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G R A P H I C A L A B S T R A C T

A B S T R A C T

Investigation of the dynamics of colloids in bulk can be hindered by issues such as multiple scattering and sample opacity. These challenges are exacerbated when 
dealing with inorganic materials. In this study, we employed a model system of Akaganeite colloidal rods to assess three leading dynamics measurement techniques: 
3D-(depolarized) dynamic light scattering (3D-(D)DLS), polarized-differential dynamic microscopy (P-DDM), and x-ray photon correlation spectroscopy (XPCS). Our 
analysis revealed that the translational and rotational diffusion coefficients captured by these methods show a remarkable alignment. Additionally, by examining 
the q-ranges and maximum volume fractions for each approach, we offer insights into the best technique for investigating the dynamics of anisotropic systems at 
the colloidal scale.
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0. Introduction

Self-assembly is a ubiquitous process which is employed by na-
ture to create hierarchical structures with designated functionalities. 
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Rather than confining itself to isotropic elements like spheres, nature 
also employs anisotropic components such as rods, cylinders, plates, 
and ellipsoids, among others. The shape of these building blocks not 
only affects the spatial arrangement of the self-assembled entities but 
also their translational and rotational dynamics.

Being the simplest model system, the dynamic behavior of spher-
ical colloids has been extensively investigated. Existing literature re-
veals a good agreement between theory, simulations, and experiments 
for these isotropic systems [1–3]. Conversely, for anisotropic colloids, 
well established theory and predictions are mainly limited to dilute 
systems [4–9]. The theoretically predicted values of both the transla-
tional and rotational diffusion coefficients for these systems are in good 
agreement with experiments that have been performed primarily using 
dynamic light scattering (DLS) [10–19]. However, standard DLS tech-
nique is limited to systems with negligible contributions from multiple 
scattering. For larger particle sizes with high scattering contrast this im-
mediately limits the technique to very low concentrations. Continuous 
developments in DLS techniques thus tried to overcome this limitation, 
thereby facilitating the measurement of the translational diffusion in 
semi-turbid samples exploiting advanced cross-correlation schemes, as 
in two-color DLS and in 3D-DLS [20–25]. In a very recent develop-
ment, by implementing depolarized measurement in 3D-DLS mode, Pal 
et al. [26] have demonstrated the possibility to measure the rotational 
diffusion for semi-turbid anisotropic colloids.

Beyond conventional light scattering techniques, Differential Dy-
namic Microscopy (DDM) offers an alternative approach [27,28]. Com-
pared to DLS, DDM allows to measure the translational diffusion 
from comparatively opaque colloidal dispersions [29–33]. Recent DDM-
based studies have succeeded in measuring the roto-translational dif-
fusion coefficients for (semi-) turbid systems [34–36]. In [34], using 
polarized-DDM Giavazzi et al. have successfully characterized the roto-
translational diffusion of colloidal particles obtained by polymerizing 
an emulsion of droplets of liquid crystal in a nematic phase. Since the 
probing wavelength for both these techniques lies in the optical range, 
it is not completely possible to by-pass the issues related to opacity and 
multiple scattering at high concentrations, though in comparison DDM 
turns out to be a more suitable technique than DLS at high concentra-
tion.

Due to technological advancements, synchrotron-based multi-
speckle X-ray Photon Correlation Spectroscopy (XPCS) has emerged as 
an alternative method for investigating dynamics at the colloidal length 
scale [37–46]. The fundamental principle of XPCS is akin to that of DLS, 
and the employment of coherent X-rays, as opposed to visible light, 
effectively addresses challenges such as multiple scattering and absorp-
tion commonly encountered in DLS and, to a lesser extent, in DDM 
when examining opaque or turbid systems, particularly those consisting 
of inorganic materials. It has been empirically demonstrated that XPCS 
can be utilized to explore the translational dynamics of anisotropic col-
loids composed of inorganic materials, not only at low concentrations 
but even well above the glass transition threshold owing to the smaller 
scattering cross-section [37,41,42,47–49].

