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Abstract: The aim of this study was to characterize films obtained from fish gelatin (GelA, 3% w/w),
encapsulated with cinnamon essential oil (CEO, 0.03–0.48% v/w), and loaded with bacterial cellulose
nanocrystals (BCNCs, 0.06% w/w) at pH = 3.5. CEO-GelA/BCNC films were prepared by casting, and
thickness, light transmittance (TT) and haze (H), surface hydrophobicity, tensile properties, chemical
composition, and water solubility (WS) thereof were assessed. All films displayed outstanding
optical properties (TT > 89.4%), with haze slightly exceeding a 3% value only at the highest CEO
loading within the nanoemulsion formulation. The CEO plasticizing effect increased the elongation
at break (EAB, from 0.84% up to 3.79%) and decreased the tensile strength (TS, from 8.98 MPa
down to 1.93 MPa). The FT-IR spectra of films revealed good interaction among nanoemulsion
components via hydrogen bonding. The CEO hydrophobic nature negatively impacted the WS (from
52.08% down to 8.48%) of the films. The results of this work confirmed the possibility of producing
packaging systems from renewable sources to be potentially used in the form of edible films/coatings
for the preservation of water-sensitive food products, both vegan-based (fruits/vegetables) and
animal-based (meat/seafood).

Keywords: edible films; essential oils; IR spectroscopy; nanoemulsions; surface properties

1. Introduction

The development of edible films and coatings from polymers of renewable origin
represents a promising strategy to tackle the unceasing usage of fossil sources for producing
packaging materials, thus eventually avoiding unpleasant consequences at the environ-
mental level [1–3]. In this scenario, gelatin has been extensively regarded as a potential
replacement for synthetic polymers due to its intrinsic features, namely biodegradability,
biocompatibility, and good shielding ability against the penetration of gases, oils, and
volatile compounds, as well as of UV light [4,5]. In addition, gelatin is recognized for its
excellent film-forming characteristics and adhesiveness [6–8]. Fish gelatin, in particular,
has represented a valid choice to meet the requirements set by Kosher and Halal dietary
laws [9]. However, it has been pointed out that both moisture sensitivity and poor mechan-
ical properties restrict the use of gelatin as food packaging material only to products with
low/medium water activity [10,11].

In an attempt to improve the functional properties of gelatin-based films, researchers
have proposed a combination with other compounds that is able to compensate for the
inherent drawbacks of gelatin. In this regard, it was shown that the incorporation of
essential oils (EOs) in gelatin films had a positive effect on the water vapor barrier prop-
erties [2,12–16], besides having well-known antimicrobial activity. For example, the use
of cinnamon essential oil (CEO) for the generation of active packaging films and coatings
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for fungal growth control on postharvest fruits has recently been proposed [17]. Similarly,
cellulose nanocrystals (CNCs) can be successfully used in combination with fish gelatin to
yield nanocomposite structures with superior mechanical characteristics [18–23].

Within the field of biopolymer films and coatings, cellulose from bacterial sources has
raised a great deal of attention compared to its plant-based counterpart in the last few years
due to two main reasons: first, bacterial cellulose (BC) shows a comparatively greater purity
owing to the absence of lignin, hemicelluloses, organic compounds, and pectin [24]; second,
the higher degree of crystallinity found in BC than in plant cellulose straightforwardly
facilitates its hydrolysis to nanocrystals (BCNCs) via a top-down technique, thus boosting
processing yields [18,25].

In a previous study [26], the effect of pH (3.5 and 5) on the properties of nanoemul-
sions from fish gelatin–bacterial cellulose nanocrystals containing cinnamon essential oil
(CEO-GelA/BCNCs) was investigated, so as to serve the purpose of acting as natural
controlled-release systems in the food sector (e.g., active packaging). To this end, spe-
cific parameters such as size, ζ-potential, morphology, and encapsulation efficiency of
the achieved nanoemulsions were carefully assessed. It was concluded that the addition
of gelatin within the tested formulations granted a full coverage of CEO nanodroplets,
already surrounded by a web of BCNCs, which then translated into a greater emulsion
stability throughout the investigated storage window (30 days at 42 ◦C). A more recent
study explored the functionality of CEO-GelA/BCNC films, arising from nanoemulsions
at pH 5, in terms of optical behavior, surface wettability, gas/vapor screening effect, and
mechanical properties [22]. Surprisingly, no effects on film transparency and haze were
disclosed when applying CEO of increasing concentration during the main preparation
step. On top of this, the barrier properties displayed by the obtained films seemed to shift
the target toward the shelf-life extension of fresh products, both in the forms of coating or
as the inner layer of the packaging system (i.e., the coating in direct contact with the food).
Notwithstanding these interesting results, no information was retrieved as far as the effect
of a lower pH on film functionality is concerned, with the latter being of utmost importance
to possibly widen the range of targeted applications in the food packaging sector.

