. So, for each t P rT s, using the P-independence of Y1, . . . , Yt, we
have that

PXt,Yt “ PXt b PYt “ P
rXt

b PYt “ P
rXt,Yt

,

and then
EP

“

ρpXt, Ytq
‰

“ EPXt,Yt

“

ρ
‰

“ EP
ĂXt,Yt

“

ρ
‰

“ EP
“

ρp rXt, Ytq
‰

.

In conclusion

RT pα,Pq “ sup
xPX

EP

«

T
ÿ

t“1

ρpx, Ytq ´

T
ÿ

t“1

ρpXt, Ytq

ff

“ sup
xPX

ˆ T
ÿ

t“1

EP rρpx, Ytqs ´

T
ÿ

t“1

EP rρpXt, Ytqs

˙

“ sup
xPX

ˆ T
ÿ

t“1

EP rρpx, Ytqs ´

T
ÿ

t“1

EP

”

ρp rXt, Ytq
ı

˙

“ sup
xPX

EP

«

T
ÿ

t“1

ρpx, Ytq ´

T
ÿ

t“1

ρp rXt, Ytq

ff

“ RT prα,Pq .

Since P was arbitrary, it follows that RS
T pαq “ RS

T prαq. Since α was arbitrary, it follows that

R‹
T pG q “ inf

αPA pG q
RS
T pαq “ inf

αPA pG q
RS
T prαq ě inf

α1PA prG q

RS
T pα1q “ R‹

T prG q .

A.7
?
T Lower Bound under Full-Feedback (iid+iv+bd)

In this section, we prove that in the full-feedback case, no strategy can beat the
?
T rate that we

proved in Theorem 3 when the seller/buyer pair pSt, Btq is drawn i.i.d. from an unknown fixed
distribution, not even under the further assumptions that the valuations of the seller and buyer are
independent of each other and have bounded densities.

The idea of the proof is to build a family of environments P˘ε parameterized by ε P r0, 1s, like in
Figure 2.1. The only way to avoid suffering ΩpεT q regret in an environment P˘ε is to identify the sign
of ˘ε. Leveraging the Embedding and Simulation lemmas (Lemmas 19 and 20), this construction
leads to a reduction to a two-action expert problem, which has a know lower bound on the regret of
order

?
T .

Theorem 36 (Theorem 4, restated). With the same notation as in Appendix A.5.2, in the full-
feedback stochastic (iid) setting with independent valuations (iv) and densities bounded by a constant
M ě 4 (bd), for all horizons T P N, the minimax regret satisfies

R‹
T “ Ω

`

?
T
˘

.

Proof. Fix an arbitrary horizon T P N and any M ě 4. Recalling Appendix A.5.2, the full-
feedback stochastic (iid) setting with independent valuations (iv) and densities bounded (bd)
by M is a game G :“ pX ,Y,Z, ρ, φ,Pq, where X “ r0, 1s, Y “ r0, 1s2, Z “ r0, 1s2, ρ “ gft,
φ :

`

p, ps, bq
˘

ÞÑ ps, bq, and P “ PM
iid`iv`bd. Define, for each ε P r´1, 1s, the densities fS,ε “

2p1` εqIr0, 1
4

s ` 2p1´ εqIr 1
2
, 3
4

s and fB “ 2Ir 1
4
, 1
2

sYr 3
4
,1s. Fix the adversary’s behavior P1 as the subset of

P whose elements have the form µε :“ btPNpfS,εµLbfBµLq, for some ε P r´1, 1s. Since P1 Ă P , the
game G 1 :“ pX ,Y,Z, ρ, φ,P1q is easier than G (i.e., R‹

T pG q ě R‹
T pG 1q) by the Embedding lemma
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(Lemma 19) with rf and g as the identities, and h as the inclusion. Now, define ρ1 : X ˆ Y Ñ r0, 1s,
pp, ps, bqq ÞÑ pb´ sqI

␣

s ď 1
4 ď b

(

I
␣

p ď 1
2

(

` pb´ sqI
␣

s ď 3
4 ď b

(

I
␣

p ą 1
2

(

and note that, defining
G 2 :“ pX ,Y,Z, ρ1, φ,P1q, by the Embedding lemma with rf, g, h as the identities, we have that the
game G 2 is easier than the game G 1 (i.e., R‹

T pG 1q ě R‹
T pG 2q). Then, let Z3 :“ t0, 1u ˆ

“

0, 14
‰

ˆ r0, 1s

and φ3 : X ˆ Y Ñ Z3,
`

p, ps, bq
˘

ÞÑ
`

Its ď 1{4u, sIts ď 1{4u ` ps ´ 1{2qIt1{2 ď s ď 3{4u, b
˘

. Define
the game G 3 :“ pX ,Y,Z3, ρ1, φ3,P1q. By the Embedding lemma with rf, h as the identities and
g : Z3 Ñ Z, pi, rs, bq ÞÑ

`

rsi` p1{2`rsqp1´ iq, b
˘

, we have that the game G 3 is easier than the game G 2

(i.e., R‹
T pG 2q ě R‹

T pG 3q). Next, let φ4 : X ˆ Y Ñ Z3,
`

p, ps, bq
˘

ÞÑ Its ď 1
4u, and define the game

G 4 :“ pX ,Y,Z3, ρ1, φ4,P1q. Let pYtqtPN be the adversary’s actions in G 4. A tedious computation
verifies that for all t P N, p P X , and environments P of game G 3, Pφ3pp,Ytq “ Pπpφ3pp,Ytqq bpνbfBµLq,
where π : Z3 Ñ t0, 1u is the projection on the first component t0, 1u of Z3 and ν is the uniform
distribution on r0, 1{4s. By the well-known Skorokhod representation [185, Section 17.3], there exists
ψ : r0, 1s Ñ r0, 1{4s ˆ r0, 1s such that ν b fBµL “ pµLqψ. Thus, by the Simulation lemma (Lemma 20)
with I “ X and U “ ∅, the game G 4 is easier than G 3 (i.e., R‹

T pG 3q ě R‹
T pG 4q). Finally, consider

the game G 5 :“
`

t1, 2u, t1, 2u, t0, 1u, ρ5, φ5,P5

˘

, where in matrix notation, ρ5 “
“

ρ5pi, jq
‰

i,jPt1,2u
and

φ5 “
“

φ5pi, jq
‰

i,jPt1,2u
are given by

ρ5 :“

«

1{2 3{8

3{8 1{2

ff

, φ5 :“

«

1 0

1 0

ff

,

and P5 is the set of all measures rµε of the form rµε “ b8
t“1

`

1`ε
2 δ1 ` 1´ε

2 δ2
˘

for some ε P r´1, 1s,
where δi is the Dirac measure at i P t1, 2u. Thus, letting S4 and S5 be the two sets of environments
in games G 4 and G 5 respectively (note that S4 coincides with the set of environments of G 1) and
using again the Embedding lemma, this time with rf : r0, 1s Ñ t1, 2u, p ÞÑ Itp ď 1{2u ` 2Itp ą 1{2u,
g : t0, 1u Ñ t0, 1u, i ÞÑ i, and h : S5 Ñ S4, rµε b µL ÞÑ µε b µL, we obtain that G 5 is easier than
G 4 (i.e., R‹

T pG 4q ě R‹
T pG 5q). This last game G 5 is an online learning problem with full information

(also known as learning with expert advice), whose minimax regret is known to be lower bounded by
1

8
?
2π

?
T [70]. In conclusion, we proved that R‹

T pG q ě R‹
T pG 5q ě 1

8
?
2π

?
T .

A.8 Proof of T 2{3 Lower Bound under Realistic Feedback (iid+iv+bd)

In this section we give a detailed proof of our T 2{3 lower bound of Section 2.4.2 which hinges in
a non-trivial way on our Embedding and Simulation lemmas (Lemmas 19 and 20). We denote
Bernoulli distributions with parameter λ by Berλ.

Theorem 37 (Theorem 6, restated). With the same notation as in Appendix A.5.2, in the realistic-
feedback stochastic (iid) setting with independent valuations (iv) and densities bounded by a constant
M ě 24 (bd), for all horizons T P N, the minimax regret satisfies

R‹
T ě

11

672
T 2{3 .

Proof. Fix an arbitrary horizon T P N and any M ě 24. Recalling Appendix A.5.2, the realistic-
feedback stochastic (iid) setting with independent valuations (iv) and densities bounded (bd)
by M is a game G :“ pX ,Y,Z, ρ, φ,Pq, where X “ r0, 1s, Y “ r0, 1s2, Z “ t0, 1u2, ρ “ gft,
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φ :
`

p, ps, bq
˘

ÞÑ
`

Its ď pu, Itp ď bu
˘

, and P “ PM
iid`iv`bd. The idea of the proof is to build a

sequence of games, each one easier than the former, the last of which has a known lower bound
on its minimax regret. In the first step we limit the adversary’s behavior to a parametric family
which is easily manageable and well-represents the difficulty of the problem (see Figure 2.2). In
the second step, we increase the reward of suboptimal actions in order to have only three possible
expected-reward values in each environment. In the third and fifth steps we increase the feedback,
presenting it in a way that highlights that only its first component is informative. In step four and
six, we simulate-away the uninformative parts of the feedback. Finally, in step 7 we show that the
resulting game is harder than a known partial monitoring game with minimax regret of order at
least T 2{3.

Step 1. Let ϑ :“ 1{48. Define the following densities of the seller and buyer, respectively, by

fS,ε :“
1

4ϑ

´

p1 ` εqIr0,ϑs ` p1 ´ εqIr 1
6
, 1
6

`ϑs ` Ir 1
4
, 1
4

`ϑs ` Ir 2
3
, 2
3

`ϑs

¯

,@ε P r´1, 1s ,

fB :“
1

4ϑ

´

Ir 1
3

´ϑ, 1
3 s ` Ir 3

4
´ϑ, 3

4 s ` Ir 5
6

´ϑ, 5
6 s ` Ir1´ϑ, 1s

¯

.

Note that fS,ε corresponds to red/blue in Figure 2.2, while fB to the green part. Define P1 as the
subset of P whose elements have the form µε :“ btPNpfS,εµL b fBµLq for ε P r´1, 1s. Since P1 Ă P ,
the game G 1 :“ pX ,Y,Z, ρ, φ,P1q is easier than G (i.e., R‹

T pG q ě R‹
T pG 1q) by the Embedding

lemma (Lemma 19) with rf and g as the identities, and h as the inclusion.

Step 2. Define ρ2 : X ˆY Ñ r0, 1s,
`

p, ps, bq
˘

ÞÑ gft
`

1
6 `ϑ, ps, bq

˘

I
␣

p ă 1
4

(

`gft
`

1
4 `ϑ, ps, bq

˘

I
␣

1
4 ď

p ă 1
3

(

` gft
`

2
3 ` ϑ, ps, bq

˘

I
␣

1
3 ă p

(

. By the Embedding lemma with rf , g, and h as the identities, we
have that the game G 2 :“ pX ,Y,Z, ρ2, φ,P1q is easier than G 1 (i.e., R‹

T pG 1q ě R‹
T pG 2q).

Step 3. Define Z3 :“
␣

0, 16 ,
1
4 ,

2
3

(

ˆ r0, ϑs ˆ t0, 1u ˆ t0, 1u ˆ X and φ3 : X ˆ Y Ñ Z3,

`

p, ps, bq
˘

ÞÑ

$

&

%

`

ηpsq, s´ ηpsq, 0, Itp ď bu, p
˘

, if p ă 1
4 ,

`

0, 0, Its ď pu, Itp ď bu, p
˘

, if p ě 1
4 ,

where η : r0, 1s Ñ
␣

0, 16 ,
1
4 ,

2
3

(

, s ÞÑ 1
6I
␣

1
6 ď s ď 1

6 ` ϑ
(

` 1
4I
␣

1
4 ď s ď 1

4 ` ϑ
(

` 2
3I
␣

2
3 ď s ď 2

3 ` ϑ
(

.
Define the game G 3 :“ pX ,Y,Z3, ρ2, φ3,P1q. By the Embedding lemma with rf, h as the identities
and

g : Z3 Ñ Z , pv, u, i, j, pq ÞÑ

$

&

%

`

Itv ` u ď pu, j
˘

if p ă 1
4 ,

pi, jq , if p ě 1
4 ,

we have that the game G 3 is easier than G 2 (i.e., R‹
T pG 2q ě R‹

T pG 3q).

Step 4. Let Z4 :“
␣

0, 16 ,
1
4 ,

2
3

(

and φ4 : X ˆ Y Ñ Z4,
`

p, ps, bq
˘

ÞÑ ηpsqI
␣

p ă 1
4

(

. Define the
game G 4 :“ pX ,Y,Z4, ρ2, φ4,P1q. Let pYtqtPN “ pSt, BtqtPN be the adversary’s actions in G 4,
E :“

“

0, ϑ
‰

Y
“

1
6 ,

1
6 `ϑ

‰

Y
“

1
4 ,

1
4 `ϑ

‰

Y
“

2
3 ,

2
3 `ϑ

‰

and F :“
“

1
3 ´ϑ, 13

‰

Y
“

3
4 ´ϑ, 34

‰

Y
“

5
6 ´ϑ, 56

‰

Y
“

1´ϑ, 1
‰

.
A long and tedious computation verifies that for all t P N,

• For each p P r0, 1{4q and any environment P of game G 3, Pφ3pp,Ytq “ PηpStqbpνbδ0bBerλF,p
bδpq,
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where ν is the uniform distribution on r0, ϑs and λF,p :“ 1
4ϑµL

“

rp, 1s X F
‰

. By the well-known
Skorokhod representation [185, Section 17.3], there exists ψp : r0, 1s Ñ r0, ϑsˆt0, 1uˆt0, 1uˆX
such that ν b δ0 b BerλF,p

b δp “ pµLqψp .

• For each p P r1{4, 1s and any environment P of game G 3, Pφ3pp,Ytq “ δ0bδ0bBerλE,p
bBerλF,p

bδp,
where λE,p :“ 1

4ϑµL
“

r0, psXE
‰

and λF,p :“ 1
4ϑµL

“

rp, 1sXF
‰

. By the Skorokhod representation,
there exists γp : r0, 1s Ñ Z3 such that δ0 b δ0 b BerλE,p

b BerλF,p
b δp “ pµLqγp .

Thus, by the Simulation lemma (Lemma 20) with I “ r0, 1{4q and U “ r1{4, 1s, the game G 4 is easier
than G 3 (i.e., R‹

T pG 3q ě R‹
T pG 4q).

Step 5. Let Y5 :“ YN, Z5 :“ t0, 1uˆ
`

NYt8u
˘

ˆt0, 1uˆX , ρ5 : X ˆY5 Ñ r0, 1s,
`

p, psk, bkqkPN
˘

ÞÑ

ρ2pp, s1, b1q,

φ5 : X ˆ Y5 Ñ Z5 ,
`

p, psk, bkqkPN
˘

ÞÑ

$

&

%

´

I
␣

ηpsτ q “ 0
(

, τ, I
␣

ηps1q “ 1
4

(

, p
¯

, if p P
“

0, 14
˘

,

p0, 1, 0, pq , if p P
“

1
4 , 1

‰

,

where η is defined in game G 3, τ :“ inf
␣

k P N | ηpskq P t0, 1{6u
(

P N Y t8u, and s8 :“ 0. Let P5 be
the set of measures on YN

5 of the form rµε :“ btPN
`

bkPNpfS,εµL b fBµLq
˘

for ε P r´1, 1s, and define
the game G 5 :“ pX ,Y5,Z5, ρ5, φ5,P5q. By the Embedding lemma with rf as the identity,

g : Z5 Ñ Z4 , pz, k, j, pq ÞÑ
1

6
p1 ´ zqI

"

p ă
1

4
, k “ 1

*

`

ˆ

1

4
j `

2

3
p1 ´ jq

˙

I
"

p ă
1

4
, k ą 1

*

,

and h : rµε b µL ÞÑ µε b µL, we have that the game G 5 is easier than G 4 (i.e., R‹
T pG 4q ě R‹

T pG 5q).

Step 6. Now, define π : Z5 Ñ t0, 1u as the projection on the first component t0, 1u of Z5,
Z6 :“ t0, 1u, φ6 :“ π ˝φ5, and the game G 6 :“ pX ,Y5,Z6, ρ5, φ6,P5q. Let prYtqtPN be the adversary’s
actions in G 5. A straightforward verification shows that for all t P N,

• For each p P r0, 1{4q and any environment P of game G 5, Pφ5pp,rYtq
“ P

π
`

φ5pp,rYtq

˘ b pν b δpq,

where ν is the unique distribution on
`

N Y t8u
˘

ˆ t0, 1u such that, for all k P N Y t8u,
j P t0, 1u, ν

“

tpk, jqu
‰

“ 1
2Itk “ 1, j “ 0u ` 1

2k`1 It1 ă k ă 8u. Using again the Skorokhod
representation, there exists ψp : r0, 1s Ñ

`

N Y t8u
˘

ˆ t0, 1u ˆ r0, 1s such that ν b δp “ pµLqψp .

• For each p P r1{4, 1s and any environment P of game G 5, Pφ5pp,rYtq
“ δp0,1,0,pq “ pµLqγp , where

γp : r0, 1s Ñ Z5, λ ÞÑ p0, 1, 0, pq.

Thus, by the Simulation lemma with I “ r0, 1{4q and U “ r1{4, 1s, the game G 6 is easier than G 5

(i.e., R‹
T pG 5q ě R‹

T pG 6q).

Step 7. Finally, consider the game G 7 :“
`

t1, 2, 3u, t1, 2u, t0, 1u, ρ7, φ7,P7

˘

, where in matrix
notation, ρ7 “

“

ρpi, jq
‰

iPt1,2,3u,jPt1,2u
and φ7 “

“

φpi, jq
‰

iPt1,2,3u,jPt1,2u
are given by

ρ7 :“
1

96

»

—

–

34 34

45 37

38 44

fi

ffi

fl

, φ7 :“

»

—

–

1 0

0 0

0 0

fi

ffi

fl

,
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and P7 is the set of all measures of the form btPN
`

1`ε
2 δ1` 1´ε

2 δ2
˘

, for ε P r´1, 1s. Thus, using again the
Embedding lemma, this time with rf : r0, 1s Ñ t1, 2, 3u, p ÞÑ Itp ă 1{4u`2It1{4 ď p ď 1{3u`3It1{3 ă pu,
g : t0, 1u Ñ t0, 1u, i ÞÑ i, and h : btPN

`

1`ε
2 δ1 ` 1´ε

2 δ2
˘

bµL ÞÑ rµε bµL, we obtain that G 7 is easier
than G 6 (i.e., R‹

T pG 6q ě R‹
T pG 7q). This last game is an instance of the so-called revealing action

partial monitoring game, whose minimax regret is known to be lower bounded by 11
96

`

1
7T

2{3
˘

[49]. In
conclusion, we proved that R‹

T pG q ě R‹
T pG 7q ě 11

672T
2{3.

A.9 Linear Lower Bound under Realistic Feedback (iid+bd)

In this section, we prove that in the realistic-feedback case, no strategy can achieve sublinear
worst-case regret in the independent and identically distributed case when the valuations of the
buyer and the seller may be dependent, not even if they have a bounded density.

The idea of the proof is to exploit the lack of observability in this setting, building a family
of environments Pλ (parameterized by λ P r0, 1s) as convex combinations of the two measures in
Figure 2.3. If λ ă 1{2, the optimal action is 3{8, while if λ ą 1{2, the optimal action becomes 5{8. This
family is built is such a way that the feedback gives no information on λ, making it impossible to
distinguish between the two cases. Leveraging the Embedding and Simulation lemmas (Lemmas 19
and 20), this construction leads to a reduction to an instance of a non-observable partial monitoring
game, whose regret is trivially lower bounded by T {24.

Theorem 38 (Theorem 7, restated). With the same notation as in Appendix A.5.2, in the realistic-
feedback stochastic (iid) setting with joint density bounded by a constant M ě 64{3 (bd), for all
horizons T P N, the minimax regret satisfies

R‹
T ě

1

24
T .

Proof. Fix any horizon T P N and M ě 64{3. Recalling Appendix A.5.2, the realistic-feedback
stochastic (iid) setting with joint density bounded by M (bd) is a game G :“ pX ,Y,Z, ρ, φ,Pq,
where X “ r0, 1s, Y “ r0, 1s2, Z “ t0, 1u2, ρ “ gft, φ :

`

p, ps, bq
˘

ÞÑ
`

Its ď pu, Itp ď bu
˘

, and
P “ PM

iid`bd. Define the two joint densities f “ 64
3

`

Ir0{8,1{8sˆr3{8,4{8s ` Ir2{8,3{8sˆr7{8,8{8s ` Ir4{8,5{8sˆr5{8,6{8s

˘

and g : r0, 1s2 Ñ r0,M s, ps, bq ÞÑ fp1 ´ b, 1 ´ sq (see Figure 2.3, left). Let P1 be the subset
of PM

iid`bd whose elements have the form µλ :“ btPN
``

p1 ´ λqf ` λg
˘

pµL b µLq
˘

for λ P r0, 1s.
Since P1 Ă P the game G 1 :“ pX ,Y,Z, ρ, φ,P1q is easier than G (i.e., R‹

T pG q ě R‹
T pG 1q) by the

Embedding lemma (Lemma 19) with rf and g as the identities, and h as the inclusion. Define
Z1 :“ t0u and φ1 : X ˆ Y Ñ Z1 ,

`

p, ps, bq
˘

ÞÑ 0. Let pYtqtPN be the adversary’s actions in
G1. Now, since for all t P N, any two environments P and Q of game G 1, and each p P r0, 1s,
Pφpp,Ytq “ Qφpp,Ytq, then by the well-known Skorokhod representation [185, Section 17.3], for each
t P N and each p P r0, 1s there exists γt,p : r0, 1s Ñ t0, 1u2 such that for any environment P of
game G 1, Pφpx,Ytq “ pµLqγt,x . Thus, the Simulation lemma (Lemma 20) with I “ ∅ and U “ X
implies that the game G 2 :“ pX ,Y,Z2, ρ, φ2,P1q is easier than G 1 (i.e., R‹

T pG 1q ě R‹
T pG 2q). Define

ρ3 : X ˆ Y Ñ r0, 1s ,
`

p, ps, bq
˘

ÞÑ pb ´ sqI
␣

s ď 3
8 ď b

(

I
␣

p ď 1
2

(

` pb ´ sqI
␣

s ď 5
8 ď b

(

I
␣

p ą 1
2

(

and G 3 :“ pX ,Y,Z2, ρ3, φ2,P1q. By the Embedding lemma with rf, g, h as the identities, we have
that the game G 3 is easier than the game G 2 (i.e., R‹

T pG 2q ě R‹
T pG 3q). Finally, consider the

game G 4 :“
`

t1, 2u, t1, 2u, t0u, ρ4, φ4,P4

˘

, where in matrix notation, ρ4 “
“

ρpi, jq
‰

i,jPt1,2u
and
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φ4 “
“

φpi, jq
‰

i,jPt1,2u
are given by

ρ4 :“

«

1{3 1{4

1{4 1{3

ff

, φ4 :“

«

0 0

0 0

ff

,

and P4 is the set of all measures of the form p1 ´ λqδ1 ` λδ2, for λ P r0, 1s. Using again the
Embedding lemma, this time with rf : r0, 1s Ñ t1, 2u, p ÞÑ Itp ď 1{2u ` 2It1{2 ă pu, g : t0u Ñ t0u,
i ÞÑ i, and h : btPN

`

p1 ´ λqδ1 ` λδ2
˘

b µL ÞÑ µλ b µL, we obtain that G 4 is easier than G 3 (i.e.,
R‹
T pG 3q ě R‹

T pG 4q). This last game has (trivially) minimax regret at most
`

1
3 ´ 1

4

˘

T
2 . In conclusion,

we proved that R‹
T pG q ě R‹

T pG 4q ě 1
24T .

A.10 Linear Lower Bound under Realistic Feedback (iid+iv)

In this section, we prove that in the realistic-feedback case, no strategy can achieve sublinear regret
without any limitations on how concentrated the distributions of the valuations of the seller and
buyer are, not even if they are independent of each other (iv) and the process of valuations is
independent and identically distributed (iid).

The idea of the proof is that if the two distributions are very concentrated in a small region,
finding an optimal price is like finding a needle in a haystack. Each strategy that (at each time
step) receives as feedback only a finite number of bits, as in our realistic setting, can assign positive
probability to at most a countable set of points. Thus one could find concentrated distributions of
the buyer and seller that have a unique optimal point in which the strategy has zero probability of
posting prices at all time steps, and such that all other prices suffer large regret.

Theorem 39 (Theorem 8, restated). With the same notation as in Appendix A.5.2, in the realistic-
feedback stochastic (iid) setting with independent valuations (iv), for all horizons T P N, the minimax
regret satisfies

R‹
T ě

1

8
T .

Proof. To lighten the notation, for any n P N and a family pλkqkPN, we let λ1:n :“ pλ1, . . . , λnq. Fix
an arbitrary horizon T P N. Recalling Appendix A.5.2, the realistic-feedback stochastic (iid) setting
with independent valuations (iv) is a game G :“ pX ,Y,Z, ρ, φ,Pq, where X “ r0, 1s, Y “ r0, 1s2,
Z “ t0, 1u2, ρ “ gft, φ :

`

p, ps, bq
˘

ÞÑ
`

Its ď pu, Itp ď bu
˘

, and P “ Piid`iv. Let S be the set of
environments of G . Fix a strategy α for game G and let ε P p0, 1q. Define ᾱ1 :“ α1, ν1 :“ pµLqᾱ1 ,
and for each t P N and z1, . . . , zt P t0, 1u2,

ᾱt`1,z1:t : r0, 1st`1 Ñ r0, 1s, u1:t`1 ÞÑ αt`1pu1:t`1, z1:tq and νt`1,z1:t :“ pb
t`1
s“1µLqᾱt`1,z1:t

.

Define also the set A1 :“
␣

x P r0, 1s | ν1rtxus ą 0
(

and, for each t P N, the union At`1 :“
Ť

z1:tPt0,1u2

␣

x P r0, 1s | νt,z1:trtxus ą 0
(

. Note that, for each t P N, At is countable, being the union
of 4t´1 countable sets. Then A :“

Ť

tPNAt is countable. Since B :“ r1´ε
2 , 1`ε

2 s has the power of
continuum, we have that the same holds for BzA. In particular, BzA is non-empty. Pick x‹ P BzA

and define µS :“ 1
2δ0 ` 1

2δx‹ , µB :“ 1
2δx‹ ` 1

2δ1, and P :“ pbtPNpµS b µBqq b µL P S. Then for each
t P N, we have that

EP
“

ρpx‹, Ytq
‰

“
x‹ ` p1 ´ x‹q ` 1

4
.
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On the other hand, PrX1 “ x‹s “ ν1rtx‹us “ 0 and for each t P N, we have that

PrXt`1 “ x‹s “ P rαt`1pU1, . . . , Ut`1, Z1, . . . , Ztq “ x‹s

“
ÿ

z1,...,ztPt0,1u2

P rαt`1pU1, . . . , Ut`1, z1, . . . , ztq “ x‹ X Z1 “ z1 X ¨ ¨ ¨ X Zt “ zts

ď
ÿ

z1,...,ztPt0,1u2

P rαt`1pU1, . . . , Ut`1, z1, . . . , ztq “ x‹s “
ÿ

z1,...,ztPt0,1u2

νt`1,z1,...,zt rtx‹us “ 0 ,

which in turn gives

EP
“

ρpXt, Ytq
‰

“
EP

“

ρ
`

Xt, p0, x
‹q
˘‰

` EP
“

ρ
`

Xt, px
‹, 1q

˘‰

` EP
“

ρ
`

Xt, p0, 1q
˘‰

` EP
“

ρ
`

Xt, px
‹, x‹q

˘‰

4

“
x‹PXt

“

r0, x‹s
‰

` p1 ´ x‹qPXt

“

rx‹, 1s
‰

` 1

4
“
x‹PXt

“

r0, x‹q
‰

` p1 ´ x‹qPXt

“

px‹, 1s
‰

` 1

4

ď
maxpx‹, 1 ´ x‹q ` 1

4
“
x‹ ` p1 ´ x‹q ` 1 ´ minpx‹, 1 ´ x‹q

4
.

