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A B S T R A C T   

Background: As diagnostic and prognostic models developed by traditional statistics perform poorly in real-world, 
artificial intelligence (AI) and Big Data (BD) may improve the supply chain of heart transplantation (HTx), 
allocation opportunities, correct treatments, and finally optimize HTx outcome. We explored available studies, 
and discussed opportunities and limits of medical application of AI to the field of HTx. 
Method: A systematic overview of studies published up to December 31st, 2022, in English on peer-revied 
journals, have been identified through PUBMED-MEDLINE-WEB of Science, referring to HTx, AI, BD. Studies 
were grouped in 4 domains based on main studies’ objectives and results: etiology, diagnosis, prognosis, treat-
ment. A systematic attempt was made to evaluate studies by the Prediction model Risk Of Bias ASsessment Tool 
(PROBAST) and the Transparent Reporting of a multivariable prediction model for Individual Prognosis Or 
Diagnosis (TRIPOD). 
Results: Among the 27 publications selected, none used AI applied to BD. Of the selected studies, 4 fell in the 
domain of etiology, 6 in the domain of diagnosis, 3 in the domain of treatment, and 17 in that of prognosis, as AI 
was most frequently used for algorithmic prediction and discrimination of survival, but in retrospective cohorts 
and registries. AI-based algorithms appeared superior to probabilistic functions to predict patterns, but external 
validation was rarely employed. Indeed, based on PROBAST, selected studies showed, to some extent, significant 
risk of bias (especially in the domain of predictors and analysis). In addition, as example of applicability in the 
real-world, a free-use prediction algorithm developed through AI failed to predict 1-year mortality post-HTx in 
cases from our center. 
Conclusions: While AI-based prognostic and diagnostic functions performed better than those developed by 
traditional statistics, risk of bias, lack of external validation, and relatively poor applicability, may affect AI- 
based tools. More unbiased research with high quality BD meant for AI, transparency and external valida-
tions, are needed to have medical AI as a systematic aid to clinical decision making in HTx.   

1. Introduction 

In selected patients with advanced heart failure (HF), heart trans-
plantation (HTx) may improve the quality of life, and life expectation 
[1]. Yet, death rate is higher in subjects who received HTx than in un-
selected standardized reference populations [2]. As advanced HF most 

likely worsen over time [3,4], HTx may be triggered by worsening in 
functional capacity, recurrent hospitalizations, need for circulatory 
mechanical support [5–7]; however, those conditions predict worse 
prognosis both pre- and post-HTx [8–10]. Epigenetics may contribute 
further to estimate prognosis in HF, and therefore candidacy or exclu-
sion to HTx [11–14]. Mandatory requirements [15] to avoid immediate 
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post-HTx rejection [16,17], along with the paucity of hearts for HTx, 
impacts waitlist time, and selects characteristics of the patients per-
sisting on waitlists [18], which in turn may raises concerns on poten-
tially increasing receiver- and donor-related risks of early graft failure 
[15,19–25]. Therefore, accurate patients profiling for events while on 
waitlist, and efficient mechanisms of allocation, are growing needs to 
maximize post-HTx survival [24]. Nevertheless, the waitlist time, and 
urgency defined by hemodynamics and progressive multi-organ failure, 
still represent dominant factors for allocation mechanisms in HTx. Al-
gorithms able to measure risk of untoward events before and after HTx, 
and optimize efficacy of HTx, starting with optimal allocation, are 
desired targets and unmet needs in the real-world [16,19,26,27]. 
Ideally, a personalized medicine may be built through deductive and 
inductive processes of network medicine [28], taking benefits from 
applications of Artificial Intelligence (AI) to high-quality and medical 
oriented data, including big data (BD). With this regard, high-quality 
and medical oriented BD may fuel AI-based processes to develop aids 
for decision-making may be significantly less affected by biases (Fig. 1), 
as compared to knowledge built on probabilistic statistics applied to 
small databases with significant risk of bias [29]. The present review 
investigated the extent to which AI and BD are used to optimize HTx 
chain supply and outcome, from HF etiology definition to prognosis pot- 
HTx. 

2. Methods 

The present systematic review was conducted following the 
Preferred Reporting Items for Systematic review and Meta-Analyses 
guidelines [30], and aimed at reporting scientific papers of the poten-
tial role of AI and BD in HTx supply chain, and applicability to the real 
world. Literature scrutiny targeted the following main issues (Fig. 2): 1) 
which patient may benefit most from HTx, and when, during the clinical 
history of advanced HF (i.e., indication, timing, risk while in list); 2) 
which level of approximation we may tolerate when predicting condi-
tion in which HTx is unlikely to improve the patient’s specific prognosis, 
so that alternative surgical treatments should be considered (i.e., 
appropriateness and futility of the procedure, change in risk–benefit of 
different surgical procedures over time, weighting and managing error 

of estimations impacting decisions); 3) how should be estimated the 
probability of mid-term and long-term survival using current knowledge 
on factors profiling post-HTx patients in surveillance programs, and 
improve duration and quality of life after HTx (i.e., predicting outcomes 
before and after transplantation, define and set minimal therapeutic 
targets before indications to HTx is issued, monitoring for allograft 
rejection [31], optimize immunosuppressant therapy; ethical implica-
tions raised by patients’ clinical status impacting decisions). Thus, full- 
papers published in English language up to December 31, 2022, were 
searched in PubMed, OVID-Medline, Web of Science, and Cochrane li-
brary. On-line libraries were inquired using standard keywords ac-
cording to the following hierarchy: “transplantation” and “heart” and 
“artificial intelligence” and (“big data” or “heath information technol-
ogy” or “deep learning” or “machine learning” or “algorithm” or 
“rejection”). Furthermore, selected studies were grouped in the 
following 4 domains based on objectives and results: Etiology; Diag-
nosis; Prognosis; Treatment. A systematic attempt was made (collegially 
by VP, MTV and AM) to give a nonanalytic metric of the quality of the 
studies according to proposed standards [32], including the Prediction 
model Risk Of Bias ASsessment Tool (PROBAST)[33] and the Trans-
parent Reporting of a multivariable prediction model for Individual 
Prognosis Or Diagnosis (TRIPOD)[34]. Risk of bias according to PRO-
BAST [33] was scored as the number of items fulfilled among the four 
pre-defined domains (Participants selection, Predictors selection, 
Outcome definition, Analysis), and empirically defined as LOW to 
studies in which at least 66% of the items were traced, whereas it was 
defined high for studies with less than 33% of the items were traced; 
those with % of the items traced between 33% and 66% were classified 
at intermediate risk of bias. Overall quality of reporting was scored 
empirically as % of the items traced among the 30 indicated by Cabitza 
F. and Campagner A.[32], all equally weighted. However, external 
validation was reported separately as potential nonanalytic indicator of 
quality of reports. 

