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UNIVERSAL COHOMOLOGY THEORIES

LUCA BARBIERI-VIALE

Abstract. We furnish any category of a universal (co)homology theory. Universal
(co)homologies and universal relative (co)homologies are obtained by showing repre-
sentability of certain functors and take values in R-linear abelian categories of motivic
nature, where R is any commutative unitary ring. Universal homology theory on the
one point category yields “hieratic” R-modules, i.e. the indization of Freyd’s free
abelian category on R. Grothendieck ∂-functors and satellite functors are recovered
as certain additive relative homologies on an abelian category for which we also show
the existence of universal ones.
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0. Introduction

The main goal of this paper is to show that there is a “simple” (co)homological
picture providing universal (co)homology theories in abelian categories, revisiting and
developing the previously hinted construction of theoretical motives [6]. This unified
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2 LUCA BARBIERI-VIALE

framework for (co)homology theories on any fixed category C with values in variable
abelian categories A is achieved through the solution of representability problems.

0.1. A glimpse at the foremost theme. The general constructive method for uni-
versal theories can be sketched as follows: i) represent (co)homology theories in abelian
categories through suitable diagrams, ii) show universal representations of such dia-
grams and iii) impose “relations” in order to satisfy axioms. Note that, in principle, this
method can be adapted to (co)homology theories in non-additive categories with suit-
able exactness properties. Moreover, it is conceivable and desirable that this framework
shall also be revisited in the (∞, 1)-category setting.

Notably, all these (co)homological constructions should have geometric and arith-
metic applications, providing a new context and a precise formulation of universal
homology theories for topological spaces, manifolds and schemes with values in corre-
sponding abelian categories.

Novelties already appear in the case of the trivial category C = 1 (here 1 is the
one point category) for which the model category of simplicial sets SSet provides the
universal homotopy theory; in this case, for any (commutative unitary) ring R, we
also have the universal R-linear abelian category AbR generated by R regarded as
a preadditive category: this is Freyd’s universal (essentially small) R-linear abelian
category on the point. This abelian category AbR is characterised by the following
property: picking an object of an (essentially small) R-linear abelian category A, i.e.
a functor 1 → A, is equivalent to giving an R-linear exact functor from AbR to A.

Note that AbR 6= R-mod the category of finitely presented R-modules, in general.
The indization IndAbR

∼= R-Mod is equivalent to the Grothendieck category of “hier-
atic” R-modules, i.e. R-linear additive functors from R-mod to the category R-Mod of
all R-modules. By the universal property, we obtain a canonical R-linear exact functor
from “hieratic” R-modules to any Grothendieck category, such as all R-modules as well
as “condensed” R-modules, sending the universal “hieratic” R-module to a generator.

For example, if R = Z is the ring of integers, we have that AbZ 6= Z-mod but there
is a natural exact quotient functor AbZ →→Z-mod whose Q-linearization AbZ ⊗Q =
Q-mod is given by finite dimensional Q-vector spaces. The category of chain complexes
Ch(Z-Mod) also provides a refinement of Ch(Z-Mod): the universal homotopy and
homology theory on a point yields a Quillen pair

SSet⇄ Ch(Z-Mod)

refining the well known Quillen pair between simplicial sets and simplicial abelian
groups.

0.2. Homology theories. The claimed universal homological picture can be achieved
by constructing certain categories whose objects are just homology or relative homol-
ogy theories on a category C with values in an abelian category A at least. This A
could be required to have further structure and properties such as being R-linear or
a Grothendieck category or a tensor category. The construction is clearly depend-
ing on the axioms that we choose to define such homology theories and these in turn
depends on geometric properties of C. The minimal data and conditions are that of
H = {Hi}i∈Z a Z-indexed family of functors Hi : C → A. A morphism ϕ : H → H ′
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between homology theories on C with values in A shall be given by a Z-indexed family
of natural transformations (see Definition 2.1.1) yielding a category

Hom(C,A)

of homologies. By composing with exact functors we can make up a 2-functor

A Hom(C,A) : Ex → Cat

from the 2-category Ex of abelian categories and exact functors to the (very large)
2-category of categories and functors. A first key result is that Hom(C,−) is 2-
representable by an abelian category of the same size of C: we simply denote by A(C)
the abelian category such that

Hom(C,A) ∼= Ex(A(C),A)

is an equivalence, natural in A (see Theorem 2.1.2). If desired we can add up R-
linearity and axioms that are preserved by R-linear exact functors and get “decorated”
homological functors. The construction of A(C) goes through the universal abelian rep-
resentation theorem [7] (see Theorem 1.3.4) which is in turn based on Freyd’s universal
abelian category (see also [30, Chap. 4] and [28, Prop. 12.4.1] for details).

We shall refer to A(C) as the R-linear abelian category generated by the homology
theory and H ∈ Hom(C,A(C)) corresponding to the identity functor on A(C) shall
be the universal homology on C. In fact, for any homology H ′ ∈ Hom(C,A) we have
rH′ : A(C) → A the corresponding exact functor such that rH′(H) = H ′ is obtained by
composition with the “realization” functor rH′.

Adding axioms to the homology theory we obtain “decorated” abelian categories
A†(C) given by taking quotients of A(C). For example, adding the point axiom (see
Axiom 2.1.6), for C = 1 we obtain Apoint(1) ∼= R-mod finitely presented “hieratic”
R-modules (see Proposition 2.1.7 and Example 2.1.8). For C = N a group or a monoid
regarded as a category with a point object we obtain the universal R-linear represen-
tation h : R[N ] → End(H) for H ∈ Apoint(N) (see Example 2.1.11).

The analogue cohomology theory is defined by H = {H i}i∈Z a Z-indexed family of
functors H i : Cop → A and denote Coh(C,A) the category of cohomologies. Define the
opposite Hop of an homology H = {Hi}i∈Z : C → A as {H i :=Hi}i∈Z : Cop → Aop given
by the opposite functors and note that Coh(C,A) = Hom(C,Aop). As a consequence
of the abstract duality (see Theorem 1.3.9) the opposite category A(C)op is the abelian
category generated by the cohomology theory (see Corollary 2.1.5) i.e. it represents the
2-functor of cohomology theories

Coh(C,A) ∼= Ex(A(C)op,A)

and we obtain the universal cohomology Hop ∈ Coh(C,A(C)op) as the opposite of H ∈
Hom(C,A(C)) the universal homology.

0.3. Relative homology theories. Relative theories depend on the choice of a dis-
tinguished subcategory of C in such a way that we can form the category of pairs
C� whose objects are distinguished morphisms of C and morphisms are commutative
squares of C. Denote (X, Y ) a distinguished morphism from Y to X, for short, that is
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an object of C�. For a relative homology theory with values in abelian category A we
mean a collection of Z-indexed functors

(X, Y ) ∈ C�  Hi(X, Y ) ∈ A

satisfying the following long exact sequence in A

· · · → Hi(Y, Z) → Hi(X,Z) → Hi(X, Y )
∂i−→ Hi−1(Y, Z) → · · ·

for the triple (X, Y ), (X,Z) and (Y, Z) in C�, where ∂i : Hi(X, Y ) → Hi−1(Y, Z) shall
be assumed to exists; furthermore, this long exact sequence is assumed to be natural
in a canonical way (see Definition 2.2.1). We then obtain a 2-functor

A Hom(C�,A) : Ex → Cat

and we can show that is representable, obtaining an abelian category A∂(C) along with

Hom(C�,A) ∼= Ex(A∂(C),A)

an equivalence of categories which is natural in A (see Theorem 2.2.4). The construc-
tion of A∂(C) is also obtained as an application of Freyd’s universal abelian category
via the universal abelian representation theorem [7] (see Theorem 1.3.4). For C with
an initial object we have a canonical exact functor

r∂ : A(C) → A∂(C)

such that the essential image is generating (see Theorem 2.3.1). We have a dual
notion of relative cohomology and the 2-functor Coh(C�,−) of relative cohomologies
is also representable: we obtain the universal cohomology as the opposite of universal
homology with values in A∂(C)

op the opposite abelian category (see Corollary 2.2.7).
Note that for A = Z-Mod the category of relative homologies Hom(C�,Z-Mod) and

that of relative cohomologies Coh(C�,Z-Mod) are exact definable categories (in the
sense of [30, Chap. 10]). Moreover, the 2-category of small abelian categories with
exact functors is antiequivalent to the 2-category of definable additive categories (see
[31]).

We shall refer to A∂(C) as the abelian category generated by the relative homology
theory and the universal relative homology on C� is given by H ∈ Hom(C�,A∂(C)),
corresponding to the identity functor on A∂(C), and it shall be described by

H = {Hi}i∈Z : C� → A∂(C)

a family of functors. For any relative homology H ′ ∈ Hom(C�,A) we have rH′ :
A∂(C) → A the corresponding exact functor such that rH′(H) = H ′. By the way adding
axioms to the relative homology theory we obtain “decorated” relative homologies and
corresponding “decorated” abelian categories A†

∂(C) which are quotients of A∂(C) such
that

Hom†(C
�,A) ∼= Ex†(A†

∂(C),A)

is an equivalence, as it will be clearer in the following. For example, adding the point
axiom we obtain Apoint

∂ (2) ∼= R-mod (see Example 2.3.4). We can apply this framework
to Grothendieck ∂-functors: for C = A an abelian category and A� the category of
monos we get a universal Grothendieck homology (see Theorem 3.1.3) representing
the 2-functor Hom∂(A,−) given by Grothendieck homological functors regarded as
∂-homologies (Definition 3.1.1).
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Remark that these categories A†
∂(C) shall be equivalent to theoretical motives ob-

tained as quotients of the abelian category A[T] introduced in [6] (see Proposition
2.2.8). Moreover, for any H ′ ∈ Hom(C�,A) we can form the quotient

A(H ′) :=A∂(C)/Ker rH′

and we obtain the induced H ∈ Hom(C�,A(H ′)) given by the image of the universal
homology under the projection functor; here we have that H : C� → A(H ′) is the
universal homology generated by H ′, i.e. it is universal with respect to relative homolo-
gies which are comparable with H ′ in an obvious sense. For example, the universal
homology generated by singular homology, e.g. the construction of Nori motives [23]
is based on the latter.