So, if T P N we get

RT pα,Pq “ EP

«

T
ÿ

t“1

ρpx‹, Ytq ´

T
ÿ

t“1

ρpXt, Ytq

ff

ě
minpx‹, 1 ´ x‹q

4
T ě

1 ´ ε

8
T.

Since ε was arbitrary, we get, for all T P N, RS
T pαq “ supPPS RT pα,Pq ě supεPp0,1q

1´ε
8 T “ T{8. Since

α was arbitrary we get, for each T P N, R‹
T “ infαPA RS

T pαq ě T{8.

A.11 Adversarial Setting: Linear Lower Bound under Full Feedback

In this section, we give a more detailed proof of Theorem 1 with a notation consistent with our
abstract setting of sequential games.

Theorem 40 (Theorem 1, restated). With the same notation as in Appendix A.5.2, in the full-
feedback adversarial (adv) setting, for all horizons T P N, we have

R‹
T ě

1

4
T .

Proof. Recalling Appendix A.5.2, the full-feedback adversarial (adv) bilateral trade setting is a game
G :“ pX ,Y,Z, ρ, φ,Pq, where X “ r0, 1s, Y “ r0, 1s2, Z “ r0, 1s2, ρ “ gft, φ :

`

p, ps, bq
˘

ÞÑ ps, bq,
and P “ Padv. Let S be the set of environments of G . Fix a strategy α P A and an ε P p0, 1{18q.
Define ᾱ1 :“ α1, ν1 :“ pµLqᾱ1 , and

$

&

%

c1 :“
1
2 ´ 3

2ε, d1 :“
1
2 ´ 1

2ε, s1 :“ 0, b1 :“ d1, if ν1
““

0, 12 ´ 1
2ε
‰‰

ď 1
2 ,

c1 :“
1
2 ` 1

2ε, d1 :“
1
2 ` 3

2ε, s1 :“ c1, b1 :“ 1, otherwise.

If t P N, suppose we defined ᾱt, νt, ct, dt, st, bt and let

ᾱt`1 : r0, 1st`1 Ñ r0, 1s, pu1, . . . , ut`1q ÞÑ αt`1 pu1, . . . , ut`1, ps1, b1q, . . . , pst, btqq ,
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νt`1 :“
`

b
t`1
s“1µL

˘

ᾱt`1
, and

$

&

%

ct`1 :“ ct, dt`1 :“ dt ´ 2ε
3t , st`1 :“ 0, bt`1 :“ dt`1, if νt`1

““

0, ct ` ε
3t

‰‰

ď 1
2 ,

ct`1 :“ ct ` 2ε
3t , dt`1 :“ dt, st`1 :“ ct`1, bt`1 :“ 1, otherwise.

Then pᾱtqtPN, pνtqtPN, pctqtPN, pdtqtPN, pstqtPN, pbtqtPN are well-defined by induction and satisfy:

• For each t P N, dt ´ ct “ ε
3t´1 .

• For each t P N, c1 ď c2 ď c3 ď ¨ ¨ ¨ ď ct ď dt ď ¨ ¨ ¨ ď d3 ď d2 ď d1.

• D!x‹ P
Ş8
t“1rct, dts.

• For each t P N, ρ px‹, pst, btqq “ bt ´ st ě 1´3ε
2 .

• For each t P N, P
“

αt
`

U1, . . . , Ut, ps1, b1q, . . . , pst´1, bt´1q
˘

P rst, bts
‰

ď 1
2 .

Now, define P :“
`

btPNδpst,btq

˘

b µL P S. Then, for each t P N,

EPrρ pXt, Ytqs “ EP

”

ρ
´

αt
`

U1, . . . , Ut, ps1, b1q, . . . , pst´1, bt´1q
˘

, pst, btq
¯ı

ď

ˆ

1

2
`

3ε

2

˙

P
“

αt
`

U1, . . . , Ut, ps1, b1q, . . . , pst´1, bt´1q
˘

P rst, bts
‰

ď
1

4
`

3ε

4
,

and so, for each T P N

RT pα,Pq “ EP

«

T
ÿ

t“1

ρpx‹, Ytq ´

T
ÿ

t“1

ρpXt, Ytq

ff

“

T
ÿ

t“1

ρpx‹, pst, btqq ´

T
ÿ

t“1

EP rρ pXt, Ytqs

ě

T
ÿ

t“1

pbt ´ stq
`

1 ´ P
“

αt
`

U1, . . . , Ut, ps1, b1q, . . . , pst´1, bt´1q
˘

P rst, bts
‰˘

ě
1 ´ 3ε

4
T .

Since ε was arbitrary, we get, for all T P N, RS
T pαq “ supPPS RT pα,Pq ě supεPp0,1{18q

1´3ε
4 T “ T

4 .
Since α arbitrarity, we get, for each T P N, R‹

T “ infαPA RS
T pαq ě T

4 .

A.12 DKW Inequalities

We begin this section by presenting the univariate DKW inequality as proved by Massart [135].

Theorem 41. If pΩ,F ,Pq is a probability space and X,X1, X2, . . . is a P-i.i.d. sequence of random
variables, then, for any ε ą 0 and all m P N, it holds

P

«

sup
xPR

∣∣∣∣∣ 1m
m
ÿ

k“1

ItXk ď xu ´ PrX ď xs

∣∣∣∣∣ ą ε

ff

ď 2 exp
`

´2mε2
˘

.

We now present a bivariate DKW inequality which can be proved by applying the VC-type
bound of [13, Theorem 4.9; see also Lemmas 4.4, 4.5, and 4.11 for the explicit constants].

Theorem 42. There exist positive constants m0 ď 1200, c1 ď 13448, c2 ě 1{576 such that, if
pΩ,F ,Pq is a probability space, pX,Y q, pX1, Y1q, pX2, Y2q, . . . is a P-i.i.d. sequence of two-dimensional
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random vectors, then, for any ε ą 0 and all m P N such that m ě m0{ε2, it holds

P

«

sup
x,yPR

∣∣∣∣∣ 1m
m
ÿ

k“1

ItXk ď x, Yk ď yu ´ PrX ď x, Y ď ys

∣∣∣∣∣ ą ε

ff

ď c1 exp
`

´c2mε
2
˘

.

A.13 Proof of the Representation Lemma

In this section, we fill in the missing details we left unproven in Section 2.5.2. Specifically, we prove
now that, if S,B are two independent random variables supported in r0, 1s that share the same
distribution µ and (hence have) common expectation µ̄, then, for each t P N and each p P r0, 1s it
holds that:

2E
”

gft
`

p, pS,Bq
˘

ı

“ rρ pµq ppq ` µ tpu

ˆ
ż p

0
µ r0, λs dλ`

ż 1

p
µ rλ, 1s dλ

˙

where
rρ pµq ppq “

ż p

0
pµ r0, λs ` µ r0, λqq dλ` pµ r0, ps ` µ r0, pqq pµ̄´ pq .

For notational convenience, let V be another random variable with distribution µ.
In what follows, we will use the following observation. For any 0 ď a ă b ď 1 we have

•
şb
a P rV ě λs dλ “

şb
a P rV ą λs dλ,

•
şb
a P rV ď λs dλ “

şb
a P rV ă λs dλ.

This is due to the fact that the two functions λ ÞÑ P rV ě λs and λ ÞÑ P rV ą λs are different only
in a set that is at most countable. Hence, the set where they differ have measure zero and the first
two integral coincides. The same reasoning applies to the second two integrals.

Now, notice that, by the decomposition lemma Lemma 2, for all p P r0, 1s,

2E
”

gft
`

p, pS,Bq
˘

ı

“ 2P rV ď ps

ż 1

p
P rλ ď V s dλ` 2P rV ě ps

ż p

0
P rV ď λs dλ

“ pP rV ď ps ` P rV ă psq

ż 1

p
P rV ě λs dλ` pP rV ě ps ` P rV ą psq

ż p

0
P rV ď λs dλ

` pP rV ď ps ´ P rV ă psq

ż 1

p
P rV ě λs dλ` pP rV ě ps ´ P rV ą psq

ż p

0
P rV ď λs dλ

“ pP rV ď ps ` P rV ă psqE rV s ´ pP rV ď ps ` P rV ă psq

ż p

0
P rV ě λs dλ

` p1 ´ P rV ă ps ` 1 ´ P rV ď psq

ż p

0
p1 ´ P rV ą λsq dλ` pP rV ď ps ´ P rV ă psq

ż 1

p
P rV ě λs dλ

` pP rV ě ps ´ P rV ą psq

ż p

0
P rV ď λs dλ

“ pP rV ď ps ` P rV ă psq pE rV s ´ pq ´ pP rV ď ps ` P rV ă psq

ż p

0
P rV ě λs dλ

` 2p´ p1 ´ P rV ă ps ` 1 ´ P rV ď psq

ż p

0
P rV ą λs dλ` pP rV ď ps ´ P rV ă psq

ż 1

p
P rV ě λs dλ

` pP rV ě ps ´ P rV ą psq

ż p

0
P rV ď λs dλ
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“ pP rV ď ps ` P rV ă psq pE rV s ´ pq ´ pP rV ď ps ` P rV ă psq

ż p

0
P rV ě λs dλ

` 2p´ p1 ´ P rV ă ps ` 1 ´ P rV ď psq

ż p

0
p1 ´ P rV ď λsq dλ

` pP rV ď ps ´ P rV ă psq

ż 1

p
P rV ě λs dλ` pP rV ě ps ´ P rV ą psq

ż p

0
P rV ď λs dλ

“ 2

ż p

0
P rV ď λs dλ` pP rV ď ps ` P rV ă psq pE rV s ´ pq ´ pP rV ă ps ` P rV ď psq

ż p

0
P rV ď λs dλ

´ pP rV ď ps ` P rV ă psq

ż p

0
P rV ě λs dλ` pP rV ă ps ` P rV ď psq p

` pP rV ď ps ´ P rV ă psq

ż 1

p
P rV ě λs dλ` pP rV ě ps ´ P rV ą psq

ż p

0
P rV ď λs dλ

“

ż p

0
pµ r0, λs ` µ r0, λqq dλ` pµ r0, ps ` µ r0, pqq pµ̄´ pq ´ pP rV ă ps ` P rV ď psq

ż p

0
P rV ď λs dλ

´ pP rV ď ps ` P rV ă psq

ż p

0
P rV ě λs dλ` pP rV ă ps ` P rV ď psq p

` pP rV ď ps ´ P rV ă psq

ż 1

p
P rV ě λs dλ` pP rV ě ps ´ P rV ą psq

ż p

0
P rV ď λs dλ

— rρ pµq ppq ` pIq .

It is left to prove that pIq “ µ tpu

´

şp
0 µ r0, λs dλ`

ş1
p µ rλ, 1s dλ

¯

. In fact

pIq “ ´ pP rV ă ps ` P rV ď psq

ż p

0
P rV ď λs dλ´ pP rV ď ps ` P rV ă psq

ż p

0
P rV ě λs dλ

` pP rV ă ps ` P rV ď psq p` pP rV ď ps ´ P rV ă psq

ż 1

p
P rV ě λs dλ

` pP rV ě ps ´ P rV ą psq

ż p

0
P rV ď λs dλ

“ ´ pP rV ă ps ` P rV ď psq

ż p

0
P rV ď λs dλ´ pP rV ď ps ` P rV ă psq

ż p

0
p1 ´ P rV ď λsq dλ

` pP rV ă ps ` P rV ď psq p` pP rV ď ps ´ P rV ă psq

ż 1

p
P rV ě λs dλ

` pP rV ě ps ´ P rV ą psq

ż p

0
P rV ď λs dλ

“
`

pP rV ď ps ` P rV ă psq ´ pP rV ă ps ` P rV ď psq
˘

ż p

0
P rV ď λs dλ

´ pP rV ď ps ` P rV ă psq p` pP rV ă ps ` P rV ď psq p

` pP rV ď ps ´ P rV ă psq

ż 1

p
P rV ě λs dλ` pP rV ě ps ´ P rV ą psq

ż p

0
P rV ď λs dλ

“ pP rV ď ps ´ P rV ă psq

ż 1

p
P rV ě λs dλ` pP rV ě ps ´ P rV ą psq

ż p

0
P rV ď λs dλ

“ P rV “ ps

ż 1

p
P rV ě λs dλ` P rV “ ps

ż p

0
P rV ď λs dλ

“ P rV “ ps

ˆ
ż p

0
P rV ď λs dλ`

ż 1

p
P rV ě λs dλ

˙
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“ µ tpu

ˆ
ż p

0
µ r0, λs dλ`

ż 1

p
µ rλ, 1s dλ

˙

which concludes the proof of the claim.

A.14 Missing Details in the Proof of Theorem 12

We will show now that, with the notation of the proof of the Theorem 12, for any M ě 2, if
t ě 580M4, it holds that

E
”

`

Z ´ E
“

Z | DZ,1, . . . , DZ,2pt´1q

‰˘2
ı

ě
1

147
¨

1

t´ 1
.

For any t P N, we have

E
”

pZ ´ E rZ | DZ,1, . . . , DZ,tsq
2
ı

ě E
„

pZ ´ E rZ | DZ,1, . . . , DZ,tsq
2 I

"

Z P

„

1

2
´
εM
9
,
1

2
`
εM
9

ȷ*ȷ

“ E

»

—

—

—

—

–

¨

˚

˚

˚

˚

˝

˜

Z ´

t
ÿ

k“1

DZ,k

¸

looooooooomooooooooon

a

`

˜

t
ÿ

k“1

DZ,k ´ ErZ | DZ,1, . . . , DZ,ts

¸

looooooooooooooooooooooomooooooooooooooooooooooon

b

˛

‹

‹

‹

‹

‚

2

I
"

Z P

„

1

2
´
εM
9
,
1

2
`
εM
9

ȷ*

fi

ffi

ffi

ffi

ffi

fl

ě E

»

–

˜

Z ´
1

t

t
ÿ

k“1

DZ,k

¸2

I
"

Z P

„

1

2
´
εM
9
,
1

2
`
εM
9

ȷ*

fi

fl

´ 2E

« ˇ

ˇ

ˇ

ˇ

ˇ

Z ´
1

t

t
ÿ

k“1

DZ,k

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

t

t
ÿ

k“1

DZ,k ´ E rZ | DZ,1, . . . , DZ,ts

ˇ

ˇ

ˇ

ˇ

ˇ

I
"

Z P

„

1

2
´
εM
9
,
1

2
`
εM
9

ȷ*

ff

— pIq ´ 2 ¨ pIIq ,

where the last inequality follows from pa` bq2 ě a2 ´ 2 |ab|. Now, if W is a uniform random variable
on

“

1
2 ´

εM
9 ,

1
2 `

εM
9

‰

independent of pDq,tqqPr0,1s,tPN, we have that

pIq “ E

»

–

˜

Z ´
1

t

t
ÿ

k“1

DZ,k

¸2

| Z P

„

1

2
´
εM
9
,
1

2
`
εM
9

ȷ

fi

flP
„

Z P

„

1

2
´
εM
9
,
1

2
`
εM
9

ȷȷ

“
1

9
E

»

–

˜

Z ´
1

t

t
ÿ

k“1

DZ,k

¸2

| Z P

„

1

2
´
εM
9
,
1

2
`
εM
9

ȷ

fi

fl “
1

9
E

»

–

˜

W ´
1

t

t
ÿ

k“1

DW,k

¸2
fi

fl — p‹q .

It follows that

p‹q “
1

9

ż 1
2

`
εM
9

1
2

´
εM
9

E

»

–

˜

w ´
1

t

t
ÿ

k“1

Dw,k

¸2
fi

fl dPW pwq “
1

9

ż 1
2

`
εM
9

1
2

´
εM
9

Var

«

1

t

t
ÿ

k“1

Dw,k

ff

dPW pwq

“
1

9

ż 1
2

`
εM
9

1
2

´
εM
9

w p1 ´ wq

t
dPW pwq ď

1

9

3

7

4

7

1

t
“

4

147
¨
1

t
.
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About the term pIIq, we have

pIIq ď P

«

Z P

„

1

2
´
εM
9
,
1

2
`
εM
9

ȷ

X
1

t

t
ÿ

k“1

DZ,k R

„

1

2
´
εM
6
,
1

2
`
εM
6

ȷ

ff

` E

« ˇ

ˇ

ˇ

ˇ

ˇ

Z ´
1

t

t
ÿ

k“1

DZ,k

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

t

t
ÿ

k“1

DZ,k ´ E rZ | DZ,1, . . . , DZ,ts

ˇ

ˇ

ˇ

ˇ

ˇ

¨

¨ I
"

Z P

„

1

2
´
εM
9
,
1

2
`
εM
9

ȷ*

I

#

1

t

t
ÿ

k“1

DZ,k P

„

1

2
´
εM
6
,
1

2
`
εM
6

ȷ

+ff

— pIIIq ` pIVq

About the term pIIIq, we have

pIIIq “

ż 1
2

`
εM
9

1
2

´
εM
9

P

«

1

t

t
ÿ

k“1

Dz,k R

„

1

2
´
εM
6
,
1

2
`
εM
6

ȷ

ff

dPZ pzq

“

ż 1
2

`
εM
9

1
2

´
εM
9

P

«#

1

t

t
ÿ

k“1

Dz,k ´ z ă
1

2
´
εM
6

´ z

+

Y

#

1

t

t
ÿ

k“1

Dz,k ´ z ą
1

2
`
εM
6

´ z

+ff

dPZ pzq

ď

ż 1
2

`
εM
9

1
2

´
εM
9

˜

exp

˜

´2

ˆ

1

2
´
εM
6

´ z

˙2

t

¸

` exp

˜

´2

ˆ

1

2
`
εM
6

´ z

˙2

t

¸¸

dPZ pzq

ď

ż 1
2

`
εM
9

1
2

´
εM
9

˜

exp

˜

´2

ˆ

1

2
´
εM
6

´
1

2
`
εM
9

˙2

t

¸

` exp

˜

´2

ˆ

1

2
`
εM
6

´
1

2
´
εM
9

˙2

t

¸¸

dPZ pzq

“
2

9
exp

ˆ

´2
´εM
18

¯2
t

˙

“
2

9
exp

ˆ

´
ε2M
162

t

˙

“
2

9
exp

˜

´

`

7
M

˘2

162
t

¸

“
2

9
exp

ˆ

´
49

162
¨
t

M2

˙

,

where the first inequality follows from Hoeffding’s inequality. About the term pIVq, we have

pIVq ď

g

f

f

eE

«
ˇ

ˇ

ˇ

ˇ

ˇ

Z ´
1

t

t
ÿ

k“1

DZ,k

ˇ

ˇ

ˇ

ˇ

ˇ

2

I
"

Z P

„

1

2
´

εM
9

,
1

2
`

εM
9

ȷ*

I

#

1

t

t
ÿ

k“1

DZ,k P

„

1

2
´

εM
6

,
1

2
`

εM
6

ȷ

+ff

¨

¨

g

f

f

eE

«
ˇ

ˇ

ˇ

ˇ

ˇ

1

t

t
ÿ

k“1

DZ,k ´ E rZ | DZ,1, . . . , DZ,ts

ˇ

ˇ

ˇ

ˇ

ˇ

2

I
"

Z P

„

1

2
´

εM
9

,
1

2
`

εM
9

ȷ*

I

#

1

t

t
ÿ

k“1

DZ,k P

„

1

2
´

εM
6

,
1

2
`

εM
6

ȷ

+ff

ď

g

f

f

eE

«
ˇ

ˇ

ˇ

ˇ

ˇ

Z ´
1

t

t
ÿ

k“1

DZ,k

ˇ

ˇ

ˇ

ˇ

ˇ

2

I
"

Z P

„

1

2
´

εM
9

,
1

2
`

εM
9

ȷ*

ff

¨

¨

g

f

f

eE

«ˇ

ˇ

ˇ

ˇ

ˇ

1

t

t
ÿ

k“1

DZ,k ´ E rZ | DZ,1, . . . , DZ,ts

ˇ

ˇ

ˇ

ˇ

ˇ

2

I

#

1

t

t
ÿ

k“1

DZ,k P

„

1

2
´

εM
6

,
1

2
`

εM
6

ȷ

+ff

“

c

4

147
¨
1

t
¨

g

f

f

eE

«ˇ

ˇ

ˇ

ˇ

ˇ

1

t

t
ÿ

k“1

DZ,k ´ E rZ | DZ,1, . . . , DZ,ts

ˇ

ˇ

ˇ

ˇ

ˇ

2

I

#

1

t

t
ÿ

k“1

DZ,k P

„

1

2
´

εM
6

,
1

2
`

εM
6

ȷ

+ff

— p˝q ,

where the first inequality follows from Cauchy-Schwarz and the last inequality follows from p‹q. Now,
using that pa´ bq2 ď 2a2 ` 2b2 for any a, b P R, we get:

ˇ

ˇ

ˇ

ˇ

ˇ

1

t

t
ÿ

k“1

DZ,k ´ E rZ | DZ,1, . . . , DZ,ts

ˇ

ˇ

ˇ

ˇ

ˇ

2

I

#

1

t

t
ÿ

k“1

DZ,k P

„

1

2
´
εM
6
,
1

2
`
εM
6

ȷ

+

ď 2

ˇ

ˇ

ˇ

ˇ

ˇ

1

t

t
ÿ

k“1

DZ,k ´
1 `

řt
k“1DZ,k

t` 2

ˇ

ˇ

ˇ

ˇ

ˇ

2

`
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2

ˇ

ˇ

ˇ

ˇ

ˇ

1 `
řt
k“1DZ,k

t` 2
´ E rZ | DZ,1, . . . , DZ,ts

ˇ

ˇ

ˇ

ˇ

ˇ

2

I

#

1

t

t
ÿ

k“1

DZ,k P

„

1

2
´
εM
6
,
1

2
`
εM
6

ȷ

+

— pVq ` pVIq .

Simple calculations show that

pVq ď
18

t2
.

About pVIq, we first compute E rZ | DZ,1, . . . , DZ,ts using Bayes’ formula and get

E rZ | DZ,1, . . . , DZ,ts “

ş

r 1
2

´εM , 1
2

`εM s
p1`

řt
k“1DZ,k p1 ´ pq

t´
řt

k“1DZ,k dp

ş

r 1
2

´εM , 1
2

`εM s
p
řt

k“1DZ,k p1 ´ pq
t´

řt
k“1DZ,k dp

,

then, we select, for any n P N and x P p0, 1q, a binomial random variable Bin pn, xq of parameters n
and x, to get

pVIq “ 2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 `
řt

k“1DZ,k

t ` 2
´

ş

r 1
2

´εM , 1
2

`εM s
p1`

řt
k“1 DZ,k p1 ´ pq

t´
řt

k“1 DZ,k dp

ş

r 1
2

´εM , 1
2

`εM s
p
řt

k“1
DZ,k p1 ´ pq

t´
řt

k“1
DZ,k dp

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

I

#

řt
k“1DZ,k

t
P

„

1

2
´
εM

6
,
1

2
`
εM

6

ȷ

+

“

»

–2

ˇ

ˇ

ˇ

ˇ

ˇ

s ` 1

t ` 2

t ´ s ` 1

t ` 2

ˇ

ˇP
“

Bin
`

t ` 2, 1
2

` εM
˘

“ s ` 1
‰

´ P
“

Bin
`

t` 2, 1
2

´ εM
˘

“ s ` 1
‰ˇ

ˇ

ˇ

ˇP
“

Bin
`

t ` 1, 1
2

` εM
˘

ě s ` 1
‰

´ P
“

Bin
`

t` 1, 1
2

´ εM
˘

ě s ` 1
‰ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

I
"

s

t
P

„

1

2
´
εM

6
,
1

2
`
εM

6

ȷ *

fi

fl

|s“
řt

k“1
DZ,k

ď

»

–2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇP
“

Bin
`

t ` 2, 1
2

` εM
˘

“ s ` 1
‰

´ P
“

Bin
`

t ` 2, 1
2

´ εM
˘

“ s ` 1
‰ˇ

ˇ

ˇ

ˇP
“

Bin
`

t ` 1, 1
2

` εM
˘

ě s ` 1
‰

´ P
“

Bin
`

t ` 1, 1
2

´ εM
˘

ě s ` 1
‰ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

I
"

s

t
P

„

1

2
´
εM

6
,
1

2
`
εM

6

ȷ *

fi

fl

|s“
řt

k“1
DZ,k

ď

»

–2

ˇ

ˇ

ˇ

ˇ

ˇ

max
`

P
“

Bin
`

t ` 2, 1
2

` εM
˘

“ s ` 1
‰

,P
“

Bin
`

t ` 2, 1
2

´ εM
˘

“ s ` 1
‰˘

ˇ

ˇP
“

Bin
`

t ` 1, 1
2

` εM
˘

ě s ` 1
‰

´ P
“

Bin
`

t ` 1, 1
2

´ εM
˘

ě s ` 1
‰ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

I
"

s

t
P

„

1

2
´
εM

6
,
1

2
`
εM

6

ȷ *

fi

fl

|s“
řt

k“1
DZ,k

ď

»

–2

ˇ

ˇ

ˇ

ˇ

ˇ

max
`

P
“

Bin
`

t ` 2, 1
2

` εM
˘

ď s ` 1
‰

,P
“

Bin
`

t ` 2, 1
2

´ εM
˘

ě s ` 1
‰˘

ˇ

ˇP
“

Bin
`

t ` 1, 1
2

` εM
˘

ě s ` 1
‰

´ P
“

Bin
`

t ` 1, 1
2

´ εM
˘

ě s ` 1
‰ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

I
"

s

t
P

„

1

2
´
εM

6
,
1

2
`
εM

6

ȷ *

fi

fl

|s“
řt

k“1
DZ,k

— p♥q .