In a specific and original section, as a test of validity, generaliz-
ability, and applicability in the real-world of AI-based prognostic func-
tions, an open-access AI-based algorithm to predict post-HTx mortality 
[24] was applied to a cohort of persons (n = 84 HTx with age above 18 
years, urgent cases 39% defined cardiogenic shock or complicated left 

Fig. 1. The process of knowledge-building byartificial 
intelligence (AI) applied to good-quality datasets from 
real-world, including Big Data (BD). AI-based of “try- 
error-feedback-adjust” method of learning mimics 
human intelligence. Varying and auto-adjusting al-
gorithms, or a network of algorithms, generate pre-
dictions, discriminate and make decisions, further 
providing data and functions for clinical research and 
applications. Issues related to quality and trans-
parency of reporting on diagnostic and prognostic 
functions (risk of bias, problem understanding, data 
understanding and preparation, modeling, validation, 
deployment and sustainability, see references 
#32–34) need to be accounted for in order to have 
well performing, reliable functions yielding repro-
ducible and generalizable outputs.   
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ventricular assist devise, or frequent arrhythmias with syncope and 
effective internal automated cardiac defibrillator shock) selected and 
transplanted at the Heart Transplantation Unit of the “Azienda Ospe-
daliera dei Colli Monaldi-Cotugno-CTO”. The number of cases was 
limited to a narrow observation window (2019–2021) to minimize 
biases by changes in clinical and procedures occurring overtime. 

3. Results 

Overall, from initial 979,460 papers identified by the term “trans-
plantation”, 83,339 referred (nonexclusively) to “heart” (9%), among 
which 148 (0.2%, 0.02% of the total initial number) referred to “arti-
ficial intelligence”. Twenty-seven studies were further selected as pub-
lished in English on peer-reviewed studies, none of which formally used 
BD (Fig. 2). Table 1 summarizes the selected studies grouped according 
to the pre-specified domains, and a specific column reporting on risk of 
bias, eventual external validation of the diagnostic or prediction models 
proposed, and the extent of information on quality of reporting available 
on each report. With regard to overall quality of reporting, and empirical 
index was based on the 30 items grouped in 7 domains identified else-
where [32]. With regard to the selected studies, information on patients 
and predictors were in general provided with sufficient details, whereas 
the more frequently recognized potential bias referred to lack of details 
on how predictors were identified and examined, details on handling of 
and reporting on missing data and outliers, clear description of errors, 
details on model-building strategy. The majority of the models were 
based on retrospective cohort studies without external validation, as-
pects related to applicability, and deployment and sustainability of the 
models [32]. 

Etiology: Garcia-Canadilla P et al. in 2022 [35] demonstrated that 
machine learning (ML) may refine the accuracy of identification of a 
familial/genetic pattern in DCM, and of prognosis, in pediatric candi-
dates to HTx or transplanted. Diagnosis: in experimental animal models, 
Kienzl et al. in 2009[36] identified 95 protein spots over more than 
1,500, associated with 1.5-fold higher likelihood of early acute HTx 
rejection compared to controls, and generated a novel pathophysiologic 
and diagnostic models of acute allograft rejection. Others reported that 

deep learning (DL), supervised by external human aid for decision, may 
allow automated and standardized identification of tissue characteristics 
of allograft rejection [37,38]. Castellani C. et al. in 2020[39] used ML to 
refine diagnostic tools for diagnosis of allograft rejection using plasma 
derived extracellular vesicles surface protein profiling. Peyster et al.[40] 
used a system called ’Computer-Assisted Cardiac Histologic Evaluation 
(CACHE)-Grader’ pipeline in 2,472 endomyocardial biopsy slides for an 
automatic evaluation of density and orientation of lymphocytes, myo-
cytes, and stroma, to be classified in a reproducible 4-grade clinical 
standard for cellular rejection diagnosis. CACHE-grader was initially 
trained with the aid of human intervention, the DL-based mechanism for 
automated interpretation showed 61% agreement [95% confidence in-
terval (CI): 55.2–66.0%] with the reference grade records from human 
operators, and subsequently showed superior sensitivity for high-grade 
rejection in validation samples (74.4% vs. 39.5%, P < 0.001) 
compared to reference. Wei et al. [41] applied ML to urinary proteomic 
for searching and define signature of possible allograft rejection, which 
could be used for a relatively automatic self-administrated surveillance 
of cardiac allograft vasculopathy. Overall, those pilot studies remain 
without large consensus, external validation and application on a large 
scale. Prognosis post HTx: Oztekin A. et al. [42] used neural networks to 
manage more than 200 variables in more than 16,000 cases to predict 
survival in heart–lung transplantation with an accuracy that ranged 
between 79% and 86%, slightly better than that estimated by common 
logistic methodology in the validation sample. The AI-based model 
revealed novel interactions among variables collected pre- 
transplantation, which were not initially considered in conventional 
models as predictors of events. Delen D et al. [43] used a ML to identify 
prognosis in thoracic organs transplantations, overcoming the limita-
tions of the traditional statistical methods based on small pre-defined 
sets of variables. In 2015 Nilsson J et al.[24] compared three existing 
scoring models (donor risk index, risk-stratification score, and index for 
mortality prediction after cardiac transplantation) with a novel AI-based 
algorithm, and found that the accuracy of the novel model was excellent 
(C-index 0.600 [95% CI: 0.595–0.604]) with predicted events at 1-year, 
5-year and 10-year versus actual up to 84% versus 83%, 71%-71%, and 
55%-54% in the derivation cohort; 84% versus 83%, 72%-711%, and 

Fig. 2. The flow-chart illustrates the scope, the process of the scrutiny of the electronic libraries to identify appropriate publications, and the results of the selection 
criteria applied. 
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Table 1 
Artificial intelligence in heart transplant: overview of the studies selected.  