Relative homology can be adorned by transfers yielding a universal relative homol-
ogy with transfers (see Remark 2.2.10). Furthermore, ordinary homology theory is
a “decoration” of relative homology obtained by imposing Eilenberg-Steenrod axioms
[17]: we shall recover the classical topological setting in [5] and we actually get uni-
versal ordinary homology with respect to an homological structure on any category
representing ordinary homologies with values in abelian categories.

Finally, we stress out that these constructions are in addition to Dugger’s universal
homotopy [16] and Voevodsky’s homological triangulated category of a site with an
interval [32]: a canonical comparison with universal homotopy theories is given by
passing to chain complexes.

0.4. Historical commentary and notes. The axiomatic approach to homology the-
ories, in particular to singular versus cellular homology, as it was introduced by Eilen-
berg and Steenrod in topology, has been largely influential and their unicity theorem
quite astonishing: the first key step in this story was taken around the years 1945–
1952, see [17] and [18]. Then a ramified study of topological generalised (co)homology
theories emerged, see [15], for a start.

A parallel history is that of Grothendieck construction of a Weil cohomology in alge-
braic geometry, which started from a wish-list of axioms and was afforded in the years
1958–1966 after two other key foundational steps: a first step in homological algebra,
with the concept of satellite and that of ∂-functor, see [12] and [22], and a second step
was the introduction of Grothendieck topologies. Notably, the stride from Weil coho-
mology to Grothendieck “motives” and “motivic cohomology”, was originally based on
a third foundational step, the Tannakian formalism, but this approach to “motives” is
still dependent on the standard conjectures (e.g. see [13] and [11]). However, broadly
speaking, the category of “motives”, in Grothendieck vision, shall be regarded as a way
to express a sort of abelian envelope of algebraic varieties and “motivic cohomology”
shall be the abelian avatar of a variety.∗

Remark that Freyd [19] also considered the following general question: given a cat-
egory how nicely can it be represented in an abelian category? However, since its

∗Grothendieck, Récoltes et Semailles, note 59 on page P47: [Another way to see the category of
motives over a field k is to visualise it as a sort of “enveloping abelian category” of the category of
separated schemes which are of finite-type over k. The motive associated with such a scheme X (or
“motivic cohomology of X”, which I denote H∗

mot
(X)) thus appears as a kind of abelianised “avatar”

of X .]
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appearance around 1965, Freyd’s universal abelian category of an additive category
has not been imagined to be linked to the construction of “motives”. Freyd also ob-
served that there is an embedding of a triangulated category in an abelian category
which is universal with respect to homological functors and then Heller [24] in 1968
constructed a universal homology in a stable abelian category (see Neeman [29] for a
quintessential explanation).

Actually, on the algebraic geometry side of the story, around 1997, Nori provided a
universal abelian category, making use of a variant of the Tannakian formalism (see [23]
for full details). Previously, around 1987, Deligne [14] introduced the abelian category
of mixed realisations and André [1], on 1996, proposed motivated cycles showing how
to avoid the standard conjectures. However, Nori’s idea as well as André and Deligne
ideas of “motives” – being based on the Tannakian formalism – makes use of existing
fiber functors. Consequently, “motives” through “motivic Galois groups” are available
(see [3] and [2] for a comprehensive account on it) but the standard conjectures re-
main unsolved; the fundamental difference of the approach due to Voevodsky [32] and
Ayoub [4] is the construction of a “triangulated category of motives” instead of the
abelian category but the correct “motivic t-stucture” is missing: it implies the stan-
dard conjectures (see [11] for the relation between the triangulated and the Tannakian
approach).

In particular, Nori’s construction is modelled on singular (co)homology regarded as
a representation of a diagram and it is universal with respect to (co)homology theories
which are comparable with singular (co)homology: this implies that it is not available
in positive characteristics, for example. The reformulation of Nori’s construction by
making use of syntactic categories in [10] has not been really fruitful, so far; it is quite
handy for logical purposes but the algebraic structure of a syntactic category is rather
hard to manage, e.g. if one would like to get a tensor structure on it.

The unified (co)homological framework in [6] is also a first step towards the con-
struction of “motives” independently of fiber functors: it was settled in the language
of categorical model theory but its translation in the language of representations of
quivers started parallelly with [7]; actually, Freyd’s universal abelian category is linked
with the construction of Nori motives as well as with the triangulated categories of Vo-
evodsky motives. A tensor version of Freyd’s universal abelian category shall provide
tensor product of “motives” e.g. for abelian categories modelled on a given cohomology
satisfying Künneth formula, see [8] and [9].

Finally, a second step towards a unified framework for (co)homology theories on cat-
egories, following [6] – along with the consequent approach to “motives” – is completely
reformulated and extended in this paper by making use of the rather elementary and
classical method of solving representability problems.

Acknowledgements. I am happy to express my thanks to Joseph Ayoub whose advice,
interest and criticism were the indispensable ingredients for the writing of this paper.
I’m also deeply grateful to Mike Prest for his constant help and precious collaboration. I
also would like to dedicate this paper to the memory of V. Voevodsky, A. Grothendieck
and S. Eilenberg to whom I’m intellectually tied and feel beholden. Finally, I also like
to thank UZH & FIM–ETH Zürich for providing support, hospitality and excellent
working conditions.
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Notations and assumptions. We shall be adopting the current conventions on small and
large categories, considering a fixed universe when small or locally small is specified,
e.g. see [SGA4, I §0-1], [27, Convention 1.4.1.] and [26, A1.1]. For abelian categories
refer to [22, Chap. 1], [20], [28, Part One] and [27, Chap. 8]. In particular, we say
that S is a Serre subcategory or thick subcategory of an abelian category A if it is
closed by subobjects, quotients and extensions see [22, §1.11] and [20, §1.2]; note that
in [27, Def. 8.3.21 iv)] the weaker version of thick is adopted. Refer to the abelian
category A/S as the quotient category, see [22, §1.11], cf. [27, Ex. 8.12]. A cocomplete
abelian category A where filtered colimits are exact and possessing a generator is a
Grothendieck category (but we almost not make use of the existence of a generator);
the Grothendieck quotient A/S is the quotient of a Grothendieck category A by S
thick and localizing, i.e. closed under arbitrary sums, see [20, §1.2], cf. [27, Ex. 8.13].

We denote specific categories like Ind C the indization of C, see [SGA4, I §8] and [27,
Chap. 6], e.g. R-Mod = IndR-mod the category of R-modules where R-mod is that
of finitely presented R-modules (here R shall be a commutative unitary ring unless
specified) and large categories like Pshv(C) the category of presheaves of sets and Cat
the category of (small) categories and functors.

Denote with slanted bold letters (large) 2-categories, like Cat the 2-category of cat-
egories and functors or Ex the category of abelian categories and exact functors; we
also keep in slanted bold the 2-functors: for an essential review of 2-categories and
2-functors including 2-representability refer to [26, B1.1].

A directed graph or quiver or diagram scheme [22, §1.6] or diagram, for short, shall
be denoted by D. A diagram is given by a set D0 of vertices and a set D1 of edges, plus
mappings d0, d1 : D1 → D0; for α ∈ D1 we say that d0(α) = s ∈ D0 is the source and
d1(α) = t ∈ D0 is the target and we shall denote the edge α : s → t for short. Denote
Graph the category whose objects are diagrams D = (D0, D1, d0, d1) and morphisms
ϕ : D = (D0, D1, d0, d1) → D′ = (D′

0, D
′
1, d

′
0, d

′
1) are pairs ϕ = (f0, f1) of mappings

f0 : D0 → D′
0 and f1 : D1 → D′

1 compatible with sources and targets, i.e. f0d0 = d′0f1
and f0d1 = d′1f1.

1. Universal representations

Consider a diagram D and a (small) category D. Regarding D as a diagram recall
that a morphism of directed graphs T : D → D is also called a representation of D in
D. This T is called a diagram in D from the scheme D in [22, §1.6]: for each vertex s
we have an object Ts ∈ D and for each edge α : s → t, a morphism Tα : Ts → Tt of D.
A morphism f : T → S between representations is a collection {fs}s∈D0

of morphisms
in D with fs : Ts → Ss such that, for every α ∈ D1, α : s → t, we have

Ts
Tα

//

fs
��

Tt

ft
��

Ss
Sα

// St

a commutative square in the category D. Composition of morphisms is induced by
that on D glueing such commutative squares and the identity of a representation T is
the collection idT := {ids} : Ts → Ts of identities in D. The category of representations
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is the category whose objects are representations and morphisms are morphisms of
representations.

1.1. The representation problem. Let Rep(D,D) be the category of representations
of D in the category D (this category is denoted DD in [22, §1.6]) and let F : D → D′

be a functor. For T ∈ Rep(D,D) we get the image of T under F , denoted FT ∈
Rep(D,D′), by setting FTs :=F (Ts) and FTα :=F (Tα) : F (Ts) → F (Tt) in D′. Since
F is a functor it preserves commutative squares and therefore if f = {fs} : T → S is
a morphism of representations in D then Ff = {F (fs)} : FT → FS is a morphism
of representations in D′. We get an induced functor F : Rep(D,D) → Rep(D,D′) and
if we have a natural transformation η : F⇒G : D → D′ we clearly obtain an induced
natural transformation η : F⇒G : Rep(D,D) → Rep(D,D′). All this being (strictly)
compatible with 1-composition and 2-composition yields a (strict) 2-functor Rep(D,−)
from the 2-category of categories to itself.

The representation problem is the problem of 2-representing the functor of repre-
sentations over a restricted domain which we call domain of representability. More
specifically, consider a 2-functor Φ : Dom → Cat and consider the restriction of repre-
sentations as follows

D  Rep(D,ΦD) : Dom → Cat

and call Φ-representations the objects of Rep(D,ΦD). Denote

RepΦ(D) := Rep(D,Φ)

the resulting composite 2-functor.

1.1.1. Definition. We say that the diagram D is representable in the domain Dom if
RepΦ(D) is representable. If (DD,∆Φ) is representing RepΦ(D) we say that DD is the
universal domain category and ∆Φ : D → ΦDD the Φ-universal representation (such a
pair is unique up to natural equivalence).