Now, since, for any s, t P N, if s
t P

“

1
2 ´

εM
6 ,

1
2 `

εM
6

‰

and t ě 6
7M we have that

s` 1

t` 1
P

„

1

2
´
εM
3
,
1

2
`
εM
3

ȷ

,
s` 1

t` 2
P

„

1

2
´
εM
3
,
1

2
`
εM
3

ȷ

we get, using Hoeffding inequality in each of the following inequalities, that

P
„

Bin

ˆ

t` 1,
1

2
` εM

˙

ě s` 1

ȷ

“ P
„

1

t` 1
Bin

ˆ

t` 1,
1

2
` εM

˙

´

ˆ

1

2
` εM

˙

ě
s` 1

t` 1
´

ˆ

1

2
` εM

˙ȷ

“ 1 ´ P
„

1

t` 1
Bin

ˆ

t` 1,
1

2
` εM

˙

´

ˆ

1

2
` εM

˙

ă ´

ˆˆ

1

2
` εM

˙

´
s` 1

t` 1

˙ȷ

ě 1 ´ exp

˜

´2

ˆˆ

1

2
` εM

˙

´
s` 1

t` 1

˙2

pt` 1q

¸

ě 1 ´ exp

ˆ

´
8

9
ε2M pt` 1q

˙

(A.3)
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while

P
„

Bin

ˆ

t` 1,
1

2
´ εM

˙

ě s` 1

ȷ

“ P
„

1

t` 1
Bin

ˆ

t` 1,
1

2
´ εM

˙

´

ˆ

1

2
´ εM

˙

ě
s` 1

t` 1
´

ˆ

1

2
´ εM

˙ȷ

ď exp

˜

´2

ˆ

s` 1

t` 1
´

ˆ

1

2
´ εM

˙˙2

pt` 1q

¸

ď exp

ˆ

´
8

9
ε2M pt` 1q

˙

(A.4)

and

P
„

Bin

ˆ

t` 2,
1

2
` εM

˙

ď s` 1

ȷ

“ P
„

1

t` 2
Bin

ˆ

t` 2,
1

2
` εM

˙

´

ˆ

1

2
` εM

˙

ď
s` 1

t` 2
´

ˆ

1

2
` εM

˙ȷ

ď exp

˜

´2

ˆ

s` 1

t` 2
´

ˆ

1

2
` εM

˙˙2

pt` 2q

¸

ď exp

ˆ

´
8

9
ε2M pt` 2q

˙

(A.5)

and, finally

P
„

Bin

ˆ

t` 2,
1

2
´ εM

˙

ě s` 1

ȷ

“ P
„

1

t` 2
Bin

ˆ

t` 2,
1

2
´ εM

˙

´

ˆ

1

2
´ εM

˙

ě
s` 1

t` 2
´

ˆ

1

2
´ εM

˙ȷ

ď exp

˜

´2

ˆ

s` 1

t` 2
´

ˆ

1

2
´ εM

˙˙2

pt` 2q

¸

ď exp

ˆ

´
8

9
ε2M pt` 2q

˙

. (A.6)

Plugging the inequalities (A.3), (A.4), (A.5), (A.6) into p♥q, we get

p♥q ď 2

˜

exp
`

´8
9ε

2
M pt` 2q

˘

1 ´ 2 exp
`

´8
9ε

2
M pt` 1q

˘

¸2

I

#

1

t

t
ÿ

k“1

DZ,k P

„

1

2
´
εM
6
,
1

2
`
εM
6

ȷ

+

ď 2

˜

exp
`

´8
9ε

2
M pt` 2q

˘

1 ´ 2 exp
`

´8
9ε

2
M pt` 1q

˘

¸2

and hence

pIVq ď p˝q ď

c

4

147
¨
1

t
¨
a

E rpVq ` pVIqs ď

c

4

147
¨
1

t
¨

g

f

f

e

18

t2
` 2

˜

exp
`

´8
9ε

2
M pt` 2q

˘

1 ´ 2 exp
`

´8
9ε

2
M pt` 1q

˘

¸2

“

c

4

147

g

f

f

e18 ` 2

˜

t
exp

`

´392
9
t`2
M2

˘

1 ´ 2 exp
`

´392
9
t`2
M2

˘

¸2

¨
1

t3{2

Putting everything together, we have:

E
”

pZ ´ E rZ | DZ,1, . . . , DZ,tsq
2
ı

ě pIq ´ 2 ¨ pIIq ě
4

147
¨
1

t
´ 2 ¨

`

pIIIq ` pIVq
˘
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ě
4

147
¨
1

t
´ 2 ¨

¨

˚

˝

2

9
exp

ˆ

´
49

162
¨
t

M2

˙

`

c

4

147

g

f

f

e18 ` 2

˜

t
exp

`

´392
9
t`2
M2

˘

1 ´ 2 exp
`

´392
9
t`2
M2

˘

¸2

¨
1

t3{2

˛

‹

‚

— p♠q

Elementary computations show that:

• if t ě 274M4 then 4
9 exp

`

´ 49
162 ¨ t

M2

˘

ď 1
147 ¨ 1

t

• if t ě 2M4 then exp
`

´392
9
t`2
M2

˘

ď 1
t

• if t ě 4
100M

2 then 1 ´ 2 exp
`

´392
9
t`2
M2

˘

ě 1
2

• therefore, if t ě max
`

2M4, 4
100M

2, 61152
˘

, we have

2

c

4

147

g

f

f

e18 ` 2

˜

t
exp

`

´392
9
t`2
M2

˘

1 ´ 2 exp
`

´392
9
t`2
M2

˘

¸2

¨
1

t3{2
ď

1

147
¨
1

t
.

These together with p♠q implies that, if t ě max
`

274M4, 61152
˘

(which is in particular implied by
t ě 580M4), we have that

E
”

pZ ´ E rZ | DZ,1, . . . , DZ,tsq
2
ı

ě
2

147
¨
1

t
.

In conclusion, if 2 pt´ 1q ě 580M4 (which is again implied by t ě 580M4), we have that

E
”

`

Z ´ E
“

Z | DZ,1, . . . , DZ,2pt´1q

‰˘2
ı

ě
1

147
¨

1

t´ 1
.

A.15 Inverse-Transformation Representability with One Bit and
Two Environments

In this section, we denote the Lebesgue measure on r0, 1s by L.
We recall that given two probability measures P and Q on a measurable space pΩ,Fq, we say

that Q is absolutely continuous with respect to P and we write Q ! P if for all E P F such that
PrEs “ 0, it holds that QrEs “ 0. Moreover, if Q ! P, the Radon-Nikodym theorem states that
there exists a density (called Radon-Nikodym derivative of Q with respect to P and denoted by)
dQ
dP : Ω Ñ r0,8q such that, for all E P F , it holds that

QrEs “

ż

E

dQ
dP

pωq dPpωq .

For a reference of the previous result, see [29, Theorem 13.4].
Moreover, if pΩ,F ,Pq is a probability space, pX ,FX q is a measurable space, and X is a random

variable from pΩ,Fq to pX ,FX q, we denote by PX the push-forward measure of P by X, i.e., the
probability measure defined on FX by PXrF s – PrX P F s, for all F P FX .

If pΩ,Fq and pΩ1,F 1q are two measurable spaces, we denote by F b F 1 the σ-algebra of subsets
of Ω ˆ Ω1 generated by the collection of subsets of the form F ˆ F 1, where F P F and F 1 P F 1.
If pΩ,F ,Pq and pΩ1,F 1,P1q are two probability spaces, we denote the product measure of P and
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P1 by P b P1, i.e., P b P1 is the unique probability measure defined on F b F 1 which satisfies
pP b P1qrF ˆ F 1s “ PrF sP1rF 1s, for all E P F and E1 P F 1.

If pΩ,F ,Pq is a probability space, pX ,FX q and pY,FYq are measurable spaces, X is a random
variable from pΩ,Fq to pX ,FX q, and Y is a random variable from pΩ,Fq to pY,FYq, we denote
the conditional probability of X given Y by PX|Y , i.e., PX|Y rEs “ PrX P E | Y s, for each E P FX .
In this case, for each E P FX , we recall that PX|Y rEs is a σpY q-measurable random variable.
Furthermore, if X 1 is another random variable from pΩ,Fq to some measurable space pX 1,FX 1q, f
and g are two real-valued bounded measurable functions (respectively from pX b Y,FX b FYq to
the reals and from pX 1 bY,FX 1 bFYq to the reals), and both pX ,FX q and pX ,FX 1q are measurable
spaces that arise from considering the Borel subsets of separable and complete metric space pX , dq

and pX 1, d1q respectively, it holds that

E
“

fpX,Y qgpX 1, Y q | Y
‰

“ E
“

fpX,Y q | Y
‰

¨ E
“

gpX 1, Y q | Y
‰

whenever
PpX,X 1q|Y “ PX|Y b PX 1|Y .

A.15.1 Our Inverse-Transformation Result

In this section, we present a theorem that extends, in spirit, the classic inverse transformation
method. This result that can be of independent interest for replacing a type of feedback with another
of better quality in lower-bound constructions based on reductions to simpler games.

Definition 9 (Inverse-transformation representability). Let pΩ,F ,Pq be a probability space and B
be the Borel σ-algebra of r0, 1s. We say that P is inverse-transformation-representable if there exists
a measurable function ψ from

`

r0, 1s,B
˘

to pΩ,Fq such that P “ Lψ.∗∗

The following theorem is a simple consequence of [134, Corollary A.11], and shows “inverse-
transformation representability in separable and complete metric spaces”.

Theorem 43. Suppose that pY, dq is a separable and complete metric space, with FY as the Borel σ-
algebra of pY, dq. Then any probability measure defined on FY is inverse-transformation-representable.

We are now ready to state the main theorem of this section. When we are uncertain about
the underlying probability according to which some samples are drawn, and the uncertainty is
between two probability measure P and Q, the theorem provides a characterization under which
we can simulate a random variable Y using some independent random seed U and having access
to a 1-bit random variable X. This theorem can be of independent interest as a tool for lower
bound reductions in online learning problems, as we used for example in Theorem 17. It establishes
“One-bit/two-environments inverse-transformation representability in separable and complete metric
spaces”.

Theorem 44. Suppose that pY, dq is a separable and complete metric space with FY as the Borel σ-
algebra of pY, dq. Let pΩ,Fq be a measurable space, X a random variable from pΩ,Fq to

`

t0, 1u, 2t0,1u
˘

,
Y a random variable from pΩ,Fq to pY,FYq, and U random variable from pΩ,Fq to

`

r0, 1s,B
˘

,

∗∗We recall that L is the Lebesgue measure on B.
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pΩ,Fq
`

t0, 1u ˆ r0, 1s, 2t0,1u b Bu
˘

pY,FYq

φ

pX,Uq

Y

Figure A.1: Pictorial representation of Theorem 44. The way to interpret it is not event by event
but in probability: the probability of a measurable set in FY can be computed in Ω equivalently via
the pullback of Y , or of φ ˝ pX,Uq.

where B is the Borel σ-algebra of r0, 1s. Suppose that P,Q are probability measures defined on F ,
and p P p0, 1q, q P r0, 1s are such that:

• PrX “ 1s “ p and QrX “ 1s “ q.

• U is a uniform random variable on r0, 1s both under P and Q, i.e., we have that PU “ L “ QU .

• U is independent of X both under P and Q, i.e., PpX,Uq “ PX b PU and QpX,Uq “ QX b QU .

Then, the following are equivalent:

1. There exists a measurable function φ from
`

t0, 1u ˆ r0, 1s, 2t0,1u b B
˘

to pY,FYq such that

PY “ PφpX,Uq and QY “ QφpX,Uq .

2. QY ! PY , and PY -almost-surely it holds that

min
dQX

dPX
ď

dQY

dPY
ď max

dQX

dPX
.

Proof. We divide the proof in two parts, depending on whether or not p “ q.
Assume first that p ‰ q. In this case, we will prove the chain of equivalencies

Item 1 ô Item a ô Item b ô Item c ô Item 2 ,

where Item a, Item b, and Item c are the following propositions:

a) There exists two probability measures µ0 and µ1 over FY such that

PY “ p1 ´ pqµ0 ` pµ1 and QY “ p1 ´ qqµ0 ` qµ1 .

b) q
q´pPY ´

p
q´pQY ě 0 and 1´p

q´pPY ´
1´q
q´pQY ě 0 .

c) QY ! PY and min
`

q
p ,

1´q
1´p

˘

ď
QY rAs

PY rAs
ď max

`

q
p ,

1´q
1´p

˘

for all A P FY such that PY rAs ą 0.

We begin by proving that Item 1 is equivalent to Item a. Assume Item 1. Define µ0 – Pφp0,Uq

and µ1 – Pφp1,Uq. Since U is uniform under both under P and Q, it also holds that µ0 “ Qφp0,Uq

and µ1 “ Qφp1,Uq. Thus

PY “ PφpX,Uq “ p1 ´ pqPφp0,Uq ` pPφp1,Uq “ p1 ´ pqµ0 ` pµ1
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QY “ QφpX,Uq “ p1 ´ qqQφp0,Uq ` qQφp1,Uq “ p1 ´ qqµ0 ` qµ1 ,

where we used that fact that X and U are independent both under P and Q and that PrX “ 1s “ p,
QrX “ 1s “ q. This proves Item a.

Vice versa, assume Item a. By Theorem 43, we can find two measurable functions ψ0, ψ1 from
`

r0, 1s,B
˘

to pY,FYq such that µ0 “ Lψ0 and µ1 “ Lψ1 and define

φpx, uq –

$

&

%

ψ0puq if x “ 0

ψ1puq if x “ 1

for all x P t0, 1u and u P r0, 1s. Then φ is a measurable function from
`

t0, 1u ˆ r0, 1s, 2t0,1u b B
˘

to
pY,FYq, and since X is independent of U and U is uniform on r0, 1s both under P and Q, we have

PφpX,Uq “ p1 ´ pqPφp0,Uq ` pPφp1,Uq “ p1 ´ pqPψ0pUq ` pPψ1pUq

“ p1 ´ pqLψ0 ` pLψ1 “ p1 ´ pqµ0 ` pµ1 “ PY
QφpX,Uq “ p1 ´ qqQφp0,Uq ` qQφp1,Uq “ p1 ´ qqQψ0pUq ` qQψ1pUq

“ p1 ´ qqLψ0 ` qLψ1 “ p1 ´ qqµ0 ` qµ1 “ QY

This proves Item 1 and in turn yields that Item 1 is equivalent to Item a.
We now prove that Item a is equivalent to Item b. Assume Item a. Then, for each A P FY we

have that the pair
`

µ0rAs, µ1rAs
˘

is the (only) solution of the linear system

$

&

%

p1 ´ pqx0 ` px1 “ PY rAs

p1 ´ qqx0 ` qx1 “ QY rAs

in the two variables px0, x1q, which implies

µ0rAs “
q

q ´ p
PY rAs ´

p

q ´ p
QY rAs and µ1rAs “

1 ´ p

q ´ p
QY rAs ´

1 ´ q

q ´ p
PY rAs .

Since µ0 and µ1 are (non-negative) measures, this implies Item b.
Vice versa, assume Item b. Define

µ0 –
q

q ´ p
PY ´

p

q ´ p
QY and µ1 –

1 ´ p

q ´ p
QY ´

1 ´ q

q ´ p
PY .

Since µ0 and µ1 are a linear combination of measures, they are signed measures and, by Item b,
actually, they are (non-negative) measures. The fact that they are also probability measures follows
trivially from PY rYs “ 1 “ QY rYs. Now, a direct verification shows that PY “ p1 ´ pqµ0 ` pµ1 and
QY “ p1 ´ qqµ0 ` qµ1, i.e., that Item a holds. We have then proved that Item a is equivalent to
Item b.

We now prove that Item b is equivalent to Item c. Firstly, note that by elementary linear-algebra
(dividing by rp and solving by rq{rp the linear system of inequalities), for each rq P r0, 1s and rp P p0, 1s,
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the following equivalence holds
$

’

’

&

’

’

%

q

q ´ p
rp´

p

q ´ p
rq ě 0

1 ´ p

q ´ p
rq ´

1 ´ q

q ´ p
rp ě 0

ðñ min

ˆ

q

p
,
1 ´ q

1 ´ p

˙

ď
rq

rp
ď max

ˆ

q

p
,
1 ´ q

1 ´ p

˙

(A.7)

Assume Item b. Note that if p ă q (resp., q ă p), then if A P FY is such that PY rAs “ 0, the
first (resp., second) inequality in Item b implies that also QY rAs “ 0, which in turn yields QY ! PY .
Furthermore, for each A P FY such that PY rAs ‰ 0, the equivalence in (A.7) with rp – PY rAs and
rq – QY rAs implies that

min

ˆ

q

p
,
1 ´ q

1 ´ p

˙

ď
QY rAs

PY rAs
ď max

ˆ

q

p
,
1 ´ q

1 ´ p

˙

which yields Item c.
Vice versa, assume Item c. Note that Item b holds

• For all A P FY such that PY rAs “ 0, because in this case also QY rAs “ 0

• For all A P FY such that PY rAs ‰ 0, by the equivalence in (A.7) with rp – PY rAs and rq – QY rAs

This proves that Item b and Item c are equivalent.
We now prove that Item c is equivalent to Item 2. Assume Item c. Assume by contradiction that

Item 2 does not hold. Then, there exists A P FY such that PY rAs ą 0 such that either for all y P A

it holds that max
`

dQX
dPX

˘

ă
dQY
dPY

pyq or it holds that min
`

dQX
dPX

˘

ą
dQY
dPY

pyq. In the first case

max

ˆ

dQX

dPX

˙

“ max

ˆ

q

p
,
1 ´ q

1 ´ p

˙

ě
QY rAs

PY rAs
“

1

PY rAs

ż

A

dQY

dPY
dPY ą max

ˆ

dQX

dPX

˙

,

yielding the contradiction we were seeking. The second case yields a contradiction in an analogous
manner.

Vice versa, assume Item 2. Then, if A P FY is such that PY rAs ą 0, notice that

min

ˆ

q

p
,
1 ´ q

1 ´ p

˙

“ min

ˆ

dQX

dPX

˙

ď
1

PY rAs

ż

A

dQY

dPY
dPY ď max

ˆ

dQX

dPX

˙

“ max

ˆ

q

p
,
1 ´ q

1 ´ p

˙

which together with
QY rAs

PY rAs
“

1

PY rAs

ż

A

dQY

dPY
dPY

(since QY ! PY ), implies Item c. This proves that Item c and Item 2 are equivalent and shows in
turn that Item 1 is equivalent to Item 2 whenever p ‰ q.

Assume now that p “ q. Assume Item 1. Since X is independent of U and U is uniform on r0, 1s

both under P and Q, we get

PY “ PφpX,Uq “ p1 ´ pqPφp0,Uq ` pPφp1,Uq “ p1 ´ qqQφp0,Uq ` qQφp1,Uq “ QφpX,Uq “ QY .

Hence, in particular QY ! PY and dQY
dPY

“ 1 PY -almost-surely, which, together with the fact

min

ˆ

dQX

dPX

˙

ď 1 ď max

ˆ

dQX

dPX

˙
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implies Item 2.
Vice versa, assume Item 2. Fix a measurable function ψ from

`

r0, 1s,B
˘

to pY,FYq such that
PY “ Lψ (whose existence is guaranteed by Theorem 43). Let φpx, uq – ψpuq for all x P t0, 1u and
u P r0, 1s. Being U uniform both under P and Q, we get that PφpX,Uq “ PψpUq “ Lψ “ QψpUq “

QφpX,Uq. Moreover, since p “ q, we have that min dQX
dPX

“ 1 “ max dQX
dPX

, which, together with
Item 2, yields that, for any A P FY ,

QY rAs “

ż

A

dQY

dPY
dPY “

ż

A
1 dPY “ PY rAs ,

thus PY “ QY . Putting everything together, since we proved that all distributions PφpX,Uq, PY ,
QφpX,Uq, QY are equal to each other, we obtain Item 1, concluding the proof.

A.16 Missing Proofs from Section 2.6.2

This section is devoted to proving the main result of the weakly budget-balanced Section 2.6: under
the realistic feedback model, every learner suffers at least ΩpT 3{4q regret, even if it is allowed to post
two different prices, one to the seller and one (larger) to the buyer, and the sequence of valuations is
independent and identically distributed (iid) with a shared bounded density (bd).

Theorem 17. Consider the problem of repeated bilateral trade in the weakly budget-balanced realistic-
feedback model. There exists a numerical constants c ą 50´3 such that, for any time horizon
T ě 8008, the minimax regret satisfies

RS
T ě cT 3{4 ,

where S is the set of all environments such that

(bd) for each t P N, the pair pSt, Btq admits a density bounded above by M ě 9.

(iid) pS1, B1q, pS2, B2q, . . . is an i.i.d. sequence.

Proof. We prove this result in several steps: we begin by constructing a hard instance of the learning
problem, then we present a related (easier) learning problem and, finally, we show that the minimax
regret of the latter (and therefore, the former) is at least ΩpT 3{4q.

The construction of a hard family of adversaries

Fix any M P r9,8q and T ě 8008. Since the regret against an i.i.d. environment is entirely
characterized by the distribution that drives the drawing of seller/buyer valuations, we model the
environment with probability measures. More precisely, we model the environment with a single
sequence of seller/buyer valuations pS,Bq, pS1, B1q, pS2, B2q, . . . whose distribution changes when
we change the underlying probability measure. For any strategy α of the learner, we will find an
underlying probability measure such that the elements in the process pS,Bq, pS1, B1q, pS2, B2q . . .

are such that their distribution with respect to this probability measure admits a density bounded
above by M , the whole process is i.i.d., independent of the player’s randomization, and it satisfies

max
pPr0,1s

TE
“

gft
`

p, pS,Bq
˘‰

´ E

«

T
ÿ

t“1

gft
`

pPt, Qtq, pSt, Btq
˘

ff

ě
1

503
T 3{4 .

156



A.16. Missing Proofs from Section 2.6.2

Let a – 2 ¨ lnp27{16q. Define the six disjoint squares (Figure 2.6, left)

Q1 –
“

0, 16
‰

ˆ
“

1
3 ,

1
2

˘

, Q2 –
“

0, 16
‰

ˆ
“

1
2 ,

2
3

‰

, Q3 –
“

0, 16
‰

ˆ
“

5
6 , 1

‰

,

Q4 –
“

5
6 , 1

‰

ˆ
“

5
6 , 1

‰

, Q5 –
“

5
6 , 1

‰

ˆ
“

0, 16
‰

, Q6 –
“

1
3 ,

1
2

‰

ˆ
“

2
3 ,

5
6

‰

.

Fix the base probability density function f : r0, 1s2 Ñ r0,8q defined for all px, yq P r0, 1s2 by

fpx, yq –
36

1 ` 8a
¨

ˆ

5 ´ 6py ` xq

6py ´ xq
IQ1px, yq ` aIQ2px, yq ` 2aIQ3YQ4YQ5px, yq ` IQ6px, yq

˙

.

We define a set of perturbations of f parameterized by the elements of

Ξ –

!

pv, εq P
`

1
3 ,

1
2

˘

ˆ
`

0, 1
12

˘

| 1
3 ` ε ď v ď 1

2 ´ ε
)

.

For all pv, εq P Ξ, define the four disjoint rectangles (Figure 2.6, left)

R1
v,ε – rv ´ ε, vq ˆ

“

3
4 ,

5
6

‰

, R2
v,ε – rv ´ ε, vq ˆ

“

2
3 ,

3
4

˘

,

R3
v,ε – rv, v ` εs ˆ

“

3
4 ,

5
6

‰

, R4
v,ε – rv, v ` εs ˆ

“

2
3 ,

3
4

˘

.

and the corresponding perturbation gv,ε : r0, 1s2 Ñ R defined for all px, yq P r0, 1s2 by

gv,εpx, yq –
36

1 ` 8a
¨

´

IR1
v,εYR4

v,ε
px, yq ´ IR2

v,εYR3
v,ε

px, yq

¯

.

Note that the rectangles Riv,ε are included in Q6 for all i P r4s and pv, εq P Ξ. We define perturbed
density functions by summing together the base probability density function f and one of the
perturbations above. Formally, for all pv, εq P Ξ, we let

fv,ε – f ` gv,ε .

Let P (resp., Pv,ε, for all pv, εq P Ξ) be a probability measure such that the sequence of seller/buyer
evaluations pS,Bq, pS1, B1q, pS2, B2q, . . . is i.i.d. and the distribution of pS,Bq has density f (resp.,
fv,ε) with respect to the Lebesgue measure. We denote the expectation with respect to P (resp.,
Pv,ε, for all pv, εq P Ξ) by E (resp., Ev,ε). Note that f (resp., fv,ε, for all pv, εq P Ξ) is bounded above
by 9, and hence, by M . Note also that, for each pv, εq P Ξ, and p P r0, 1s,

Ev,ε
“

gft
`

p, pS,Bq
˘‰

“ E
“

gft
`

p, pS,Bq
˘‰

`

ż

r0,psˆrp,1s

py ´ xqgv,εpx, yq dxdy

“ E
“

gft
`

p, pS,Bq
˘‰

`
1

6p1 ` 8aq
¨
ε

144
¨ Λv,εppq `

1

6p1 ` 8aq
¨
ε2

12
¨ Λ 3

4
, 1
12

ppq ,

where, for each u P R and each r ą 0, Λu,r is the tent map centered at u with radius r defined as

Λu,r : R Ñ R , x ÞÑ

ˆ

1 ´
|x´ u|

r

˙`

.
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A direct computation shows that, for each p P r0, 1s

E
“

gft
`

p, pS,Bq
˘‰

“
1

6p1 ` 8aq
¨

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

3p
`

5 ` 29a´ 6p1 ` 3aqp
˘

if p P
“

0, 16
‰

2 ` 13a if p P
`

1
6 ,

1
2

‰

´18ap2 ` 3ap` 2p1 ` 8aq if p P
`

1
2 ,

2
3

‰

´18p2 ` 15p` 10a if p P
`

2
3 ,

5
6

‰

72app1 ´ pq if p P
`

5
6 , 1

‰

(A.8)

from which it can be seen that the function p ÞÑ E
“

gft
`

p, pS,Bq
˘‰

is continuous and maximized
at every point of the plateau region

“

1
6 ,

1
2

‰

(Figure 2.6, right). Putting everything together, we
see that, for each pv, εq P Ξ, the point v is the unique maximizer of the perturbed function
p ÞÑ Ev,ε

“

gft
`

p, pS,Bq
˘‰

, which is increasing on
“

0, 16
‰

, constant on
“

1
6 , v ´ ε

‰

, has a symmetric spike
on rv´ε, v`εs, becomes constant again on

“

v`ε, 12
‰

, and decreases on
“

1
2 , 1

‰

. Given that, regardless
which is the underlying distribution, the expected gain from trade is maximized on the diagonal
tpp, qq P r0, 1s2 | p “ qu, it follows that for each pv, εq P Ξ,

max
pp,qqPU

Ev,ε
“

gft
`

pp, qq, pS,Bq
˘‰

“ Ev,ε
“

gft
`

v, pS,Bq
˘‰

,

where we recall that U is the upper triangle.
Now, we show that the distribution of the realistic feedback

`

I
␣

S ď p
(

, I
␣

q ď B
(˘

is the same
regardless of the underlying perturbed probability measure unless the learner selects a pair of prices
pp, qq in one of the four rectangles where the perturbations occur.

Claim 6. For all pv, εq P Ξ, pp, qq P Uz
Ť

kPr4s R
k
v,ε, and pi, jq P t0, 1u2, it holds

Pv,ε
”

`

ItS ď pu, Itq ď Bu
˘

“ pi, jq
ı

“ P
”

`

ItS ď pu, Itq ď Bu
˘

“ pi, jq
ı

.

Proof. For each pv, εq P Ξ, and each pp, qq P U , the distribution under Pv,ε of the 2-bit feedback
`

ItS ď pu, Itq ď Bu
˘

is given, for all pi, jq P t0, 1u2, by

Pv,ε
”

`

ItS ď pu, Itq ď Bu
˘

“ pi, jq
ı

“

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

Pv,ε
“

S ą pXB ă q
‰

if pi, jq “ p0, 0q

Pv,ε
“

S ą pXB ě q
‰

if pi, jq “ p0, 1q

Pv,ε
“

S ď pXB ă q
‰

if pi, jq “ p1, 0q

Pv,ε
“

S ď pXB ě q
‰

if pi, jq “ p1, 1q

“

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

ş

pp,1sˆr0,qq
fpx, yq dxdy `

ş

pp,1sˆr0,qq
gv,εpx, yq dxdy if pi, jq “ p0, 0q

ş

pp,1sˆrq,1s
fpx, yq dxdy `

ş

pp,1sˆrq,1s
gv,εpx, yqdxdy if pi, jq “ p0, 1q

ş

r0,psˆr0,qq
fpx, yq dxdy `

ş

r0,psˆr0,qq
gv,εpx, yqdxdy if pi, jq “ p1, 0q

ş

r0,psˆrq,1s
fpx, yq dxdy `

ş

r0,psˆrq,1s
gv,εpx, yq dxdy if pi, jq “ p1, 1q

and noting that, by symmetry, all integrals of gv,ε in the previous formula vanish if pp, qq does not
belong to one of the four rectangles R1

v,ε, R
2
v,ε, R

3
v,ε, R

4
v,ε, we get that pp, qq R R1

v,εYR2
v,εYR3

v,εYR4
v,ε
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implies
Pv,ε

”

`

ItS ď pu, Itq ď Bu
˘

“ pi, jq
ı

“ P
”

`

ItS ď pu, Itq ď Bu
˘

“ pi, jq
ı

.