Therefore, inspired by such a premise, this study was conceived to perform a deep
characterization of cinnamon-based films made of gelatin and cellulose nanocrystals ob-
tained using a previously optimized method [22,26], starting from emulsions at pH 3.5, to
be potentially used in the food packaging sector as edible films/coatings for prolonging the
validity period of different food product categories. To this purpose, several analyses were
executed so as to put under the spotlight the optical (transmittance and haze), wetting,
solubility, and mechanical properties of the final films, whereas FT-IR spectroscopy enabled
collecting information on the degree of interactions established at the intra-/intermolecular
level among single nanoemulsion components.

2. Materials and Methods
2.1. Raw Materials and Chemicals

In this work, we used type A gelatin (200 Bloom), extracted from fish skin, and ob-
tained (GelA, Kosher, and Halal certified) from Weishardt (Graulhet, France). As an active
compound, cinnamon (Cinnamomum zeylanicum) essential oil (CEO) extracted from bark
was used. According to the supplier (Plant Therapy Essential Oils Corporate, Twin Falls,
ID, USA), its composition determined by GC-MS is as follows: E-cinnamaldehyde: 70.6%;
E-cinnamyl acetate: 5.3%; β-caryophyllene: 5.1%; linalool: 4.2%; eugenol: 3.7%; 1,8-cineole
+ β-phellandrene: 1.2%. For the BC production, Komagataeibacter sucrofermentans DSM
15973 (Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures,
Braunschweig, Germany) was used in a static fermentation setup, according to the pro-
cedure described elsewhere [27]. Sulfuric acid (99% v/v), ethanol (96% v/v), and dialysis
tubing cellulose membrane (12 kDa, average flat width: 43 mm) were purchased from
Sigma-Aldrich-Merck (Milano, Italy).
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2.2. Emulsion and Film Preparation

BCNC aqueous suspensions and Pickering emulsions were prepared according to
methods reported in a previous work [26]. In particular, Pickering emulsions were obtained
using different amounts of CEO (4.5–72 µL) added to 2.25 g of BCNC suspension (pH 3.5)
and applying a first emulsification using a UP200St ultrasonicator (Hielscher, Teltow,
Germany) at 40 W for 5 min. Afterward, the BCNCs/CEO emulsion was mixed with a fish
gelatin aqueous solution (10% w/w) to finally obtain CEO-GelA/BCNC emulsions with
BCNCs and gelatin concentrations of 0.06% and 3% (w/w), respectively. Eventually, six
samples coded as T1G (0.03% v/w CEO), T2G (0.06% v/w CEO), T3G (0.12% v/w CEO),
T4G (0.24% v/w CEO), T5G (0.36% v/w CEO), and T6G (0.48% v/w CEO) were obtained
and systematically analyzed.

The preparation of the films took place by spreading 6.5 g of each emulsion (T1G–T6G)
into Petri dishes (10 cm in diameter), which were then stored at 23 ± 1 ◦C and 50 ± 5%
RH for 48 h. The films were then peeled off from the Petri dishes and left to rest in a
desiccator at 23 ± 1 ◦C and 0% RH for one week to allow complete removal of water.
For comparative purposes, control films were generated from CEO-free systems, namely
GelA/BCNC nanoemulsions.

2.3. Film Characterization
2.3.1. Film Thickness

Films’ thickness (δ, in µm) was measured by a digital micrometer with a precision
of 1 µm (Mitutoyo, QuantuMike, Data output IP65, Serial No. 293-180, Mitutoyo Corp,
Kawasaki, Japan), at 10 different random locations, both from the center and the edges of
the film.

2.3.2. Optical Properties

The total luminous transmittance (TT, in %) and haze (H, in %) of tested films were
spectrophotometrically measured using a Lambda 650 high-performance spectrophotome-
ter mounting a 150 mm diameter integrating sphere (PerkinElmer, Waltham, MA, USA)
according to ASTM D1003 standard method [28]. Accordingly, the sample was placed at
the entrance port of the sphere so that both diffused and specular transmitted light could
be trapped.