Actually, representability in the domain Dom can be translated, as usual, with the
existence of the category DD ∈ Dom together with

ηD : Rep(D,ΦD) ∼= Dom(DD,D)

an equivalence of categories which is natural as D varies, i.e. for F : D → D′ in Dom

we have that

Rep(D,ΦD)
≃

ηD
//

ΦF
��

Dom(DD,D)

−◦F
��

Rep(D,ΦD′)
≃

ηD′

// Dom(DD,D
′)

is commutative. In particular, we get the universal Φ-representation ∆Φ such that
ηDD

(∆Φ) = idDD
is the identity functor of DD provided with the usual universal prop-

erty:

D
∆Φ

//

T
��

ΦDD

ΦFT{{

ΦD
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saying that for any other Φ-representation T there is a unique (up to natural equiv-
alence) functor F : DD → D in Dom such that T factors through the universal Φ-
representation.

Clearly, any diagram D is representable in the domain of all categories, i.e. for
Φ = id the identity functor, since

Rep(D,D) ∼= Cat(D̄,D)

where DD := D̄ here is the path or free category of a directed graph, as it is well known.
Recall that D̄ is the category having for objects the vertices and for morphisms the
finite strings of edges. This is a functor D  D̄ : Graph → Cat which is left adjoint
to the forgetful functor Cat → Graph, where Graph is the category of directed graphs.
If we are interested to keep some properties of more sophisticated diagrams we can
impose them through a quotient of the path category. For example, some diagram
schemes with commutativity conditions are considered in [22, §1.6-1.7].

1.1.2. Definition. A decorated diagram (D, †) with an extra set of data and a set †
of commutativity relations, a †-diagram for short, is given by a set of distinguished
vertices and edges and a set † of parallel strings of edges of the path category. Denote
Graph† the category of †-diagrams where the †-morphisms are morphisms of directed
graphs preserving extra data and compatible with the sets † of edges.

Set

D† := D̄/†

for the quotient of the path category forcing the commutativity relations to become
actual commutative diagrams in the quotient category. Consider †-categories, i.e. cat-
egories with extra data and the set † of commutativity conditions, and Cat†, the 2-
category of †-categories with functors with extra data and preserving the commutativ-
ity conditions. Let Rep†(D,D) ⊆ Rep(D,D) be the subcategory of †-representations in
a †-category D ∈ Cat†, i.e. representations with extra data which preserve data and
are taking the prescribed commutativity relations to commutative diagrams. We thus
obtain an equivalence

Rep†(D,D) ∼= Cat†(D†,D)

by construction. The induced functor (D, †)  D† : Graph† → Cat† is left adjoint to
the forgetful functor Cat† → Graph† between the underlying categories. For example,
the decoration † = ⊗ is that of Cat⊗ the 2-category of tensor categories and tensor
functors (see [13] and [27, Chap. 4] for tensor category theory) and Graph⊗ is the
category of ⊗-diagrams (see [8, Def. 2.1] for the notion of tensor diagram and that of
tensor representation). Note that the free category D̄ = D∅ is obtained for D without

extra data and † = ∅ the empty set of commutativity conditions and Rep∅(D,D) =
Rep(D,D). Consider a functor Φ : Dom → Cat†, the restriction of representations as
above

D  Rep†(D,ΦD) : Dom → Cat

and denote Rep
†
Φ(D) := Rep†(D,Φ) the resulting composite 2-functor.
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1.1.3. Definition. We say that the decorated diagram (D, †) is representable in the

domain Dom if Rep†Φ(D) is representable. If (D†
D,∆

†
Φ) is representing Rep

†
Φ(D) we say

that ∆†
Φ : D → ΦD†

D is the Φ-universal †-representation.

For such a decorated diagram (D, †) denote

δ† : D → D†

the image representation of the immersion D →֒ D̄ under D̄→→D† the quotient functor.
We have:

1.1.4. Lemma. If Φ : Dom → Cat† has a left adjoint Ψ then D†
D :=Ψ(D†) and

D
δ†

//

∆†
Φ

((

D†

ξ
D†

// ΦΨ(D†) = ΦD†
D

provided by the image of δ† under the unit ξD† of the adjunction, yields a Φ-universal
†-representation in the domain Dom.

Proof. In fact, the diagram D is representable in the domain Dom if and only there is
a natural equivalence

Cat†(D†,ΦD) ∼= Dom(D†
D,D)

for D ∈ Dom. If we have the adjoint Ψ : Cat† → Dom this can be fulfilled by defining
D†

D :=Ψ(D†). �

Note that in the situation of Lemma 1.1.4 we could have Cat† = Cat for † 6= ∅.

1.1.5. Definition. Call (D, †) a categorical diagram if it is a †-diagram such that
Rep†(D,−) ∼= Cat(D†,−).

We then have:

1.1.6. Lemma. Let (D, †) be a categorical diagram and Φ : Dom → Cat with a left
adjoint Ψ. Then

DD :=Ψ(D̄)→→D†
D :=Ψ(D†)

is a quotient.

Proof. In fact, Ψ being a left adjoint, it preserves quotients. �

1.1.7. Examples. a) If D = C is the underlying directed graph of a category C then let
(D, ◦) be the decorated diagram “with identities” and with all commutativity relations
given by the composition in the category C. Then a ◦-representation of D in D is
a functor from C to D. Therefore D◦ ∼= C given by the quotient of D̄ obtained by
imposing all relations to become commutative diagrams and where idC = (ev) is the
empty path for every vertex v = C ∈ C. This (D, ◦) is the prototype of a categorical
diagram.

b) Let (D,⊗) be a ⊗-diagram (see [8, Def. 2.1]). A ⊗-representation of D in a tensor
category (D,⊗) (see [8, Def. 2.7]) corresponds to a ⊗-functor (D⊗,⊗) → (D,⊗) and
Rep⊗(D,−) ∼= Cat⊗(D⊗,−) where, clearly, Cat⊗ 6= Cat. This (D,⊗) is not a categorical
diagram.
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1.2. Additive representations. We are interested in forgetful functors Φ on domain
categories Dom that factor through AddR the category of R-linear additive categories
and R-linear additive functors. These domain categories shall be determined by extra
structures or properties of additive categories and functors F : D → D′ in Dom shall
be additive functors ΦF : ΦD → ΦD′ with extras and preserving these structures or
properties. Actually, we can always assume such a factorisation, cf. [7, Lemma 1.4].

1.2.1. Proposition. Any diagram is representable in the domain of (R-linear) additive
(resp. pseudo-abelian) categories and (R-linear) additive functors.

Proof. We just apply Lemma 1.1.4 as for Dom = AddR the forgetful functor Φ : AddR →
Cat is provided with a left adjoint Ψ. It is well known that we can form the pre-additive
R-linear enrichment RC and the additive envelope RC+ of any category C, so that
Ψ(C) :=RC+. Applying this to the path category C = D̄ of a diagram D we obtain

∆+ : D → RD̄+

the universal R-linear additive representation. Finally, we can form the pseudo-abelian
completion of an additive category and again applying Lemma 1.1.4 we are done. �

1.2.2. Example. For D = {∗} the singleton one vertex diagram we get D̄ = 1 the one
point category, R1 = R is the ring as a preadditive R-linear category and RD̄+ = R+

the additive completion of R. The category R+ is equivalent to the full subcategory of
R-mod given by finitely generated free R-modules. The representation ∆+ : {∗} → R+

sends ∗ to R.

1.2.3. Remark. Recall that, even in the non additive case, we always can represent
any diagram D in the domain of the categories where every idempotent is a split
idempotent Idem (also called idempotent complete or Cauchy complete or Karoubian,
see [26, A1.1]). As Idem → Cat has a left adjoint we can apply the same argument as
in Proposition 1.2.1. In fact, for any category C we can always form the idempotent
completion Cidem in such a way that Pshv(C) = Pshv(Cidem) and we can recover Cidem as
those presheaves which are retracts of representables. Actually, C can be recovered as
(Ind C)fp, i.e. as the compact or finite presentation objects of Ind C, see [27, Def. 6.3.3],
if and only if C is idempotent complete, see [27, Ex. 6.1].

1.3. Abelian representations. A key fact that we recall here is Freyd’s free abelian
category constructed out of any additive category, see Freyd [19, §4.1] and Prest [30,
Thm. 4.3]. See also Krause [28, §11-12]. We consider its R-linear variant following
[7, §1]. Let R be an R-linear additive category. Denote R-Mod := AddR(R, R-Mod)
(as usual, see [30, Chap. 2]) the big category of R-linear additive functors regarded as
R-modules along with the contravariant Yoneda embedding Rop →֒ R-Mod. We may
look at “internal R-modules” defined as

R-Mod(A) := AddR(R,A)

where A is an (essentially small) R-linear additive category. Actually, any object
of an additive category A is a commutative group object in A and for R = R (by
abuse of notation, it should be R+, cf. Example 1.2.2) we get R-Mod (A) = A, i.e.
AddR(R

+,A) ∼= A, indeed. By the way

R-Mod(−) : Dom → Cat
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is a canonical 2-functor to ask for representability over a suitable domain Dom. We
also have the full subcategory R-mod :=R-Modfp determined by finite presentation
R-modules, i.e. cokernels of representables, (see [30, Chap. 1]) and note that Yoneda
yields R →֒ R-modop. Let LexR be the 2-category of (essentially small) R-linear left
exact additive categories and R-linear left exact functors.

1.3.1. Lemma. The 2-functor R-Mod(−) is representable by R →֒ R-modop on Dom =
LexR, i.e. there is an equivalence R-Mod(A) ∼= LexR(R-modop,A) which is natural in
A, A ∈ LexR.

Proof. In fact, we have that R-mod is right exact, i.e. it has cokernels, and any additive
functor from R to A can be lifted (uniquely-up-to-equivalence) to a left exact functor
from R-modop to A as it easily follows from the arguments in [7, §1] or the proof of
[30, Thm. 4.3]. �

Thus R →֒ R-modop is the universal R-module in R-linear left exact additive cat-
egories. Applying the previous Lemma twice one obtains the following, see [7, §1] or
[30, Thm. 4.1, Cor. 4.2 & 4.3].

1.3.2. Theorem (Universal R-module). There is an abelian category AbR(R) and an
additive functor R → AbR(R) representing the 2-functor R-Mod(−) on Dom = ExR
the 2-category of (essentially small) R-linear abelian categories and R-linear exact func-
tors. Moreover, the R-linear additive fully faithful functor |R| induced by the Yoneda
embeddings

|R| : R →֒ R-mod-mod = AddR(AddR(R, R-Mod)fp, R-Mod)fp ∼= AbR(R)

is representing R-Mod(−).

For any category C, considering the R-linear additive completion RC+ of C, as ex-
plained in the proof of Proposition 1.2.1, we see that AbR(RC+) is Freyd’s universal
abelian category of C.