It follows that, for any fixed ε P
`

0, 1
12

˘

, if the learner wants to locate v P
“

1
3 ` ε, 12 ´ ε

‰

observing
samples of the realistic feedback drawn according to the distribution Pv,ε, since R1

v,ε YR2
v,ε YR3

v,ε Y

R4
v,ε Ă Q6, she has to post prices in the region Q6. However, note that for each pv, εq P Ξ and

pp, qq P Q6

Ev,ε
“

gft
`

pp, qq, pS,Bq
˘‰

ď Ev,ε
„

gft

ˆˆ

1

2
,
2

3

˙

, pS,Bq

˙ȷ

ď Ev,ε
„

gft

ˆ

2

3
, pS,Bq

˙ȷ

while posting prices pp1, p1q for p1 belonging to the potentially optimal region
“

1
3 ,

1
2

‰

would return

Ev,ε
“

gft
`

p1, pS,Bq
˘‰

ě Ev,ε
„

gft

ˆ

1

2
, pS,Bq

˙ȷ

.

Hence, for each pv, εq P Ξ, each p1 P
“

1
3 ,

1
2

‰

and each pp, qq P Q6, we have

Ev,ε
“

gft
`

p1, pS,Bq
˘‰

´ Ev,ε
“

gft
`

pp, qq, pS,Bq
˘‰

ě Ev,ε
„

gft

ˆ

1

2
, pS,Bq

˙ȷ

´ Ev,ε
„

gft

ˆ

2

3
, pS,Bq

˙ȷ

“
a

2p1 ` 8aq
P r0.05, 0.06s “ Θp1q

which means that the learner suffers an instantaneous regret of order Θp1q when trying to locate
where the perturbation occurs.

Define K –
P

T 1{4
T

and ε – 1
2K . For each k P t0, . . . ,Ku, define vk – 1

3 ` p2k ´ 1q ε6 . For the
sake of convenience, for each k P rKs denote Pvk,

ε
6 by Pk and the corresponding expectation by Ek,

and similarly, denote P by P0 and the corresponding expectation by E0.

Interlude

Before proceeding further, let’s recap what we have obtained so far and where we plan to go. At
a high level, we built a problem in which we know in advance the region where the optimal pair
of prices belongs (i.e., the diagonal tpp, qq P r0, 1s2 | p “ q P r13 ,

1
2 su), but, when the underlying

environment is determined by the probability measure Pk for some k P rKs, in order not to suffer
regret ΩpεT q, the learner has to detect inside this potentially optimal region where a spike of height
(and base) Θpεq in the reward occurs. This last task can be accomplished only by locating where the
perturbation in the base probability measure occurs, which, given the feedback structure, can only
be done by playing in the costly region Q6, suffering instantaneous regret of order Ωp1q whenever
doing so. However, the region Q6 can be further partitioned into Θp1ε q disjoint rectangles where
these perturbations can occur, and again, given the feedback structure, this implies that each of
these rectangles deserves its own dedicated exploration. To better highlight this underlying structure,
we will show that the bilateral trade problem is no easier than a simplified problem (that we call
multi-apple tasting) where the learner can play 2K actions, which we may identify with the set r2Ks,
and where the instances we consider are determined by the probability measures P0,P1, . . . ,PK .
Each (exploring) action i P rKs gives zero reward (and corresponds to one of the Θp1ε q rectangles
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inside the region Q6), but, if played at time t P N, it reveals the realization of a Bernoulli random
variable Ytpiq which is, up to a rescaling and a shifting, the reward of the corresponding (exploiting)
action i`K at time t. (The reader familiar with the notion of online learning with directed feedback
graphs [8] can see that the feedback model described here corresponds to the weakly observable
feedback graph in Figure 2.7, left). The biases of these Bernoullis depend on which is the underlying
probability measure among P0,P1, . . . ,PK . Specifically, for each i P rKs, each k P t0, . . . ,Ku, and
each t P N, the bias of Ytpiq under Pk is 1

2 if i ‰ k, while it is 1
2 ` Θpεq if i “ k. This way, the

exploiting actions K ` 1, . . . , 2K (which correspond to the regions where the spike in the expected
gain from trade can occur) have an expected reward of order Ωp1q regardless of the underlying
probability measure, so that the potentially optimal arm is among them. The catch is that no
informative feedback is revealed by these K exploiting actions, and only one of them is optimal
when the underlying probability measure is one among P1, . . . ,PK . Specifically, the arm i`K is the
only optimal action when the underlying probability measure is Pi, having an expected reward that
is Θpεq higher that the other potentially optimal actions. Therefore, since spotting the Bernoulli
random variable with bias 1

2 ` Θpεq among the other K ´ 1 unbiased Bernoullis requires playing
the K exploring actions Θ

`

1
ε2

˘

times each, any algorithm for this new problem (and hence, for the
bilateral trade problem) should suffer a regret of order Ω

`

min
`

K
ε2
, εT

˘˘

“ ΩpT 3{4q in at least one
environment among P0,P1, . . . ,PK , given our choices of K and ε. We will now formalize this idea.

The multi-apple tasting problem

We now described the multi-apple tasting problem on 2K arms.
Pick a sequence of t0, 1u2K-valued random variables Y, Y1, . . . , YT and a sequence of r0, 1s-valued

random variables U,U1, . . . , UT , V, V1, . . . , VT such that:

• For each k P t0, . . . ,Ku the sequence Y, Y1, . . . , YT is Pk-i.i.d.

• Letting cprob – 7
2a , for each k P t0, . . . ,Ku and each i P rKs we have that Y pi`Kq “ Y1pi`Kq “

¨ ¨ ¨ “ YT pi`Kq “ 0 and

PkrY piq “ 1s “

$

&

%

1
2 if i P rKsztku

1
2 ` cprob ¨ ε if i “ k

• For each k P t0, . . . ,Ku the sequence V, V1, . . . , VT is Pk-i.i.d. and PkV “ L.

• For each k P t0, . . . ,Ku, we have

Pk̀
ppS,Bq,pS1,B1q,...,pST ,BT qq,pU,U1,...UT q,pY,Y1,...YT q,pV,V1,...VT q

˘

“ PkppS,Bq,pS1,B1q,...,pST ,BT qq b PkpU,U1,...UT q b PkpY,Y1,...YT q b PkpV,V1,...VT q

The multi-apple tasting problem proceeds as follows. At each time t P rT s, the player can play
any action i in the set r2Ks, receiving no feedback if i ě K ` 1 (modeled by Y piq “ Y1piq “ ¨ ¨ ¨ “

YT piq “ 0) and feedback Ytpiq if i P rKs, obtaining in any case (but not observing) a reward ρpi, Ytq,
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where letting cplat – a
2p1`8aq

and cspike – 1
6p1`8aq

¨ 1
144 ,

ρ : r2Ks ˆ t0, 1u2K Ñ R , pj, yq ÞÑ

$

&

%

0 if j P rKs

cplat `
cspike
cprob

¨
`

ypj ´Kq ´ 1
2

˘

otherwise

Observe that for all k P t0, . . . ,Ku and i P tK ` 1, . . . , 2Ku, we have

Ek
“

ρpi, Y q
‰

“

$

&

%

cplat if k ‰ i´K

cplat ` cspike ¨ ε otherwise

Relating the two problems

To map the bilateral trade problem into the multi-apple tasting problem, we first partition the upper
triangle U in the following 2K disjoint regions:

• @k P rK ´ 1s, Jk – rvk ´ ε
6 , vk ` ε

6q ˆ r23 ,
5
6 s

• JK – rvK ´ ε
6 , vK ` ε

6 s ˆ r23 ,
5
6 s

• @k P rK ´ 1s, Jk`K – tpp, qq P U | vk ´ ε
6 ď p ă vk ` ε

6 and q ă 2
3u

• J2K – Uz
Ť2K´1
k“1 Jk

Define ι : U Ñ r2Ks as the map that associates to each pp, qq P U the unique i P r2Ks such that
pp, qq P Ji (Figure 2.7, right).

Claim 7. For any pp, qq P U there exists a function φp,q : t0, 1u ˆ r0, 1s Ñ t0, 1u2 such that, for all
k P t0, . . . ,Ku, the distributions under Pk of φp,qpY pιpp, qqq, V q and

`

IpS ď pq, Itq ď Bu
˘

coincide.

Proof. A direct verification shows that, for all pp, qq P Q6 and k P rKs, it holds that

min

˜

dPkY pkq

dP0
Y pkq

¸

“ 1 ´ 2cprob ¨ ε ď
dPk

pIpSďpq,ItqďBuq

dP0
pIpSďpq,ItqďBuq

ď 1 ` 2cprob ¨ ε “ max

˜

dPkY pkq

dP0
Y pkq

¸

and Pk
pIpSďpq,ItqďBuq

! P0
pIpSďpq,ItqďBuq

. For each pp, qq P Q6, by Theorem 44, there exists (and we
fix)

φp,q : t0, 1u ˆ r0, 1s Ñ t0, 1u2

such that

Pιpp,qq

φp,qpY pιpp,qqq,V q
“ Pιpp,qq

pIpSďpq,ItqďBuq
and P0

φp,qpY pιpp,qqq,V q “ P0
pIpSďpq,ItqďBuq .

Since for all pp, qq P Q6 and all k P rKsz
␣

ιpp, qq
(

, we have Pk
pIpSďpq,ItqďBuq

“ P0
pIpSďpq,ItqďBuq

(by
Claim 6) and Pkφp,qpY pιpp,qqq,V q

“ P0
φp,qpY pιpp,qqq,V q

, then, for all pp, qq P Q6 and all k P t0, . . . ,Ku, it
holds that

Pkφp,qpY pιpp,qqq,V q “ PkpIpSďpq,ItqďBuq .

Moreover, since for all pp, qq P UzQ6 and for all k P t0, . . . ,Ku, it holds that Pk
pIpSďpq,ItqďBuq

“

P0
pIpSďpq,ItqďBuq

(by Claim 6), then, by Theorem 43, there exists (and we fix)

rφp,q : r0, 1s Ñ t0, 1u2
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such that, for all k P t0, . . . ,Ku, it holds that

Pk
rφp,qpV q “ PkpIpSďpq,ItqďBuq .

Defining for all pp, qq P UzQ6 and py, vq P t0, 1uˆr0, 1s, φp,qpy, vq – rφp,qpvq, we obtain the result.

For all pp, qq P U , fix a φp,q as in Claim 7. Now, fix an arbitrary weakly-budget-balanced strategy
α for the bilateral trade problem with realistic feedback. If needed, α has sequential access to the
seeds U1, U2, . . . for randomization purposes. Let pP1, Q1q, pP2, Q2q, . . . be the sequence of prices
posted by the strategy α observing the two-bit feedback

`

ItSt ď Ptu, ItQt ď Bt
˘

u at round t. We
now construct another strategy rα (based on α and the sequence of random seeds V1, V2, . . . ) to solve
this new problem in the following way:

• For each time t P rT s, we use the algorithm α to select a pair p rPt, rQtq P U , then play the action
rIt – ιp rPt, rQtq P r2Ks.

• For each time t P rT s, whenever the strategy α requests some feedback in t0, 1u2, we feed α with
the feedback φ

rPt, rQt

`

YtprItq, Vt
˘

P t0, 1u2.

By induction on t, Claim 7 implies that for all k P t0, . . . ,Ku and t P rT s, we have

Pk
p rPt, rQtq

“ PkpPt,Qtq

which, together with the fact that Pk
p rPt, rQt,Ytq

“ Pk
p rPt, rQtq

bPkYt for all k P t0, . . . ,Ku and t P rT s, yields

RkT pαq – TEk
“

gft
`

vk, pS,Bq
˘‰

´

T
ÿ

t“1

Ek
“

gft
`

pPt, Qtq, pSt, Btq
˘‰

ě TEk
“

ρpk `K,Y q
‰

´

T
ÿ

t“1

Ek
”

ρ
`

ιpPt, Qtq, Yt
˘

ı

“ TEk
“

ρpk `K,Y q
‰

´

T
ÿ

t“1

Ek
”

ρ
`

ιp rPt, rQtq, Yt
˘

ı

“ TEk
“

ρpk `K,Y q
‰

´

T
ÿ

t“1

Ek
“

ρprIt, Ytq
‰

— rRkT prαq ,

where RkT pαq (resp., rRkT prαq) is the regret suffered by the strategy α (resp., rα) after T rounds of the
bilateral trade problem with two-bit feedback (resp., the related problem on 2K actions) in the
environment Pk. Summing over k P rKs and dividing by K, this implies

1

K

ÿ

kPrKs

RkT pαq ě
1

K

ÿ

kPrKs

rRkT prαq ě inf
ᾱPRand

1

K

ÿ

kPrKs

rRkT pᾱq “ inf
ᾱPDet

1

K

ÿ

kPrKs

rRkT pᾱq ,

where the first (resp., second) infimum is over the set Rand (resp., Det) all randomized (resp.,
deterministic) algorithms ᾱ for the related problem on 2K actions, and the last standard equality is
a straightforward consequence of the stochastic i.i.d. setting.

We now show that for any deterministic algorithm ᾱ for the related problem on 2K actions,
it either holds that 1

K

ř

kPrKs
rRkT pᾱq ě 1

503
T 3{4 or that rR0

T pᾱq ě 1
503
T 3{4. This, together with
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the inequalities above will imply that there exists an k P t0, . . . ,Ku such that RkT pαq ě 1
503
T 3{4,

concluding the proof. For any deterministic algorithm ᾱ for the related problem on 2K actions, let
I ᾱ1 , I

ᾱ
2 , . . . be the actions played by ᾱ on the basis of the sequential feedback Zᾱ1 , Zᾱ2 , . . . and

N ᾱ
t –

ÿ

iPrKs

N ᾱ
t piq , M ᾱ

t –
ÿ

iPrKs

M ᾱ
t piq ,

where N ᾱ
t piq –

t
ÿ

s“1

ItI ᾱs “ iu , M ᾱ
t piq –

t
ÿ

s“1

ItI ᾱs “ i`Ku .

Fix an arbitrary deterministic algorithm ᾱ for the related problem on 2K actions. Then

1

K

ÿ

kPrKs

rRkT pᾱq “
1

K

ÿ

kPrKs

´

cspike ¨ ε ¨ Ek
“

T ´M ᾱ
T pkq ´N ᾱ

T

‰

` pcplat ` cspike ¨ εq ¨ EkrN ᾱ
T s

¯

ě cspike ¨ ε

¨

˝T ´
1

K

ÿ

kPrKs

Ek
“

M ᾱ
T pkq

‰

˛

‚— p˝q

Now, since for any t P rT s the action I ᾱt “ ᾱtpZ
ᾱ
1 , . . . , Z

ᾱ
t´1q selected by ᾱ at round t is a deterministic

function of Zᾱ1 , . . . , Zᾱt´1, for each k P rKs, we have

Ek
“

M ᾱ
T pkq

‰

´ E0
“

M ᾱ
T pkq

‰

“

T
ÿ

t“2

´

Pk
“

ᾱtpZ
ᾱ
1 , . . . , Z

ᾱ
t´1q “ k `K

‰

´ P0
“

ᾱtpZ
ᾱ
1 , . . . , Z

ᾱ
t´1q “ k `K

‰

¯

“

T
ÿ

t“2

´

Pk
pZᾱ

1 ,...,Z
ᾱ
t´1q

“

ᾱ´1
t pk `Kq

‰

´ P0
pZᾱ

1 ,...,Z
ᾱ
t´1q

“

ᾱ´1
t pk `Kq

‰

¯

ď

T
ÿ

t“2

∥∥Pk
pZᾱ

1 ,...,Z
ᾱ
t´1q

´ P0
pZᾱ

1 ,...,Z
ᾱ
t´1q

∥∥
8

ď

T
ÿ

t“2

∥∥Pk
pZᾱ

1 ,...,Z
ᾱ
t´1q

´ P0
pZᾱ

1 ,...,Z
ᾱ
t´1q

∥∥
TV

— p‹q

were we ∥¨∥TV denotes the total variation norm. We will now prove that, for each k P rKs and
t P rT s, it holds that ∥∥∥P0

pZᾱ
1 ,...,Z

ᾱ
t q

´ Pk
pZᾱ

1 ,...,Z
ᾱ
t q

∥∥∥
TV

ď cprob ¨ ε ¨

b

2ErN ᾱ
t pkqs (A.9)

By Pinsker’s inequality and the chain rule for KL-divergence DKL, for each k P rKs and t P rT s, we
have

∥∥∥P0
pZᾱ

1 ,...,Z
ᾱ
t q

´ Pk
pZᾱ

1 ,...,Z
ᾱ
t q

∥∥∥
TV

ď

c

1

2
DKL

`

P0
pZᾱ

1 ,...,Z
ᾱ
t q
, Pk

pZᾱ
1 ,...,Z

ᾱ
t q

˘

ď

g

f

f

e

1

2

˜

DKL

`

P0
Zᾱ
1
, Pk

Zᾱ
1

˘

`

t
ÿ

s“2

E
”

DKL

`

P0
Zᾱ
s |Zᾱ

1 ,...,Z
ᾱ
s´1
, Pk

Zᾱ
s |Zᾱ

1 ,...,Z
ᾱ
s´1

˘

ı

¸

— p@q

To upper bound p@q, note first that, since T ě 8008,

1

2

ˆ

ln
1{2

1{2 ´ cprob ¨ ε
` ln

1{2

1{2 ` cprob ¨ ε

˙

ď 4 ¨ c2prob ¨ ε2
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Then, since ᾱ is a deterministic algorithm, I ᾱ1 is a fixed element of r2Ks, which implies that, for all
k P rKs,

DKL

`

P0
Zᾱ
1
, PkZᾱ

1

˘

“

ˆ

ln

ˆ

P0rY1pkq “ 0s

PkrY1pkq “ 0s

˙

P0rY1pkq “ 0s ` ln

ˆ

P0rY1pkq “ 1s

PkrY1pkq “ 1s

˙

P0rY1pkq “ 1s

˙

I
␣

I ᾱ1 “ k
(

“
1

2

ˆ

ln
1{2

1{2 ´ cprob ¨ ε
` ln

1{2

1{2 ` cprob ¨ ε

˙

¨ ItI ᾱ1 “ ku ď 4 ¨ c2prob ¨ ε2 ¨ P0rI ᾱ1 “ ks

Similarly, since ᾱ is a deterministic algorithm, for all s ě 2, the action I ᾱs “ ᾱspZ
ᾱ
1 , . . . , Z

ᾱ
s´1q

selected by ᾱ at time t a function of Zᾱ1 , . . . , Zᾱs´1 only, which implies, for all k P rKs,

DKL

`

P0
Zᾱ
s |Zᾱ

1 ,...,Z
ᾱ
s´1
, PkZᾱ

s |Zᾱ
1 ,...,Z

ᾱ
s´1

˘

“ E0

„

ln

ˆ

P0rZᾱs “ 0 | Zᾱ1 , . . . , Z
ᾱ
s´1s

PkrZᾱs “ 0 | Zᾱ1 , . . . , Z
ᾱ
s´1s

˙

P0rZᾱs “ 0 | Zᾱ1 , . . . , Z
ᾱ
s´1s

` ln

ˆ

P0rZᾱs “ 1 | Zᾱ1 , . . . , Z
ᾱ
s´1s

PkrZᾱs “ 1 | Zᾱ1 , . . . , Z
ᾱ
s´1s

˙

P0rZᾱs “ 1 | Zᾱ1 , . . . , Z
ᾱ
s´1s

ȷ

“ E0

„ˆ

ln

ˆ

P0rYspkq “ 0s

PkrYspkq “ 0s

˙

P0rYspkq “ 0s ` ln

ˆ

P0rYspkq “ 1s

PkrYspkq “ 1s

˙

P0rYspkq “ 1s

˙

ˆ I
␣

ᾱspZ
ᾱ
1 , . . . , Z

ᾱ
s´1q “ k

(

ȷ

“
1

2

ˆ

ln
1{2

1{2 ´ cprob ¨ ε
` ln

1{2

1{2 ` cprob ¨ ε

˙

P0
“

ᾱspZ
ᾱ
1 , . . . , Z

ᾱ
s´1q “ k

‰

ď 4 ¨ c2prob ¨ ε2 ¨ P0rI ᾱs “ ks .

Plugging the two bounds in p@q, we get, for all k P rKs and t P rT s,

p@q ď

g

f

f

e2 ¨ c2prob ¨ ε2 ¨

t
ÿ

s“1

P0rI ᾱs “ ks ď cprob ¨ ε ¨

b

2E0rN ᾱ
t pkqs

which prove claim (A.9). Therefore, we have, for any k P rKs,

Ek
“

M ᾱ
T pkq

‰

´ E0
“

M ᾱ
T pkq

‰

ď p‹q ď

T
ÿ

t“2

cprob ¨ ε ¨

b

2E0rN ᾱ
t´1pkqs ď cprob ¨ ε ¨ T ¨

b

2E0rN ᾱ
T pkqs .

Rearranging, averaging, applying Jensen’s inequality, and recalling that 1
K “ 1

rT 1{4s
ď 1

10 , we obtain

1

K

ÿ

kPrKs

EkrM ᾱ
T pkqs ď

1

K

ÿ

kPrKs

E0rM ᾱ
T pkqs ` cprob ¨ ε ¨ T ¨

g

f

f

f

e2E0

»

–

1

K

ÿ

kPrKs

N ᾱ
T pkq

fi

fl

“
1

K
E0rM ᾱ

T s ` cprob ¨ ε ¨ T ¨

c

2

K
E0rN ᾱ

T s ď

˜

1

10
` cprob ¨ ε ¨

c

2

K
E0rN ᾱ

T s

¸

¨ T .
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Substituting this inequality in p˝q, we obtain

p˝q ě cspike ¨ ε ¨

˜

9

10
´ cprob ¨ ε ¨

c

2

K
E0rN ᾱ

T s

¸

¨ T ě cspike ¨ ε ¨

ˆ

9

10
´
cprob
2

?
τᾱ

˙

¨ T ,

where τᾱ –
E0rN ᾱ

T s

εT .
Now, if τᾱ ď 1

10 , then, the previous inequality yields

1

K

ÿ

kPrKs

rRkT pᾱq ě cspike ¨ ε ¨

ˆ

9

10
´
cprob
2

?
τᾱ

˙

¨ T ě
1

503
T 3{4 .

If, on the other hand, it holds that τᾱ ą 1
10 , then

rR0
T pᾱq ě cplatE0rN ᾱ

T s “ cplatτᾱεT ą
1

503
T 3{4 .
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Appendix B

The Role of Transparency in Repeated
First-Price Auctions with Unknown
Valuations

B.1 Missing Details of the Proof of Theorem 20

In this section, we will complete the proof of Theorem 20, showing that the repeated first-price
auctions with semi-transparent feedback (in the following, referred to as “our problem”) are no
easier than a K-armed bandit instance based on the probability measures P1, . . . ,PK introduced in
Theorem 20. The structure of the proof is inspired by the proof of Theorem 17 in Appendix A.16,
and leverages again the one-bit/two-scenarios inverse transformation representability result of
Theorem 44.

The related bandit problem. The action space is rKs, where we recall that K was some
arbitrarily fixed natural number. Let Y, Y1, Y2, . . . be a sequence of t0, 1uK-valued random variables
such that, for any k P t0, 1, . . . ,Ku, the sequence is Pk-i.i.d. and, for all j P rKs

Pk
“

Y pjq “ 1
‰

“

$

&

%

1{2 if j ‰ k

1{2 ` 1{p6Kq if j “ k

This sequence of latent random variables will determine the rewards of the actions. The reward
function is

ρ : rKs ˆ t0, 1u Ñ r0, 1s , pi, yq ÞÑ
23 ` 2ypiq

192

and the feedback received after playing an action It at time t is YtpItq (which is equivalent to
receiving the bandit feedback ρpIt, Ytq gathered at time t).

For any k P t0, . . . ,Ku and any i P rKs the expected reward is

Ek
“

ρpi, Y q
‰

“

$

’

&

’

%

1

8
if i ‰ k

1

8
`

ε

144
if i “ k
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0 1
4 ` 2ε 3

4 ´ 2ε 1

1 2 3 4 ¨ ¨ ¨

K ´ 2
K ´ 1 K

2ε

Figure B.1: A representation of the map ι through which the bids in the first-price auction problem are related to
the K-arms of the bandit problem. The interval r0, 1s is partitioned in K disjoint intervals, the first and the last one
of length 1{4 ` 2ε, and all the ones in between of length 2ε. ι maps each bid to the index of the interval to which it
belongs.

Mapping our problem into this bandit problem. Assume that K ě 3. We partition the
interval r0, 1s in the following K disjoint regions: J1 “ r0, w1 ` εq, Jk “ rwk ´ ε, wk ` εq (for all
k P t2, . . . ,K ´ 1u), and JK “ rwK ´ ε, 1s. We define a function ι : r0, 1s Ñ rKs that maps each
point in the interval r0, 1s to one of the K arms by mapping each b P r0, 1s to the unique i P rKs

such that b P Ji (for a pictorial representation of the map ι, see Figure B.1).

Simulating the feedback. To lighten the notation, besides the already defined random functions
ψ1, ψ2, . . . , define also:

ψ : r0, 1s Ñ
`

r0, 1s ˆ t‹u
˘

Y
`

t‹u ˆ r0, 1s
˘

, b ÞÑ

$

&

%

pV, ‹q if b ě M

p‹,Mq if b ă M

The next lemma shows that we can use the feedback observed in the bandit problem together with
some independent noise to simulate exactly the feedback of our problem.

Lemma 21. For each b P r0, 1s, there exists φb : t0, 1u ˆ r0, 1s Ñ
`

r0, 1s ˆ t‹u
˘

Y
`

t‹u ˆ r0, 1s
˘

such
that, if U 1 is a r0, 1s-valued random variable such that, for each k P t0, . . . ,Ku, the distribution U 1

with respect to Pk is a uniform on r0, 1s and U 1 is Pk-independent of Y , then PkφbpY pιpbqq,U 1q
“ Pkψpbq.

Proof of Lemma 21. A direct verification shows that, for all k P rKs and all b P r0, 1s, Pkψpbq ! P0
ψpbq

(i.e., Pkψpbq is absolutely continuous with respect to P0
ψpbq) and the Radon-Nikodym derivative of the

push-forward measure Pkψpbq with respect to P0
ψpbq satisfies, for P0

ψpbq-a.e. pv,mq P
`

r0, 1s ˆ t‹u
˘

Y
`

t‹u ˆ r0, 1s
˘

,

dPkψpbq

dP0
ψpbq

pv,mq “ 1 ` ε ¨
16

9
pv ´ bq sgn

ˆ

v ´
15

16

˙

Λwk,εpbqI
"

v P

„

7

8
, 1

ȷ*

which implies, for P0
ψpbq-a.e. pv,mq P

`

r0, 1s ˆ t‹u
˘

Y
`

t‹u ˆ r0, 1s
˘

, that

min

˜

dPkY pιpbqq

dP0
Y pιpbqq

¸

“ 1 ´
4

3
ε ď

dPkψpbq

dP0
ψpbq

pv,mq ď 1 `
4

3
ε “ max

˜

dPkY pιpbqq

dP0
Y pιpbqq

¸

Thus, for each b P r0, 1s, by Theorem 44, there exists (and we fix)

φb : t0, 1u ˆ r0, 1s Ñ
`

r0, 1s ˆ t‹u
˘

Y
`

t‹u ˆ r0, 1s
˘
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such that
PιpbqφbpY pιpbqq,U 1q

“ Pιpbqψpbq and P0
φbpY pιpbqq,U 1q “ P0

ψpbq .

Since for all b P r0, 1s and all k P rKsz
␣

ιpbq
(

, we have Pkψpbq “ P0
ψpbq (by Equation (3.1)) and

PkφbpY pιpbqq,U 1q
“ P0

φbpY pιpbqq,U 1q
, then, for all b P r0, 1s and all k P t0, . . . ,Ku, it holds that

PkφbpY pιpbqq,U 1q “ Pkψpbq .

We now show that any algorithm α for our problem can be transformed into an algorithm rα to
solve the bandit problem that suffers no-larger regret. To do so, we begin by formally explaining
how algorithms for our problem work.