Author Year 
of 
Pub 

Reference 
# 

Type of Study, N Objective Results Risk of bias, 
External 
validation, 
Quality of 
reporting by % of 
the Items traced 

Domain: Etiology  
Garcia- 

Canadilla P 
et al. 

2022 35 Cohort study for model 
validation, n = 72 

Machine learning, unsupervised, has 
been used to Investigate left ventricular 
remodeling and mechanics in 
combination with clinical 
characteristics and heart-failure 
treatment and death or heart-transplant 
in pediatric idiopathic, genetic or 
familial dilated cardiomyopathy. 

Machine learning identified 
echocardiographic features and clusters 
associated with high-risk of death or 
transplantation. 

Low, 
NO, 
70% 

Domain: Diagnosis  
Kienzl K et al. 2009 36 Experimental animal 

research, N = 24 murine 
heart transplantation (N =
1541 protein spots) 

Hearts transplantation in mice. Major 
histocompatibility donor-recipient 
mismatch. Large-scale proteome 
analysis to identify specific biomarkers 
for acute cardiac allograft rejection. 

Of the protein spots, 95 were identified 
by and automated gel analysis system 
(DeCyder 2D ver. 6.5, GE Healthcare) as 
relevant by narrowing filter settings so 
that differences in the spot volume 
between proteins from various sample 
were >=1.5-fold between cases with 
acute rejection and those observed in 
syngeneic grafts, 

Intermediate, 
NO, 
40% 

Tong L et al. 2017 37 Cohort study for model 
validation 

Classify the patients with or without 
allograft rejection using data form 
endomyocardial biopsy using 
supervised machine learning tool versus 
manual identification. 

Neural networks with regularization and 
dropout yielded a significantly reduced 
model overfitting, and improved stable 
accuracy of the automated diagnostic 
process for patient’s classification. 

Low, 
NO, 
58% 

Zhu Y et al. 2019 38 Cohort study for model 
validation 

Clustering and classification of images, 
from endomyocardial biopsies, to 
classify patients with preclinical organ 
rejection after heart transplantation. 

By deep learning-based image 
processing method, after features 
extraction by stacked convolutional 
autoencoder followed by multiple 
instance learning with dimensionality 
reduction and unsupervised clustering, 
unsupervised clustering achieved 
reliable classification results while 
preserving the capability for multi-class 
classification. 

Low, 
NO, 
63% 

Castellani C 
et al. 

2020 39 Cohort study for model 
validation, N = 90 (53 
training cohort, 37 
validation cohort) 

Diagnosis of preclinical allograft 
rejection by non-invasive evaluation of 
patterns in extracellular vesicles of 
nucleic acids, proteins and lipids in 
combination with endomyocardial 
biopsies. 

With more features of graft rejection, the 
concentration and diameter of 
extracellular vesicles increased, with a 
significant trend of associations for both 
antibody-mediated rejection and acute 
cellular rejection. Automated 
classification accuracy in external 
validation cohort reached 87%, and 
showed potential for reducing the 
number of surveillance biopsies. 

Low, 
YES, 
70% 

Peyster EG 
et al. 

2021 40 Cohort study 
Observational, N = 2,472 
endomyocardial biopsies 
from 3 major US transplant 
centers 

Demonstrate that automated grading of 
cellular rejection based on 
computational histological analysis was 
as reliable as that from expert 
pathologist. 

Trained deep learning machine with 154 
specimens resulted in approximately 
62% agreement with pathologist, and a 
sensitivity for high-grade rejection up to 
74% vs. 40% with pathologists. 

Low, 
YES, 
77% 

Wei D et al. 2022 41 Cohort study 
Observational, N = 217 
(35% with cardiac allograft 
vasculopathy) 

Identify a urinary proteomic signature 
for cardiac allograft vasculopathy. 

Within participants grouped randomly 
and evenly into a derivation (n = 108) 
and validation (n = 109) cohort, 
decision tree-based machine learning 
methods (extreme gradient boost) 
constructed a signature (27 peptides) for 
allograft vasculopathy based on urinary 
proteomic, with a sensitivity, specificity 
and accuracy of 68%, 73%, 72% 
respectively, in the validation cohort. 
Adding signature from logistic model 
including clinical risk factors improved 
the diagnostic performance further 
more. 

Low, 
YES, 
77% 

Domain: Prognosis  
Oztekin A 

et al. 
2009 42 Cohort study for model 

validation, N = 16,604 
cases 

Improve the prediction of outcomes 
following combined heart–lung 
transplantation by proposing an 
integrated data-mining methodology. 

Develop machine learning predictive 
models and extract most relevant 
predictive factors comparing 3 methods: 
a) machine learning using decision trees, 
neural network or logistic regression; b) 

Low, 
NO, 
83% 

(continued on next page) 
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Table 1 (continued ) 

Author Year 
of 
Pub 

Reference 
# 

Type of Study, N Objective Results Risk of bias, 
External 
validation, 
Quality of 
reporting by % of 
the Items traced 

literature review and expert decision; 
common sense. Predictive models’ 
performance − 10-fold cross-validation 
accuracy rates for two multi-imputed 
datasets - was between 79% and 86% for 
neural networks, 78% − 86% for logistic 
regression, and 71% − 79% for decision 
trees. The study suggested a set of 
variables useful for pre-transplant 
evaluation. 