1.3.3. Definition. Let R = R+ be the additive category generated by the point cate-
gory and R-mod ∼= AddR(R

+, R-Mod)fp the finitely presented R-modules. We shall re-
fer to a hieratic R-module for an object of R-Mod := AddR(R-mod, R-Mod) and finitely
presented hieratic R-module for an object of

R-mod :=R-Modfp = AddR(R-mod, R-Mod)fp ∼= AbR(R
+)

(this convention is also providing R-mod = R+-mod-mod simplifying the notation).

The Theorem 1.3.2 means that the double Yoneda |R| ∈ R-Mod(AbR(R)) is the
universal R-module in abelian categories: every R-module M ∈ R-Mod(A) is the
image of |R| under an exact functor FM : AbR(R) → A. Note that if A is an abelian
subcategory of AbR(R) which contains the image of |R| then the inclusion of A in
AbR(R) is an equivalence (see [30, Lemma 4.12]). Actually, equivalently, we see that
the canonical forgetful functor

ΦR : ExR → AddR

has a left adjoint ΨR : AddR → ExR, where ΨR(R) := AbR(R) is Freyd’s R-linear
abelian category. We then have the following, cf. [7]:
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1.3.4. Theorem (Universal abelian representation). Any diagram is representable in
the domain of R-linear abelian categories.

Proof. We see that DD := AbR(RD̄+) ∈ Dom = ExR is the universal abelian category
by Theorem 1.3.2, the proof of Proposition 1.2.1 and Lemma 1.1.4. �

We obtain the universal abelian representation ∆ of D in AbR(RD̄+) as the image
of ∆+ (in the proof of Proposition 1.2.1) under RD̄+ → AbR(RD̄+) the canonical
R-linear embedding.

1.3.5. Definition. For a diagram D we shall denote

∆ : D → AbR(D) := AbR(RD̄+)

the universal R-linear abelian representation. For R = Z we simply write Ab(D)
omitting reference to R. For D = {∗} the singleton one vertex diagram we shall denote

AbR := AbR({∗}) ∼= R-mod

identified with the category of finitely presented hieratic R-modules, see Definition
1.3.3, i.e. Freyd’s free R-linear abelian category of the ring R. Let |R| be the universal
hieratic R-module corresponding to ∆(∗) and given by the image of R under the double
Yoneda R+ → R-mod.

Note that AbR(D) has the same size of D by construction. For any R-linear abelian
category A we then have a natural equivalence

T  FT : Rep(D,A) ∼= ExR(AbR(D),A)

where ∆ corresponds to the identity, i.e. F∆ = id. In particular, for D = {∗}, any
A ∈ A = R-Mod (A) yields a unique (non necessarily faithful!) FA : AbR → A such
that FA(|R|) = A. Under the equivalence AbR

∼= R-mod, mentioned in Definition
1.3.5, we shall denote

rA : R-mod → A

the R-linear exact functor FA induced by an object A ∈ A.
We also have that AbR(−) is functorial on diagrams and the previous equivalence is

functorial in both variables.
Note that we have two canonical associated abelian categories along with exact

embeddings
Sim⊕AbR(D) →֒ AbR(D) →֒ IndAbR(D)

where:

- Sim⊕ AbR(D) is the abelian full subcategory of semisimple objects of AbR(D)
which is also the thick subcategory generated by the simple objects SimAbR(D)
(cf. [27, Def. 8.3.16-8.3.21 ]) and

- IndAbR(D) is the indization of AbR(D) which is a Grothendieck R-linear cat-
egory (cf. [27, Def. 8.3.24 & Thm. 8.6.5]).

1.3.6. Proposition. For an exact functor F : A → B from an (essentially small)
abelian category A to a Grothendieck category B there exists IndA → B a unique (up
to unique isomorphism) extension along A →֒ IndA which is exact and preserving
(small) filtered colimits i.e. A →֒ IndA is 2-universal in Grothendieck categories.
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Proof. Well known: a proof can be extracted from [SGA4, I Prop. 8.7.3 & §8.9] or [27,
Prop. 6.1.9, Prop. 6.3.1, Cor. 6.3.2, Prop. 8.6.6 & Cor. 8.6.8]. In fact, if F : A → B is
exact then IndF : IndA → IndB is exact and if B is a cocomplete abelian category
the exact embedding B →֒ IndB has a left adjoint/inverse

L : “lim”
−→
 lim

−→
: IndB → B

in such a way that, firstly, we obtain F as the composition of A →֒ IndA with L◦IndF :
IndA → B and, secondly, this latter L ◦ IndF commutes with filtered colimits and is
exact, since in B the filtered colimits are exact. �

Note that IndR-mod ∼= R-Mod (by Lemma 1.3.1 see also [28, Thm. 11.1.15] and [30,
Cor. 3.3 & 3.8]) and IndR-mod ∼= R-Mod is the Grothendieck category of hieratic
R-modules.

1.3.7. Corollary. For any R-linear Grothendieck category A we then have a natural
equivalence between Rep(D,A) and the category of exact functors preserving filtered
colimits from IndAbR(D) to A; the image of ∆ under AbR(D) →֒ IndAbR(D) yields

Ind∆ : D → IndAbR(D)

the universal Grothendieck representation.

1.3.8. Remark. For a site (C, J) let ShvJ(C) be the Grothendieck topos of J-sheaves
of sets. We have a functor, via Yoneda, from C to ShvJ(C) that can be enriched to
a functor to ShvJ(C;R) the category of J-sheaves of R-modules on C. This latter
is a Grothendieck category. Actually, we associate X ∈ C with R(X) the J-sheaf
associated to the R-free module generated by the representable presheaf of sets (in
Voevodsky notation [32, Prop. 2.1.1 & §3.3]). Therefore, we always obtain an R-linear
exact functor

IndAbR(RC+) → ShvJ(C;R)

where IndAbR(RC+) is Freyd’s universal Grothendieck category of C.

The dual representation

∆op : Dop → AbR(D)op

is the universal representation of the dual diagram. We have:

1.3.9. Theorem (Abstract duality). For a diagram D and the dual diagram Dop we
have that AbR(D

op) ∼= AbR(D)op and ProAbR(D) ∼= (IndAbR(D
op))op.

Proof. Using Theorem 1.3.4 we have that

Rep(Dop,A) ∼= Rep(D,Aop) ∼= ExR(AbR(D),Aop) ∼= ExR(AbR(D)op,A)

proving the first claim. The second claim follows from the first. �

Now consider an invertible morphism D′ → Dop of diagrams, e.g. D′ = D with an
anti-involution e : D → Dop.

1.3.10. Corollary (Concrete duality). If D′ → Dop is an invertible morphism of dia-

grams then AbR(D
′)

≃
→ AbR(D)op are equivalent abelian categories.
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Proof. The invertible morphism D′ → Dop yields an R-linear exact functor AbR(D
′) →

AbR(D
op) which is an equivalence by the functoriality of AbR(−). Actually, by Theo-

rem 1.3.9, we have that AbR(D
op) ∼= AbR(D)op. Therefore, by composition, we obtain

an equivalence AbR(D
′)

≃
→ AbR(D)op as claimed. �

1.3.11. Definition. For (D, †) a †-diagram define the †-decoration AbR(D)† of AbR(D)
to be the quotient

π† : AbR(D)→→AbR(D)†

where Ker π† is the thick subcategory generated by the images Im(∆α −∆β) as α and
β varies among all parallel edges providing commutativity of †-relations.

1.3.12. Lemma. If (D, †) is a categorical diagram, see Definition 1.1.5, then the induced
†-representation ∆† : D → AbR(D)† is the universal abelian †-representation.

Proof. The category D† is a quotient of the path category D̄ and we have an exact
functor π† : AbR(RD̄+) → AbR(RD†,+). The equivalence classes [α] = [β] for parallel
edges in †-relations yield ∆α = ∆β in AbR(RD†,+) so that Ker π† should contain all such
Im(∆α −∆β). Thus the thick subcategory ≪ Im(∆α −∆β) ≫ is contained in Ker π†.

Since Rep†(D,−) ∼= Cat(D†,−) we have that a †-category is just a category so that
AbR(D)† := AbR(D)/ ≪ Im(∆α−∆β) ≫ is universal with respect to †-representations
and ∆† : D → AbR(D)† ∼= AbR(RD†,+) is the universal abelian †-representation. �

We have the following important subcategory (see [8, Def. 1.1]):

1.3.13. Definition. Denote AbR(R)♭ the smallest full subcategory containing the ob-
jects in the image of |R| : R → AbR(R) and closed under kernels.

Note that, moreover, this AbR(R)♭ is precisely the image of R-modop under the
Yoneda embedding into AbR(R) (see [8, Remark 1.2]). All objects of AbR(R)♭ are
projectives in AbR(R).

1.3.14. Definition. Say that a R-linear left exact subcategory P of an R-linear abelian
category A is a p-subcategory if the objects of P are projective objects of A. Say that
an R-module M ∈ R-Mod(A) is projective if M : R → P →֒ A factors through
a p-subcategory. Let R-Proj(A) ⊂ R-Mod(A) be the full subcategory of projective
R-modules in A.

Consider the 2-category Ex
p

R whose objects are pairs (A,P) where P is a p-subcategory
of A and morphisms (A,P) → (A′,P ′) are R-linear exact functors A → A′ which re-
strict to a functor P → P ′. Given (A,P) let R-Proj(A,P) ⊂ R-Proj(A) given by
all R-projective modules through P. If (A,P) → (A′,P ′) then R-Proj(A,P) →
R-Proj(A′,P ′) in such a way that

R-Proj : ExpR → Cat

is a 2-functor

1.3.15. Proposition. Let R be an R-linear additive category. The 2-functor R-Proj
is representable by the following |R| : R → AbR(R)p ⊂ AbR(R) universal projective
R-module.
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Proof. The category AbR(R)♭ ⊂ AbR(R) is a p-subcategory and therefore |R| is a
projective module by construction. The pair (AbR(R),AbR(R)p) is clearly universal
by Theorem 1.3.2 and Lemma 1.3.1. �

In particular, the category

AbR(D)♭ := AbR(RD̄+)♭ ⊂ AbR(D)

is a p-subcategory.

1.3.16. Definition. A p-representation is a representation of a diagram D in an R-
linear abelian category which factors through a p-subcategory.