Functioning of an algorithm α for our problem A randomized algorithm α for our problem
is a sequence of functions that take as input a sequence of random seeds U1, U2, . . . and some
feedback Z1, Z2, . . . and generates bids Bt as described below. At time t “ 1, α selects a bid B1

as a deterministic function of U1 and observes feedback Z1 “ ψ1pB1q. Inductively, for any t ě 2, α
selects a bid Bt as a deterministic function of U1, . . . , Ut, Z1, . . . , Zt´1 (where Zs “ ψspBsq, for all
s P rt´ 1s). For all k P t0, . . . ,Ku, the sequence of seeds is a Pk-i.i.d. sequence of uniform random
variables on r0, 1s that is Pk-independent of pV,Mq, pV1,M1q, pV2,M2q, . . . .

Building rα from α We show now how to map α to an algorithm rα (that shares the same seeds
for the randomization) for the bandit problem that suffers a worst-case regret that is no larger than
that of α.

To do so, consider a sequence U 1, U 1
1, . . . of random variables that, for all k P t0, . . . ,Ku is a

Pk-i.i.d. sequence of uniforms on r0, 1s that rα can access as a further source of randomness. We will
assume that, for all k P t0, . . . ,Ku, the four sequences Y, Y1, . . . , pV,Mq, pV1,M1q, . . . , U,U1, . . . ,and
U 1, U 1

1, . . . are independent of each other.
The algorithm rα acts as follows. At time 1, rα plays the arm rI1 “ ιpB1

tq, where B1
1 “ B1 is the

bid played by α at round t “ 1 (chosen as a deterministic function of the random seed U1). Then rα

observes the bandit feedback Y1prI1q and feeds back to α the surrogate feedback Z 1
1 “ φB1

1

`

Y1prI1q, U 1
1

˘

.
Then, inductively, for any time t ě 2, assuming that rα played arms rI1, . . . , rIt´1 and fed back to α
the surrogate feedback Z 1

1, . . . , Z
1
t´1, then

1. rα plays the arm rIt “ ιpB1
tq, where B1

t is the bid played by α at round t (chosen as a deterministic
function of the random seeds U1, . . . , Ut and past surrogate feedback Z 1

1, . . . , Z
1
t´1).

2. rα observes the bandit feedback YtprItq and feeds back to α the surrogate feedback Z 1
t “

φB1
t

`

YtprItq, U
1
t

˘

.

This way, we defined by induction the randomized algorithm rα.
By induction on t, one can show that, if B1, B2, . . . are the bids played by α on the basis of the

feedback Z1 “ ψ1pB1q, Z2 “ ψ2pB2q, . . . , then, for all k P t0, . . . ,Ku, we have

PkpBt,Ytq “ PkpB1
t,Ytq
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which leads to

RkT pαq “ T ¨ Ek
“

Utilpwkq
‰

´

T
ÿ

t“1

Ek
“

UtiltpBtq
‰

ě T ¨ Ek
“

ρpk, Y q
‰

´

T
ÿ

t“1

Ek
”

ρ
`

ιpBtq, Yt
˘

ı

“ T ¨ Ek
“

ρpk, Y q
‰

´

T
ÿ

t“1

Ek
”

ρ
`

ιpB1
tq, Yt

˘

ı

“ T ¨ Ek
“

ρpk, Y q
‰

´

T
ÿ

t“1

Ek
”

ρ
`

rIt, Yt
˘

ı

— rRkT prαq ,

where RkT pαq is the regret of α in the environment determined by Pk, while the last equality is just
a definition. Now we are left to show only that for any algorithm pα for the bandit problem which
plays actions I1, I2, . . . , there exists k P rKs such that

rRkT ppαq – T ¨ Ek
“

ρpk, Y q
‰

´

T
ÿ

t“1

Ek
”

ρ
`

It, Yt
˘

ı

“ ΩpT 2{3q

(the first equality is a definition). Given that we are competing against a stochastic i.i.d. environments,
it is sufficient to show this for deterministic algorithms pα for the bandit problem.

Lemma 22. Fix any deterministic algorithm pα for the bandit problem on K actions, then there
exists k P rKs such that rRkT ppαq ě 3

104
T 2{3.

Proof. For any deterministic algorithm pα for the bandit problem on K actions, let I1, I2, . . . be the
actions played by pα on the basis of the sequential feedback received Z1, Z2, . . . and define Ntpiq as
the random variables counting the number of times the learning algorithm pα plays action i, up to
time t, for any i P rKs and any time t P rT s:

Ntpiq “

t
ÿ

s“1

ItIs “ iu.

We relate the expected values of NT pkq under P0 and Pk as a function of the expected number
of times the algorithm plays the corresponding actions k. This formalizes the intuition that to
discriminate between the different Pk the learner needs to play exploring actions.

Claim 8. The following inequality holds true for any k P rKs:

Ek
“

NT pkq
‰

´ E0
“

NT pkq
‰

ď
2

3
¨ ε ¨ T ¨

a

2E0rNT pkqs. (B.1)

Proof of Claim 8. For any t P rT s, the action It “ ItpZ1, . . . , Zt´1q selected by pα at round t is a
deterministic function of Z1, . . . , Zt´1, for each k P rKs. In formula, we then have the following

Ek
“

NT pkq
‰

´ E0
“

NT pkq
‰

“

T
ÿ

t“2

´

Pk
“

ItpZ1, . . . , Zt´1q “ k
‰

´ P0
“

ItpZ1, . . . , Zt´1q “ k
‰

¯

ď

T
ÿ

t“2

∥∥PkpZ1,...,Zt´1q ´ P0
pZ1,...,Zt´1q

∥∥
TV
, (B.2)

where ∥¨∥TV denotes the total variation norm. We move now our attention towards bounding the
total variation norm. To that end we use Pinsker’s inequality and apply the chain rule for the KL
divergence DKL. For each k P rKs and t P rT s we have the following:
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∥∥P0
pZ1,...,Ztq ´ PkpZ1,...,Ztq

∥∥
TV

ď

c

1

2
DKL

`

P0
pZ1,...,Ztq

, Pk
pZ1,...,Ztq

˘

ď

g

f

f

e

1

2

˜

DKL

`

P0
Z1
, PkZ1

˘

`

t
ÿ

s“2

E
”

DKL

`

P0
Zs|Z1,...,Zs´1

, PkZs|Z1,...,Zs´1

˘

ı

¸

(B.3)

We bound the two KL terms separately. pα is a deterministic algorithm, thus I1 is a fixed element of
rKs, which implies that, for all k P rKs,

DKL

`

P0
Z1
, PkZ1

˘

“

ˆ

ln

ˆ

P0rY1pkq “ 0s

PkrY1pkq “ 0s

˙

P0rY1pkq “ 0s ` ln

ˆ

P0rY1pkq “ 1s

PkrY1pkq “ 1s

˙

P0rY1pkq “ 1s

˙

I
␣

I1 “ k
(

“
1

2

ˆ

ln
1{2

1{2 ´ cprob ¨ ε
` ln

1{2

1{2 ` cprob ¨ ε

˙

¨ ItI1 “ ku (B.4)

Similarly, since pα is a deterministic algorithm, for all s ě 2, the action Is “ IspZ1, . . . , Zs´1q selected
by pα at time t is a function of Z1, . . . , Zs´1 only, which implies, for all k P rKs,

DKL

`

P0
Zs|Z1,...,Zs´1

, PkZs|Z1,...,Zs´1

˘

“ E0

„

ln

ˆ

P0rZs “ 0 | Z1, . . . , Zs´1s

PkrZs “ 0 | Z1, . . . , Zs´1s

˙

P0rZs “ 0 | Z1, . . . , Zs´1s

` ln

ˆ

P0rZs “ 1 | Z1, . . . , Zs´1s

PkrZs “ 1 | Z1, . . . , Zs´1s

˙

P0rZs “ 1 | Z1, . . . , Zs´1s

ȷ

“ E0

„ˆ

ln

ˆ

P0rYspkq “ 0s

PkrYspkq “ 0s

˙

P0rYspkq “ 0s ` ln

ˆ

P0rYspkq “ 1s

PkrYspkq “ 1s

˙

P0rYspkq “ 1s

˙

ˆ I
␣

IspZ1, . . . , Zs´1q “ k
(

ȷ

“
1

2

ˆ

ln
1{2

1{2 ´ cprob ¨ ε
` ln

1{2

1{2 ` cprob ¨ ε

˙

P0
“

IspZ1, . . . , Zs´1q “ k
‰

(B.5)

Now, since ε “ 1
4K ď 1

4 ď 2
3 , the following useful inequality holds:

1

2

ˆ

ln
1{2

1{2 ´ cprob ¨ ε
` ln

1{2

1{2 ` cprob ¨ ε

˙

ď 4 ¨ pcprobq
2

¨ ε2. (B.6)

We can combine the inequalities in Equation (B.4) and Equation (B.5) into Equation (B.3) and plug
in the bound in to obtain:∥∥∥P0

pZ1,...,Ztq ´ PkpZ1,...,Ztq

∥∥∥
TV

ď cprob ¨ ε ¨
a

2ErNtpkqs

Once we have this upper bound on the total variations of the random variables pZ1, . . . , Ztq under
P0 and Pk we can get back to the initial Equation (B.2) and obtain the desired bound via Jensen:

Ek
“

NT pkq
‰

´ E0
“

NT pkq
‰

ď

T
ÿ

t“2

cprob ¨ ε ¨
a

2E0rNt´1pkqs ď cprob ¨ ε ¨ T ¨
a

2E0rNT pkqs.
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Averaging the quantitative bounds in Claim 8 for all k in rKs, and applying Jensen’s inequality,
we get the following:

1

K

ÿ

kPrKs

EkrNT pkqs ď
1

K

ÿ

kPrKs

E0rNT pkqs ` cprob ¨ ε ¨ T ¨

g

f

f

e

2

K

ÿ

kPrKs

E0 rNT pkqs

“

˜

1

K
` cprob ¨ ε ¨

c

2T

K

¸

¨ T . (B.7)

Now, we have all the ingredients to lower bound the average regret suffered by pα. Note that every
time a suboptimal arm is played the learner suffers (expected) instantaneous regret equal 1

144 ¨ ε.
Then, recalling that ε “ 1{p4Kq and setting K “

P

T 1{3
T

we have, for all T ě 8,

1

K

ÿ

kPrKs

rRkT ppαq “
1

K

ÿ

kPrKs

´

cspike ¨ ε ¨ Ek
“

T ´NT pkq
‰

¯

“ cspike ¨ ε

¨

˝T ´
1

K

ÿ

kPrKs

Ek
“

NT pkq
‰

˛

‚

ě cspike ¨ ε ¨

˜

1 ´
1

K
´ cprob ¨ ε ¨

c

2T

K

¸

¨ T “ cspike ¨
1

4K
¨

˜

1 ´
1

K
´

1

6K
¨

c

2T

K

¸

¨ T

ě
1

8 ¨ 144

´3 ´
?
2

6

¯

T 2{3 ě
3

104
T 2{3 .

Therefore, for all T ě 8, there exists k P rKs such that rRkT ppαq ě p3{104q ¨ T 2{3, concluding the
proof.

B.2 Missing Proof of Proposition 2

Proof of Proposition 2. Let γ ą 0. Notice that, for each t P N, it holds that
ř

yěMt
ptpyq ě γ. It

follows, for each x P X and t P N, that γpgtpxq ď 1, and hence

exppγpgtpxqq ď 1 ` γpgtpxq ` pe´ 2qγ2
`

pgtpxq
˘2
.

Then, for each t P N,

∥wt`1∥1
∥wt∥1

“
ÿ

xPX

wtpxq

∥wt∥1
exp

`

γpgtpxq
˘

ď 1 `
ÿ

xPX

wtpxq

∥wt∥1

´

γpgtpxq ` pe´ 2qγ2
`

pgtpxq
˘2
¯

,

which implies

ln

ˆ

∥wt`1∥1
∥wt∥1

˙

ď
ÿ

xPX

wtpxq

∥wt∥1

´

γpgtpxq`pe´2qγ2
`

pgtpxq
˘2
¯

ď
γ

1 ´ γ

ÿ

xPX
ptpxq

´

pgtpxq`pe´2qγ
`

pgtpxq
˘2
¯

.

Now, for each t P N, let Ft be the σ-algebra generated by pt, Vt and Mt and denote by Et :“ Er¨ | Fts.
First, notice that, for each t P N and each x P X

Etrpgtpxqs “ Utiltpxq ,
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Et

«

ÿ

xPX
ptpxqpgtpxq

ff

“ ErUtiltpBtq | Vt,Mts ,

and that

Et

«

ÿ

xPX
ptpxq

`

pgtpxq
˘2

ff

ď Et

«

ÿ

xPX
ptpxq

Itx ě MtuItMt ď Btu
`
ř

yěMt
ptpyq

˘2

ff

“ Et

«

ÿ

xPX
ptpxq

Itx ě Mtu
ř

yěMt
ptpyq

ff

“ 1 .

It follows that, for each x P X ,

E

«

T
ÿ

t“1

Utiltpxq

ff

´ ln
`

|X |
˘

“ E

«

T
ÿ

t“1

pgtpxq

ff

´ ln
`

|X |
˘

“ E
”

ln
`

wT`1pxq
˘

ı

´ ln
`

|X |
˘

ď E
„

ln

ˆ

∥wT`1∥1
∥w1∥1

˙ȷ

“

T
ÿ

t“1

E
„

Et
„

ln

ˆ

∥wt`1∥1
∥wt∥1

˙ȷȷ

ď
γ

1 ´ γ

˜

E

«

T
ÿ

t“1

UtiltpBtq

ff

` pe´ 2qγT

¸

,

which, after rearranging and upper bounding, yields

E

«

T
ÿ

t“1

Utiltpxq ´

T
ÿ

t“1

UtiltpBtq

ff

ď
ln p|X |q

γ
` pe´ 1qγT .

Selecting γ as in the statement of the theorem leads to the conclusion.

B.3 Missing Details of the Proof of Theorem 22

Claim 4. There exists two disjoint intervals I` and I´ in r0, 1s such that, for any ε P p0, 12q and
any time t, the following inequalities hold:

max
xPr0,1s

E˘εrUtiltpxqs ě E˘εrUtiltpbqs `
1

128
ε, for all b R I˘

Proof. For any ε P p0, 12q, the distributions P˘ε are such that, the set of all the bids that induce
non-negative utility E˘εrUtiltpbqs is contained into two disjoint intervals I` “ r0, 18 s and I´ “ r14 , 1s∗.

We consider separately the two cases P`ε and P´ε. We start from the former. By simply looking
at the definition (3.2), it is clear that E`εrUtiltpbqs is monotonically increasing in ε for any b P I`,
on the contrary, it is monotonically decreasing for b P I´. We have the following:

max
bPI´

E`εrUtiltpbqs ď max
bPI´

E0rUtiltpbqs “ 1
128 .

On the other hand,

max
xPr0,1s

E`εrUtiltppbqs ě E`εrUtiltp
1
16qs “ 1

128p1 ` εq ą max
bPI´

E`εrUtiltpbqs ` ε
128 .

We consider now the other case, corresponding to P´ε. By the definition in Equation (3.2),

∗The choice of I` and I´ is not tight.
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E´εrUtiltpbqs is monotonically increasing in its first argument for any b P I´, on the contrary, it is
monotonically decreasing for b P I`. Similarly to the other case we have two steps. On the one hand,
it holds that

max
bPI`

E´εrUtiltpbqs ď max
bPI`

E0rUtiltpbqs “ 1
128 ,

while on the other hand it holds that

max
xPr0,1s

E´εrUtiltpxqs ě E´εrUtiltp
7
16qs “ 1

128 ` ε 41
128 ą max

bPI´

E`εrUtiltpbqs ` ε
4 .

We need a preliminary result for the proof of Claim 5. Recall, we use the same random variable
pV,Mq to denote the highest competing bid/valuation pair drawn from the different probability
distribution. When we change the underlying measure, we are changing its law. Consider now the
push forward measures on r0, 1s2 (with the Borel σ-algebra) induced by these three measures: P0

pV,Mq
,

P`ε
pV,Mq

and P´ε
pV,Mq

. With some simple calculations (similarly to what is done in, e.g., Appendix B of
[169]) it is possible to bound the KL divergence:

Claim 9. For any ε P p0, 12q the following inequality holds true:

DKL

´

P`ε
pV,Mq

,P0
pV,Mq

¯

“ DKL

´

P´ε
pV,Mq

,P0
pV,Mq

¯

ď 2ε2

Proof. We simply apply the definition of DKL divergence for continuous random variables. We only
do the calculations for P`ε

pV,Mq
, the other term is analogous:

DKL

´

P`ε
pV,Mq

,P0
pV,Mq

¯

“

ż

Q`YQ´

f`εpv,mq ln
f`εpv,mq

f0pv,mq
dmdv

“
1

2
p1 ` εq lnp1 ` εq `

1

2
p1 ´ εq lnp1 ´ εq ď 2ε2,

where the last inequality holds for any ε P p0, 12q.

Claim 5. The following inequality hold:

1

2

ÿ

i“1,2

Ei rNis ď
3

4
T.

Proof. We have the following:

Ei rNis ´ E0 rNis “

T
ÿ

t“2

Pi rBt P Iis ´ P0 rBt P Iis

ď

T
ÿ

t“2

||PipV1,M1q,...,pVt´1,Mt´1q ´ P0
pV1,M1q,...,pVt´1,Mt´1q||TV (Total variation)

ď

T
ÿ

t“2

c

1

2
DKL

´

Pi
pV1,M1q,...,pVt´1,Mt´1q

,P0
pV1,M1q,...,pVt´1,Mt´1q

¯

(Pinsker’s inequality)
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ď

T
ÿ

t“2

c

t

2
DKL

´

Pi
pV,Mq

,P0
pV,Mq

¯

(pV1,M1q, . . . , pVt´1,Mt´1q, . . . are i.i.d.)

ď
1

4
?
T

T
ÿ

t“2

?
t ď

1

4
T, (B.8)

where in the last inequality we applied Claim 9 for our choice of ε “ 1{p4
?
T q. Note, Pj

pV1,M1q,...,pMt,Vtq

is the push-forward measure on pr0, 1s2qt induced by t i.i.d. draws of pV,Mq from distribution Pj ,
j P t0, 1, 2u. Averaging the result in Equation (B.8), we get the desired inequality:

1

2

ÿ

i“1,2

Ei rNis ď
1

2

ÿ

i“1,2

E0 rNis `
T

4
“

3

4
T.
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Appendix C

Adaptive Maximization of Social Welfare

C.1 Commodity Taxation

In this appendix, we propose a generalization of our baseline model for optimal taxation to a
model for commodity taxation with multiple goods j P t1, . . . , ku and continuous demand functions
yipxq P r0, 1sk, where x P r0, 1sk is a vector of tax rates. We again assume that there are no income
effects. Our setup is a version of the classic Ramsey model [154].

In the following, we use xx, yy to denote the Euclidean inner product between x and y.

Setup At each time i “ 1, 2, . . . , T , one individual arrives who is characterized by a utility function
ui : r0, 1sk Ñ R. This individual is exposed to a tax vector xi P r0, 1sk, and makes a continuous
consumption decision yi. Public revenue is given by xxi, yiy. Private utility is given by uipyiq plus
the consumption of a numeraire good, which has a price normalized to 1 and enters utility additively.
The individual consumption choice yi costs xxi ` p, yy, where p is the (exogenously given) vector
of pre-tax prices. This cost of purchasing yi reduces the consumption of the numeraire good. The
optimal individual decision is therefore given by

yi “ Gipxiq “ argmax
yPr0,1sk

ruipyq ´ xxi ` p, yys . (C.1)

The implied private welfare is

vipxq “ v0 ` max
yPr0,1sk

ruipyq ´ xx` p, yys ,

where we have added a constant v0, chosen such that vip0q “ 0; this is just a normalization to
simplify notation below.

We define social welfare as a weighted sum of public revenue and private welfare, with a weight
λ for the latter. Social welfare for time period i, as a function of the tax vector x chosen by the
learner, is therefore given by

Uipxiq “ xxi, yiy
loomoon

Public revenue

` λ ¨ vipxiq
loomoon

Private welfare

. (C.2)

After period i, we observe yi. Nothing else is observed.
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C.2. Proofs

The regret can be defined analogously to what we have done in Section 4.2, and the goal of the
learner is to obtain (optimal) sublinear regret rates.

We leave the search for a solution to this intriguing problem to future research. Here, we
remark that the one-dimensional setting (i.e., when k “ 1) can be easily solved by an adaptation of
Algorithm 7 that leverages the envelope theorem [139, Theorem 2] to relate the feedback received and
the derivative of the private welfare. However, how to adapt this algorithm to higher-dimensional
problems remains unclear, and deeper insight may be necessary for a satisfying solution.

C.2 Proofs

In this appendix, we present detailed proofs of the theorems we discussed in the main body.

C.2.1 Theorem 26 (Stochastic Lower Bound)

We begin by presenting the proof of the stochastic T 2{3 lower bound.

Proof of Theorem 26.

Defining a family of distributions for v Recall that, for each ε P r´1, 1s, the probability
distribution µε is defined as the probability measure supported on p1{4, 1{2, 3{4, 1q with masses
`

a, p1 ` εq ¨ b, p1 ´ εq ¨ b, 1 ´ a´ 2 ¨ b
˘

, where

a –
p1 ´ λq ¨ p136 ´ 99 ¨ λq

2 ¨ p4 ´ 3 ¨ λq ¨ p24 ´ 17 ¨ λq
, b –

1 ´ λ

2 ¨ p24 ´ 17 ¨ λq
.

Furthermore, for each ε P r´1, 1s, recall that Gε and Uε are respectively the demand function and
the expected social welfare associated to µε (see Figure 4.1 for an illustration). Let v1, v2, ¨ ¨ ¨ P r0, 1s

be the sequence of individual valuations. For each ε P r´1, 1s, consider a distribution Pε such that
the individual valuations v1, v2, . . . form a Pε-i.i.d. sequence (independent of the randomization used
by the algorithm) with common distribution µε.

Explicit lower bound on regret that will be proven Define

c1 –
λ

4
¨ b , c2 –

1

8
¨

1 ´ λ

4 ´ 3 ¨ λ
, c3 – b ¨

d

2

a ¨ p1 ´ a´ 2 ¨ bq
.

We will prove that, for any randomized algorithm α and any time horizon T P N, there exists
ε P r´1, 1s such that

RT pα,Gεq ě C ¨ T 2{3 ,

where

C – min

ˆ

c21 ¨ c23
c2

,
c2
2
,

1

16
¨

3

d

c21 ¨ c2
c23

˙

“ min

ˆ

λ2 ¨ p4 ´ 3 ¨ λq3

8 ¨ p136 ´ 99 ¨ λq ¨ p26 ´ 19 ¨ λq
,
λ2{3 ¨ p1 ´ λq

4{3 ¨ p136 ´ 99 ¨ λq
1{3 ¨ p26 ´ 19 ¨ λq

1{3

128 ¨ p4 ´ 3 ¨ λq ¨ p24 ´ 17 ¨ λq
4{3

˙

ą 0

(C.3)
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C.2. Proofs

Fix a randomized algorithm α to choose the policies x1, x2, . . . , and fix a time horizon T P N.

Number of mistakes and lower bound on regret We need to count the random number of
times the algorithm has played in the regions p1{2, 3{4s, r0, 1{2s and p3{4, 1s up to time T . This can be
done relying on the following random variables:

n1 –

T
ÿ

i“1

Ip1{2,3{4spxiq , n2 –

T
ÿ

i“1

Ir0,1{2spxiq , n3 –

T
ÿ

i“1

Ip3{4,1spxiq .

Notice that since the intervals p1{2, 3{4s, r0, 1{2s and p3{4, 1s form a partition of r0, 1s, we have that

n1 ` n2 ` n3 “ T (C.4)

For each ε P r´1, 1s, denote by Eε the expectation taken with respect to the distribution Pε. Notice
that, for each ε P r´1, 1s, the expected regret when the underlying distribution is Pε equals

RT pα,Gεq “ T ¨ sup
xPr0,1s

Uεpxq ´

T
ÿ

i“1

Eε rUεpxiqs . (C.5)

Algebraic calculations show that, for each ε P r´1, 1s

max
xPp1{2,3{4s

Uεpxq “ Uεp3{4q , max
xPr0,1{2s

Uεpxq “ Uεp1{4q , max
xPp3{4,1s

Uεpxq “ Uεp1q , (C.6)

and Uεp1q ´ Uεp1{4q “ c1 ¨ ε . (C.7)

Further calculations show also that

min
εPr´1,1s

min
`

Uεp1{4q,Uεp1q
˘

“ U1p1{4q , max
εPr´1,1s

max
xPp1{2,3{4s

Uεpxq “ U´1p3{4q , (C.8)

and U1p1{4q ´ U´1p3{4q “ c2 . (C.9)

Equations (C.6), (C.7), (C.8), and (C.9) imply that

sup
xPr0,1s

Uεpxq “ Uεp1q , if ε P r0, 1s . (C.10)

It follows that, if ε P r0, 1s,

RT pα,Gεq
(C.5)
“ T ¨ sup

xPr0,1s

Uεpxq ´

T
ÿ

i“1

Eε rUεpxiqs

(C.10)
“ T ¨ Uεp1q ´

T
ÿ

i“1

Eε
“

Uεpxiq ¨
`

Ip1{2,3{4spxiq ` Ir0,1{2spxiq ` Ip3{4,1spxiq
˘‰

(C.6)
ě T ¨ Uεp1q ´

T
ÿ

i“1

Eε
“

Uεp3{4q ¨ Ip1{2,3{4spxiq ` Uεp1{2q ¨ Ir0,1{2spxiq ` Uεp1q ¨ Ip3{4,1spxiq
‰

(C.4)
“

`

Uεp1q ´ Uεp3{4q
˘

¨ Eεrn1s `
`

Uεp1q ´ Uεp1{4q
˘

¨ Eεrn2s

(C.8)
ě

`

U1p1{4q ´ U´1p3{4q
˘

¨ Eεrn1s `
`

Uεp1q ´ Uεp1{4q
˘

¨ Eεrn2s
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(C.9)
“ c2 ¨ Eεrn1s `

`

Uεp1q ´ Uεp1{4q
˘

¨ Eεrn2s

(C.7)
“ c2 ¨ Eεrn1s ` c1 ¨ ε ¨ Eεrn2s (C.11)

Notice that inequality (C.11) quantifies how much regret the algorithm is going to suffer in terms of
the expected number of times it plays in the wrong regions, when the demand function is Gε and
ε ą 0.

In the same way inequality (C.11) was proven, we can prove that, if ε P r0, 1s,

RT pα,G´εq ě c2 ¨ E´εrn1s ` c1 ¨ ε ¨ E´εrn3s ě c1 ¨ ε ¨ E´εrn3s , (C.12)

which again quantifies how much regret the algorithm is going to suffer in terms of the expected
number of times it plays in the wrong regions, when the demand function is G´ε and ε ą 0.

Intuition for the remainder of the proof At high level, inequalities (C.11) and (C.12) tell us
that, if |ε| is not negligible, the algorithm has to play a substantially different number of times in the
region p3{4, 1s, depending on the sign of ε, not to suffer significant regret when the demand function
is Gε. The crucial idea is that the only way for the algorithm to present this different behavior is
by playing in the only informative region about the sign of ε, i.e., the region p1{2, 3{4s. However,
as shown in (C.11), selecting policies in this region comes at a cost in terms of regret. To relate
quantitatively the number of times the algorithm has to play in this costly region with the difference
in the expected number of times the algorithm selects policies in the region p3{4, 1s is the last missing
ingredient that we can obtain relying on information theoretic techniques. It can be proved (and a
formal proof is provided at the end of the current proof) that, for each ε P r0, 1s,

E´εrn3s ě Eεrn3s ´ c3 ¨ ε ¨ T ¨
a

Eεrn1s . (C.13)

Now, if the algorithm suffers low regret when ε ą 0, then by (C.11) we have an upper bound on
the number of times the algorithm plays in the region p1{2, 3{4s and a lower bound on the number of
times it plays in the region p3{4, 1s, whenever ε ą 0. In turn, by (C.13), this gives a lower bound
on the number of times the algorithm plays in the sub-optimal region p3{4, 1s when ε ă 0. Then,
relying on (C.12), we have an explicit lower bound on how much regret the algorithm is going to
suffer when ε ă 0. We will now carry out this plan —and prove the theorem— as follows.