In this article, we have investigated the dynamics of Akaganeite-
based colloidal rods using three distinct techniques 3D-(D)DLS (3D-
(depolarized) dynamic light scattering), P-DDM (polarized-DDM), and 
XPCS. We discuss advantages and limitations of each technique and 
identify the conditions under which one method outperforms the others 
in delivering comprehensive insights into the dynamics of anisotropic 
systems. We find that 3D-(D)DLS allows for the measurement of both 
the translational diffusion coefficient 𝐷𝑡 and the rotational diffusion co-
efficient 𝐷𝑟 up to a volume fraction 𝜙 = 3.1 ×10−4, which is much below 
the formation of any structural correlation. With P-DDM, it is possible to 
measure at least up to 𝜙 = 1.25 ×10−2, with potential for further exten-
sion as evidenced by previous studies on hematite ellipsoids extending 
measurements up to glass transition concentration [31]. With XPCS, 𝐷𝑡

can be measured up to the formation of smectic phase at 𝜙 = 0.3. Al-
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though XPCS holds the potential for incorporating polarization analysis 
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Fig. 1. (a) Representative SEM images for Akaganeite-based colloidal rods of 
aspect ratios 𝑟ℎ𝑜 = 7.2 and (b) represents the statistical distribution of length 
scales as has been obtained from (a).

to measure 𝐷𝑟, this is presently not done due to absorption losses and 
parasitic background. Using angular-temporal cross-correlation analy-
sis, 𝐷𝑟 may be obtained [50], but the accuracy of this method is not 
tested due to the computational complexity. At concentrations much 
below the formation of the structural correlation, a comparison of the 
𝐷𝑡 values obtained from all the three different techniques indicate that 
they are in good agreement with each other. Furthermore, similar val-
ues were also obtained for 𝐷𝑟 from 3D-DDLS and P-DDM.

1. Experimental section

1.1. Synthesis

Reagent grade Ferric Chloride hexahydrate was purchased from 
Sigma-Aldrich and used without further purification. HCl obtained from 
VWR was used for all the experiments. Colloidal rods were synthe-
sized according to the procedure described in [51]. Briefly, 1 ml of HCl 
(0.05M) was added to 4 ml of aqueous solution of FeCl3.6H2O (1M). 15 
mL of Milli-Q water was added to the mixture to obtain a final volume 
of 20 mL. The solution was passed through 0.22 μm Millipore filters to 
remove any particulate contaminants and stored in a clean glass bot-
tle with Teflon-lined screw cap. The glass bottle was tightly capped and 
placed in a preheated oven at 100 ◦C for 24 hrs. After aging, the sam-
ples were removed from the oven and quenched to room temperature 
under running tap water. The products were thoroughly cleaned using 
repeated cycles of centrifugation and dispersion in Milli-Q water.

1.2. Characterization and methods

1.2.1. Characterization using SEM

The characterization of the shape and size of the colloidal rods was 
carried out using Scanning electron microscopy (SEM) (ZEISS LEO Gem-
ini 1560 and a ZEISS Gemini 500 at an accelerating voltage of 15 kV). 
From the resulting TEM images, using ImageJ, the particle size distribu-
tion was determined by analyzing at least 100 particles. Fig. 1(a) shows 
a representative micrograph of these rods while (b) represents the sta-
tistical size analysis based on these images. The particle long and short 
axes were found to be 𝑎 = 676 ± 75 nm and 𝑏 = 93.5 ± 14 nm, respec-
tively, leading to an aspect ratio of 𝜌 = 7.2.