Let Dom = Ex
p

R be the previous category: we call it the domain of p-subcategories
of R-linear abelian categories. Denote

Repp(D) : ExpR → Cat

the 2-functor of p-representations. We then get the universal abelian p-representation
or p-envelope of a diagram.We have the following:

1.3.17. Theorem (Universal abelian p-representation). Any D is representable in the
domain of p-subcategories of R-linear abelian categories, i.e. Repp(D) is representable
by a universal p-representation

∆p : D → AbR(D)♭ ⊂ AbR(D)

Proof. The p-representation ∆ = ∆p is universal with respect to p-representations as
it easily follows from Theorem 1.3.4 and Proposition 1.3.15. �

1.4. Tensor representations. A straightforward tensor enrichment of the previous
construction is that obtained in [8] for † = ⊗ the ⊗-decoration, in our current terminol-
ogy. For an R-linear abelian ⊗-category (A,⊗) we mean an R-linear abelian category
A endowed with a right exact tensor product ⊗ : A × A → A. Recall [8, Def. 1.9]
where ♭-subcategories have been introduced:

1.4.1. Definition. A ♭-subcategory A♭ ⊂ A is a full R-linear additive subcategory of flat
objects which is closed under kernels. If (R,⊗) is an R-linear additive tensor category a
tensor R-module M ∈ R-Mod⊗(A) ⊂ R-Mod(A) is an additive R-linear tensor functor
M : R → A. Say that M is flat if M : R → A♭ →֒ A factors through a ♭-subcategory.
Let R-Flat⊗(A) ⊂ R-Mod⊗(A) be the full subcategory of flat R-modules in A.

Actually, consider the 2-category Ex
⊗,♭
R whose objects are triples (A,A♭,⊗) where

A is an abelian ⊗-category and A♭ is a ♭-subcategory and morphisms (A,A♭,⊗) →
(B,B♭,⊗) are R-linear exact ⊗-functors A → B which send ♭-subcategories to ♭-
subcategories We easily obtain a 2-functor

R-Flat⊗ : Ex⊗,♭
R → Cat

Considering AbR(R)♭ in Definition 1.3.13 we obtain the universal flat R-module.
The following fact is a reformulation of [8, Prop. 1.8 & Prop. 1.10].

1.4.2. Proposition. Let (R,⊗) be an R-linear additive tensor category. The 2-functor
R-Flat⊗ is representable by the following |R| : R → AbR(R)♭ ⊂ AbR(R) flat R-
module.



UNIVERSAL COHOMOLOGY THEORIES 17

Proof. We have to show that |R| ∈ R-Flat⊗(AbR(R),AbR(R)♭,⊗) is universal. The
category (AbR(R),⊗) is endowed with a canonical tensor structure such that the ten-
sor product ⊗ is right exact, |R| : R → AbR(R) is a ⊗-functor and all objects in
AbR(R)♭ ⊂ AbR(R) are flat, so that AbR(R)♭ is a ♭-subcategory, see [8, Prop. 1.8] for

details: this implies that the triple (AbR(R),AbR(R)♭,⊗) ∈ Ex
⊗,♭
R and that |R| is a flat

R-module. To see the universal property, for a flat R-module M ∈ R-Flat⊗(A,A♭,⊗)
a ⊗-functor M : R → A which factors through A♭ is given and the induced unique
exact functor AbR(R) → A is a ⊗-functor sending AbR(R)♭ to A♭ compatibly with M
by Theorem 1.3.2 and Lemma 1.3.1, cf. [8, Prop. 1.10]. �

For the decoration † = ⊗ we may consider (D,⊗) a set of extra data and conditions
on a diagram, which we called a ⊗-diagram in [8, Def. 2.1], in such a way that D⊗

is actually a tensor category. We have that (D⊗,⊗) is the universal tensor category
associated to a ⊗-diagram (D,⊗) providing an equivalence

Rep⊗(D,D) ∼= Cat⊗(D⊗,D)

for any (D,⊗) tensor category where Rep⊗(D,D) is the category of ⊗-representations,

in the sense of [8, Def. 2.7]. This is [8, Lemma 2.3 & Prop. 2.8 (1)]. We let Dom = Ex
⊗,♭
R

be the previous category: we call it the domain of ♭-subcategories of R-linear abelian
tensor categories.

1.4.3. Definition. A ♭-representation is a ⊗-representation of a ⊗-diagram (D,⊗) in
an R-linear abelian tensor category which factors through a ♭-subcategory.

Denote
Rep♭(D) : Ex⊗,♭

R → Cat

the 2-functor of ♭-representations. We then get the universal abelian ♭-representation or
♭-envelope of a ⊗-diagram: this is a ⊗-representation in an abelian ⊗-category, which
factors through a ♭-subcategory, universally. We have the following, cf. [8, Thm. 2.9]:

1.4.4. Theorem (Universal abelian ♭-representation). Any ⊗-diagram (D,⊗) is rep-
resentable in the domain of ♭-subcategories of R-linear abelian tensor categories, i.e.
Rep♭(D) is representable by a universal ♭-representation

∆♭ : D → (AbR(D)⊗)♭ ⊂ AbR(D)⊗

where AbR(D)⊗ is the ⊗-decoration of AbR(D), see Definition 1.3.11.

Proof. We can make an R-linear additive enrichment R :=RD⊗,+ of D⊗ with the bi-
linear extension of ⊗ providing a ⊗-structure (R,⊗). This is [8, Prop. 2.5 & Prop. 1.8
(2)]. We have that AbR(D)⊗ ∼= AbR(R) as abelian categories and (AbR(D)⊗,⊗) is
endowed with the ⊗-structure given by [8, Prop. 1.8]. We also have the ♭-subcategory
(AbR(D)⊗)♭ := AbR(R)♭. The induced ♭-representation ∆♭ is universal with respect to
♭-representations as it easily follows from Proposition 1.4.2. �

2. Universal homologies

Let C be a category and let C� be the category whose objects are morphisms of
a distinguished subcategory of C and morphisms are commutative squares of C. We
shall investigate (co)homology theories on C and C� showing the existence of universal
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theories: these are obtained by applying the universal representation results of the
previous section.

2.1. Homology and cohomology theory. Consider H = {Hi}i∈Z a Z-indexed fam-
ily of functors Hi : C → A where A is an R-linear abelian category. A morphism
ϕ : H → H ′ is a collection ϕ = {ϕi}i∈Z of natural transformations ϕi : Hi → H ′

i.
We also have the contravariant analogue where H = {H i}i∈Z is a Z-indexed family of
functors H i : Cop → A.

2.1.1. Definition. Call such a family H = {Hi}i∈Z of functors a homology on C with
values in A and the contravariant version H = {H i}i∈Z a cohomology on C with values
in A. We shall denote by Hom(C,A) the category of homologies on C with values in A.
The category of cohomologies shall be denoted Coh(C,A). For {Hi}i∈Z : C → A define
Hop by {H i :=Hi}i∈Z : Cop → Aop the opposite cohomology.

Note the equivalence Hom(C,Aop) ∼= Coh(C,A) between homologies with value in
Aop and cohomologies with values in A. For an R-linear exact functor F : A → A′

and H ∈ Hom(C,A) we obtain FH = {FHi}i∈Z ∈ Hom(C,A′) by composition. This is
making up a 2-functor

A Hom(C,A) : ExR → Cat

from the 2-category ExR of R-linear abelian categories and exact functors to categories.
Note that for any object A ∈ A we have the constant homology X  Hi(X) = A
providing an embedding A →֒ Hom(C,A). Therefore, the forgetful functor ExR → Cat

can be regarded as a subfunctor of Hom(C,−) determined by constant homologies. A
key result is the following.

2.1.2. Theorem (Universal homology). For any category C the functor Hom(C,−) is
representable, i.e. there is a universal homology

H = {Hi}i∈Z : C → A(C)

with values in A(C) a R-linear abelian category. If F : C → D is a functor, HC and
HD are the universal homologies in A(C) and A(D), respectively, then there is a unique
R-linear exact functor rF : A(C) → A(D) such that rFH

C = HDF .

Proof. The proof is similar to the proof of Theorem 2.2.4 below where we provide more
details. Denote by D the following diagram: the vertices are (X, i) where X is an object
of C and i ∈ Z and arrows are f : (X, i) → (X ′, i) for each morphism X → X ′ and i ∈ Z.
We then obtain the universal representation ∆ : D → AbR(D), see Theorem 1.3.4 and
Definition 1.3.5. Consider the thick subcategory ≪ Im(∆gf −∆g∆f ), Im(∆id − id) ≫
⊂ AbR(D) generated by the functoriality conditions on the diagram. Let A(C) be the
resulting quotient of AbR(D). We get H ∈ Hom(C,A(C)) given by the image of ∆
under the projection. For any R-linear abelian category A, we regard K ∈ Hom(C,A)
as a representation of D in A and by the universality Theorem 1.3.4 we have that
Hom(C,A) ⊂ Rep(D,A) ∼= ExR(AbR(D),A). Therefore, an homology K yields an
exact functor FK : AbR(D) → A which factors through A(C) inducing an equivalence
of categories

K  rK : Hom(C,A) ∼= ExR(A(C),A)

which is natural in A. This proves the universality claim.
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For any functor F : C → D we obtain a functor Hom(D,A) → Hom(C,A) by com-
position K  KF . For A = A(D) the universal homology K = HD ∈ Hom(D,A(D))
yields a homology HDF ∈ Hom(C,A) and therefore, by universality, we obtain an exact
functor rF := rFHD : A(C) → A(D) as claimed. �

2.1.3. Lemma. The category A(C) is generated by the set of objects Hi(X) for X ∈ C
and i ∈ Z. In particular, every object of A(C) is a sub-quotient of a finite product of
Hi(X) for X ∈ C and i ∈ Z.

Proof. Let S ⊆ A(C) be any abelian full subcategory containing the set S := {Hi(X) |
X ∈ C, i ∈ Z}. The universal homology of Theorem 2.1.2 restricts to H : C → S, an
homology in the abelian category S such that under the exact inclusion ιS : S →֒ A(C)
gives back the universal homology. Therefore, by the universality Theorem 2.1.2, we
obtain an exact functor rH : A(C) → S such that rH(H) = H , hence rHιS = idS and
ιSrH = idA(C) which corresponds to the universal homology. Therefore S = A(C) and
the first claim follows. Since the full subcategory of A(C) given by sub-quotients of
finite direct sums of elements of S is an abelian sub-category the second claim follows
from the first. �

2.1.4. Remark. Note that there is an equivalence A(C) ∼= AbR(D)◦ by considering the
decorated diagram (D, ◦) of Example 1.1.7 a) in the proof of Theorem 2.1.2 including
the functoriality conditions. Also note that, for each k ∈ Z, we have the k-component
functor Hk : C → A yielding a unique exact functor Fk : AbR(RC+) → A where RC+ is
the additive envelope in the proof of Proposition 1.2.1; we thus obtain an equivalence

A(C)
≃

−→
∏

AbR(RC+) := grAbR(RC+)

where the product is taken over Z-indexed copies of Freyd’s category AbR(RC+).