2.3.3. Wetting Properties

The wettability properties of the films’ surface were assessed by measuring the water
contact angle (θ, in ◦) and using an optical contact angle apparatus (OCA 15 Plus—Data
Physics Instruments GmbH, Filderstadt, Germany) supported by a video measuring system
with a CCD camera and digitizing adapter. Rectangular strips (5 cm2) were mounted on
a sample holder with parallel clamping jaws that allowed us to flatten the surface of the
films. Then, a small droplet (2.0 ± 0.5 µL) of Milli-Q water was dispensed (T = 23 ± 1 ◦C,
RH = 50 ± 5%) according to the sessile drop procedure [29]. The software SCA 20 (Data
Physics Instruments GmbH, Filderstadt, Germany) was used for data acquisition and
elaboration.

2.3.4. Mechanical Properties

Tensile strength (TS, in MPa), elongation at break (EAB, in %), and elastic modulus (E,
in MPa) of film strips (6 cm in length; 2 cm in width) were determined using an Instron
Universal Testing Machine (STM-20, Norwood, MA, USA), and following the ASTM D882
standard [30]. The initial separation between clamps fixing the sample and the cross-head
speed was equal to 5 cm and 1.0 mm/s, respectively. For each sample, TS and EAB were
calculated, as shown in Equations (1) and (2), whereas E was calculated by a software-driven
procedure relying on the “secant” method [31].

TS = FMAX/A (1)
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EAB = (∆L/L0) × 100 (2)

where FMAX (in N) is the maximum load, A is the cross-sectional area (in mm2) of the
samples, ∆L (in mm) is the elongation (i.e., the difference between the initial and final
length of the specimen) of the film before rupture, and L0 (in mm) is the initial length of
the film.

2.3.5. Fourier Transform Infrared (FT-IR) Measurement

FT-IR analysis was carried out using an FT-IR Spectrum100 instrument (Perkin Elmer Inc.,
Waltham, MA, USA), coupled with an Attenuated Total Reflectance (ATR) accessory. All spectra
were collected at a resolution of 4 cm−1 over a broad wavenumber range (800–4000 cm−1),
with each spectrum resulting from an average of 16 scans. Before each test, a background
scan was launched to remove any spectral signal originating from carbon dioxide and
moisture.

2.3.6. Water Solubility (WS)

WS of films was evaluated using the method of Yao et al. [32], with slight modifications.
First, film specimens (2 × 2 cm2) were immersed in beakers containing 10 mL of distilled
water and kept under gentle stirring (50 rpm) at 25 ◦C for 24 h. The samples were then
filtered using filter paper (Whatman No. 1), which was then placed in a drying oven
(mod. UN 30, Memmert GmbH, Schwabach, Germany) at 105 ◦C for 24 h until achieving a
constant mass. The solubility in water of films was determined gravimetrically using an
analytical balance (mod. ME204, Mettler Toledo, Novate Milanese, Italy) and calculated as
follows (Equation (3)):

WS = (Wi − Wj)/Wi × 100 (3)

where Wi is the initial weight of film plus filter (in g), and Wj is the weight of dried sample
residue plus filter (in g).

2.4. Statistical Analysis

All the analyses were repeated at least three times unless otherwise specified. The
mean values and standard deviations (SD) of the experimental data were calculated. Statis-
tically significant differences among the averages were evaluated using a one-way analysis
of variance (ANOVA) and Tukey’s test (p ≤ 0.05) using the Minitab 18 statistical software
(Coventry, UK).

3. Results and Discussion
3.1. Thickness Measurement

The mean values of the edible films’ thickness are displayed in Table 1. The thickness of
the films increased monotonically with the concentration of CEO until reaching a maximum
value (~37 µm) for the T4G sample, after which a decrease for the formulations T5G
and T6G was observed. An opposite trend was previously reported, inasmuch as no
significant differences (p > 0.05) in terms of thickness between control film and CEO-based
GelA/BCNC films were highlighted [22]. At the same time, the results of this study are
supported by previous works, whereby the low chemical affinity between gelatin and
CEO could have reduced the intermolecular interactions; at the same time, CEO has been
demonstrated to act as a plasticizer [26], thus leading to a less dense network with a high
free volume, which can be deemed the cause of thickness increments [14]. Similar results
were obtained by Jamróz et al. [33] in a work on the thickening effect of Lavender essential
oil when embedded in a film-forming starch/furcellaran/gelatin matrix, and by Kilinic
et al. [34], who showed that adding Origanum onites L. essential oil into gelatin resulted in a
significant increase in the films’ thickness.
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Table 1. Averaged values of thickness (δ), total transmittance (TT), haze (H), water contact angle (θ),
and water solubility (WS) of CEO-GelA/BCNC films, as a function of CEO loading.