Low regret cannot be achieved for both positive and negative ε To get a contradiction,
suppose that

@ε P r´1, 1s RT pα,Gεq ă C ¨ T 2{3 . (C.14)

It follows from (C.11) that, for each ε P r0, 1s,

Eεrn1s
(C.11)

ď
RT pα,Gεq

c2

(C.14)
ď

C

c2
¨ T 2{3 , Eεrn2s

(C.11)
ď

RT pα,Gεq

c1 ¨ ε

(C.14)
ď

C

c1 ¨ ε
¨ T 2{3 . (C.15)

This implies, relying also on (C.12) and (C.13), that for each ε P r0, 1s we have

RT pα,G´εq
(C.12)

ě c1 ¨ ε ¨ E´εrn3s
(C.13)

ě c1 ¨ ε ¨
`

Eεrn3s ´ c3 ¨ ε ¨ T ¨
a

Eεrn1s
˘
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(C.4)
“ c1 ¨ ε ¨

`

T ´ Eεrn1s ´ Eεrn2s ´ c3 ¨ ε ¨ T ¨
a

Eεrn1s
˘

(C.15)
ě c1 ¨ ε ¨

ˆ

T ´
C

c2
¨ T 2{3 ´

C

c1 ¨ ε
¨ T 2{3 ´ c3 ¨ ε ¨ T ¨

c

C

c2
¨ T 2{3

˙

“ c1 ¨ ε ¨

ˆ

1 ´
C

c2
¨ T´1{3 ´

C

c1 ¨ ε
¨ T´1{3 ´ c3 ¨ ε ¨ T 1{3 ¨

c

C

c2

˙

¨ T . (C.16)

Pick ε – T´1{3 ¨

b?
C¨c2
c1¨c3

. First, note that since 0 ă C
(C.3)
ď

c21¨c23
c2

we have that ε P p0, 1s. Plugging
this value of ε in (C.16) leads to

C ¨ T 2{3
(C.14)

ą RT pα,G´εq

(C.16)
ě

d

?
C ¨ c2 ¨ c1
c3

¨

ˆ

1 ´
C

c2
¨ T´1{3 ´ 2 ¨

c

c3
c1 ¨

?
c2

¨ C3{4

˙

¨ T 2{3

(C.3)
ě

1

2
¨

d

?
C ¨ c2 ¨ c1
c3

¨

ˆ

1 ´ 4 ¨

c

c3
c1 ¨

?
c2

¨ C3{4

˙

¨ T 2{3

(C.3)
ě

1

4
¨

d

?
C ¨ c2 ¨ c1
c3

¨ T 2{3 , (C.17)

where the second to last inequality follows from C ď c2
2 , while the last inequality follows from

C ď 1
16

3

c

c21¨c2
c23

. Rearranging inequality (C.17) leads to the contradiction

C
(C.17)

ą

˜

1

4
¨

d

c1 ¨
?
c2

c3

¸4{3

“
1

8
¨

3

d

2 ¨ c21 ¨ c2
c23

ą
1

16
¨

3

d

c21 ¨ c2
c23

(C.3)
ě C .

Since (C.14) leads to a contradiction, it follows that there exists ε P r´1, 1s such that RT pα,Gεq ě

C ¨ T 2{3. Given that the time horizon T and the randomized algorithm were arbitrarily fixed, the
theorem is proved.

Claim (C.13) (Relating choice probabilities for positive and negative ε)

Proof of Claim (C.13).
Let w1, w2, ¨ ¨ ¨ P r0, 1s be the randomization seeds to be used by the algorithm. In the light of
the Skorokhod representation theorem [185, Section 17.3], we may assume without (much) loss of
generality that, for each ε P r´1, 1s, these seeds form a sequence of Pε-i.i.d. r0, 1s-valued uniform
random variables. In particular, this implies,

PεpwiqiPN
“ P´ε

pwiqiPN
, @ε P r0, 1s . (C.18)

Recall that a sequence of functions α – pαiqiPN is called a randomized algorithm if

α1 : r0, 1s Ñ r0, 1s , @i P N, αi`1 : r0, 1si`1 ˆ t0, 1ui Ñ r0, 1s .
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The feedback function associated to our problem is

φ : r0, 1s ˆ t1{4, 1{2, 3{4, 1u Ñ t0, 1u , px, vq ÞÑ Itx ď vu .

Now, a randomized algorithm α generates a sequence of choices x1, x2, . . . using the randomization
seeds w1, w2, . . . and the received feedback z1, z2, ¨ ¨ ¨ P t0, 1u in the following inductive way on i P N

x1 – α1pw1q , z1 – φpx1, v1q ,

xi`1 – αi`1pw1, . . . , wi`1, z1, . . . , ziq , zi`1 – φpxi`1, vi`1q .

For each a P r0, 1s, fix a binary representation 0.a1a2a3 . . . and define ξpaq – 0.a1a3a5 . . . and
ζpaq – 0.a2a4a6 . . . . Notice that ξ, ζ : r0, 1s Ñ r0, 1s are independent with respect to the Lebesgue
measure on r0, 1s and that their (common) distribution is a uniform on r0, 1s. For each x P r0, 1s,
define ψx : r0, 1s Ñ t0, 1u, u ÞÑ Ir0,1{4spxq ` Ip1{4,1{2spxq ¨ Ir0,1´aspuq ` Ip3{4,1spxq ¨ Ir0,1´a´2¨bspuq. Define
by induction on i P N the following process

rx1 – α1

`

ζpw1q
˘

,

rz1 – φ
´

rx1, ψ
rx1

`

ξpw1q
˘

¯

,

rxi`1 – αi`1

`

ζpw1q, . . . , ζpwi`1q, rz1, . . . , rzi
˘

,

rzi`1 –

$

&

%

φprxi`1, vi`1q, rxi`1 P p1{2, 3{4s

φ
´

rxi`1, ψ
rxi`1

`

ξpwi`1q
˘

¯

, otherwise.

Since, for each ε P r´1, 1s and each i P N,

Pεrzi “ 1 | xis “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

1 xi P r0, 14 s

1 ´ a xi P p14 ,
1
2 s

1 ´ a´ p1 ` εq ¨ b xi P p12 ,
3
4 s

1 ´ a´ 2 ¨ b xi P p34 , 1s

,

Pεrrzi “ 1 | rxis “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

1 rxi P r0, 14 s

1 ´ a rxi P p14 ,
1
2 s

1 ´ a´ p1 ` εq ¨ b rxi P p12 ,
3
4 s

1 ´ a´ 2 ¨ b rxi P p34 , 1s

it follows that, for each ε P r´1, 1s and each i P N, the random variable rxi has the same
distribution as the random choice xi made by the randomized algorithm α at time i when the
underlying distribution is Pε, i.e.,

Pε
rxi

“ Pεxi . (C.19)

As with the process x1, x2, . . . , we have to count the number of times the process rx1, rx2, . . . lands in
the regions p1{2, 3{4s, r0, 1{2s and p3{4, 1s up to the time T . This can be done relying on the following
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random variables

rn1 –

T
ÿ

i“1

Ip1{2,3{4sprxiq , rn2 –

T
ÿ

i“1

Ir0,1{2sprxiq , rn3 –

T
ÿ

i“1

Ip3{4,1sprxiq .

Since, for each ε P r´1, 1s and each j P t1, 2, 3u,

Eε rrnjs “

T
ÿ

i“1

Pεxi
“

p1{2, 3{4s
‰ (C.19)

“

T
ÿ

i“1

Pε
rxi

“

p1{2, 3{4s
‰

“ Eε rnjs ,

to prove the claim (C.13), it is enough to prove that, for each ε P r´1, 1s,

E´ε rrn3s ě Eε rrn3s ´ c3 ¨ ε ¨ T ¨
a

Eε rrn1s .

We first prove the result when the sequence of randomization seeds is fixed, i.e., we suppose first that
w̄1, w̄2, . . . are such that w1 “ w̄1, w2 “ w̄2, . . . . For each ε P r´1, 1s, we consider the associated
probability distribution Qε, defined as the conditional probability distribution Pεr¨ | w1 “ w̄1, w2 “

w̄2, . . . s. For each t P N, let It –
␣

i P t1, . . . , tu | rxi P p1{2, 3{4s
(

, and for each s P t1, . . . , tu, let

Zt,s –

$

&

%

H if s R It ,

I t1{2 ă vsu if s P It .

Notice that for each t1, t2 P N and each s P t1, . . . ,minpt1, t2qu, we have that Zt1,s “ Zt2,s. Then,
for each s P N, it is well defined the random variable Zs – Zt,s, where t P N is any number t ě s.
Define, for each t P N, the random vector Z̄t – pZ1, . . . , Ztq. Notice that, given that the sequence
of randomization seeds is fixed and that, for each s P N, we have that vs P t1{4, 1{2, 3{4, 1u (hence,
for each x P p1{2, 3{4s, it holds that I t1{2 ă vsu “ I tx “ vsu), the random vector prx1, . . . , rxT q is
measurable with respect to the σ-algebra generated by Z̄T´1. Hence, for each ε P r0, 1s and each
i P t1, . . . , T u, we can deduce from Pinsker’s inequality (see, e.g., [175, Lemma 2.5]) that

Qε
“

rxi P p3{4, 1s
‰

ď Q´ε
“

rxi P p3{4, 1s
‰

`

c

1

2
DKL

`

Qε
Z̄T´1

|| Q´ε
Z̄T´1

˘

, (C.20)

where DKL is the Kullback-Leibler divergence. Now, for each t P N and each ε P r0, 1s, by the chain
rule for Kullback-Leibler divergence (see, e.g., [71, Theorem 2.5.3]), we have

DKL
`

Qε
Z̄t`1

|| Q´ε
Z̄t`1

˘

“ DKL
`

Qε
pZ̄t,Zt`1q

|| Q´ε
pZ̄t,Zt`1q

˘

“ DKL
`

Qε
Z̄t

|| Q´ε
Z̄t

˘

`
ÿ

pz̄,zqPtH,0,1utˆtH,0,1u

log

ˆ

Qε
“

Zt`1 “ z | Z̄t “ z̄
‰

Q´ε
“

Zt`1 “ z | Z̄t “ z̄
‰

˙

¨ Qε
“

Z̄t “ z̄ X Zt`1 “ z
‰

.

(C.21)

Notice that, for each t P N and each ε P r0, 1s we have

ÿ

pz̄,zqPtH,0,1utˆtH,0,1u

log

˜

Qε
“

Zt`1 “ z | Z̄t “ z̄
‰

Q´ε
“

Zt`1 “ z | Z̄t “ z̄
‰

¸

¨ Qε
“

Z̄t “ z̄ X Zt`1 “ z
‰
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“
ÿ

pz̄,zqPtH,0,1utˆtH,0,1u

t`1PIt`1

log

˜

Qε
“

Zt`1 “ z | Z̄t “ z̄
‰

Q´ε
“

Zt`1 “ z | Z̄t “ z̄
‰

¸

¨ Qε
“

Z̄t “ z̄ X Zt`1 “ z
‰

“

¨

˚

˚

˝

ÿ

z̄PtH,0,1ut

t`1PIt`1

Qε
“

Z̄t “ z̄
‰

˛

‹

‹

‚

¨
ÿ

zPt0,1u

log

˜

Qε
“

I t1{2 ă vt`1u “ z
‰

Q´ε
“

I t1{2 ă vt`1u “ z
‰

¸

¨ Qε rI t1{2 ă vt`1u “ zs

“ Qε
“

rxt`1 P p1{2, 3{4s
‰

¨
ÿ

zPt0,1u

log

˜

Qε
“

I t1{2 ă vt`1u “ z
‰

Q´ε
“

I t1{2 ă vt`1u “ z
‰

¸

¨ Qε rI t1{2 ă vt`1u “ zs . (C.22)

Algebraic calculations show that, for each t P N and each ε P r0, 1s,

ÿ

zPt0,1u

log

˜

Qε
“

I t1{2 ă vt`1u “ z
‰

Q´ε
“

I t1{2 ă vt`1u “ z
‰

¸

¨ Qε rI t1{2 ă vt`1u “ zs

“ log

˜

Qε
“

1
2 ă vt`1

‰

Q´ε
“

1
2 ă vt`1

‰

¸

¨ Qε

„

1

2
ă vt`1

ȷ

` log

˜

Qε
“

1
2 ě vt`1

‰

Q´ε
“

1
2 ě vt`1

‰

¸

¨ Qε

„

1

2
ě vt`1

ȷ

“ log

ˆ

1 ´ a´ p1 ` εq ¨ b

1 ´ a´ p1 ´ εq ¨ b

˙

¨
`

1 ´ a´ p1 ` εq ¨ b
˘

` log

ˆ

a` p1 ` εq ¨ b

a` p1 ´ εq ¨ b

˙

¨
`

a` p1 ` εq ¨ b
˘

ď
4 ¨ b2 ¨ ε2

`

1 ´ a´ p1 ´ εq ¨ b
˘

¨
`

a` p1 ´ εq ¨ b
˘ ď

4 ¨ b2 ¨ ε2

a ¨ p1 ´ a´ 2bq
“ 2 ¨ c23 ¨ ε2 . (C.23)

Putting (C.21), (C.22) and (C.23) together, we obtain that, for each t P N and each ε P r0, 1s,

DKL
`

Qε
Z̄t`1

|| Q´ε
Z̄t`1

˘

ď DKL
`

Qε
Z1

|| Q´ε
Z1

˘

` 2 ¨ c23 ¨ ε2 ¨

t
ÿ

s“1

Qε
“

rxs`1 P p1{2, 3{4s
‰

. (C.24)

With the same technique used above, for each ε P r0, 1s, we can prove that

DKL
`

Qε
Z1

|| Q´ε
Z1

˘

ď 2 ¨ c23 ¨ ε2 ¨ Qε
“

rx1 P p1{2, 3{4s
‰

. (C.25)

For each t P t1, . . . , T u, putting (C.24) and (C.25) together, we obtain

DKL
`

Qε
Z̄t

|| Q´ε
Z̄t

˘
(C.24)`(C.25)

ď 2 ¨ c23 ¨ ε2 ¨

t
ÿ

s“1

Qε
“

rxs P p1{2, 3{4s
‰

ď 2 ¨ c23 ¨ ε2 ¨ Eε
“

rn1 | w1 “ w̄1, w2 “ w̄2, . . .
‰

. (C.26)

Now, (C.20) and (C.26) imply that, for each ε P r0, 1s and each i P t1, . . . , T u,

Qε
“

rxi P p3{4, 1s
‰

ď Q´ε
“

rxi P p3{4, 1s
‰

` c3 ¨ ε ¨

b

Eε
“

rn1 | w1 “ w̄1, w2 “ w̄2, . . .
‰

. (C.27)

Taking the sum of (C.27) over i P t1, . . . , T u, we obtain that for each ε P r0, 1s,

E´ε
“

rn3 | w1 “ w̄1, w2 “ w̄2, . . .
‰

ě Eε
“

rn3 | w1 “ w̄1, w2 “ w̄2, . . .
‰

´ c3 ¨ ε ¨ T ¨

b

Eε
“

rn1 | w1 “ w̄1, w2 “ w̄2, . . .
‰

. (C.28)

182



C.2. Proofs

Now, since the sequence w̄1, w̄2, . . . of randomization seeds has been arbitrarily chosen, for each
ε P r0, 1s, using the fact that Pε

pwtqtPN
“ P´ε

pwtqtPN
and Jensen’s inequality, we have that

E´ε rrn3s “

ż

r0,1sN
E´ε

“

rn3 | w1 “ w̄1, w2 “ w̄2, . . .
‰

dP´ε
pwtqtPN

pw̄1, w̄2, . . . q

(C.18)
“

ż

r0,1sN
E´ε

“

rn3 | w1 “ w̄1, w2 “ w̄2, . . .
‰

dPεpwtqtPN
pw̄1, w̄2, . . . q

(C.28)
ě

ż

r0,1sN
Eε

“

rn3 | w1 “ w̄1, w2 “ w̄2, . . .
‰

dPεpwtqtPN
pw̄1, w̄2, . . . q

´ c3 ¨ ε ¨ T ¨

ż

r0,1sN

b

Eε
“

rn1 | w1 “ w̄1, w2 “ w̄2, . . .
‰

dPεpwtqtPN
pw̄1, w̄2, . . . q

(by Jensen) ě

ż

r0,1sN
Eε

“

rn3 | w1 “ w̄1, w2 “ w̄2, . . .
‰

dPεpwtqtPN
pw̄1, w̄2, . . . q

´ c3 ¨ ε ¨ T ¨

d

ż

r0,1sN
Eε

“

rn1 | w1 “ w̄1, w2 “ w̄2, . . .
‰

dPε
pwtqtPN

pw̄1, w̄2, . . . q

“ Eε
“

rn3
‰

´ c3 ¨ ε ¨

b

Eε
“

rn1
‰

.

C.2.2 Theorem 27 (Adversarial Upper Bound)

The proof of this theorem builds upon the proof of Theorem 6.5 in [48]. Relative to this theorem,
we need to additionally consider the discretization error introduced by Algorithm 7, and explicitly
control the variance of estimated welfare.

Proof of Theorem 27.
Recall our notation U and Upxq for realized cumulative welfare, and for cumulative welfare for the
counterfactual, fixed policy x. We further abbreviate UTk “ Uprxkq. Throughout this proof, the
sequence tviu

T
i“1 is given and conditioned on in any expectations.

1. Discretization
Recall that Uipxq “ x ¨ I tx ď viu ` λ ¨ maxpvi ´ x, 0q. Let

rvi – max
k

trxk : rxk ď viu

(this is vi rounded down to the next gridpoint rxk), and denote

rUipxq – x ¨ I tx ď viu ` λ ¨ maxprvi ´ x, 0q,

rUipxq –
ÿ

jďi

rUjpxq,

as well as rUik – rUiprxkq. Then it is immediate that rUipxq ď Uipxq,

sup
x

|rUipxq ´ Uipxq| ď
λ

K
,
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and argmaxx rUipxq P trx1, . . . , xK`1u, and therefore

max
k

rUik ě sup
x

Uipxq ´ i ¨
λ

K

2. Unbiasedness
At the end of period i, pGk is an unbiased estimator of

ř

jďi I trxk ď vju for all k. Therefore,

E
”

pUik

ı

“ rUik for all i and k.

3. Upper bound on optimal welfare
Define Wi –

ř

k exppη ¨ pUikq, and qik – exppη ¨ pUikq{Wi.

It is immediate that,

ErlogWT s ě η ¨ Ermax
k

pUTks ě η ¨ max
k

Er pUTks “ η ¨ max
k

rUTk.

Furthermore
ErlogWT s “

ÿ

0ďiăT

E
„

log

ˆ

Wi`1

Wi

˙ȷ

` logpW0q.

Given our initialization of the algorithm, logpW0q “ logpK ` 1q.

4. Lower bound on estimated welfare
Denote pUik – rxk ¨ pHk ` λ

K ¨
ř

k1ąk
pHk1 , where pHk –

yi
pik

¨ I tki “ ku, so that pUik “
ř

jăi
pUjk,

and ErpUjks “ Uiprxkq.

By definition of Wi,

log

ˆ

Wi`1

Wi

˙

“ log

˜

ÿ

k

qik ¨ exppη ¨ pUikq

¸

.

Since pk ě γ{pK ` 1q for all k, pUik P r0, pK ` 1q{γs for all i and k, and therefore η ¨ pUik ď

pK`1q¨η{γ ď 1 (where the last inequality holds by assumption). Using exppaq ď 1`a`pe´2qa2

for any a ď 1 yields

exp
´

η pUik

¯

ď 1 ` η ¨ pUik ` pe´ 2q ¨

´

η ¨ pUik

¯2
.

Therefore,

log

ˆ

Wi`1

Wi

˙

ď log

˜

ÿ

k

qik ¨

ˆ

1 ` η ¨ pUik ` pe´ 2q ¨

´

η ¨ pUik

¯2
˙

¸

ďη ¨
ÿ

k

qik ¨ pUik ` pe´ 2q ¨ η2 ¨
ÿ

k

qik ¨ pU2
ik

The second inequality follows from logp1 ` xq ď x.

5. Connecting the first order term to welfare
Note that, by definition, qik “

´

pik ´
γ

K`1

¯

L

p1 ´ γq. Therefore

ÿ

k

qik ¨ pUik “
1

1 ´ γ

ÿ

k

pik ¨ pUik ´
γ

p1´γqpK`1q
¨
ÿ

k

pUik,
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and thus

E

«

ÿ

k

qik ¨ pUik

ff

ď
1

1 ´ γ
E
”

rUipxiq
ı

,

where we have used the fact that 0 ď rUk ď 1 for all k, given our definition of rU , and the fact
that ki is distributed according to pik, by construction.

6. Bounding the second moment of estimated welfare
It remains to bound the term E

”

ř

k qik ¨ pU2
ik

ı

. As in the preceding item, we have

ÿ

k

qik ¨ pU2
ik ď

1

1 ´ γ

ÿ

k

pik ¨ pU2
ik.

We can rewrite

pUik “
`

rxk ¨ I tki “ ku ` λ
K ¨ I tki ą ku

˘

¨
yi
piki

.

Bounding yi ď 1 immediately gives

Ei
”

pU2
ik

ı

ď
rx2k
pik

`
`

λ
K

˘2
¨
ÿ

k1ąk

1

pik1

,

and therefore

Ei

«

ÿ

k

pik ¨ pU2
ik

ff

ď
ÿ

k

rx2k `
`

λ
K

˘2
¨
ÿ

k

ÿ

k1ąk

pik
pik1

ď
ÿ

k

`

k
K

˘2
`
`

λ
K

˘2
¨
ÿ

k

pik
ÿ

k1‰k

K`1
γ

“
KpK`1qp2K`1q

6K2 ` λ2

γ
K`1
K “ K`1

K ¨

´

2K`1
6 ` λ2

γ

¯

.

7. Collecting inequalities
Combining the preceding items, we get

η ¨

ˆ

sup
x

Upxq ´ T ¨
λ

K

˙

ďη ¨ max
k

rUTk ď ErlogWT s pItem 1q

“
ÿ

0ďiăT

E
„

log

ˆ

Wi`1

Wi

˙ȷ

` logpK ` 1q pItem 3q

ď
η

1 ´ γ
¨ E

”

rU
ı

` pe´ 2q ¨
η2

1 ´ γ

ÿ

1ďiďT

ÿ

k

E
”

pik ¨ pU2
ik

ı

` logpK ` 1q pItem 4 and 5q

ď
η

1 ´ γ
¨ E

”

rU
ı

` pe´ 2q ¨
η2

1 ´ γ
T ¨ K`1

K ¨

´

2K`1
6 ` λ2

γ

¯

` logpK ` 1q. pItem 6q

Multiplying by p1´γq and dividing by η, adding γ supxUpxq`T λ
K to both sides and subtracting
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E
”

rU
ı

, bounding supxUpxq ď T , and E
”

rU
ı

ď E rU s (from Item 1), yields

sup
x

Upxq ´ E rU s ď

´

γ ` η ¨ pe´ 2qK`1
K ¨

´

2K`1
6 ` λ2

γ

¯

` λ
K

¯

¨ T `
logpK`1q

η . (C.29)

This proves the first claim of the theorem.

8. Optimizing tuning parameters
Suppose now that we choose the tuning parameters as follows:

γ “ c1 ¨

´

logpT q

T

¯1{3
, η “ c2 ¨ γ2, K “ c3{γ.

Plugging in we get

sup
x

Upxq ´ E rU s

ď

´

γ ` c2 ¨ γ2 ¨ pe´ 2qK`1
K ¨

´

2c3{γ`1
6 ` λ2

γ

¯

` λ ¨ γ{c3

¯

¨ T `
logpK`1q

c2¨γ2

“ logpT q1{3T 2{3 ¨

˜

c1 ` pe´ 2qK`1
K ¨ c1c2

`

c3
3 ` λ2 `

γ
6

˘

` λ c1c3 `
logpT 1{3 logpT q´1{3c3{c1 ` 1q

c21 logpT q

¸

“ logpT q1{3T 2{3 ¨

ˆ

c1 ` pe´ 2q ¨ c1c2
`

c3
3 ` λ2

˘

` λ c1c3 `
1

3c21
` op1q

˙

.

The second claim of the theorem follows.

C.2.3 Theorem 28 (Lower Bound on Regret for the Concave Case)

We now present the
?
T lower bound construction for the stochastic case where the (expected) utility

function U is concave.

Proof of Theorem 28.

Defining a family of distributions for v Define h̄ –
1´

?
1´λ
2 and notice that 0 ă h̄ ă 1

2 . Define
η̄ –

`

h̄ ¨ p1 ´ h̄q1´λ ¨ p1 ´ λq
˘´1 and ε̄ – 1

2 ¨ minpη̄, 23 ¨ 2´λq. For each ε P p´ε̄, ε̄q and each x P r0, 1s,
define

f εpxq – c̄ ¨

ˆ

`

22´λ ´ 8 ¨ h̄ ¨ εq
˘

¨ x ¨ Ir0, 1
2

qpxq `
1

x2´λ
¨ Ir 1

2
,1´h̄spxq ` pη̄ ` εq ¨ Ip1´h̄,1spxq

˙

,

where c̄ is such that
ş1
0 f

0pxqdx “ 1. For each ε P p´ε̄, ε̄q, note that f ε is a density function on
r0, 1s, i.e., a non-negative function whose integral is 1. For each ε P p´ε̄, ε̄q, let µε be the probability
measure whose density is f ε, and define Gε and Uε as the demand function and the expected social
welfare associated to µε, respectively (see Figure C.1 for an illustration).

Properties of U Define also x̄ – 1
2 ¨

`

1
2 ` p1 ´ h̄q

˘

“ 3
4 ´ h̄

2 and m̄ –
1´

?
1´λ
8 ¨ p1 ´ λq3{2. Notice

that, for all ε P p´ε̄, ε̄q, we have:

• Uε is continuous and concave.
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Figure C.1: Construction for proving the lower bound on regret for the concave case

• Uε is strictly increasing in r0, 12 s, linear in r12 , 1 ´ h̄s with slope p1 ´ λq ¨ h̄ ¨ ε, and strictly
decreasing on r1 ´ h̄, 1s, which in particular implies that the maximum of Uε is at 1 ´ h̄ if
ε ą 0, and at 1

2 if ε ă 0.

• If ε ą 0, then Uεp1 ´ h̄q ´ maxxPr0,x̄s Uεpxq “ m̄ ¨ |ε| “ U´εp12q ´ maxxPrx̄,1s U´εpxq.

Now, consider the sequence of individual valuations v1, v2, ¨ ¨ ¨ P r0, 1s, and assume that, for each
ε P p´ε̄, ε̄q, when the underlying distribution is Pε, this sequence is i.i.d. (independent of the
randomization used by the algorithm) with common distribution µε. The previous list of properties
implies that, for each ε P p0, ε̄q (resp., ε P p´ε̄, 0q), when the underlying distribution is Pε, the
expected instantaneous regret at time t is at least m̄ ¨ |ε| if the learner plays in the region Ī – r0, x̄s

(resp., in the region J̄ – px̄, 1s). It follows that, in order not to suffer linear regret, the learner has
to discriminate the sign of ε.

Intuition for the proof Now, the high-level idea is that in order to discriminate the sign of ε,
due to information-theoretic arguments, the learner needs on the order of 1

ε2
observations. Therefore,

for a number of periods on the order of 1
ε2

, the algorithm is playing “in the dark”, and thus suffers a
regret on the order of minp ε

ε2
, ε ¨ T q. Choosing ε on the order of T´1{2, the algorithm ends to suffer

a regret on the order of
?
T , when the underlying distribution is one between Pε or P´ε.