Dually, for cohomology theories. Actually, passing to duals in the proof of Theorem
2.1.2 we just have an application of Theorem 1.3.9:

2.1.5. Corollary. For any category C the functor Coh(C,−) is representable and the
universal cohomology Hop := {H i = Hi}i∈Z : Cop → A(C)op is the opposite of the uni-
versal homology.

Starting from this abelian category A(C) we can further take quotients imposing more
axioms and representing decorated homology theories on C. For example, considering
point objects of C, e.g. objects of dimensions zero or (weakly) final objects, we have:

2.1.6. Axiom (Point axiom for homology). For C with a set of point objects {∗k}k∈I
we say that an homology H ∈ Hom(C,A) satisfies the point axiom if Hi(∗k) = 0 for
i 6= 0 and k ∈ I.

Restricting to homologies satisfying the point axiom we get a functor Hompoint(C,−)
and we have:

2.1.7. Proposition. If C is a category with point objects then Hompoint(C,−) is repre-
sentable, i.e. there is a universal homology satisfying the point axiom

H = {Hi}i∈Z : C → Apoint(C)
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with values in Apoint(C) a quotient of A(C). If F : C → D is a functor sending
point objects of C to point objects of D, HC and HD are the universal homologies in
Apoint(C) and Apoint(D), respectively, then there is a unique R-linear exact functor
rF : Apoint(C) → Apoint(D) such that rFH

C = HDF .

Proof. The same arguments in the proof of the Theorem 2.1.2 applies here defining
Apoint(C) to be the quotient of A(C) by the thick subcategory ≪ Hi(∗) ≫ for i 6= 0 and
∗ any point object. The homology in Apoint(C) under the projection is the universal
homology satisfying the point axiom by the universality of the quotient. Moreover,
since Hompoint(D,−) → Hompoint(C,−) the induced functor is granted. �

2.1.8. Example (Universal (co)homology on the point category). Let C = 1 be the one
point category, i.e. the category with one point object and one morphism, necessarily
the identity of this object. As a diagram 1 = {	} is the one edge diagram, having
one vertex {∗} and one non-empty edge e : ∗ → ∗. Now H ∈ Hom(1,A) is a Z-
indexed family {Ai}i∈Z of objects of A and H ∈ Hompoint(1,A) is given by one object
of A (which also corresponds to the constant homology on that object). Therefore,
since AbR of Definition 1.3.5 is the R-linear abelian category representing the functor
A A = R-Mod (A) : ExR → Cat, i.e. given by an equivalence

ExR(AbR,A) ∼= A

which is natural in A, then AbR
∼= Apoint(1) induced by A ∼= Hompoint(1,A). Compar-

ing with the proof of Theorem 2.1.2, consider the decorated diagram ({	}, ◦) which
is the one edge diagram “with identity” i.e. with a single commutativity relation im-
posing that the empty edge shall be identified with e; actually, the morphisms in the
path category {	} are (∗), (e), (e2), . . . but we get {	}◦ = 1 and a ◦-representation of
{	} in A is a functor from 1 to A. We then obtain that Rep◦({	},A) ∼= A (note that
({	}, ◦) is a categorical diagram) and we have the following chain of equivalences, cf.
Remark 2.1.4, Example 1.2.2 and Definitions 1.3.3 & 1.3.5

AbR
∼= R-mod ∼= Apoint(1) ∼= AbR({	})

◦

where the universal hieratic R-module |R| ∈ R-mod given by the image of R, corre-
sponds to H0(1) ∈ Apoint(1), the universal homology of the point. We also have natural
equivalences

A = R-Mod(A) ∼= LexR(R-modop,A) ∼= ExR(AbR,A)

for any A, see Theorem 1.3.2 (cf. [7, §1.3]). If R-mod is abelian, i.e. for R coherent,
the “evaluation at the ring R” R-linear exact functor

rR : R-mod→→R-mod ⊆ R-Mod

yields R-mod as a quotient of R-mod. In fact, R+ ⊆ R-mod/Ker rR = R-mod (e.g.
see also [31, Lemma 6.3]). If every extension splits in R-mod and we have a duality

(−)∨ : R-modop ≃
→ R-mod, e.g. if R is a field, then we have the following factorisation

R-modop //

(−)∨ ||
��

R-mod

rR
xxqq
q
q
q
q
q
q
q
q

R-mod
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induced by the universal property and

ExR(R-mod,A) = AddR(R-mod,A) ∼= A

for A any R-linear abelian category. Therefore rR : R-mod
≃
→ R-mod for such a ring

and the quasi-inverse to rR is induced by the Yoneda embedding R-modop ≃
→ R-mod.

In general, from the duality Corollary 1.3.10, we always have that Abop
R = AbR whence

R-modop ∼= R-mod. If rR is an equivalence then R-modop ∼= R-mod and the coherent
ring R is absolutely pure, i.e. Ext(M,R) = 0 for M ∈ R-mod, see [21]. For a coherent
domain R with field of fractions K we then have that the quotient rR induces

R-mod ⊗R K
=

//

rR⊗K

''

K-mod
≃

// K-mod = R-mod ⊗R K

and rR ⊗K : R-mod⊗R K
≃

−→ K-mod is an equivalence. In particular, for R = Z and
K = Q we obtain that Z-mod⊗ZQ ∼= Q-mod. The simple objects of Z-mod are known.
There is one for every Z-module Z/pn where pn is a prime power, n ≥ 1: it can be
described as the representable functor (Z/pn,−) modulo its radical, see [25, Thm. 8.55]
and [28, Prop. 14.2.6 & Thm. 14.2.7]. Moreover, the representable functors form a
system of generators consisting of finitely presented projectives, cf. [25, Thm.B.8].†

2.1.9. Remark. Note that constant homologies are equivalent to homologies on the
point category satisfying the point axiom and this implies that the constant homologies
subfunctor is representable by AbR

∼= R-mod. For a category C we also have a unique
functor C → 1, as 1 is final in Cat, which yields π : Apoint(C) → R-mod and A ∼=
Hompoint(1,A) ∼= Hom0(C,A) given by those homologies X  H0(X) = A for a fixed
object A ∈ A and Hi(X) = 0 for i 6= 0. Moreover, we have a section functor rH0(∗) :
R-mod → Apoint(C) given by |R| H0(∗), also induced by 1 → C sending the unique
point object to a point object.

2.1.10. Proposition. Let C be a category with an initial or final object. Then for each
integer k ∈ Z there is a quotient

πk : A(C)→→R-mod

with a section ιk : R-mod → A(C) where R-mod is the abelian category of Definitions
1.3.3 & 1.3.5, cf. Example 2.1.8. For k = 0 the functor π0 factors through Apoint(C)
with a section.

Proof. For each X ∈ C let
∫

: X → 1. We then get
∫
i
: Hi(X) → Hi(1) where

H = {Hi}i∈Z : C → A(C) is the universal homology. For each fixed integer k consider
the thick subcategory of A(C) generated by Hi(X) for i 6= k, Ker

∫
k

and Coker
∫
k

for∫
k
: Hk(X) → Hk(1) and all X ∈ C. Denote A(C)k the resulting quotient of A(C). The

category A(C)k represents the subfunctor Homk(C,−) ⊂ Hom(C,−) determined by the
trivial homology and those non-trivial homologies H = {Hi} such that Hi(X) 6= 0
implies i = k and

∫
k
: Hk(X) ∼= Hk(1) for all X ∈ C. Clearly A ∼= Homk(C,A)

by sending A  Hk(1) :=A and AbR
∼= R-mod ∼= A(C)k. We then get a quotient

†Thanks to M. Prest for pointing out these facts about AbZ and the reference [25].
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πk : A(C)→→R-mod for each integer k ∈ Z. Now Hk(1) ∈ A(C) yields an exact functor
ιk : R-mod ∼= A(C)k → A(C) whose composition with the projection πk : A(C) →
A(C)k ∼= R-mod is the identity. For k = 0 we can argue in Apoint(C) and get to the
same conclusion. �

2.1.11. Example (Universal group representations). Let C = N be a monoid or group
regarded as a category with one point object: note that it is not initial nor final. For
any R-linear abelian category A we have that

Hompoint(N,A) = Hompoint(R[N ],A) :=RepR(R[N ],A)

is the usual R-linear abelian category of representations of the monoid N or, equiv-
alently, of the free R-module R[N ], i.e. an object ρ ∈ RepR(R[N ],A) is an R-
homomorphism ρ : R[N ] → End(A) for A ∈ A. Therefore, the universal homology
N → Apoint(N) yields the universal representation h : R[N ] → End(H) where H is an
object and the exact functor π : Apoint(N) → R-mod such that π(H) = |R|: for any ρ
exists an exact functor rρ : A

point(N) → A such that ρ = rρh factors through h via rρ.

2.2. Relative homology theory. Assume given a category C along with a distin-
guished subcategory. Denote C� the category whose objects are the distinguished
morphisms and whose arrows are commutative squares in C. Denote (X, Y ) a dis-
tinguished morphism f : Y → X, i.e. an object of C�; a morphism is a pair
γ = (h, k) : (X, Y ) → (X ′, Y ′) where h : X → X ′ and k : Y → Y ′ are morphisms
of C such that hf = f ′k if f and f ′ are distinguished morphisms defining (X, Y ) and
(X ′, Y ′) respectively. For a triple (X, Y ), (X,Z) and (Y, Z) in C� we mean the following
factorisation diagram of C�

Z
f

//

||
��

Y

g

��

Z
gf

//

f

��

X

||
��

Y
g

// X

where f : Z → Y and g : Y → X are distinguished morphisms and so it is gf : Z → X
defining (X,Z). We have canonical morphisms α := (g, id) : (Y, Z) → (X,Z) and
β := (id, f) : (X,Z) → (X, Y ) whose composition is the morphism (g, f) = βα :
(Y, Z) → (X, Y ) given by the outer square in the previous diagram.