Delen D et al. 2010 43 Cohort study for model 
validation 

Exploring risk groups of thoracic 
transplant recipients through machine 
learning-based methods to mine large 
and feature-rich data to explore highly 
complex, non-linear relationships 

Machine learning radial basis Kernel 
function predicted the survival time 
with R(2) value of 0.879; the artificial 
neural network (multilayer perceptron- 
MLP-model) reached R(2) value of 
0.847; M5 algorithm-based regression 
tree model yielded R(2) value of 0.785. 
Using the prognosis indices in a Cox 
survival model revealed 3 group of 
subjects with sufficiently separated 
prognosis (clusters). 

Low, 
NO, 
87% 

Nilsson J 
et al. 

2015 24 Cohort study for model 
validation, N = 56,625 
heart transplanted patients 
over time. 

Develop and validate a flexible risk 
model for prediction of survival after 
heart transplantation using the largest 
transplant registry in the world. 

The receiver operating characteristic 
area under the curve to predict one-year 
mortality was 0.650 (95% CI: 
0.640–0.655) for the novel algorithm, it 
reached 0.56 (95% CI: 0.56–0.57) for the 
donor risk index, and 0.61 (95% CI: 
0.60–0.61) for the index for mortality 
prediction after cardiac transplantation, 
respectively. The novel decision-tree 
yielded an expected survival time 2.8 
years longer for recipients matched to a 
donor younger than 38 years. Donors 
could be increased in number by up to 
22% by the novel funciton. 

Low, 
YES, 
67% 

Medved D 
et al. 

2017 44 Retrospective cohort study 
for model validation 

Study of the outcome having patients in 
transplantation waiting list by deep 
learning techniques. 

A model of two-layer neural networks 
predicted the outcome as still waiting at 
180, 365 and 730 days from the 
transplantation in a large cohort from 
United Network for Organ Sharing 
(UNOS) – time window 2000–2011. The 
training procedures using the Keras 
framework, improved the F1 macro 
scores up to 0.674, 0.680, and 0.680 at 
the 3 follow-ups as compared to a 
baseline of F1 of 0.271, and 10 most 
significant parameters predicting 
outcomes were extracted from the 
neural network. 

Low, 
NO, 
77% 

Medved D 
et al. 

2018 45 Retrospective cohort study 
for model validation, N =
27,860 

Compare the accuracy of the 
International Heart Transplantation 
Survival Algorithm (IHTSA) deep 
learning technique-based prediction 
model versus accuracy of the Index for 
Mortality Prediction After Cardiac 
Transplantation (IMPACT) to predict 
survival after heart transplantation. 

In the United Network for Organ Sharing 
(UNOS) – time window 1997–2011, as 
compared to a mortality rate of 10% at 
year-1 follow-up, the IHTSA model 
predicted a mortality rate of 12% while 
the IMPACT predicted a mortality rate at 
22% with the validation cohort. 

Low, 
YES, 
80% 

Medved D et 
al 

2018 10 Retrospective cohort study 
for model validation 

A discrete event model and a neural 
network algorithm simulated the heart 
allocation process in a transplant queue. 

The prediction performances of a 
discrete event model, and a neural 
network algorithm -the Lund Deep 
Learning Transplant Algorithm 
(LuDeLTA)- were compared to the 
performance of the International Heart 
Transplant Survival Algorithm (IHTSA) 
model to predict short-term survival pot 
heart transplantation. LuDeLTA was 
superior to IHTSA model utilized to 
predict the survival of the patients both 
in the queue and after transplant. 

Low, 
YES, 
80% 

(continued on next page) 
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Table 1 (continued ) 

Author Year 
of 
Pub 

Reference 
# 

Type of Study, N Objective Results Risk of bias, 
External 
validation, 
Quality of 
reporting by % of 
the Items traced 

Yoon J et al. 2018 21 Cohort study for model 
validation, N = 22,780 

Develop a novel risk prediction 
algorithm and test its performance on 
the database of all patients who were 
registered for cardiac transplantation in 
the United States during 1985–2015. 

Built on the principle of trees of 
predictors to be used for specific clusters 
within the patient population, the 3-year 
survival/mortality predictions post- 
transplantation (versus best clinical 
standard) yielded a specificity at 80.0%, 
so that the novel algorithm increased 
prediction of survival of 14% and due to 
sensitivity at 80.0%, increased 
prediction of mortality of 13.0%. 

Low, 
YES, 
83% 

Kransdorf EP 
et al. 

2019 46 Cohort study for model 
validation 

To predict 1-year mortality after heart 
transplant and assess the effect of size 
match on donor heart turn down for size 
by Investigation of 5 size match metrics- 
predicted heart mass, weight, height, 
body mass index, and body surface area. 

Severe donor-recipient mismatch due to 
allograph undersize experienced 
increased mortality, which was not 
detected by common anthropometric 
parameters. Of heart offers and turned 
down due to donor size, 32% would 
have been acceptable using a novel 
approach. 

Low, 
NO, 
77% 

Miller PE 
et al. 

2019 47 Retrospective cohort study 
for model validation. N =
56,477 

Prediction of 1-year survival among 
patients undergoing cardiac 
transplantation, within the Unified 
Network for Organ Sharing (UNOS) 
database (1987–2014). Comparing 
machine learning methodologies neural 
networks, naïve-Bayes, tree-augmented 
naïve-Bayes, support vector machines, 
random forest, and stochastic gradient 
boosting, with standard statistical 
methods logistic regression, ridge 
regression, and regressions with LASSO 
(least absolute shrinkage and selection 
operator). 

The neural network-derived model 
showed highest C-statistic (0.66), which 
was slightly superior to that (0.65) 
derived from simple logistic regression, 
ridge regression, and regression with 
LASSO models. 