Defining constants We now formalize this idea. Let

γ –

˜

ż 1{2

0

ˆ

16h̄

22´λ ´ 8h̄ε̄

˙2

f´ε̄pxqdx`

ż 1

1´h̄

ˆ

2

η̄ ´ ε̄

˙2

f ε̄pxqdx

¸1{2

ą 0

Let M̄ ą 0 such that 2 ¨

b?
2
3 ¨

γ¨M̄
m̄ “ 1. Let M P p0, M̄q such that

k –

g

f

f

e

M
m̄

?
2
3 ¨ γ

ă ε̄ .
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From now on, fix a time horizon T P N and let ε – k?
T
. In the following we use the notation Eε

(resp., E´ε) to denote the expectation with respect to the probability measure Pε (resp., P´ε). Let
x1, x2, . . . be the policies chosen by the algorithm. Note that, since the algorithm bases its decision
at time t only on the (partial) knowledge of v1, . . . , vt´1 and some independent randomization, there
exists a (measurable) function φt : r0, 1st´1 Ñ r0, 1s such that

Eε
“

I
␣

xt P Ī
(

| v1, . . . , vt´1

‰

“ φtpv1, . . . , vt´1q “ E´ε
“

I
␣

xt P Ī
(

| v1, . . . , vt´1

‰

.

Then, for each time t, it holds∣∣Eε“I ␣xt P Ī
(‰

´ E´ε
“

I
␣

xt P Ī
(‰
∣∣ “

∣∣Eε“φtpv1, . . . , vt´1q
‰

´ E´ε
“

φtpv1, . . . , vt´1q
‰
∣∣

ď

›

›

›

›

t´1
â

s“1

µε ´

t´1
â

s“1

µ´ε

›

›

›

›

TV

“ p‹q

Relating choice probabilities for positive and negative ε By Pinsker’s inequality and the
fact that the Kullback-Leibler divergence is upper bounded by the χ2-divergence, it follows that

p‹q ď

g

f

f

e

DKL

´

Ât´1
s“1 µ

´ε,
Ât´1

s“1 µ
ε
¯

2
“

c

pt´ 1q ¨ DKL pµ´ε, µεq

2
ď

c

pt´ 1q ¨ Dχ2 pµ´ε, µεq

2

“

d

t´ 1

2

ż 1

0

∣∣∣∣ f εpxq

f´εpxq
´ 1

∣∣∣∣2 f´εpxqdx “ p‹‹q

Now, noticing that

ż 1

0

∣∣∣∣ f εpxq

f´εpxq
´ 1

∣∣∣∣2 f´εpxqdx “

ż 1{2

0

ˆ

16h̄ε

22´λ ` 8h̄ε

˙2

f´εpxqdx`

ż 1

1´h̄

ˆ

2ε

η̄ ´ ε

˙2

f´εpxqdx

ď

˜

ż 1{2

0

ˆ

16h̄

22´λ ´ 8h̄ε̄

˙2

f´ε̄pxqdx`

ż 1

1´h̄

ˆ

2

η̄ ´ ε̄

˙2

f ε̄pxqdx

¸

¨ ε2

“ γ2 ¨ ε2 ,

it follows that

p‹‹q ď γ ¨ ε ¨

c

t´ 1

2
.

Summing over t “ 1, 2, . . . , T , we obtain∣∣∣∣∣Eε
«

T
ÿ

t“1

I
␣

xt P Ī
(

ff

´ E´ε

«

T
ÿ

t“1

I
␣

xt P Ī
(

ff∣∣∣∣∣ ď

?
2

3
¨ γ ¨ ε ¨ T 3{2 “

?
2

3
¨ γ ¨ k ¨ T .

Upper bound on regret for ε ą 0 implies lower bound on regret for ´ε. Now, suppose
that in the scenario determined by Pε the algorithm suffer a regret RεT ď M ¨

?
T . Then

M ¨
?
T ě RεT ě m̄ ¨ ε ¨

T
ÿ

t“1

Eε
“

I
␣

xt P Ī
(‰

“ m̄ ¨
k

?
T

¨

T
ÿ

t“1

Eε
“

I
␣

xt P Ī
(‰

.
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and rearranging
T
ÿ

t“1

Eε
“

I
␣

xt P Ī
(‰

ď
M ¨ T

m̄ ¨ k

It follows that the expected number of times the algorithm plays in the (correct) region I when the
underlying scenario is determined by P´ε is

T
ÿ

t“1

E´ε
“

Ipxt P Īq
‰

“

˜

T
ÿ

t“1

E´ε
“

I
␣

xt P Ī
(‰

´

T
ÿ

t“1

Eε
“

I
␣

xt P Ī
(‰

¸

`

T
ÿ

t“1

Eε
“

I
␣

xt P Ī
(‰

ď

ˆ

?
2

3
¨ γ ¨ k `

M

m̄ ¨ k

˙

¨ T

The last inequality implies that the expected number of times that the algorithm plays in the (wrong)
region J “ Ic when the underlying scenario is determined by P´ε is lower bounded by

T
ÿ

t“1

E´ε
“

I
␣

xt P J̄
(‰

“

T
ÿ

t“1

E´ε
“

I
␣

xt R Ī
(‰

ě

ˆ

1 ´

ˆ

?
2

3
¨ γ ¨ k `

M

m̄ ¨ k

˙˙

¨ T ,

which implies that the regret the algorithm suffers in the scenario determined by P´ε is lower
bounded by

R´ε
T ě m̄ ¨ ε ¨

T
ÿ

t“1

E´ε rI txt P Jus “ m̄ ¨
k

?
T

¨

T
ÿ

t“1

E´ε rI txt P Jus

ě m̄ ¨
k

?
T

¨

ˆ

1 ´

ˆ

?
2

3
¨ γ ¨ k `

M

m̄ ¨ k

˙˙

¨ T “ m̄ ¨ k ¨

¨

˝1 ´ 2

d

?
2 ¨ γ ¨M

3 ¨ m̄

˛

‚¨
?
T .

Putting everything together, any algorithm suffers at least min

ˆ

M, m̄ ¨ k ¨

ˆ

1 ´ 2 ¨

b?
2¨γ¨M
3¨m̄

˙˙

¨
?
T

regret, in at least one scenario between the ones determined by Pε and P´ε. Recalling that our

choice of M implies 1 ´ 2

b?
2¨γ¨M
3¨m̄ ą 0, the conclusion follows.

C.2.4 Theorem 29 (Stochastic Upper Bound on Regret of Dyadic Search for
Social Welfare)

We now present a proof of the
?
T upper bound on the regret achieved by Dyadic Search for Social

Welfarein the stochastic case when the underlying (expected) utility function U is concave.
For the sake of simplicity, we assume that U admits a unique maximizer x‹ P r0, 1s (the other

cases can be treated similarly and, actually, they ended up having better constants in the final regret
guarantees).

For each epoch τ “ 1, 2, . . . , we refer to the three current l (left), c (center) and r (right) points
of the corresponding epoch τ using lτ , cτ and rτ , respectively. For any time t, the epoch to which
the time t belongs is denoted τt. The length of an interval J is denoted |J |, while the number of
elements in a finite set A is denoted #A.

Consider a family pvx,iqxPr0,1s,iPN of random variables such that, for each x P r0, 1s, the sequence
pvx,iqiPN is i.i.d. with the same distribution as pviqiPN. With these random variables, we can define
the auxiliary family pyx,iqxPr0,1s,iPN –

`

I tx ď vx,iu
˘

xPr0,1s,iPN. We assume that, whenever we select a
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policy x P r0, 1s at time t, we observe I
␣

x ď vx,ntpxq

(

(recall that ntpxq “
řt
s“1 I txs “ xu) instead

of I tx ď vtu. This does not change anything in expectation, but will be useful in what follows.
The next lemma states that Algorithm 8 maintains confidence intervals containing the differences

of the welfare function (among left, center and right points) with high probability.

Lemma 23 (Confidence intervals contain true welfare differences with high probability). There
exists a constant rC P p0, 20s such that, for every time horizon T and any δ P p0, 1q, if the learner
runs Algorithm 8 with confidence parameter δ, then the probability of the event

E –

T
č

t“1

´

␣

Upcτtq´Uplτtq P Jtplτt , cτtq
(

X
␣

Uprτtq´Upcτtq P Jtpcτt , lτtq
(

X
␣

Uprτtq´Uplτtq P Jtprτt , lτtq
(

¯

is lower bounded by 1 ´ rC ¨ T 2 ¨ δ .

Proof. For each n P N, let Dn – tk ¨ 2´n | k P Zu, let D‹
n – txn,1, . . . , xn,10u Ă Dn such that

xn,1 ă ¨ ¨ ¨ ă xn,5 ď x‹ ď xn,6 ă ¨ ¨ ¨ ă xn,10

and xn,j`1 ´ xn,j ď 2´n, for all j P t1, . . . , 9u. Define D –
ŤT
n“1D‹

n X p0, 1q. Consider the following
events

E 1 –
č

n,tPt1,...,T u

jPt1,...,10u

#∣∣∣∣∣1t
t
ÿ

s“1

yxn,j ,s ´ Gpxn,jq

∣∣∣∣∣ ď

d

1

2t
log

ˆ

2

δ

˙

+

E2 –
č

nPt1,...,T u

mPt1,...,tlog2pT quu

jPt1,...,9u

#
∣∣∣∣∣ 1

2m

2m´1
ÿ

i“1

yxn,j` i
2n`m ,1 ´

1

xn,j`1 ´ xn,j
¨

ż xn,j`1

xn,j

Gpxqdx

∣∣∣∣∣ ď

d

1

2 ¨ 2m
log

ˆ

2

δ

˙

`
2

2m

+

and note that E Ă E 1 X E2, since, in the event E 1 X E2, Algorithm 8 will query only points in D‹,
given that it uses only a subset of the estimates in the definition of E 1 and E2 to build its own
estimates (in particular, due to the ties breaking rules, to estimate the integral terms it will only
use the first query of the relevant dyadic points). Now, notice that for each n P t1, . . . , nu, each
m P t1, . . . , tlog2pT quu and each j P t1, . . . , 9u we have

#∣∣∣∣∣ 1

2m

2m´1
ÿ

i“1

yxn,j` i
2n`m ,1 ´

1

xn,j`1 ´ xn,j
¨

ż xn,j`1

xn,j

Gpxqdx

∣∣∣∣∣ ą

d

1

2 ¨ 2m
log

ˆ

2

δ

˙

`
2

2m

+

Ă

#∣∣∣∣∣ 1

2m

2m´1
ÿ

i“1

yxn,j` i
2n`m ,1 ´

1

2m

2m´1
ÿ

i“1

G
ˆ

xn,j `
i

2n`m

˙

∣∣∣∣∣ ą

d

1

2 ¨ 2m
log

ˆ

2

δ

˙

+

Y

#∣∣∣∣∣ 1

2m

2m´1
ÿ

i“1

G
ˆ

xn,j `
i

2n`m

˙

´
1

xn,j`1 ´ xn,j
¨

ż xn,j`1

xn,j

Gpxqdx

∣∣∣∣∣ ą
2

2m

+

“

#
∣∣∣∣∣ 1

2m

2m´1
ÿ

i“1

yxn,j` i
2n`m ,1 ´

1

2m

2m´1
ÿ

i“1

G
ˆ

xn,j `
i

2n`m

˙

∣∣∣∣∣ ą

d

1

2 ¨ 2m
log

ˆ

2

δ

˙

+
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where the last equality follows from∣∣∣∣∣ 1

2m

2m´1
ÿ

i“1

G
ˆ

xn,j `
i

2n`m

˙

´
1

xn,j`1 ´ xn,j
¨

ż xn,j`1

xn,j

Gpxqdx

∣∣∣∣∣
ď

2m´1
ÿ

i“1

ż xn,j` i
2n`m

xn,j` i´1
2n`m

ˆ

Gpxq ´ G
ˆ

xn,j `
i

2n`m

˙˙

dx`
1

2m

ď

2m´1
ÿ

i“1

ż xn,j` i
2n`m

xn,j` i´1
2n`m

ˆ

G
ˆ

xn,j `
i´ 1

2n`m

˙

´ G
ˆ

xn,j `
i

2n`m

˙˙

dx`
1

2m

ď
1

2m
¨ pG pxn,jq ´ G pxn,j`1qq `

1

2m
ď

2

2m

By De Morgan’s laws, a union bound and Hoeffding’s inequality, we have P
“

Ec
‰

ď P
“

pE 1qc
‰

`

P
“

pE2qc
‰

ď 20 ¨ T 2 ¨ δ.

The following lemma establishes the rate of shrinking of the length of the confidence intervals as
the length of an epoch increases.

Lemma 24 (Confidence intervals shrink with epoch length). For any δ P p0, 1q, if the learner runs
Algorithm 8 with confidence parameter δ then, for any time t,

max
`
∣∣Jtplτt , cτtq∣∣, ∣∣Jtpcτt , rτtq∣∣, ∣∣Jtplτt , rτtq∣∣˘ ď

rcδ
?
t´ tτt´1

, (C.30)

whenever t´ tτt´1 ě rn, where rn “ 10 and rcδ “ 72 ¨
?
10 ¨

´

a

2 logp2{δq ` 4
¯

.

We break the proof of Lemma 24 in several steps. Let d1, d2, d3, d4, d5 ą 0 be constants. For
each k P t1, 2, 3u, define

fk : t0, 1, 2, . . . u Ñ r0,`8s, n ÞÑ
dk
?
n

and for each k P t4, 5u define

fk : t0, 1, 2, . . . u Ñ r0,`8s, n ÞÑ
d4

a

2tlog2pn`1qu ´ 1
`

d5

2tlog2pn`1qu
,

with the usual convention that a{0 “ `8, for any a ą 0. Suppose that m1p0q,m2p0q,m3p0q,
m4p0q,m5p0q P t0, 1, 2, . . . u and consider the following algorithm.

Algorithm 12 Index selection
for s “ 1, 2, . . . do

Let ks “ min
´

argmaxkPr5s fk
`

mkps´ 1q
˘

¯

mkspsq “ mksps´ 1q ` 1
for i P r5sztksu do

mipsq “ mips´ 1q

The following lemma holds.

Lemma 25. Consider Algorithm 12 and the notation defined therein. For each s P N there exists an
index i P r5s for which mipsq ě rs{5s
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Proof. Let s P N and suppose by contradiction that for each k P r5s it holds that mkpsq ă s{5. Then

s ď

5
ÿ

k“1

mkpsq ď 5 ¨ max
kPr5s

mkpsq ă 5 ¨
s

5
“ s ,

which is a contradiction. It follows that there exists k P r5s for which mkpsq ě s{5, which also
implies mkpsq ě rs{5s. Given that s was arbitrarily chosen, the conclusion follows.

Notice that, for each n P t0, 1, 2, . . . u, we have

d4
?
n

ď
d4

a

2tlog2pn`1qu ´ 1
ď

2d4
?
n

and
0 ď

d5
?
2tlog2pn`1qu

ď
2d5
n

,

which implies that, for each k P r5s and each n P t0, 1, 2, . . . u

dk
?
n

ď fkpnq ď
Dk
?
n

where D1 “ d1, D2 “ d2, D3 “ d3, D4 “ D5 “ 2pd4 ` d5q.
The following lemma holds.

Lemma 26. Consider Algorithm 12 and the notation defined therein. For any i, j P r5s and any
s P N it holds

mipsq ě

ˆ

di
Dj

˙2

pmjpsq ´ 1q .

Proof. Let i, j P r5s. Suppose by contradiction that the conclusion does not hold. Then there exists
a smallest s P t0, 1, 2, . . . u for which

mipsq ă

ˆ

di
Dj

˙2

pmjpsq ´ 1q ,

which we call s0. Notice that s0 ‰ 0. Then, the fact that

mips0 ´ 1q ě

ˆ

di
Dj

˙2

pmjps0 ´ 1q ´ 1q ,

implies that at time s0 the algorithm selected ks0 “ j, which in turn implies that mips0´1q “ mips0q

and mjps0 ´ 1q “ mjps0q ´ 1. It follows that

ˆ

di
Dj

˙2

mjps0 ´ 1q “

ˆ

di
Dj

˙2
`

mjps0q ´ 1
˘

ą mips0q “ mips0 ´ 1q ,

Rearranging, we get

mjps0 ´ 1q ą

ˆ

Dj

di

˙2

mips0 ´ 1q .
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from which it follows that

fj
`

mjps0 ´ 1q
˘

ď
Dj

a

mjps0 ´ 1q
ă

di
a

mips0 ´ 1q
ď fi

`

mipt0 ´ 1q
˘

.

This last inequality implies that at time s0 the algorithm should have chosen the index i and not
the index j, which is a contradiction.

Combining the last two lemmas we can prove the following result.

Lemma 27. Consider Algorithm 12 and the notation defined therein. Then, for any s ě 5 it holds
that

max
kPr5s

fk
`

mkpsq
˘

ď
D

?
s´ 5

where D “
?
5 ¨

`

maxjPr5s Dj

˘

¨
`

maxkPr5s
Dk
dk

˘

.

Proof. Let s ě 5. Pick j P r5s such that mjpsq ě rs{5s (which does exist by Lemma 25). Then, by
Lemma 26

max
kPr5s

fk
`

mkpsq
˘

ď max
kPr5s

Dk
a

mkpsq
ď max

kPr5s

Dk
c

´

dk
Dj

¯2
`

mjpsq ´ 1
˘

“ Dj ¨ max
kPr5s

ˆ

Dk

dk

˙

1
a

mjpsq ´ 1
ď Dj ¨ max

kPr5s

ˆ

Dk

dk

˙

1
a

rs{5s ´ 1
ď

D
?
s´ 5

.

We are now ready for the proof of Lemma 24.

Proof of Lemma 24. It is enough to notice that Algorithm 8 with confidence parameter δ P p0, 1q

relies, inside each epoch, on the same routine given by Algorithm 12 with d1 “ l ¨

b

logp2{δq

2 , d2 “

c ¨

b

logp2{δq

2 , d3 “ r ¨

b

logp2{δq

2 , d4 “ λ ¨ pc´ lq ¨

b

logp2{δq

2 , d5 “ 2 ¨λ ¨ pc´ lq, with the convention that l
correspond to 1, c corresponds to 2, r corresponds to 3, pl, cq corresponds to 4 and pc, rq corresponds
to 5, the correspondence between times is given by s “ t ´ tτt´1, and, for each s P t0, 1, 2, . . . u,
m1psq “ ns`tτt´1plq, m2psq “ ns`tτt´1pcq, m3psq “ ns`tτt´1prq, m4psq “

ř

iďs`tτt´1
I
␣

xi P pl, cq
(

,
m5psq “

ř

iďs`tτt´1
I
␣

xi P pc, rq
(

. With these conventions, in Lemma 27 we have that D ď

9 ¨
?
5 ¨

´

a

2 logp2{δq ` 4
¯

and, for example (the other cases can be proved analogously)

∣∣Jtplτt , rτtq∣∣ ď 2 ¨ pΓtprq ` Γtplq ` Γtpl, cq ` Γtpc, rqq ď 2 ¨ 4 ¨ max
kPr5s

fk
`

mkpsq
˘

ď 8 ¨
D

?
t´ tτt´1 ´ 5

ď
rcδ
?
2

¨
1

?
t´ tτt´1 ´ 5

ď
rcδ

?
t´ tτt´1

where in the last inequality we used the fact that t´ tτt´1 ě 10.

Lemma 23 and Lemma 24 allow us to prove Theorem 29, which closely follows the proof given in
[23].

Proof of Theorem 29. Define τT as the last epoch, t0 “ 0 and (if not already defined) tτT “ T .
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Due to Lemma 23, we may (and do!) assume that for each t P t1, . . . , T u it holds

`

Upcτtq ´ Uplτtq P Jtplτt , cτtq
˘

^
`

Uprτtq ´ Upcτtq P Jtpcτt , lτtq
˘

^
`

Uprτtq ´ Uplτtq P Jtprτt , lτtq
˘

.

This is because, given our choice δ “ 1
T 5{2 , assuming these conditions costs us in the expected regret

a further additive term which is no greater than T ¨ rC ¨ T 2 ¨ δ “ rC ¨
?
T .

Under these assumptions, notice that for each τ P rτT s we have that x‹ P Iτ . In fact, if the
confidence intervals are guaranteed to contain the corresponding differences in the expected welfare,
every time Algorithm 8 shrinks the active interval is because all the discarded points are guaranteed
to be suboptimal.

For each epoch τ P t1, . . . , τT u, define

Bτ – ptτ ´ 1q ´ tτ´1 .

Now, for each epoch τ P t1, . . . , τT u if Bτ ě rn, then

max
xPrlτ ,rτ s

`

Upx‹q ´ Upxq
˘

ď 2 ¨ rcδ ¨

c

1

Bτ
.

In fact, assume that x‹ ą rτ (the other cases have similar proofs). Then, leveraging concavity, and
recalling that inf

`

Jtτ´1plτ , rτ q
˘

ă 0 and that x‹ P Iτ (which implies x‹´lτ
rτ´lτ

ď 2), we have

max
xPrlτ ,rτ s

`

Upx‹q ´ Upxq
˘

“ Upx‹q ´ Uplτ q “
Upx‹q ´ Uprτ q

x‹ ´ rτ
px‹ ´ rτ q ` Uprτ q ´ Uplτ q

ď
Uprτ q ´ Uplτ q

rτ ´ lτ
px‹ ´ rτ q ` Uprτ q ´ Uplτ q “

x‹ ´ lτ
rτ ´ lτ

¨
`

Uprτ q ´ Uplτ q
˘

ď 2 ¨
`

Uprτ q ´ Uplτ q
˘

ď 2 ¨ suppJtτ´1plτ , rτ qq ď 2 ¨ |Jtτ´1plτ , rτ q|

ď 2 ¨ rcδ ¨

c

1

Bτ
,

where the final inequality follows by Lemma 24.
Let τ‹ be the first epoch from which it holds x‹ P rlτ , rτ s. If τ‹ ě 2, then for each τ P t2, . . . , τ‹´1u

it holds that
max

xPrlτ ,rτ s

`

Upx‹q ´ Upxq
˘

ď
3

4
¨ max
xPrlτ´1,rτ´1s

`

Upx‹q ´ Upxq
˘

.

In fact, either for all τ P t1, . . . , τ‹ ´ 1u it holds that rτ ă x‹, or for all τ P t1, . . . , τ‹ ´ 1u it holds
that lτ ą x‹. In the first case, for all τ P t1, . . . , τ‹ ´ 1u, leveraging concavity and recalling that
x‹ P Iτ (which implies x‹´lτ

x‹´lτ´1
ď 3

4), we have

max
xPrlτ ,rτ s

`

Upx‹q ´ Upxq
˘

“ Upx‹q ´ Uplτ q “
Upx‹q ´ Uplτ q

x‹ ´ lτ
¨ px‹ ´ lτ q

ď
Upx‹q ´ Uplτ´1q

x‹ ´ lτ´1
¨ px‹ ´ lτ q

ď
3

4
¨
`

Upx‹q ´ Uplτ´1q
˘

“
3

4
¨ max
xPrlτ´1,rτ´1s

`

Upx‹q ´ Upxq
˘

,
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while the second case can be deduced analogously.
For each m P N, let Am –

␣

x P p0, 1q : Dk P t1, . . . , 2m ´ 1u, x “ k{2m
(

be the dyadic mesh in
p0, 1q of index m. For any epoch τ P N, let mτ – ´ log2pcτ ´ lτ q be the index of the dyadic mesh in
p0, 1q at epoch τ of Algorithm 8 (note that mτ ě 2 for all τ P N because Algorithm 8 begins with a
step-size of 1{4).

Let m‹ – min
␣

m P N : #
`

Am X p0, x‹s
˘

ě 4 and #
`

Am X rx‹, 1q
˘

ě 4
(

be the smallest index of
the dyadic mesh in p0, 1q such that there are at least 4 points of the dyadic mesh in p0, 1q to the
right and to the left of x‹. For each m ě m‹ let xm1 ă xm2 ă xm3 ă xm4 ď x‹ be the four points of
Am X p0, x‹s closest to x‹ and x‹ ď xm5 ă xm6 ă xm7 ă xm8 be the four points of Am X rx‹, 1q closest
to x‹. Observe that, for all epochs τ ě τ‹ ` 3, Algorithm 8 selects policies only in the closed interval
rxmτ

1 , xmτ
8 s. Observe further that, for each m ě m‹ ` 1, it holds

max
xPrxm1 ,x

m
8 s

`

Upx‹q ´ Upxq
˘

ď
4

7
¨ max
xPrxm´1

1 ,xm´1
8 s

`

Upx‹q ´ Upxq
˘

.

In fact, either maxxPrxm1 ,x
m
8 s

`

Upx‹q ´ Upxq
˘

“ Upx‹q ´ Upxm1 q or maxxPrxm1 ,x
m
8 s

`

Upx‹q ´ Upxq
˘

“

Upx‹q ´ Upxm8 q. In the first case, leveraging concavity and observing that x‹´xm1
x‹´xm´1

1

ď 4
7 , we have

max
xPrxm1 ,x

m
8 s

`

Upx‹q ´ Upxq
˘

“ Upx‹q ´ Upxm1 q “
Upx‹q ´ Upxm1 q

x‹ ´ xm1
¨ px‹ ´ xm1 q

ď
Upx‹q ´ Upxm´1

1 q

x‹ ´ xm´1
1

¨ px‹ ´ xm1 q ď
4

7
¨
`

Upx‹q ´ Upxm´1
1 q

˘

ď
4

7
¨ max
xPrxm´1

1 ,xm´1
8 s

`

Upx‹q ´ Upxq
˘

.

The second case can be worked out similarly.
Define τ# –

X

4 ` 2 log4{3p
?
T q

\

so that

ˆ

3

4

˙

Z

τ#´1
2

^

“

ˆ

3

4

˙

—

—

—

–

X

4`2 log4{3
p
?
T q

\

´1

2

ffi

ffi

ffi

fl

ď

ˆ

3

4

˙log4{3p
?
T q

“
1

?
T
.

Assume that τ# ă τ‹ and τ‹ ` 2 ` τ# ă τT (the other cases can be treated analogously, omitting
terms which are not there anymore). Then, the expected regret can be decomposed as follows:

T
ÿ

t“1

`

Upx‹q ´ Upxtq
˘

“

τ#
ÿ

τ“1

tτ
ÿ

t“tτ´1`1

`

Upx‹q ´ Upxtq
˘

`

τ‹´1
ÿ

τ“τ#`1

tτ
ÿ

t“tτ´1`1

`

Upx‹q ´ Upxtq
˘

`

τ‹`2
ÿ

τ“τ‹

tτ
ÿ

t“tτ´1`1

`

Upx‹q´Upxtq
˘

`

τ‹`2`τ#
ÿ

τ“τ‹`3

tτ
ÿ

t“tτ´1`1

`

Upx‹q´Upxtq
˘

`

τT
ÿ

τ“τ‹`3`τ#

tτ
ÿ

t“tτ´1`1

`

Upx‹q´Upxtq
˘

.

We analyze these five terms individually.
For the first one, we further split the sum into two terms, depending on whether or not

Bτ – tτ ´ 1 ´ tτ´1 ě rn. Recalling that for each τ P t1, . . . , τT u and for each t P ttτ´1 ` 1, . . . , tτu
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Algorithm 8 selects the policy xt in the closed interval rlτ , rτ s, we have that

τ#
ÿ

τ“1
Bτěrn

tτ
ÿ

t“tτ´1`1

`

Upx‹q ´ Upxtq
˘

ď

τ#
ÿ

τ“1
Bτěrn

pBτ ` 1q ¨ max
xPrlτ ,rτ s

`

Upx‹q ´ Upxq
˘

ď

τ#
ÿ

τ“1
Bτěrn

pBτ ` 1q ¨ 2 ¨ rcδ ¨

d

logp2{δq

Bτ

ď 4 ¨ rcδ ¨

τ#
ÿ

τ“1
Bτěrn

a

Bτ ď 4 ¨ rcδ ¨ τ# ¨
?
T .

On the other hand, we also have that

τ#
ÿ

τ“1
Bτďprn´1q

tτ
ÿ

t“tτ´1`1

`

Upx‹q ´ Upxtq
˘

ď prn´ 1q

8
ÿ

τ“0

`

3{4
˘τ

“ 4 ¨ prn´ 1q.