Consider an R-linear abelian category A and a collection of objects as i ∈ Z varies

(X, Y ) ∈ C�  Hi(X, Y ) ∈ A

and for each morphism γ : (X, Y ) → (X ′, Y ′) in C� a morphism γi : Hi(X, Y ) →
Hi(X

′, Y ′) in A together with an extra connecting morphism ∂i : Hi(X, Y ) → Hi−1(Y, Z)
associated with the triple (X, Y ), (X,Z) and (Y, Z) in C�, in such a way that

i) H = {Hi}i∈Z is a family of functors Hi : C
� → A,

ii) we have the long exact sequence of the triple

· · · → Hi(Y, Z)
αi−→ Hi(X,Z)

βi

−→ Hi(X, Y )
∂i−→ Hi−1(Y, Z) → Hi−1(X,Z) → · · ·

and
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iii) this long exact sequence is natural with respect to ∂-cubes. The latter property
being explained as follows: considering a ∂-cube, i.e. the following

(Y, Z)
βα

//

γ

��

(X, Y )

δ
��

(Y ′, Z ′)
β′α′

// (X ′, Y ′)

commutative square in C�, we get an induced morphism κ : (X,Z) → (X ′, Z ′)
such that κα = α′γ and δβ = β ′κ and we obtain the following induced diagram
in A

· · · // Hi(Y, Z)
αi

//

γi

��

Hi(X,Z)

κi

��

βi
// Hi(X, Y )

∂i
//

δi
��

Hi−1(Y, Z) //

γi−1

��

· · ·

· · · // Hi(Y
′, Z ′)

α′
i

// Hi(X
′, Z ′)

β′
i

// Hi(X
′, Y ′)

∂′
i

// Hi−1(Y
′, Z ′) // · · ·

for which, the naturality requirement is that γi−1∂i = ∂′
iδi (note that we thus

obtain a morphism of long exact sequences as the other two squares are com-
mutative by functoriality).

A morphism ϕ : H → H ′ for H and H ′ having values in A, shall be a collection of
natural transformations ϕi : Hi → H ′

i which are compatible with the ∂i i.e. such that
the following

Hi(X, Y )
∂i

//

ϕi

��

Hi−1(Y, Z)

ϕi−1

��

H ′
i(X, Y )

∂i
// H ′

i−1(Y, Z)

is commutative for any triple. All this is modelled on the regular homology theory [6],
see [6, §3.1] for details.

2.2.1. Definition. A relative homology H on C� with values in A shall be given by the
set of data and conditions listed in i) – iii) above. We shall denote by Hom(C�,A) the
category of homologies on C� with values in A. We shall adopt the same terminology
as for complexes by saying that H is bounded above, below and concentrated in non
positive or non negative degrees, e.g. this latter means that H = {Hi}i∈Z is such that
Hi = 0 for i < 0.

Dually, there is a corresponding notion of relative cohomology : it is given by a
family of functors H = {H i}i∈Z : C�,op → A together with the connecting morphism
∂i : H i(Y, Z) → H i+1(X, Y ) and the long exact sequence of the triple which satisfies the
naturality condition with reversed arrows. Denote Coh(C�,A) the category of relative
cohomologies.

If H = {Hi}i∈Z : C� → A is a relative homology then Hop given by {H i = Hi}i∈Z :
C�,op → Aop is the opposite relative cohomology and Hom(C�,Aop) ∼= Coh(C�,A).
Relative homology and cohomology is fitting Eilenberg-Steenrod axiomatic approach
[17].
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2.2.2. Remarks. a) Relative homology is also a generalisation of Grothendieck exact
covariant ∂∗-functor [22, §2.1] and Cartan-Eilenberg connected sequence of functors
[12, Chap. III], see Lemma 3.1.2 below for a comparison.

b) Note that we can make up the category C� of ∂-cubes. This is the full subcat-
egory of the category of functors from 2 to C� whose objects are the triples, i.e. the
morphisms ∂ := (g, f) = βα : (Y, Z) → (X, Y ), and the morphisms are ∂-cubes.

For an R-linear exact functor F : A → A′ and H ∈ Hom(C�,A) we obtain FH =
{FHi}i∈Z ∈ Hom(C�,A′) by composition. This is making up a 2-functor

A Hom(C�,A) : ExR → Cat

from the category ExR of R-linear abelian categories and exact functors to categories.

2.2.3. Definition (Nori diagram). Call Nori diagram D� of C� the following diagram:

i) the vertices are (X, Y, i) where (X, Y ) is an object of C� and i ∈ Z;
ii) the arrows are γ : (X, Y, i) → (X ′, Y ′, i) for each morphism (X, Y ) → (X ′, Y ′)

in C� and ∂ : (X, Y, i) → (Y, Z, i − 1) the extra connecting edge of the triple
and i ∈ Z, i.e. corresponding to the morphism (g, f) : (Y, Z) → (X, Y ) for
f : Z → Y and g : Y → X distinguished morphisms.

We have:

2.2.4. Theorem (Universal relative homology). For any category C along with a dis-
tinguished subcategory the functor Hom(C�,−) is representable, i.e. there is a universal
relative homology

H = {Hi}i∈Z : C� → A∂(C)

with values in A∂(C) a R-linear abelian category. If F : C → D is a functor compatible
with distinguished subcategories, i.e. inducing a functor F� : C� → D�, then there is
a unique R-linear exact functor F∂ : A∂(C) → A∂(D) such that F∂H

C = HDF� where
HC and HD are the universal relative homologies.

Proof. Applying Thoerem 1.3.4 to the Nori diagram D� of C� we obtain the universal
representation ∆ : D� → AbR(D

�). Consider the thick subcategory of AbR(D
�)

generated by the following objects:

• Im(∆id − id), Im(∆γδ −∆γ∆δ), for the functoriality axiom,
• Im(∆γ∆∂ −∆∂′∆δ), associated to the ∂-cubes for the naturality axiom and
• Im∆β∆α, Im∆∂∆β, Im∆α∆∂ for the complex associated to the triple.

Let AbR(D
�)c be the resulting quotient abelian category and let Hc be the image of ∆

under the projection AbR(D
�)→→AbR(D

�)c. In this category AbR(D
�)c we now have

the following complex associated to each triple

Hc
∗ : · · · → Hc

i (Y, Z)
αi−→ Hc

i (X,Z)
βi−→ Hc

i (X, Y )
∂i−→ Hc

i−1(Y, Z) → · · ·

We can impose the exactness of these complexes for all triples by taking homologies
Hi(H

c
∗) of all these complexes and pass to a further quotient A∂(C) := AbR(D

�)c/ ≪
Hi(H

c
∗) ≫. We thus have

D�
∆

// AbR(D
�) //

π

))

AbR(D
�)c // A∂(C)
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and we obtain (X, Y, i) Hi(X, Y ) := π(∆(X,Y,i)) a representation H ∈ Rep(D�,A∂(C))
given by the image of ∆ under the projection: by construction (X, Y ) ∈ C�  
Hi(X, Y ) ∈ A∂(C) is functorial and satisfies the other axioms providing H = {Hi}i∈Z :
C� → A∂(C) a relative homology.

Now, for any R-linear abelian category A, observe that we can regard any rela-
tive homology in Hom(C�,A) as an object of Rep(D�,A); moreover, a morphism
of homologies is precisely a morphism as representations of D� in A showing that
Hom(C�,A) ⊂ Rep(D�,A) is a full subcategory. By Theorem 1.3.4, we have that
Rep(D�,A) ∼= ExR(AbR(D

�),A) so that a relative homology K yields a unique (up to
natural equivalence) R-linear exact functor FK : AbR(D

�) → A such that FK(∆) = K
as representations, i.e. the following

D�
∆

//

K
��

AbR(D
�)

FK
yytt
t
t
t
t
t
t
t
t

A

is commutative. This functor FK factors through the quotient A∂(C) providing an
exact (not necessarily faithful) functor rK : A∂(C) → A. In fact, since FK is exact it is
sending to zero all objects in the kernel of AbR(D

�)→→AbR(D
�)c, e.g. FK(Im∆β∆α) =

Im βiαi = 0 since βiαi : Ki(Y, Z) → Ki(X, Y ) is the zero morphism from the chain
complex condition; therefore, FK yields an exact functor F c

K : AbR(D
�)c → A and since

F c
K(Hi(H

c
∗)) = Hi(FK(H

c
∗)) = Hi(K∗) = 0 we get an induced functor rK : A∂(C) → A

as claimed. Actually, Kerπ ⊆ KerFK and if we consider the composition of the quotient

A∂(C) = AbR(D
�)/Kerπ→→AbR(D

�)/KerFK

with the faithful exact functor AbR(D
�)/KerFK →֒ A we get rK as claimed. Note

that any exact functor F : A∂(C) → A yields FH ∈ Hom(C�,A) and rFH
∼= F by

unicity of FFH . We thus obtain the refined equivalence

K  rK : Hom(C�,A) ∼= ExR(A∂(C),A)

which is natural in A. Finally, H ∈ Hom(C�,A∂(C)) yields rH = id by construction
and therefore H is the universal relative homology.

For a functor F� : C� → D� we have that HDF� ∈ Hom(C�,A∂(D)) is a relative
homology and therefore F∂ := rHDF yields the exact functor as claimed. �

2.2.5. Remark. The same arguments in the proof of the Theorem 2.2.4 provide rep-
resentability of the sub-functors of Hom(C�,−) given by relative homologies whose
degrees are concentrated in an interval [a, b] where a and b are integers such that
a + 1 < b (including a = −∞ or b = +∞). We can add Hc

i (X, Y ) for i /∈ [a, b] in the
list of generators of the thick subcategory of AbR(D

�)c when imposing the exactness of
the complexes Hc

∗ and get that Hi(X, Y ) = 0 for i /∈ [a, b]; we obtain decorated abelian

categories A
[a,b]
∂ (C) along with a quotient A∂(C)→→A

[a,b]
∂ (C). For example, if a ≥ 0 we

have that

Ha(Y, Z) → Ha(X,Z) → Ha(X, Y ) → 0

is exact in A
[a,b]
∂ for the universal relative homology sequence of a triple.
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Note that we can deal with homologies in Grothendieck categories: we get a quo-
tient IndAbR(D

�)→→ IndA∂(C) and any exact functor A∂(C) → A in a Grothendieck
category uniquely extend to IndA∂(C), see Proposition 1.3.6.