1.2.2. 3D-(D)DLS

The DLS measurements were performed on a Mod3D-DLS Spectrom-
eter (LS Instruments, Switzerland) that implements the modulated 3D 
cross correlation technology [25], equipped with 660 nm Cobolt laser 
with a maximum power of 100 mW. The apparatus is equipped with two 
Glan-Thompson polarizers at the detector side and two at the incident 
beam side. A VV geometry can be achieved by aligning the polarizers 
parallel to each other and VH geometry can be achieved by making 
them perpendicular to each other [26]. 5 mm cylindrical glass cells 

were used and placed in the temperature-controlled index matching 
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bath containing decalin. The scattered light was detected within a scat-
tering angle range of 30 - 135◦ by avalanche photodiodes and processed 
by an LS Instrument correlator.

1.2.3. XPCS

Multispeckle ultrasmall-angle X-ray photon correlation spectroscopy 
(UA-XPCS) were performed at the beam line ID02, ESRF, in a pinhole 
ultrasmall-angle X-ray scattering (USAXS) geometry. This unique in-
strument allows XPCS measurements on particle suspensions down to 
the μm−1 q (wave vector) range [52]. The dispersions were filled in 
0.5 mm glass capillaries. Experiments were performed using an X-ray 
of wavelength of 1.01 Å and a sample-to-detector distance of 30.55 m. 
The two dimensional speckle patterns were recorded using an EIGER 
500K pixel array detector [52]. The correlation functions were calcu-
lated using the Dynamix software package, developed at the ESRF. The 
time and ensemble averaged intensity-intensity autocorrelation func-
tions, 𝑔(2)(𝑞, Δ𝑡), were obtained by the azimuthal averaging of pixel 
𝑔(2)(𝑞, Δ𝑡) corresponding to the same 𝑞 using Dynamix package [53].

1.2.4. P-DDM

The suspensions of particles were filled in 200 μm thick rectangular 
glass capillaries and were imaged using a Nikon Eclipse Ti-E commer-
cial microscope equipped with a camera (Hamamatsu Orca Flash 4.0 
V2). We used a microscope objective with magnification M = 20X and 
numerical aperture NA = 0.4. The pixel size after magnification and 
2 × 2 binning was equal to 0.645 μm. Unlike standard DDM, where no 
polarizing elements are used, the sample in this case was sandwiched 
between two polarizers. For this particular study, we have done two sets 
of measurements. For the first case, the polarizers were oriented parallel 
while for the second case, they were kept “almost crossed”, at an angle 
85◦ with respect to each other. A necessary condition for the validity of 
DDM analysis is the existence of a linear relationship between the in-
tensity modulation in the image and the scattered field as discussed in 
detail in Ref. [35,54]. In (both polarized and non-polarized) bright-field 
microscopy this condition is fulfilled in the presence of a sufficiently 
strong transmitted reference wave which, acting as a local oscillator, en-
ables heterodyne detection [54]. A non-zero angle between the polariz-
ing elements is thus necessary to ensure the presence of the transmitted 
wave. The actual value of the angle between the polarizers can then be 
adjusted to tune the relative amplitude of the contributions from polar-
ized (VV) and depolarized (VH) signals to the image structure function, 
respectively [35]. Two different acquisition schemes have been adopted 
according to the optical configuration (0◦ and 85◦ angle between the 
polarizers, respectively). In the first case, we collected two image se-
quences of 𝑁 = 104 frames each, captured at frame rates 𝑟 = 400 and 
𝑟 = 50 fps, respectively. In the second case, a single sequence of 𝑁 = 104
frames at frame rate 𝑟 = 400 was collected. As will be clear in the fol-
lowing, each acquisition protocol has been chosen to ensure adequate 
sampling over the whole interval of relaxation times accessible in the 
corresponding optical configuration. Each acquisition consists of a se-
quence of square images 𝐼(𝐱, 𝑡), where 𝐱 = (𝑥, 𝑦) indicates a position in 
the image plane (the z axis being oriented along the microscope opti-
cal axis) and the time variable 𝑡 assumes only discrete values that are 
integer multiples of 1∕𝑟. Each image was obtained with exposure time 
𝑡𝑒𝑥𝑝 = 1.2 ms and has 𝑁𝑝𝑖𝑥 = 512 pixels per side. Once acquired and 
saved on disk, the image sequence was analyzed according to the usual 
DDM protocol. For each time delay Δ𝑡 = 𝑘∕𝑟 of interest, where 𝑘 is an 
integer, the difference signal 𝑑(x, 𝑡0, Δ𝑡) = [𝐼(x, 𝑡0 + Δ𝑡) − 𝐼(x, 𝑡0)] was 
calculated and its spatial Fourier power spectrum was computed by us-
ing a fast Fourier transform (FFT) routine. This procedure leads to the 
so-called image structure function