Sample δ (µm) TT (%) H (%) θ (◦) WS (%)

Control 24.20 ± 1.75 a 90.55 ± 0.30 a 0.92 ± 0.02 a 78.26 ± 3.51 a 52.08 ± 1.76 da

T1G 26.90 ± 3.66 b 90.51 ± 0.20 a 0.96 ± 0.01 a 95.97 ± 4.25 b 31.90 ± 0.24 cb

T2G 29.66 ± 1.75 c 90.46 ± 0.40 a 1.01 ± 0.02 a 94.25 ± 0.69 b 31.37 ± 0.51 bc

T3G 31.33 ± 2.06 d 90.37 ± 0.60 a 1.07 ± 0.03 a 97.19 ± 1.65 b 30.45 ± 0.38 bcd

T4G 36.62 ± 3.06 e 90.32 ± 0.50 a 1.16 ± 0.02 a 98.50 ± 3.64 b 29.45 ± 1.11 bcd

T5G 32.00 ± 2.39 f 90.29 ± 0.80 a 2.58 ± 0.03 b 97.40 ± 3.19 b 29.12 ± 0.63 cd

T6G 34.25 ± 1.66 g 89.38 ± 0.60 a 3.18 ± 0.04 c 94.10 ± 0.84 b 28.48 ± 0.52 d

Different superscript letters within the same column denote statistically significant differences (p < 0.05) among
the mean values.

3.2. Optical Properties

The behavior of CEO-GelA/BCNC films hit with visible light is here expressed in terms
of TT and H values (Table 1). In line with previous findings [22], no statistical differences
(p > 0.05) were revealed among the samples in terms of total transmittance, which indicates
that increasing the CEO concentration did not lead to any significant change in the total
transmitted light. In addition, the haze analysis revealed that with increasing CEO loading
in the film formulations, the ‘see-through’ capability of the films did not change significantly
from the formulation T1G to T4G. However, a significant, though limited, increase in haze
was instead observed for the highest CEO concentrations (0.36% v/w and 0.48% v/w)
(Table 1). This could be due to the increased scattering of the incident light due to the CEO
droplets in the films [22]. These results are in agreement with the findings of Tongnuanchan
et al. [2] and Yao et al. [24], who reported a joint behavior for the fish skin gelatin films
incorporated with citrus essential oil and gelatin–chitosan films supplemented with D-
limonene, respectively.

However, according to the acceptability threshold of 3% in the haze to grant adequate
display of the packaged food [35], it can be said that all the films had acceptable optical
properties for potential applications as a food packaging material. This can even be deduced
from a visual inspection of the films (Figure 1).
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3.3. Wetting Properties

Table 1 shows the mean water contact angles formed on the surface of gelatin–cellulose
nanocrystal films containing different CEO concentrations. θ has been widely adopted as a
diagnostic parameter to discriminate between materials with hydrophobic (θ > 65◦) or hy-
drophilic (θ < 65◦) surface features [36,37]. At the same time, in the design and development
of engineered surfaces, θ can be advantageously used to monitor any significant change in
the surface properties of a given material ensuing from physicochemical treatments. In this
work, we expected that the addition of CEO could have somehow led to an increase in the
hydrophobic behavior of the CEO-based GelA/BCNC films. Compared to the control films,
the addition of CEO to GelA/BCNC systems induced a significant (p < 0.05) increase in the θ
values, which is ascribable to the intrinsic hydrophobic nature of the essential oil. However,
there was not a significant difference among CEO-loaded films, suggesting that the CEO
concentration cannot be considered a limiting factor in the hydrophobic behavior of the film
surfaces within the investigated range (0.03% v/w–0.48% v/w). Interestingly, similar values
of θ when adding CEO to GelA/BCNC systems produced at pH = 5 were detected [22].
Overall, these results are in full agreement with previous findings demonstrating that the
incorporation of oregano, mint, and D-limonene essential oils in gelatin/chitosan-based
formulations increased the surface hydrophobicity of films thereof [12,13,32].