Low, 
NO, 
70% 

Miller R et al. 2019 48 Cohort study for model 
validation, N = 3,502 
(validation sample N =
700) 

Evaluate algorithms predicting 
mortality after pediatric HTx among 
patients < 18 years of age who received 
cardiac transplantation between 2006 
and 2015 in the UNOS. 

Mortality was explored at year-1, − 3, 
and − 5. Models were trained by cross- 
validation, then validated in a separate 
sample. Machine learning algorithms 
demonstrated fair predictive utility in 
both training and testing data, but 
sensitivity was poor across models 
(training: 0.22–0.58; testing: 
0.07–0.49). 

Low, 
NO, 
66% 

Mark E et al. 2019 49 Observational 
Retrospective, N = 240,163 

Use of machine learning to estimate 
survival at 5 years in patients receiving 
organs at increased risk of disease 
transmission (heart, liver, or lung) 
versus outcome among those awaiting a 
standard organ 

Cox proportional hazards model was 
compared to random survival forests 
with conditional inference trees, based 
on Harrell’s concordance index. The 
random survival forest models each used 
500 trees. Higher chance of 5-year 
survival occurred when the patient 
received an increased risk of disease 
transmission organ versus when the 
patient remained on the waitlist. 

Intermediate, 
NO, 
50% 

Hsich EM 
et al. 

2019 22 Observational 
Retrospective, N = 33,069 
(time window 2004–2015) 

Predict survival post-heart 
transplantation to identify pre-listing 
variables essential to an accurate heart 
transplant allocation and maximize 
outcome. 

Machine learning using random survival 
forests identified complex interactions 
among estimated glomerular filtration 
rate, serum albumin, extracorporeal 
membrane oxygenation, ventricular 
assist device, mechanical ventilation, 
peak oxygen capacity, hemodynamics, 
inotrope support, and type of heart 
disease. Some interactions were gener- 
specific. 

Low, 
NO, 
80% 

Agasthi P 
et al. 

2020 50 Retrospective cohort study 
for model validation, N =
15,236 

Develop a risk prediction model of 
survival and graft failure 5 years after 
orthotopic heart transplant. 

Machine learning, using gradient- 
boosted machine, identified 342 
variables, 87 of which were used to 
develop a risk prediction model to 
predict 5-year mortality and graft failure 
post-heart transplantation. Ten-fold 
cross-validation was used to estimate 
model’s external performance and 
optimize the hyperparameters 
simultaneously. Areas under the curves 

Low, 
NO, 
70% 

(continued on next page) 
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Table 1 (continued ) 

Author Year 
of 
Pub 

Reference 
# 

Type of Study, N Objective Results Risk of bias, 
External 
validation, 
Quality of 
reporting by % of 
the Items traced 

to predict 5-year mortality and graft 
failure were 0.72 (both), with length of 
stay, recipient and donor age, recipient 
and donor body mass index, and 
ischemic time as factors with the highest 
impact on outcomes. 

Hsich EM 
et al. 

2020 23 Retrospective cohort study 
for model validation, N =
30,606 

Understand the complex factors 
affecting heart transplant survival and 
determine possible sex-specific risk 
factors.  

Early post-transplantation, constant, 
and late post-heart transplant mortality 
risk was not associated with recipient 
sex; complex interactions predicting 
early-, mid-, and late-mortality existed 
and were identified with machine 
learning (i.e., elevated bilirubin, 
mechanical ventilation, and dialysis). 

Low, 
NO, 
80% 

Ayers B et al. 2021 51 Retrospective cohort study, 
N = 33,657 (time window 
2000–2019) 

To investigates predictors of post-heart 
transplantation mortality and improve 
1-year survival. 

Multiple machine learning algorithms 
were combined. Discriminatory 
capability, evaluated by means of area 
under receiver-operating-characteristic 
curve (AUROC), was with singular 
logistic regression 0.649, compared to 
0.691 with random forest, 0.691 (95% 
CI, 0.671–0.712) with deep neural 
network, and 0.653 (95% CI, 
0.632–0.674) with Adaboost, and reache 
0.764 with a final ensemble machine 
learning model, which improved 
predictive performance by 73% ±4% (p 
< 0.001) (net reclassification index 
compared to logistic regression). 

Low, 
YES, 
80% 

Zhou Y et al. 2021 54 Retrospective cohort study 
for model validation, N =
381 

Establish a risk-prediction model for 
assessing prognosis of heart 
transplantation using machine-learning 
approach. 

Least absolute shrinkage and selection 
operator method for variables selection. 
Seven different machine-learning 
approaches were employed to develop 
the risk-prediction model. Bootstrap 
method was used for model validation. 
Shapley Additive exPlanations (SHAP) 
method was used for model 
interpretation. Random Forest model 
achieved the best area under curves 
(0.801) and gradient boosting machine 
showed the best sensitivity (0.271). 
SHAP method best described the 
Random Forest model’s predicting 
processes of “survival” or “death” at 
individual level. 

Low, 
NO, 
77% 

Kampaktsis 
PN et al. 

2021 53 Retrospective cohort study, 
N = 18,625 (time window 
2010–2018) 

Develop and validate machine learning 
models to increase accuracy of 1-year 
prediction of mortality after heart 
transplantation. 

Of 134 pre-transplant variables, 39 were 
predictive of 1-year mortality based on 
feature selection algorithm and were 
used to train five machine learning 
models. Machine learning models 
showed good predictive accuracy of 
outcomes after heart transplantation. 
For the prediction of 1-year survival, 
area under the curve was 0.69, 0.64, 
0.65, 0.64, 0.53 for the Adaboost, 
Logistic Regression, Decision Tree, 
Support Vector Machine, and K-nearest 
neighbor models, respectively, whereas 
the Index for Mortality Prediction after 
Cardiac Transplantation (IMPACT) score 
had an AUC of 0.57. 