𝑑𝑖(q,Δ𝑡) = ⟨||𝐹𝐹𝑇 [𝑑(x, 𝑡0,Δ𝑡)]||2⟩𝑡0 (1)

that captures the dynamics of the sample as a function of the two-
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dimensional (2D) scattering wave-vector q and of the delay time Δ𝑡. 
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Fig. 2. (a) Intensity-intensity correlation functions for different q values as mea-
sured in VV geometry by 3D-DLS. (b) The experimentally obtained relaxation 
rate, Γ, as a function of 𝑞2 as shown by the filled circles while the straight line 
shows the fit to it using Γ = 𝐷𝑡𝑞

2 . (c) Intensity autocorrelation functions for 
different q values as measured in VH geometry by 3D-DDLS. (d) The experi-
mentally obtained relaxation rate, Γ, as a function of 𝑞2 as shown by the filled 
circles while the straight line shows the fit to it using Γ =𝐷𝑡𝑞

2 + 6𝐷𝑟. For (a) 
and (c) the open circles show the experimental observations and the continuous 
lines show the fit using eq. (5); different colors represent different q-values.

The image structure function is connected to the (normalized) image 
intermediate scattering function 𝑓 (1)

𝑖
(q, Δ𝑡) [55] by the relation,

𝑑𝑖(q,Δ𝑡) = 2𝐴(q)[1 − 𝑓
(1)
𝑖

(q,Δ𝑡)] + 2𝐵(q) (2)

where 𝐵(q) is a term that accounts for the camera noise and 𝐴(q) is 
an amplitude term that contains information about the static scattering 
from the sample and details about the imaging system [54]. For a collec-
tion of randomly oriented anisotropic particles, the image intermediate 
scattering function takes the form,

𝑓
(1)
𝑖

(q,Δ𝑡) = 𝛼(𝑞)𝑒−(Γ1(𝑞)Δ𝑡)
𝛾1 + (1 − 𝛼(𝑞)) 𝑒−(Γ2(𝑞)Δ𝑡)

𝛾2 (3)

where Γ1(𝑞) = 𝐷𝑡𝑞
2, and Γ2(𝑞) = 𝐷𝑡𝑞

2 + 6𝐷𝑟, 𝐷𝑡 and 𝐷𝑟 being the 
translational and rotational diffusion coefficients, respectively. 𝛾1 and 
𝛾2 are the stretching parameters accounting for the polydispersity in the 
particle-size distribution. For free diffusion of a monodisperse system, 
the value of 𝛾1 and 𝛾2 should be 1. The weight 𝛼(𝑞) depends on the rela-
tive amplitude of the polarized and the depolarized contribution to the 
intermediate scattering function [54].

All the DLS, DDM and XPCS measurements are done at room tem-
perature.

1.3. Results and discussion

Both DLS and XPCS measurements allow one to obtain the informa-
tion about the particle dynamics on a length scale, which is of the order 
of 1∕𝑞 via the intensity-intensity auto-correlation function,

𝑔(2)(q,Δ𝑡) =
⟨𝐼(q, 𝑡)𝐼(q, 𝑡+Δ𝑡)⟩

⟨𝐼(q)⟩2 (4)

where q is the scattering vector with magnitude, 𝑞 = 4𝜋𝑠𝑖𝑛(𝜃∕2)∕𝜆, 𝜃
being the scattering angle and 𝜆 being the wavelength in the scattering 
medium.