3.4. Mechanical Properties

As far as the mechanical properties are concerned, it is clear (Table 2) that GelA/BCNC
films exhibited higher TS and E compared to CEO-incorporated films, which instead have
a higher elongation at rupture. From a practical point of view, these data indicate that
pristine gelatin/cellulose nanocrystal films are stiffer and more brittle than the same films
added with CEO, whereas the latter are more stretchable, as demonstrated by the higher
EAB. The impairment of TS and E, as well as the increase in EAB, pertaining to tested films
upon CEO addition linearly correlated (averaged R2 = 0.987) with the increase in thickness
for T1G-T4G samples observed in Table 1. The overall behavior of the films tested in this
work is well-known in the literature and has been previously reported by other authors. In
particular, the addition of CEO (as other plasticizing molecules) increased the free volume
of the polymer network, presumably hindering not only gelatin–gelatin intermolecular
interactions but also gelatin–BCNC bonds (e.g., hydrogen bonding), which is reflected in
the decrease in both TS and E [38–40]. For the same reason, CEO improved film extensibility
due to its plasticizing effect that enhanced the mobility of gelatin molecules [5,40]. Similarly,
Wu et al. [38] observed that CEO nanoliposomes added to fish gelatin curbed the brittleness
of generated films at the expense of lower TS values. Analogous conclusions were drawn by
Nunes et al. [41] when incorporating lemon essential oils and green tea extracts in gelatin
films. Interestingly, differences (though comparable) values of TS, EAB, and E are reported
in the literature for films produced from either fish or bovine/porcine/chicken-based
gelatins [2,5,12,42–47]. This difference mainly depends on the variation in the aminoacidic
content, which is known to mostly affect the gelatin strength. At the same time, a certain
degree of variation has been reported for fish gelatin. In this other case, the temperature of
the water where the fish lives explains the different values found in the literature [40,48,49].
For instance, gelatin derived from cold-water fish has lower amino acid content compared
to that extracted from warm-water fish [50].

Finally, it must be noted that the superior mechanical properties of CEO-GelA/BCNC
films produced at pH = 5 [22] compared to films prepared at pH = 3.5 (this work) can be
explained considering the pH effect on the strength of fish gelatin-based films, as thoroughly
described in the work of Etxabide et al. [51]. More specifically, at a pH = 3.5 pH, the net
positive charge is much higher than at pH = 5, which would then promote a more intense
electrostatic repulsion at the intermolecular level.
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Table 2. Averaged values of tensile strength (TS), elongation at break (EAB), and elastic modulus (E)
of CEO-GelA/BCNC films as a function of the CEO loading.

Sample TS (MPa) EAB (%) E (MPa)

Control 8.98 ± 0.31 a 0.84 ± 0.13 a 316.03 ± 10.70 a

T1G 7.78 ± 0.54 ab 0.93 ± 0.05 a 307.73 ± 12.03 a

T2G 7.29 ± 0.37 b 1.10 ± 0.13 ab 297.22 ± 13.15 ab

T3G 6.64 ± 0.74 b 1.21 ± 0.32 ab 284.70 ± 20.86 ab

T4G 4.42 ± 0.58 c 1.75 ± 0.30 b 254.75 ± 18.76 ab

T5G 2.56 ± 0.83 d 2.90 ± 0.34 c 226.95 ± 57.03 ac

T6G 1.93 ± 0.20 d 3.79 ± 0.47 d 220.29 ± 27.22 c

For each investigated parameter, different superscript letters within the same column denote statistically significant
differences (p < 0.05) among the mean values.

3.5. FTIR Measurements

The FTIR spectra of neat fish gelatin, BCNCs, and CEO-based films thereof provided
important insights into the occurrence of intermolecular interactions among the individual
components (Figure 2). At a first glance, the CEO-GelA/BCNC spectrum reveals the
characteristic fingerprint of the CEO dominated by several peaks within the 1800–600 cm−1

range. According to Jeyaratnama et al. [52], the peak at 1566 cm−1 corresponds to the C=C
skeletal vibration of the aromatic ring of CEO, whereas the peak at 1434 cm−1 is assigned
to the vibrational absorption of C–OH moieties. The peak at 1324 cm−1 is attributed to
–CH2 swing in alkanes and =C–H in-plane bending absorption of the aromatic ring, with
the symmetric expansion of C–O–C of aromatic acid ester and vibrational stretching of
C–OH groups of phenolic components being assigned to the absorbance at 1244 cm−1. In
addition, the peak at 746 cm−1 involves the vibrational absorption of =C–H in the benzene
ring and, ultimately, the peak at 692 cm−1 is attributed to the alkenes’ vibration absorption.
The clear observation of the above peaks suggests that CEO was properly embedded in the
main polymer phase, that is, GelA/BCNC emulsion, upon film preparation.
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Figure 2. FT-IR spectra of CEO-GelA/BCNC films, neat GelA, and BCNCs. Each spectrum is plotted
as a function of the wavenumber (cm−1).