Low, 
YES, 
77% 

Killian MO 
et al. 

2021 54/55 Retrospective cohort study 
for model validation, n =
654 (32 heart 
transplantations) 

Various logistic regression, naive Bayes, 
support vector machine, and deep 
learning methods were employed to 
predict 1-, 3-, and 5-year post-transplant 
hospitalization using patient and 
administrative data from a large 
pediatric organ transplant center. 

Deep learning models predicted 
outcome with areas under the receiver 
operating characteristic curves values 
ranging from 0.750 to 0.851, and 
generally outperformed traditional ML 
models across organ-types and 
prediction windows. 

Low, 
NO, 
77% 

Domain: Treatment  

(continued on next page) 
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55%-54% in the internal validation cohort; and 85% versus 84%, 73%- 
76%, and 58%-58% in the external validation cohort. The receiver 
operating characteristic area under the curve to predict one-year mor-
tality was 0.650 (95% CI: 0.640–0.655) for the novel model, 0.56 (95% 
CI: 0.56–0.57) for the donor risk index, 0.61 (95% CI: 0.60–0.61) for risk 
stratification score, and 0.61 (0.61–0.62) for index for mortality pre-
diction after cardiac transplantation, respectively. The decision-tree 
revealed that recipients receiving donation from a donor younger than 
38 years had additional expected median survival time of 2.8 years. The 
number of suitable donors could be increased by up to 22%. Using data 
from the United Network for Organ Sharing, Medved D et al. [44] in 
2017 refined outcome prediction using AI in patients awaiting HTx at 
180 days, 365 days, and 730 days, and further validated the prediction 
function in a subsequent study in 2018 [45]. In addition, ML-approach 
was also reported to be more reliable than traditional methods [10] in 
predicting longer post-HTx survival, moving the target of AI in HTx from 
allograft rejection to best allocation mechanisms to maximize prognosis. 
Yoon J. et al. [21] reported in 2018 a trees-of-predictors method to 
identify clusters and personalize prediction of survival, which resulted 
in an average accuracy of 67%. In 2019, Kransdorf et al. [46] used AI to 
optimize donor-recipient anthropometric best match to predict post-HTx 
survival. Miller P.E. et al. [47] and Miller R et al. [48] reported in 2019 
the performances of ML to predict early and mid-term survival after 
HTx, with accuracy comprised between 66% and 72%, and poor sensi-
tivity mostly due to missing data for long-term survival. On a different 
aspect, because prolongation of waitlist time may also be related to 
rejection of organs due to increased, acceptable, risk of disease trans-
mission in HTx, Mark et al. [49] reported that ML-related survival 
models in a simulation based on 20,000 potential different scenarios, 
predicted a survival rate at 5-year follow-up post-HTx higher with pa-
tients accepting organ-related acceptable increased risk for disease 
transmission (heart, liver and lung) than in those who refused trans-
plantation. The study indirectly validated the notion that irrational 
prolongation of waitlist time worsen prognosis in candidates to HTx. 
Hsich EM et al. [22] in 2019 reported that waitlist mortality was higher 
with lower glomerular filtration rate, and more so with lower serum 
albumin, use of extracorporeal membrane oxygenation, previously 
implanted ventricular assist device, mechanical ventilation, low body 
mass index and hemodynamic conditions characterizing patients in 
status 1A/1B United Network for Organ Sharing (UNOS), whereas lower 
peak exercise oxygen consumption was an important predictor of 
waitlist mortality among ambulatory patients. In adults and pediatric 
patients, in 2020, Agasthi P et al. [50] analyzed by ML a large set of 
variables (above 300) in 15,236 patients who underwent HTx from 

January 2005 to December 2009 (International Society of Heart and 
Lung Transplant (ISHLT) registry data), and found that length of stay, 
recipient and donor age, recipient and donor body mass index, and 
ischemic time had the highest relative influence in predicting 5-year 
mortality and graft failure, with an overall accuracy of 71%. In 30,606 
adults in the Scientific Registry of Transplant Recipients database, who 
received isolated HTx between January 1, 2004, and July 1, 2018, Hsich 
EM et al. in 2020 [23] reported several interactions predicting early 
mortality such as pre-HTx mechanical ventilation, end-stage liver and 
kidney dysfunctions, and interactions predicting later mortality such as 
diabetes and older age (donor and recipient), with increasing and 
complex interactions predicting early-, mid-, and late-mortality identi-
fied by machine learning. Ayers et al. [51] employed ML-based multiple 
algorithms to predict mortality in a total of 33,657 patients who had 
undergone HTx, with accuracy at year-1 follow-up that was close to 
76%. In a single center from China, Zhou Y. et al. used multiple ML and a 
random forest method to discriminate at the level of single patient be-
tween alive or dead at year-1 follow-up post HTx [52] with an accuracy 
of 80%. Only a few of the variables predicting events were common to 
other investigations (i.e., age of the recipient, previous cardiac surgery, 
albumin, prolonged post-HTx invasive mechanical ventilation). ML- 
based method was crucial to elaborate a large amount of data from 
various sources in the perspective of optimal organ utilization and 
longevity after HTx [53]. DL sharply increased the accuracy of algo-
rithmic outcome prediction to 85%, and was proposed as standard tool 
in support to clinical decision-making for identification of those patients 
who have least likelihood to benefit from HTx at a specific time of the 
clinical history, given specific clinical conditions and donors charac-
teristics [54,55]. Post HTx Treatments of rejection: ML can also be 
applied in monitoring of therapeutic levels of immunosuppressive drugs, 
such as mycophenolic acid and tacrolimus [56,57]. Simulation of 
application of prediction function in real-world.: as example of testing 
reproducibility, calibration, and validation of prediction algorithms, the 
difference between the theoretical and actual post-HTx time-to-event 
within the first year of observation was evaluated (Fig. 3). Mortality rate 
was not explained by novel prognostic functions derived from pre- 
defined database [24]. Further analyses revealed that prolonged venti-
lation, post-HTx dialysis, and infections requiring multiple intravenous 
antibiotics were significant correlates of the difference between the 
actual and the theoretical time-to-event in persons who underwent HTx 
in our Institution, as expected [24,58]. 