Fig. 2 indicates the intensity-intensity correlation functions for dif-

ferent 𝑞 as well as the relaxation rates (Γ) as a function of 𝑞2 for 
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Fig. 3. (a) Intensity-intensity auto correlation functions for different q values as 
measured by XPCS. The filled circles show the experimental observations and 
the continuous lines show the fit using eq. (5); different colors represent differ-
ent q-values. (b) The experimentally obtained relaxation rate, Γ, as a function 
of 𝑞2 as shown by the filled circles while the straight line shows the fit to it 
using Γ =𝐷𝑡𝑞

2.

𝜙 = 4.6 × 10−5 as measured by 3D-(D)DLS. The upper panel shows the 
data in VV mode whereas the lower panel shows the data in VH mode. 
The intermediate scattering function 𝑔(1)(q, Δ𝑡) is related to 𝑔(2)(q, Δ𝑡)
via Siegert relation, 𝑔(1)(q, Δ𝑡) =

√
[𝑔(2)(q,Δ𝑡) − 1]∕𝛽, where 𝛽 is a 

setup-dependent experimental parameter known as the contrast or co-
herence factor. 𝑔(1)(𝑞, Δ𝑡) can be described phenomenologically by a 
single exponential function,

𝑔(1)(𝑞,Δ𝑡) = exp[−(ΓΔ𝑡)𝛾 ] (5)

where Γ is the relaxation rate of the particle diffusion and 𝛾 is the 
stretching parameter. For free diffusion of mono-disperse system, the 
value of 𝛾 should be 1.

Eq. (5) was used to analyze the data obtained from the 3D-DLS 
measurements (VV) (as shown in Fig. 2(a)) and Γ were extracted ac-
cordingly. The q-dependence of Γ is given by Γ =𝐷𝑡𝑞

2. Therefore, the 
translational diffusion coefficient 𝐷𝑡 of the particles can be obtained 
from the angular dependence of Γ, as it is directly related to the slope 
of the data plotted as Γ vs 𝑞2, as shown in Fig. 2(b). The value of 𝐷𝑡 is 
found to be 1.20 ± 0.02 × 106𝑛𝑚2∕𝑠.

The measured correlation functions obtained in the VH geometry 
are shown in Fig. 2(c). They are also well-described by Eq. (5), which 
we use to extract Γ, whose scaling with 𝑞 is expected to be Γ1(𝑞) =
𝐷𝑡𝑞

2 + 6𝐷𝑟. In Fig. 2(d), we plot the experimentally determined Γ as 
a function of 𝑞2 for the VH geometry. From the intercept of this we 
extract 𝐷𝑟 = 8.06 ± 0.3∕𝑠. As expected, the slopes of the Γ vs 𝑞2 curves 
for the VV and the VH geometry are the same and for both we also find 
𝛾 = 1 ± 0.02.

Fig. 3 shows the data obtained with XPCS at 𝜙 = 0.0028. A fitting to 
the correlation function was obtained using eq. (5) (Fig. 3(a)). The plot 
of Γ as a function of 𝑞2, is shown in Fig. 3(b). In this case also the value 
of 𝛾 is found to be 1 ± 0.02. Further, from the slope of the curve we 
have calculated 𝐷𝑡, which is found to be 𝐷𝑡 = 1.29 ± 0.05 × 106𝑛𝑚2∕𝑠. 
The values obtained from the DLS and XPCS measurement thus are in 
good agreement with each other, although the sample concentration 
measured by XPCS is 70 times higher than that measured by 3D-DLS. 
This is because in both cases the sample concentration is below the 
typical value at which the structural correlation starts to build up. As 
a result, for both these measurements, we are measuring the diffusion 
coefficient of free particles.