The characteristic peak of gelatin at 3316 cm−1 (amide A) is associated with the N-H
stretching coupled with hydrogen bonding, while the peak centered at 3089 cm−1 (amide B)
is assigned to the C-H stretching vibrations. In the amide I/III region (1650–1200 cm−1), the
peak at 1638 cm−1 is related to the gelatin coil structure and is due to the C=O stretching
vibration/hydrogen bonding coupled with COO– groups. The peaks at 1554 cm−1 and



Coatings 2023, 13, 1360 8 of 11

1242 cm−1 are caused by bending and in-plane vibration of C-N/N-H groups of bound
amides, respectively [14,53–59].

Concerning the BCNC spectrum (Figure 2), the peak located at around 3350 cm−1

(υ(OH) stretching vibrations) indicates that hydroxyl groups in BCNCs contributed to the
formation of different types of inter- and intramolecular hydrogen bonds [60,61], whereas
the peaks at 1316, 1162, and 1110 cm−1 are prerogatives of the crystalline cellulose (ωs(CH2)
bending vibration), asymmetrical stretching of C–O–C glycosidic bonds, and stretching
vibration of C–O, respectively [62]. At last, the small peaks at 1058 and 1035 cm−1 are
due to the C–O stretching vibrations of the aliphatic primary and secondary alcohols of
cellulose [63].

The addition of CEO within the GelA/BCNC formulation caused both subtle shifts
in wavenumbers as well as broadening/narrowing of the characteristic peaks of the main
polymers. This is clear evidence of the interactions that occurred between the characteristic
groups of BCNCs and gelatin, thus indicating good molecular compatibility [23] and
possible conformational changes ensuing from these interactions [64–66].

3.6. WS Measurements

The water solubility values of GelA/BCNC films, added or not with CEO, are summa-
rized in Table 1. The addition of the CEO remarkably led to a decrease in WS compared to
the GelA/BCNC formulation. In addition, the WS evolution was in an inverse relationship
with the concentration of CEO, with a minimum value reached with the T6G sample (0.48%
v/w CEO). This effect has to be ascribed to the increased hydrophobicity of films upon CEO
addition, which eventually yielded a lower water solubility. To date, different authors have
investigated the influence of essential oils on the solubility of biopolymeric films in aqueous
media. Nunes et al. [41] reported that adding a lemon nanoemulsion and green tea extract
into gelatin films caused an increase in the water solubility, which was attributed to the
establishment of interactions between the hydrophobic groups of oil and tea extract with
those distributed along the gelatin chains. Gomez-Estaca et al. [67] and Kavoosi et al. [68]
demonstrated that gelatin susceptibility to water solubilization dramatically improved
upon clove essential oil and thyme nanoemulsion addition, respectively. Conversely, in
full agreement with our results, Jamróz et al. [33] and Kilinic et al. [34] highlighted a great
decrease in film water solubility after Lavender and Origanum onites L. essential oils were
added to gelatin films.

4. Conclusions

This work sheds light on the functional (e.g., optical, surface, and mechanical) and
structural properties of CEO-GelA/BCNC edible films obtained from nanoemulsions
prepared at a low pH level, that is, 3.5. In particular, despite the thickness increase following
the CEO incorporation, the total transmittance of the films was not impaired, whereas a
significant increase in haze was observed only for the highest CEO concentration. CEO
allowed increasing the overall hydrophobic behavior of the films, thus reflecting the high
repellency of the surface toward water and the low degree of solubility in water observed.
Finally, the addition of CEO reduced the inherent brittleness of Gel-A/BCNC films, hence
making them more suitable for potential food packaging applications. Pending future
assessment of the CEO release profile associated with designed films, the outcome of
this work suggests their utilization as films/coatings for those applications requiring a
slowdown of the water loss process while keeping mechanical integrity and adequate
display of the product (e.g., fruits/vegetables, but also meat and seafood products).
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