Table 1 (continued ) 

Author Year 
of 
Pub 

Reference 
# 

Type of Study, N Objective Results Risk of bias, 
External 
validation, 
Quality of 
reporting by % of 
the Items traced 

Woillard JB 
et al. 

2021 56 Cohort study To estimate the area under the curve of 
mycophenolic acid in organ transplant 
patients using extreme gradient 
boosting (Xgboost R package) Machine 
Learning models. 

ML provided models accurate in 
estimating areas under the curve 
estimation performances in the test 
datasets (relative bias < 5% and relative 
root mean standard error < 20%) and 
better performance than Bayesian 
estimation in the four independent full- 
PK datasets. 

Low, 
NO, 
80% 

Woillard JB 
et al. 

2021 57 Cohort study To estimate the area-under the blood 
concentration curve of tacrolimus (TAC) 
following b.i.d. or q.d. dosing in organ 
transplant patients, using Xgboost 
machine learning (ML) models 

Low, 
NO, 
80% 

Risk of bias according to PROBAST (ref.# 33) was proportional to the number of items fulfilled among those indicated in the four domains of Participants selection, 
Predictors selection, Outcome definition, and Analysis). Empirically LOW risk of bias was assigned to studies fulfilling more than 66% of the items, whereas high risk of 
bias was assumed for a number of items fulfilled less than 33%, intermediate for % of the items comprised between 33 and 66%. External validation was extrapolated as 
specifical indicator of quality of reports. Overall quality of reporting was scored as % of the items traced among the 30 indicated by Cabitza F and Campagner A in 2021 
(ref.#32). 
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4. Discussion 

As to date, AI was generally found to be more accurate in the process 
of identification of the relevant variables to prognosis, and generating 
prognostic and diagnostic functions potentially turning into tools for 
common clinical practice. Yet, even with AI-base algorithms, AUCs were 
rarely above 0.80, a threshold for defining acceptable performance of 
discrimination functions in medicine [59]. Looking at reports on AI- 
based diagnostic and prognostic functions, issues could be identified 
with the procedures of predictors selections, population characteriza-
tion, prediction function calibration, management of missing data, er-
rors, and outliers, lack of external validation and discussion of limits of 
released prediction faction. Indeed, one of the available AI-based algo-
rithms was found inaccurate in predicting the difference between real 
and expected mortality in cases from our center, a paradigm of the limits 
of application of functions generated from a selected context to the 
unselected context of the real-world. Nevertheless, predictors of fatal 
events in our small series were identified as powerful predictors of 
prognosis in different and larger datasets [22,23,50], demonstrating 
that large, high-quality and less selected data remain a key-factor also in 
the case of AI employed to develop tools thought to be applied in the 
general context. 

AI has the potential to grant a boost to knowledge [29], and optimal 
management of the supply chain and outcome in HTx by working on BD 
(Fig. 1), as already suggested in medicine [60,61]. Recently, Naruka 
et al.[62] reviewed current evidence of application of ML in the field of 
HTx, focusing on prediction of graft failure, mortality and aids from 
imaging. In our overview, we reported studies classified in the 4 do-
mains of etiology, diagnosis, prognosis, treatments, based on prevalent 
results. We also searched specifically for the use of BD in the fields, and 
found that none of the studies selected was actually based on BD. The 
lack of BD in the field of THx may be seen as a limitation to the per-
formance of AI to develop reliable, precise and calibrated diagnostic and 
prognostic algorithms. However, while AI usually takes advantage from 
the use of BD, in itself BD does not automatically guarantee the quality 
of the process. BD does not mean just large datasets, and BD available to 
date are often not intended as fuel for medical AI. In fact, there is need 
for high-quality, unbiased and large, time-varying data, transparency of 

the procedures and methodologies applied, understanding and mini-
mizing bias, and high-quality validation processes, in order to improve 
the reliability and generalizability of the AI-based prognostic and 
diagnostic functions [32–34]. BD is made of integrated and dynamic 
databases from multiple sources with multiple inter-relations, complex 
aggregation and potentialities for non-parametric and unbiased cases 
discrimination [63]. BD analyses by AI is usually oriented to reveal 
patterns, trends, clusters, or define models characterizing and aggre-
gating cases and persons [63], implying associations more than cause- 
effect relationships. In medicine, specifically generated BD including 
high quality medically oriented information from the real-world, may 
balance complexity and costs of sophisticated data analyses through the 
medical AI, and supporting network medicine in the real world [64,65]. 

Network medicine may represent a wishful horizon in HTx supply 
chain and outcome optimization [28], which requires major shifts in 
information technology (IT) in health care, and health care organization 
and workflow. IT is one of the key factors able to generate BD with in-
formation of good-quality from real-world [64], to fuel specifically 
medical AI to develop algorithms with minimal biases, to train machine 
and derived refined and externally validated probabilistic tools for 
managing uncertainty and identify patterns in unselected group of 
persons. Electronic Health Record (EHR) and administrative data, 
medical images stored in pixels or voxels, provide a large spectrum of 
analytic information despite risk of misclassification and the impact of 
the missing data [66]. Also, genome, proteomic, transcriptomic, epi-
genomic, and metabolomic data may contribute to with additional 
important sources to BD [67]. Managing high-quality and medical ori-
ented BD requires significant investments in large and independent 
storage systems, complex computing such as neural networks to operate 
LM and DL, immediate access and relational databases, highly qualified 
personals. 