It is worthwhile to note that by using 3D-DLS we could measure only 
up to 𝜙 = 3.1 × 10−4, whereas with XPCS it was possible to measure up 
to 𝜙 = 0.3 (data is not shown here). Since we are measuring XPCS at 
a very large sample to detector distance of 30.55 m, the q-range al-
most overlaps with DLS. However, the current limitation with the XPCS 
technique is that the extraction of 𝐷𝑟 is not straightforward.

Fig. 4 shows the data for the DDM measurement at 𝜙 = 4 ×10−4. One 
317

can already observe two relaxation processes in the correlation func-
Journal of Colloid And Interface Science 660 (2024) 314–320

Fig. 4. (a) Normalized image structure functions for different q values as mea-
sured by P-DDM while keeping the polarizers parallel to each other. The open 
circles show the experimental observations and the continuous lines show the 
fit using eq. (3). (b) and (c) The experimentally obtained relaxation rates, Γ1
and Γ2 , as a function of 𝑞2 as shown by the filled circles while the continuous 
lines show the fit using Γ = 𝐷𝑡𝑞

2 and Γ = 𝐷𝑡𝑞
2 + 6𝐷𝑟 respectively. (d) Nor-

malized image structure functions for different q values as measured by P-DDM 
keeping the polarizers axes at an angle 85◦ with respect to each other. The open 
circles show the experimental observations and the continuous lines show the 
fit using eq. (3). (e) The experimentally obtained relaxation rates, Γ, as a func-
tion of 𝑞2 as shown by the filled circles while the continuous lines show the fit 
using Γ =𝐷𝑡𝑞

2 + 6𝐷𝑟. For (a) and (d) the open circles show the experimental 
observations and the continuous lines show the fit (blue being the smallest and 
red being the highest ones). (For interpretation of the colors in the figure(s), 
the reader is referred to the web version of this article.)

tions (Fig. 4(a)), which have been measured by aligning the polarizers 
parallel to each other. Eq. (3) was used to fit the data. However, in this 
case, we have kept the value of 𝛾1 fixed at 1. Fig. 4(b) shows the vari-
ation of Γ1 as a function of 𝑞2. Similar to the previous cases, we have 
fit this with Γ1 =𝐷𝑡𝑞

2 to get the value of 𝐷𝑡. The value of 𝐷𝑡 is found 
to be 𝐷𝑡 = 1.27 ±0.06 ×106𝑛𝑚2∕𝑠 which also matches with our previ-
ous measurements with DLS and XPCS. Fig. 4(c) shows the variation of 
Γ2 as a function of 𝑞2. Similar to DLS measurement in VH geometry, 
we have fitted our data with Γ =𝐷𝑡𝑞

2 + 6𝐷𝑟. The fitting procedure pro-
vides the estimates 𝐷𝑟 = 9.3 ± 0.3∕𝑠 and 𝐷𝑡 = 1.3 ± 0.7 × 106𝑛𝑚2∕𝑠 for 
the rotational and the translational diffusion coefficients, respectively. 
The value of 𝐷𝑟 obtained from the fit is in good agreement with DLS 
measurements. The estimated 𝐷𝑡, although affected by a large uncer-
tainty, is fully compatible with the value extracted from the Γ1 and 
with the ones obtained from both DLS and XPCS. Fig. 4(d) shows the 
correlation functions, which have been measured by orienting the po-
larizers at an angle 85◦ with respect to each other. In this case, the 
intermediate scattering function is dominated by the depolarized con-
tribution, and one observes a single relaxation mode, which can be thus 
fitted with a simplified version of eq. (3), 𝑓 (1)

𝑖
(q, Δ𝑡) = 𝑒−(Γ(𝑞)Δ𝑡)

𝛾
, to ob-

tain Γ. Fig. 4(e) represents the variation of Γ as a function of 𝑞2, which 
has been fitted with Γ =𝐷𝑡𝑞

2 + 6𝐷𝑟 to get 𝐷𝑡 and 𝐷𝑟, which is found 
to be 𝐷𝑡 = 1.54 ± 0.1 × 106𝑛𝑚2∕𝑠 and 𝐷𝑟 = 9.5 ± 0.07∕𝑠.