Thus, the first term is upper bounded by 4 ¨ rcδ ¨ τ# ¨
?
T ` 4 ¨ prn´ 1q.

For the second term, leveraging the definition of τ#, we obtain

τ‹´1
ÿ

τ“τ#`1

tτ
ÿ

t“tτ´1`1

`

Upx‹q ´ Upxtq
˘

ď

τ‹´1
ÿ

τ“τ#`1

tτ
ÿ

t“tτ´1`1

`

3{4
˘τ´1

ď
`

3{4
˘τ#´1

¨

τ‹´1
ÿ

τ“τ#`1

tτ
ÿ

t“tτ´1`1

1

ď
`

3{4
˘

X

τ#´1
2

\

¨

τ‹´1
ÿ

τ“τ#`1

tτ
ÿ

t“tτ´1`1

1 ď
?
T .

For the third term, we further split the sum into two terms, depending on whether or not Bτ ě rn.
Proceeding exactly as for the first term, we obtain

τ‹`2
ÿ

τ“τ‹

tτ
ÿ

t“tτ´1`1

`

Upx‹q ´ Upxtq
˘

ď 3 ¨ 4 ¨ rcδ ¨
?
T ` 3 ¨ prn´ 1q.

For the fourth term, we split again the sum into two terms, depending on whether or not Bτ ě rn. If
Bτ ě rn, proceeding exactly as for the corresponding part of the first term, we obtain

τ‹`2`τ#
ÿ

τ“τ‹`3
Bτěrn

tτ
ÿ

t“tτ´1`1

`

Upx‹q ´ Upxtq
˘

ď 4 ¨ rcδ ¨ τ# ¨
?
T .

Instead, if Bτ ď prn´ 1q, we get

τ‹`2`τ#
ÿ

τ“τ‹`3
Bτďprn´1q

tτ
ÿ

t“tτ´1`1

`

Upx‹q ´ Upxtq
˘

ď prn´ 1q ¨

τ‹`2`τ#
ÿ

τ“τ‹`3
Bτďprn´1q

max
xPrlτ ,rτ s

`

Upx‹q ´ Upxq
˘

ď prn´ 1q ¨

τ‹`2`τ#
ÿ

τ“τ‹`3
Bτďprn´1q

max
xPrxmτ

1 ,xmτ
8 s

`

Upx‹q ´ Upxq
˘
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ď 2 ¨ prn´ 1q ¨

8
ÿ

τ“0

`

4{7
˘τ

ď
14

3
¨ prn´ 1q .

For the last term, we have

τT
ÿ

τ“τ‹`3`τ#

tτ
ÿ

t“tτ´1`1

`

Upx‹q ´ Upxtq
˘

ď

τT
ÿ

τ“τ‹`3`τ#

tτ
ÿ

t“tτ´1`1

max
xPrxmτ

1 ,xmτ
8 s

`

Upx‹q ´ Upxq
˘

ď

τT
ÿ

τ“τ‹`3`τ#

tτ
ÿ

t“tτ´1`1

`

4{7
˘

Y

τ´pτ‹`3q´1
2

]

ď
`

3{4
˘

Z

τ#´1
2

^

τT
ÿ

τ“τ‹`3`τ#

tτ
ÿ

t“tτ´1`1

1 ď
?
T .

Putting everything together, and recalling the definition of τ#, the conclusion follows.

C.2.5 Theorem 30 (Upper Bound on Regret of Tempered Exp3 for Optimal
Income Taxation)

Proof of Theorem 30.
We prove this result by reduction to our baseline model, as analyzed in Section 4.3. Assume that
W “ tw1, . . . , wHu with 0 “ w1 ă w2 ă ¨ ¨ ¨ ă wH ď 1. For each tax bracket rwh, wh`1q, Tempered
Exp3 for Optimal Income Taxation α essentially reduces to a separate instance of Tempered Exp3
for Social Welfare. Denote

Uhi
`

xp¨q
˘

“ Ui
`

xp¨q
˘

¨ I
!

twiu “ wh
)

, Uh
i

`

xp¨q
˘

“
ÿ

jďi

Uhj
`

xp¨q
˘

,

Uh
i “

ÿ

jďi

Uhj
`

xjp¨q
˘

, T h “
ÿ

iďT

I
!

twiu “ wh
)

,

Rh
T “ sup

xp¨qPXW

E
”

Uh
T

`

xp¨q
˘

´ Uh
T

ı

.

It is immediate that
RT

`

α, pvi, wiq
T
i“1

˘

“
ÿ

h

Rh
T , and T “

ÿ

h

T h.

Assume for a moment that the upper bound on the regret of Theorem 27 (with λ replaced by 1)
applies to each instance (tax bracket) h, separately. That is, assume that

Rh
T ď

´

γ ` η ¨ pe´ 2qK`1
K ¨

´

2K`1
6 ` 1

γ

¯

` 1
K

¯

¨ T h `
logpK`1q

η .

Then it follows that

RT
`

α, pvi, wiq
T
i“1

˘

ď

´

γ ` η ¨ pe´ 2qK`1
K ¨

´

2K`1
6 ` 1

γ

¯

` 1
K

¯

¨ T `
H¨logpK`1q

η ,

and the claims of Theorem 30 are immediate.
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It remains to show that indeed the upper bound on regret of Theorem 27 applies to each instance
(tax bracket) h. For any given pair of sequences tviu

T
i“1, twiu

T
i“1, consider the subsequence of

observations i for which twiu “ wh. Along this subsequence, the policy choice reduces to the choice of
a tax rate xi “ xipw

hq P X , and the algorithm Tempered Exp3 for Optimal Income Taxation reduces
to an instance of the algorithm Tempered Exp3 for Social Welfare, with the following modifications:

1. Estimated demand pGipx,w
hq is multiplied by an additional factor wi P r0, 1s.

2. Estimated social welfare pUi`1px,whq is updated with a term for private welfare that includes
a time-varying welfare weight ωpwiq ď 1, rather than a fixed weight λ.

We need to verify that, with these modifications, the following key claims in the proof of Theorem
27 continue to hold:

1. Unbiasedness: pUipx,w
hq is an unbiased estimator of rUipx,w

hq, for a suitably discretized
version of cumulative social welfare. (Step 2 of the original proof.) In the present setting,
discretization requires substituting rvi for vi, where rvi “ mintx P X : wip1 ´ xq ě viu.

2. Bounded support: pUipx,w
hq ă K`1

γ , where

pUipx,w
hq “ x ¨ pGipx,w

hq `
ωpwiq

K
¨

ÿ

x1PX ,x1ąx

pGipx
1, whq.

(Step 4 of the original proof.)

3. Bounded second moment of pUipx,w
hq:

Ei
”

pUipx,w
hq2

ı

ď
x2

pipx|whq
`

ˆ

1

K

˙2

¨
ÿ

x1PX ,x1ąx

1

pipx1|whq
,

(Step 6 of the original proof.)

Unbiasedness follows as before. To show bounded support, as well as the bound on the second
moment, note that we can rewrite

pUipx,w
hq “

ˆ

x ¨ Ipxi “ xq `
ωpwiq

K
¨ Ipxi ą xq

˙

¨
yi ¨ wi

pipxi|whq
.

Recall that x, ωpwiq, wi, and yi are all bounded above by 1, and that pipx|whq ě
γ

K`1 . Bounded
support and the bound on the second moment follow. The remaining steps of the proof are as before.
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Appendix D

Nonstochastic Bandits with Composite
Anonymous Feedback

D.1 Comments on the Preliminary Version

Chapter 5 is based on [56], which is an extended and improved version of a preliminary paper that
appeared as [53]. In addition to [53], in [56] we provide an analysis of the stability of FTRL with
Tsallis Entropy. As a consequence, we are able to shave a logarithmic factor in the regret with
respect to the stated guarantees in the preliminary version.

More importantly, there were two critical issues in [53].
Firstly, in Cesa-Bianchi et al. [53, last line of Eq. (11)], we find the inequality

E

»

–

d´1
ÿ

s“0

ÿ

i:pt´spiqąpt´d`1piq

ppt´spiq ´ pt´d`1piqq

fi

fl ď ξ

but, whenever an update occurred at round t´ d` 2, the same term is summed Θpdq times (rather
than 1), leading to a bound of order Θpdξq rather than the claimed Θpξq, and a consequently looser
upper bound for the performance of the wrapper.

Secondly, in Cesa-Bianchi et al. [53, first line of Eq. (10)], we find the inequality

E

»

–

ÿ

tPU ,tě2d´2

∆k
t

fi

fl ě q
`

1 ´ qp2d´ 1q
˘

T
ÿ

t“2d´2

Er∆k
t s

which would follow from the provided discussion on P1
”

Ź2d´1
s“1 pt´ s R Uq

ı

if ∆k
t were non-negative,

but this is not necessarily the case.
In [56] we propose a different wrapper and patch both things up, as described below.
When analyzing the term corresponding to the first issue in [53], we take a different route. We

begin with a change of variables and never upper bound the losses ℓpsq

t´s with 1, relying instead on
Lemma 12 to obtain the correct dependence on d. This can be seen in the upper bound of pIq in the
proof of Theorem 31.

For the second issue, the problem with the original wrapper in [53] is to disentangle ∆k
t from

the random variable Itt is an update roundu. There is, however, an easier way to get around this
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D.2. An Accountants’ Lemma

t

τ

a

b` d

a´ d a s s` 1 b b` d

cs

cs

cs

cs`1

cs`1

cs`1

Figure D.1: On the right-hand side of the equation in Lemma 28, we are summing each row of the
squares in the picture. On the left hand side, we are summing the columns. Each column s contains
the same constant cs in each component.

roadblock, taking a slightly different route and relying on a different definition of draw, stay, and
update rounds (à la [75], see Definition 2 and the subsequent discussion). This greatly simplifies the
analysis as can be seen in the upper bound of pIIq in the proof of Theorem 31.

D.2 An Accountants’ Lemma

The next elementary lemma can be proved straightforwardly by swapping the order of the sums (see
Figure D.1).

Lemma 28. If pctqtPZ Ă R, a, b P Z are such that a ď b and d ě 0 then

a´1
ÿ

t“a´d

pt´ a` d` 1qct ` pd` 1q

b
ÿ

t“a

ct `

b`d
ÿ

t“b`1

pb` d` 1 ´ tqct “

b`d
ÿ

τ“a

τ
ÿ

t“τ´d

ct .

D.3 Stability of FTRL with Tsallis Entropy

In this section, we prove a key stability property of FTRL with Tsallis entropy that could be of
independent interest. A general technique [164, Lemma 2.10] to do so for the FTRL family of
algorithms is to show that the regularizers are µ-strongly convex with respect to the desired norm
(in our case, the ℓ1-norm). To the best of our knowledge, the existing results in this direction (e.g.,
Reem et al. 156, Section 7.3) lead to a (probably loose) upper bound on 1{µ of order K, which in
turn yields a suboptimal dependence on K in the stability of FTRL with Tsallis entropy. To obtain
the correct dependence on K in the regret in Theorem 4, stability of order

?
K or better is required

instead. If one wanted to follow this path, it would therefore be required to prove the tighter upper
bound 1{µ À

?
K, which seems non-trivial. Instead, we take a different route skipping this middle

step and controlling the stability of FTRL with Tsallis entropy directly.
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D.3. Stability of FTRL with Tsallis Entropy

We begin by showing that, when η ą 0, there exists a unique solution of the optimization
problem that defines qn in Algorithm 11 and provide a formula for it in terms of the corresponding
Lagrange multiplier λ. An analogous result was stated in [193, Section 3.3] for the related algorithm
Tsallis-INF.

Lemma 29. Let w P RK and η ą 0. Then

D!λw,η ă min
iPrKs

wpiq ,
ÿ

iPrKs

η2
`

wpiq ´ λw,η
˘2 “ 1 .

Furthermore, defining for all i P rKs,

qoptw,ηpiq –
η2

`

wpiq ´ λw,η
˘2 ,

we have that qoptw,η is the unique global minimizer of the function:

∆K Ñ R , q ÞÑ
ÿ

iPrKs

wpiqqpiq ´ 2η
ÿ

iPrKs

a

qpiq .

Proof. Define the two auxiliary functions

fw,η : r0,8qK Ñ R , q ÞÑ
ÿ

iPrKs

wpiqqpiq ´ 2η
ÿ

iPrKs

a

qpiq

φ : r0,8qK Ñ R , q ÞÑ
ÿ

iPrKs

qpiq

Note that fw,η is strictly convex and continuous on r0,8qK and differentiable on p0,8qK . Thus, by
the Lagrange multiplier theorem, a point q P p0,8qK is the unique global minimizer of fw,η on the
simplex ∆K if and only if

φpqq “ 1 and Dλ P R, ∇fw,ηpqq “ λ∇φpqq (D.1)

A direct verification shows that a pair pq, λq P p0,8qK ˆ R satisfies condition (D.1) if and only if

λ ă min
iPrKs

wpiq ,
ÿ

iPrKs

η2
`

wpiq ´ λ
˘2 “ 1 , and @i P rKs , qpiq “

η2
`

wpiq ´ λ
˘2 (D.2)

Note that, letting m – miniPrKs wpiq, the function

g : p´8,mq Ñ R , λ ÞÑ
ÿ

iPrKs

η2
`

wpiq ´ λ
˘2

is continuous, strictly increasing, and it satisfies

lim
λÑ´8

gpλq “ 0 and lim
λÑm´

gpλq “ `8

hence, there exists a unique λw,η P p´8,mq such that gpλw,ηq “ 1. Therefore, qoptw,η is the unique
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D.3. Stability of FTRL with Tsallis Entropy

global minimizer of fw,η on the simplex ∆K .

This lemma controls the variation of the Lagrange multipliers corresponding to two points that
vary by quantity δ only in a single coordinate.

Lemma 30. Let w P RK such that wp1q ď ¨ ¨ ¨ ď wpKq and η ą 0. Then, for all δ ą 0 and j P rKs,

λw`δej ,η ´ λw,η ď
1

j
δ ,

where λw`δej ,η and λw,η are defined as in Lemma 29 and e1, . . . , eK is the canonical basis of RK .

Proof. Define X –
␣`

up1q, . . . ,upKq, λ
˘

P RK ˆ R | λ ă miniPrKs upiq
(

and

ψ : X Ñ R ,
`

up1q, . . . ,upKq, λ
˘

ÞÑ
ÿ

iPrKs

η2
`

upiq ´ λ
˘2

Λ: RK Ñ R , u ÞÑ λu,η

where λu,η is defined as in Lemma 29. By the implicit function theorem, we have that Λ is infinitely
differentiable and for all u P RK ,

DjΛpuq “ ´
Djψ

`

up1q, . . . ,upKq, λu,η
˘

DK`1ψ
`

up1q, . . . ,upKq, λu,η
˘

“ ´

´2 η2

pupjq´λu,ηq
3

2
ř

iPrKs
η2

pupiq´λu,ηq
3

“
1

1 `
ř

iPrKs,i‰j

´

upjq´λu,η

upiq´λu,η

¯3 ,

where we denoted the partial derivative with respect to the j-th coordinate by Dj . Now, by the
fundamental theorem of calculus,

λw`δej ,η ´ λw,η “ Λpw ` δejq ´ Λpwq “ δ

ż 1

0
DjΛpw ` sδejq ds

“ δ

ż 1

0

1

1 `
ř

iPrKs,iďj´1

ˆ

wpjq`sδ´λw`sδej ,η

wpiq´λw`sδej ,η

˙3

`
ř

iPrKs,iěj`1

ˆ

wpjq`sδ´λw`sδej ,η

wpiq´λw`sδej ,η

˙3 ds

ď δ

ż 1

0

1

1 `
ř

iPrKs,iďj´1

ˆ

wpiq´λw`sδej ,η

wpiq´λw`sδej ,η

˙3 ds “
1

j
δ .

We can finally prove the stability of FTRL with 1
2 -Tsallis entropy.

Proof of Theorem 32. Consider an arbitrary sequence of losses pℓmqmPN Ă r0, 1s. Fix any η ą 0. For
each w P RK , let λw – λw,η, where λw,η is defined as in Lemma 29. Let F0 be the trivial σ-algebra
(containing only the sample space and the empty set) and for all n P N, Fn – σpJ1, . . . Jnq. Note
that, for each n P N, we have that pLn´1 is Fn´1-measurable and, as a consequence of Lemma 29, for
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D.3. Stability of FTRL with Tsallis Entropy

all i P rKs,

qnpiq “
η2

`

pLn´1piq ´ λ
pLn´1

˘2 .

Let e1, . . . , eK be the canonical basis of RK and fix any n P N. Define for each j P rKs, pℓn,j –
ℓnpjq

qnpjq
ej

and note that pℓn “ pℓn,Jn . To make the notation more compact, we also let Enr¨s – Er¨ | Fn´1s.
Then

En

»

–

ÿ

iPrKs

`

qn`1piq ´ qnpiq
˘`

fi

fl “ En

»

–

ÿ

iPrKs

¨

˝

η2
`

pLnpiq ´ λ
pLn

˘2 ´
η2

`

pLn´1piq ´ λ
pLn´1

˘2

˛

‚

`fi

fl

“ En

»

–

ÿ

iPrKs

¨

˝

η2
`

pLn´1piq ` pℓn,Jnpiq ´ λ
pLn´1`pℓn,Jn

˘2 ´
η2

`

pLn´1piq ´ λ
pLn´1

˘2

˛

‚

`fi

fl

“
ÿ

jPrKs

En

»

–ItJn “ ju
ÿ

iPrKs

¨

˝

η2
`

pLn´1piq ` pℓn,jpiq ´ λ
pLn´1`pℓn,j

˘2 ´
η2

`

pLn´1piq ´ λ
pLn´1

˘2

˛

‚

`fi

fl

“
ÿ

jPrKs

En
“

ItJn “ ju
‰

ÿ

iPrKs

¨

˝

η2
`

pLn´1piq ` pℓn,jpiq ´ λ
pLn´1`pℓn,j

˘2 ´
η2

`

pLn´1piq ´ λ
pLn´1

˘2

˛

‚

`

“
ÿ

jPrKs

qnpjq
ÿ

iPrKs

¨

˝

η2
`

pLn´1piq ` pℓn,jpiq ´ λ
pLn´1`pℓn,j

˘2 ´
η2

`

pLn´1piq ´ λ
pLn´1

˘2

˛

‚

`

“ p‹q .

Now, note that, for each j P rKs:

• λ
pLn´1`pℓn,j

ě λ
pLn´1

(because, as we show in the proof of Lemma 30, the directional derivatives
of u ÞÑ λu are positive).

• For each i P rKsztju, η2

pLn´1piq´λ
pLn´1

ď
η2

pLn´1piq´λ
pLn´1`pℓn,j

“
η2

pLn´1piq`pℓn,jpiq´λ
pLn´1`pℓn,j

(by the

previous point).

• η2

pLn´1pjq´λ
pLn´1

ě
η2

pLn´1pjq`pℓn,jpjq´λ
pLn´1`pℓn,j

(by the previous point and the fact that the following

equalities hold
ř

iPrKs
η2

pLn´1piq´λ
pLn´1

“ 1 “
ř

iPrKs
η2

pLn´1piq`pℓn,jpiq´λ
pLn´1`pℓn,j

).

It follows that

p‹q “
ÿ

jPrKs

qnpjq
ÿ

iPrKs,i‰j

¨

˝

η2
`

pLn´1piq ´ λ
pLn´1`pℓn,j

˘2 ´
η2

`

pLn´1piq ´ λ
pLn´1

˘2

˛

‚

“ η2
ÿ

jPrKs

qnpjq
ÿ

iPrKs,i‰j

`

pLn´1piq ´ λ
pLn´1

˘2
´
`

pLn´1piq ´ λ
pLn´1`pℓn,j

˘2

`

pLn´1piq ´ λ
pLn´1`pℓn,j

˘2`
pLn´1piq ´ λ

pLn´1

˘2

“ η2
ÿ

jPrKs

qnpjqpλ
pLn´1`pℓn,j

´ λ
pLn´1

q
ÿ

iPrKs,i‰j

`

pLn´1piq ´ λ
pLn´1

˘

`
`

pLn´1piq ´ λ
pLn´1`pℓn,j

˘

`

pLn´1piq ´ λ
pLn´1`pℓn,j

˘2`
pLn´1piq ´ λ

pLn´1

˘2

ď 2η2
ÿ

jPrKs

qnpjqpλ
pLn´1`pℓn,j

´ λ
pLn´1

q
ÿ

iPrKs,i‰j

1
`

pLn´1piq ´ λ
pLn´1`pℓn,j

˘3
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ď 2η2
ÿ

jPrKs

qnpjqpλ
pLn´1`pℓn,j

´ λ
pLn´1

q

¨

˝

ÿ

iPrKs,i‰j

1
`

pLn´1piq ´ λ
pLn´1`pℓn,j

˘2

˛

‚

3{2

“ 2η2
ÿ

jPrKs

qnpjqpλ
pLn´1`pℓn,j

´ λ
pLn´1

q

¨

˝

ÿ

iPrKs,i‰j

1
`

pLn´1piq ` pℓn,jpiq ´ λ
pLn´1`pℓn,j

˘2

˛

‚

3{2

ď 2η2
ÿ

jPrKs

qnpjqpλ
pLn´1`pℓn,j

´ λ
pLn´1

q

¨

˝

ÿ

iPrKs

1
`

pLn´1piq ` pℓn,jpiq ´ λ
pLn´1`pℓn,j

˘2

˛

‚

3{2

“
2

η

ÿ

jPrKs

qnpjqpλ
pLn´1`pℓn,j

´ λ
pLn´1

q “ p‹‹q .

Now, let σ be a random permutation of rKs such that pLn´1

`

σp1q
˘

ď ¨ ¨ ¨ ď pLn´1

`

σpKq
˘

. Then,
using Lemma 30, we have

p‹‹q “
2

η

ÿ

jPrKs

qn
`

σpjq
˘

pλ
pLn´1`pℓn,σpjq

´ λ
pLn´1

q

“
2

η

ÿ

jPrKs

qn
`

σpjq
˘

ˆ

λ
pLn´1`

ℓnpσpjqq

qnpσpjqq
eσpjq

´ λ
pLn´1

˙

ď
2

η

ÿ

jPrKs

qn
`

σpjq
˘1

j

ℓnpσpjqq

qnpσpjqq
ď

2

η

ÿ

jPrKs

1

j
ď 2

1 ` lnK

η
.

In conclusion:

E

»

–

ÿ

iPrKs

`

qn`1piq ´ qnpiq
˘`

| Fn´1

fi

fl ď 2
1 ` lnK

η
.

It follows that:

E

»

–

ÿ

iPrKs

`

qn`1piq ´ qnpiq
˘`

fi

fl “ E

»

–E

»

–

ÿ

iPrKs

`

qn`1piq ´ qnpiq
˘`

| Fn´1

fi

fl

fi

fl ď 2
1 ` lnK

η
.

Being n and pℓmqmPN arbitrary, the result follows.

D.4 Stability of Exp3

In this section, we prove the stability of Exp3.

Lemma 31. Exp3 with learning rate η is ξ-stable with ξ “ η.

Proof. Consider an arbitrary sequence of losses pℓnqnPN Ă r0, 1s. In this case, stability holds pointwise
(for all realizations of the actions J1, J2, . . . played by Exp3 on the sequence of losses pℓnqnPN) rather
that in expectation. From [51, Lemma 1] we have, for any round n P N and all arms i P rKs,

qn`1piq ´ qnpiq ď η qn`1piq
K
ÿ

j“1

qnpjqpℓnpjq

where pℓnpjq “
ℓnpjqItJn“ju

qnpjq
, qnpjq “ wnpjq{

řK
k“1wnpkq, and if n “ 1, wnpkq “ 1 while, if n ě 2,
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wnpkq is defined inductively by wnpkq “ qn´1pkqe´ηpℓn´1pkq. Hence we can write, for any n P N,

ÿ

i : qn`1piqąqnpiq

`

qn`1piq ´ qnpiq
˘

ď
ÿ

i : qn`1piqąqnpiq

η qn`1piq
K
ÿ

j“1

qnpjqpℓnpjq

“
ÿ

i : qn`1piqąqnpiq

η qn`1piqℓnpJnq ď η
ÿ

i : qn`1piqąqnpiq

qn`1piq ď η .

Being pℓnqnPN arbitrary, the result follows.

D.5 Lower Bound (Missing Proofs)

We begin this section by showing a reduction mapping each algorithm for bandits with composite
anonymous feedback to one for linear bandits with a better or equal regret.

Proof of Lemma 13. Fix an instance ℓ1, . . . , ℓT {pd`1q of a linear bandit problem and use it to construct
an instance of the d-delayed bandit setting with loss components

ℓ
psq

t piq “

#

ℓJ
rt{pd`1qs

ei if t` s “ 0 pmod d` 1q,

0 otherwise,

where e1, . . . , eK are the elements of the canonical basis of RK . These components define the
following composite loss incurred by any algorithm Ad playing actions I1, I2, . . .

ℓ˝
t pIt´d, . . . , Itq “

d
ÿ

s“0

ℓ
psq

t´spIt´sq “

#

pd` 1q ℓJ
rt{pd`1qs

qt if t “ 0 pmod d` 1q,

0 otherwise,

where qt is defined from It´d, . . . , It P rKs as follows

qtpjq “
1

d` 1

t
ÿ

s“t´d

ItIs “ ju j P rKs. (D.3)

Note that qtpiq is the fraction of times action i was played by Ad in the last d` 1 rounds. Given the
algorithm Ad, we define the algorithm A for playing linear bandits on the loss sequence ℓ1, . . . , ℓT {pd`1q

as follows. If t ‰ 0 pmod d`1q, then A skips the round. On the other hand, when t “ 0 pmod d`1q,
A performs action qt defined in (D.3), observes the loss ℓJ

rt{pd`1qs
qt, and returns to Ad the composite

loss ℓ˝
t pIt´d, . . . , Itq. Essentially, Ad observes a nonzero composite loss only every d time steps, when

t “ 0 pmod d` 1q. When this happens, the composite loss of Ad is d ℓJ
rt{pd`1qs

qt, which is d` 1 times
the loss of A.

Now it is enough to note that, using (5.3),

min
k“1,...,K

T
ÿ

t“1

ℓ˝
t pk, . . . , kq “ min

k“1,...,K
pd` 1q

T {pd`1q
ÿ

s“1

ℓJ
s ek “ min

qP∆K

pd` 1q

T {pd`1q
ÿ

s“1

ℓJ
s q .

This concludes the proof.

We remark that our lower bound construction relies crucially on the power of the adversary to
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D.5. Lower Bound (Missing Proofs)

plan the assignment of delays: losses of order d are revealed only on T {d time steps, leading to a
multiplicative dependence on d. This stacking effect is not possible in settings like the ones studied
in [149], where delays are drawn i.i.d. over rounds and are, therefore, independently spread across
time steps.

We now prove a lower bound for linear bandits.

Proof of Lemma 14. The statement is essentially proven in [166, Theorem 5], where the author shows
a Ω

`
a

K{T
˘

lower bound on the error of bandit linear optimization in the probability simplex.∗ As
explained in [166, Section 1.1], (cumulative) regret lower bounds for linear bandits can be obtained
by multiplying the lower bounds on bandit linear optimization error by T . A possible issue is that
the proof in [166, Theorem 5] uses unbounded Gaussian losses. However, in [166, Appendix B] it is
shown how lower bounds for Gaussian losses can be converted into lower bounds for losses in r´1, 1s

at the cost of a 1
L

?
lnT factor in the regret. Finally, note that our setting requires losses in r0, 1s,

but this is not an issue either because we are in a linear setting, and thus we can add the p1, . . . , 1q

constant vector to all loss vectors without affecting the regret.

∗It is worth stressing that the lower bound in [166] is based on stochastic i.i.d. generation of losses, hence it does
not violate our assumption about the obliviousness of the adversary.
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