In such a new potential paradigm of AI contributing to knowledge 
building in HTx, data source and analyses modality are key factors. 
Grounded and “true” data are key elements for all analyses of data 
feeding AI, and deal with the key element of responding precisely and 
timely to right inquiries, with specific therapeutic options readily 
applicable. Such a process is inductive more than hypothetical or 
deductive, and has root into reality more than in randomized controlled 

Fig. 3. Survival curves, actual (continuous) versus predicted (dashed), factored based on standardized urgent vs nonurgent criteria for htx. ai-based function 
described by nilsson et al. (ref.# 24) was unable to predict early outcome, which was indeed related to infections requiring intravenous multiple antibiotics and 
vasopressors, and prolonged mechanical ventilation, and post-htx unpredicted dialysis as in part or all identified by others (see ref. # 23, 52, 53). 
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trials. To date, EHR systems perpetuate the document model of health 
care, thus affected frequently by missing data and often unprecise. 
Transforming health care systems to implement AI applied to BD, and 
build complex and dynamic algorithms supporting in decision making 
(Fig. 1), holds if investment and culture changes, including the use of 
medical terminology and data collections oriented to requirements from 
optimal employment of machines. Standardized, ubiquitarian and 
quantitative computational approaches should be oriented to captured 
and describe consistently clinical scenarios for simulations, discrimi-
nations and decision making by AI in a context of network medicine. 
Hence, clinicians need to adhere to a standardized terminology and 
semantic (definitions, meanings, relationships among words, cognitive 
structures, allowed value sets); specific infrastructure is needed to be 
converted by informaticians into technical representations suitable for 
database storage and computations; IT functions are to be known so that 
a public control is applied to systems processing BD, impacting clinical 
decisions; and finally, resources and results must be reachable by the 
majority, with defined rules of sharing, engagement and utilizations 
from a large communities. Promoting capturing of well-defined, high- 
quality data, integrated into clinical workflow, and grounded in real 
world, requires significant investments in health systems structures. 
After all, AI most likely identifies associations among variables with a 
various degree of strength or weakness, which varies over time, and 
identifies interactions among variables varying overtime. Yet, associa-
tions are not necessarily proofs of cause-effect relationships. 

While IT systems grow-up structured, there are also growing re-
sponsibilities of professional societies representing doctors, to mediate 
and agree for standards, act as arbiters of the lexical component, dealing 
with organizations managing health-care-oriented IT, such as the Clin-
ical Information Modeling Initiative at HL-7 building frameworks and 
systems data collection, database inter-relations, data quality moni-
toring; finally, health IT should become an absolute requirement for all 
actors of the health care systems, oriented to produce documentation 
able to be shared. The fact that, as today, health care related equity 
funds oriented to AI have almost doubled in a few years, reaching 3 
billion of USD, is a sign of the general sentiment on how important is and 
will be the issue of AI applied to BD for a more and more precise 
medicine. 

Limitations: As we selected a relatively small number of studies by 
our search options applied to electronic libraries, we may have been 
limited in reporting all the spectrum of the possible scientific contri-
butions in the field of medical AI applied to the supply-chain and 
outcome in HTx. A summary of the quality of the selected reports has 
been attempted and reported in Table 1, which should be considered as 
an empiric, indicative and essential process without a specific valida-
tion. In addition, while composing the empiric overall score of the 
quality of the reports as in Table 1, we weighted equally different items, 
which might limit further the attempt to fully represent the quality of 
each study, and their comparisons. For each of the selected studies, we 
extrapolated specifically the information related to eventual external 
validation of the results, as single nonanalytic item potentially repre-
senting one aspect of the quality of each study, and applicability/ 
deployment. Yet, we did not describe specifically the procedures and the 
details of external validations reported in the studies, which limits the 
absolute value of such an item as indicator of quality, and its value for 
comparing studies beyond the simple information in objective. The 
report on the difference between predicted and observed mortality post- 
HTx in our HTx center, as example of real-world applicability of prog-
nostic algorithms developed through AI, may be considered anecdotical 
and is not meant to support any conclusive scientific statements. 
Nevertheless, a number of clinical variables closed the gap between 
predicted and observed mortality as reported in our experience from 
real-world, which were identified as important prognosticators later on 
by others [22,23,50]. 

5. Conclusions 

To date, a relatively small number of studies reported on AI applied 
to the field of HTx, mostly in the domains of prediction of outcome while 
awaiting HTx, or post-HTx, and optimal organ allocation as relevant step 
to improve HTx outcome. In general, AI-based algorithms showed a 
tendency to perform better than those developed by traditional statistic 
tools using pre-defined datasets. None of those algorithms were devel-
oped using high-quality BD, and frequently lacked of external valida-
tion. Current performance of AI-based tools, and their applicability in 
the real world, may also be limited by relatively poor transparency of 
methodologies, risk of bias, and lack of generalizability as external 
validation lacks frequently. Integrated and dynamic databases gener-
ated with the aid of appropriate IT, of good quality, intended for medical 
AI, from multiple sources with multiple inter-relations, complex aggre-
gation and potentialities for non-parametric and unbiased cases 
discrimination, may generate high quality standards for AI-based pre-
diction models. Transparency and procedure quality in machine 
training, and appropriate validation sections demonstrating reproduc-
ibility and calibration are additional critical key-point to deploy medical 
AI in the field of HTx, with high biological and nonbiological costs, and 
reach in ethical issues. 

6. Summary table 

• A systematic overview was performed on studies published in En-
glish on peer-revied journals referring to heart transplantation 
(HTx), artificial intelligence (AI), and big data (BD) in HTx, identi-
fied as December 31st, 2022, through PUBMED-MEDLINE-WEB of 
Science. 

• Twenty-seven studies were grouped in 4 domains (etiology, diag-
nosis, prognosis, treatment), representing the 0.02% of the studies 
identified by the key-words. 

• AI has been mostly used for an algorithmic prediction and discrim-
ination in cohort studies and registries while BD-based studies were 
not available.  

• AI-based algorithms appeared superior to probabilistic functions to 
predict patterns.  

• The majority of the reports did not provide external validation of the 
proposed prediction functions. 
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