Although the measured 𝐷𝑡 and 𝐷𝑟 values are in good agreement 
with each other, one of the major differences between DLS, XPCS and 
DDM measurements lies in the accessible q-ranges. In a standard setup, 
as exemplified in this study, the accessible q-range for DDM spans from 
10−4𝑛𝑚−1< 𝑞 < 3 × 10−3𝑛𝑚−1. In contrast, for DLS the q-range is con-
fined between 3.4 × 10−3𝑛𝑚−1 ≤ 𝑞 ≤ 2.5 × 10−2𝑛𝑚−1 whereas XPCS in 

the USAXS range can cover 2 × 10−3𝑛𝑚−1 < 𝑞 < 10−1𝑛𝑚−1. Technically 
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Table 1

Summary of the different techniques, 3D-(D)DLS, XPCS and P-DDM.

Technique Maximum 𝜙 q range (𝑛𝑚−1) 𝐷𝑡 (𝑛𝑚2∕𝑠) 𝐷𝑟 (𝑠−1)

3D-(D)DLS 3.1 × 10−4 3.4 × 10−3 ≤ 𝑞 ≤ 2.5 × 10−2 1.2 ± 0.02 × 106 8.06 ± 0.3
XPCS (USAXS range) 0.3 2 × 10−3 < 𝑞 < 10−1 1.29 ± 0.05 × 106 —
P-DDM 1.25 × 10−2 10−4 < 𝑞 < 3 × 10−3 1.27 ± 0.06 × 106 9.3 ± 0.3
calculated following Ref. [56,57] — — 1.5 ± 0.2 × 106 19 ± 6
calculated following Ref. [58] — — 1.2 ± 0.1 × 106 17 ± 6
XPCS can cover the q-range lying between 10−3𝑛𝑚−1 ≤ 𝑞 ≤ 3 × 10𝑛𝑚−1. 
However, for XPCS, the main limitation is from the scattering power of 
the sample. If the dynamics is very fast, there are not enough photons 
scattered to construct a correlation function with short lag times. As a 
result, the higher q range is essentially limited by the magnitude of the 
relaxation rate.

For P-DDM measurement, when we have kept the polarizer and ana-
lyzer parallel to each other, two decay processes are visible in 𝑓 (𝑞, Δ𝑡). 
However, this is not the case for DLS measurement in VV geometry. It 
is important to point out that in general the field cross correlation func-
tion 𝑔(1)𝑣𝑣 , is not characterized by a single exponential decay for optically 
anisotropic particles. In this case, since the q-range is much higher for 
DLS than DDM we do not observe them for DLS but for DDM.

2. Conclusion

In this study, we have undertaken a comparative analysis of three 
advanced measurement techniques-3D-(D)DLS, P-DDM, and XPCS-
utilized for probing dynamics at the colloidal length scale as shown in 
Table 1. The translational diffusion coefficients (𝐷𝑡) derived from these 
methods are in strong agreement. Rotational diffusion (𝐷𝑟) can be as-
sessed using either 3D-DDLS or P-DDM, and the values obtained are 
consistent with each other; however, measurement of 𝐷𝑟 with XPCS is 
not well-established at the moment. With the development of the fourth 
generation synchrotron sources, we hope that the depolarized-XPCS 
measurement will become possible or the angular cross-correlation 
analysis will be more established in near future. The accessible wave 
vector ranges for DLS and XPCS (when operated in ultra-small angle 
mode) align closely, whereas DDM enables access to even smaller q-
ranges.

It is instructive to compare our experimental findings with the val-
ues of the translational and rotational diffusion coefficients obtained 
by combining the geometric information from EM with two commonly 
used theoretical models by Tirado and Garcia de la Torre [56,57] and 
Broersma [58], respectively. We obtain 𝐷𝑡 = 1.5 ± 0.2 × 106𝑛𝑚2∕𝑠, 
𝐷𝑟 = 19 ± 6∕𝑠 (Tirado and Garcia de la Torre), and 𝐷𝑡 = 1.2 ± 0.1 ×
106𝑛𝑚2∕𝑠, 𝐷𝑟 = 17 ± 6∕𝑠 (Broersma). We note that, while the values 
for the translational diffusion coefficient are fully compatible with our 
experimental estimate 𝐷𝑡 = 1.3 ± 0.1 × 106𝑛𝑚2∕𝑠, the predicted rota-
tional diffusion coefficients are significantly larger (by about a factor 
of two) then the experimental one 𝐷𝑟 = 9 ± 1∕𝑠. Currently, we do 
not have a clear explanation of this deviation. We note however, that 
similar discrepancies between predicted and measured rotational dif-
fusion coefficients are consistently reported in the literature (see e.g. 
Ref. [10]) and often attributed to a combination of non-ideality of the 
particle shape, uncontrolled absorption of molecules (like surfactants) 
on the particle surface and increased friction due to electrostatic ef-
fects.

Our experiments employed colloidal dispersions in a dilute regime – 
a situation where no interparticle interactions are present. As a result, 
structural correlations are absent between particles. The colloidal par-
ticles used in our experiments are made up of inorganic material which 
renders them opaque. We find that in the case of DLS it is not possible 
to measure at concentrations where structural correlation starts to build 
up. Comparatively, DDM turns out to be a better technique as it allows 
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for the measurement of the dynamics at higher sample concentrations. 
However, DDM reaches its limitation when the sample concentration 
becomes so high that the particles start to self-assemble into higher or-
der structures (like liquid crystalline phases for colloidal rods). For our 
experiments we have used the standard sample cells for all the three 
techniques. As a result, one needs to pay a particular attention to the 
fact that the path length for DLS, DDM and XPCS are not the same. 
One can push the limit of opacity within a range by playing with the 
thickness of the samples. So the take home message is that one should 
choose the measurement techniques not only depending on the length 
scale (which means accessible q-ranges) but also carefully considering 
the opacity of the samples. The strength of XPCS is for probing higher 
volume fractions and slower dynamics, while DLS is superior for ex-
tremely dilute samples. Moreover, XPCS requires access to a specialized 
instrument at a large scale facility.

Our experiments employed colloidal dispersions in a dilute regime – 
a situation where no interparticle interactions are present. As a result, 
structural correlations are absent between particles. The colloidal par-
ticles used in our experiments are made up of inorganic material which 
renders them opaque. We find that in the case of DLS it is not possible 
to measure at concentrations where structural correlation starts to build 
up. Comparatively, DDM turns out to be a better technique as it allows 
for the measurement of the dynamics at higher sample concentrations. 
However, DDM reaches its limitation when the sample concentration 
becomes so high that the particles start to self-assemble into higher or-
der structures (like liquid crystalline phases for colloidal rods). For our 
experiments we have used the standard sample cells for all the three 
techniques. As a result, one needs to pay a particular attention to the 
fact that the path length for DLS, DDM and XPCS are not the same. 
One can push the limit of opacity within a range by playing with the 
thickness of the samples. So the take home message is that one should 
choose the measurement techniques not only depending on the length 
scale (which means accessible q-ranges) but also carefully considering 
the opacity of the samples. The strength of XPCS is for probing higher 
volume fractions and slower dynamics, while DLS is superior for ex-
tremely dilute samples. Moreover, XPCS requires access to a specialized 
instrument at a large scale facility.

The nature of the detector is another important aspect that should 
be taken into consideration. For DDM and XPCS, we have used 2D de-
tectors in our experiments. The 2D nature of the intermediate scattering 
function provides in general a powerful way to study the dynamics 
along different directions in the q plane that might be of particular 
interest for the problem under study [59]. In addition, the ensemble 
averaged 𝑔(2)(𝑞, Δ𝑡) can also be readily obtained with the use of a 2D 
detector.
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