2.2.6. Corollary. The relative homology H = {Hi}i∈Z : C� → IndA∂(C) given by the
image of the universal relative homology H under A∂(C) →֒ IndA∂(C) is the univer-
sal Grothendieck relative homology, i.e. it represents the 2-functor Hom(C�,−) over
Grothendieck categories.

Passing to cohomologies we see that the opposite diagram D�,op in the proof of
Theorem 2.2.4 is providing the universal relative cohomology and applying Theorem
1.3.9 we obtain:

2.2.7. Corollary. The functor of relative cohomologies Coh(C�,−) is representable and
the universal relative cohomology Hop = {H i}i∈Z : C�,op → A∂(C)

op is the opposite of
the universal relative homology.

Recall [6] where the (mixed) regular homology theory T has been introduced and the
resulting abelian category of constructible T-motives A[T] is presented as the (Barr)
exact completion of the syntactic category Creg

T of the regular theory. Recall that T-
motives are given by IndA[T]. We already noted in [7, Thm. 2.7 & Cor. 2.9] that A[T]
can be recovered as a quotient of Freyd’s abelian category Ab(D�) for D� the Nori
diagram of C�. We here show a very simple and direct argument to see this.

2.2.8. Proposition. There is a canonical equivalence

A[T] ∼= A∂(C)

of abelian categories under which the universal model HT corresponds to H the universal
relative homology. Moreover, T-models and relative homologies coincide. For any
relative homology K, if TK is the theory obtained by adding all regular axioms which
are valid in the model K then there is an equivalence

A[TK ] ∼= A(K) := AbR(D
�)/KerFK

under which the universal model corresponds to the universal relative homology gener-
ated by K.

Proof. Recall [6, Prop. 4.1.3] that, for any abelian category A, we have a natural equiv-
alence T-Mod(A) ∼= Ex(A[T],A) where T-Mod(A) is the category of models in A of
the theory T. By construction, see [6, §3], we have that

T-Mod(A) = Hom(C�,A)

these categories coincide. Whence we obtain that Ex(A[T],A) ∼= Ex(A∂(C),A) by
the Theorem 2.2.4, for any abelian category A. Therefore we obtain the claimed
equivalence. The same argument applies to TK and the universal model for both T
and TK correspond to the respective universal relative homologies by unicity of the
representing objects. �

The following is a reformulation of [6, Lemma 3.1.1].

2.2.9. Lemma. If H ∈ Hom(C�,A) then Hi(X, Y ) = 0 for all Y ∼= X distinguished
isomorphisms and i ∈ Z.
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Proof. If f : Y
≃
→ X is a distinguished isomorphism then (X, Y ) ∼= (X,X) given by

Y
f

//

f

��

X

||
��

X
=

// X

which yields H∗(X, Y ) ∼= H∗(X,X) by functoriality. From the exactness of

H∗(X,X)
id
→ H∗(X,X)

id
→ H∗(X,X)

for X = Y = Z we obtain H∗(X,X) = 0. �

From Lemma 2.2.9 we see that there are no non trivial constant relative homologies,
in general. Note that the universal abelian category A∂(C) is the minimal quotient of
AbR(D

�) generated by the relative homology axioms and we shall get further quotients
imposing further axioms, e.g. see [5] for ordinary theories.

2.2.10. Remark (Transfers). We may consider homology theories with transfers as
follows. Let R be a subring of Q. Consider morphisms of C, called “finite coverings”,
assuming that

i) finite coverings are stable by composition and all isomorphisms are finite cov-
erings, so that we have F ⊂ C a subcategory of finite coverings;

ii) for any finite covering f : X̃ → X we have a well defined degree deg(f) ∈ R
such that deg(gf) = deg(g) deg(f) and deg(idX) = 1.

We may also assume that a distinguished morphism which is a finite covering is an
isomorphism.

An homology with transfers H ∈ Homtr(C,A) is an homology for which we require

the existence of a transfer morphism trfi : Hi(X) → Hi(X̃) which depends functorially

on the finite covering f : X̃ → X and such that fitr
f
i : Hi(X) → Hi(X) is the

homothety determined by deg(f) where fi : Hi(X̃) → Hi(Y ) is the morphism given by
functoriality. We clearly can add F defining a category with transfers and obtaining
a universal homology with transfers Htr : C → Atr(C) by representing the functor
Homtr(C,−) given by homologies with transfers. This Htr is obtained by considering
the diagram with transfers Dtr, adding to the diagram D in the proof of Theorem

2.1.2 the edges (X, i) → (X̃, i) for each f : X̃ → X ∈ F . Moreover, universal
relative homology with transfers Htr : C� → Atr

∂ (C) exists by representing the functor
Homtr(C

�,−) on relative homologies. In fact, we may also add relative versions of
transfers asking for compatibility with the long exact sequence of a triple and adding
transfers to the Nori diagram D�tr we can adapt the proof of Theorem 2.2.4. We get an
R-linear exact functor rHtr : A∂(C) → Atr

∂ (C).

2.3. Homology versus relative homology. For C with an initial object 0 assume
that 0 → X is distinguished for all X ∈ C. We then obtain a functor C → C� given by
X  (X, 0). Assume given a relative homology H ∈ Hom(C�,A) and set

Hi(X) :=Hi(X, 0) ∈ A
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for the restricted homology along C → C�. The long exact sequence of the triple
(Y, 0) → (X, Y ), here Z = 0, is the following sequence in A

· · · → Hi(Y )
αi−→ Hi(X)

βi−→ Hi(X, Y )
∂i−→ Hi−1(Y ) → Hi−1(X) → · · ·

which is named, by convention, the long exact sequence of the pair. The restricted
homology X  Hi(X) yields an object H ∈ Hom(C,A) and, by universality, see
Theorem 2.1.2, we obtain rH : A(C) → A the induced exact functor.

In particular, consider the universal relative homology in Hom(C�,A∂(C)) of Theo-
rem 2.2.4; by restriction along C → C� we obtain an object of Hom(C,A∂(C)). We thus
obtain

r∂ : A(C) → A∂(C)

an exact functor. For H the universal homology r∂(H) coincide with the restricted uni-
versal relative homology: here Hi(X) is an object of A(C) and r∂(Hi(X)) = Hi(X, 0),
which we also denote Hi(X) but regarded as an object of A∂(C), by a modest abuse
of notation. However, note that the functor r∂ is not faithful, in general; for example,
r∂(Hi(0)) = Hi(0, 0) = 0 is vanishing, cf. Example 2.3.4. The essential image of r∂ is,
by Lemma 2.1.3, the abelian subcategory of A∂(C) whose objects are sub-quotients of
finite products of Hi(X) for X ∈ C and i ∈ Z.

2.3.1. Theorem (Generating subcategory). The category A∂(C) coincide with the small-
est abelian subcategory which contains kernels and cokernels of morphisms between ob-
jects Hi(X) for X ∈ C and i ∈ Z and it is closed by extensions of these. In particular,
every object of A∂(C) is an extension of sub-quotients of Hi(X) for X ∈ C and i ∈ Z.

Proof. Adapting the arguments in the proof of Lemma 2.1.3 we have that any abelian
subcategory S ⊆ A∂(C), containing the set S := {Hi(X, Y ) | (X, Y ) ∈ C�, i ∈ Z} and
such that the inclusion ιS : S →֒ A(C) is exact coincide with A∂(C). This follows from
the universality Theorem 2.2.4. By the exact sequence of the pair we see that Hi(X, Y )
is an extension of kernels and cokernels of morphisms between objects of the form Hi(X)
for X ∈ C and i ∈ Z. Therefore, if an abelian subcategory S contains all these then
it contains S and the thick subcategory generated by {Hi(X, 0) | (X, 0) ∈ C�, i ∈ Z}
coincide with all A∂(C). �

Assume that a category C is provided with an initial object 0 and a set of point
objects.

2.3.2. Axiom (Point axiom for relative homology). We say that a relative homology
H ∈ Hom(C�,A) satisfies the point axiom if Hi(∗, 0) = 0 for i 6= 0 where the canonical
morphism (∗, 0) := 0 → ∗ from the initial object to any point object of C is assumed to
be a distinguished morphism.

If 0 → 1 is an isomorphism and ∗ = 1 then the point axiom is trivially satisfied by
Lemma 2.2.9. Let Hompoint(C

�,−) be the functor of relative homologies satisfying the
point axiom.

2.3.3. Proposition. The functor Hompoint(C
�,−) is representable, i.e. there is a uni-

versal relative homology satisfying the point axiom H = {Hi}i∈Z : C� → Apoint
∂ (C) with

values in Apoint
∂ (C) a quotient of A∂(C).
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Proof. The category Apoint
∂ (C) is the quotient of A∂(C) by the thick subcategory ≪

Hi(∗, 0) ≫ for i 6= 0 and any point object ∗ where H is the universal relative homology.
�

We clearly get the induced exact functor

rpoint∂ : Apoint(C) → Apoint
∂ (C)

2.3.4. Example (Universal relative (co)homology on the two objects category). Let
C = 2 be the category with two objects determined by the ordinal 2 ∈ N such that
1 is a point object. The diagram underlying to this category is given by two vertices
0 := ∅ and 1 := {∅}, one arrow 0 → 1 and the two identities 	 attached to 0 and
1. If we choose 2 as a distinguished subcategory we have that 2

� has three objects
(1, 0), (0, 0) and (1, 1) (which are the arrows of 2); the morphisms are (0, 0) → (1, 0),
(1, 0) → (1, 1) and (0, 0) → (1, 1) together with the three identities. Since in 2 there
are two objects we have the following triples which are not given by identities only:
(0, 0) → (1, 0) = (1, 0) and (1, 0) = (1, 0) → (1, 1). For H ∈ Hom(2�,A) we have
that Hi(1, 0) ∈ A is the only possibly non-zero value, because of Lemma 2.2.9, and the
exact sequences of the triples are

Hi(0, 0) → Hi(1, 0)
=
→ Hi(1, 0) and Hi(1, 0)

=
→ Hi(1, 0) → Hi(1, 1)

with ∂i = 0. If H ∈ Hompoint(2
�,A) we then have that H0(1, 0) ∈ A is the only

possibly non-zero object in such a way that

Hompoint(2
�,A) ∼= Hompoint(1,A) ∼= A

induced by 1 → 2
� sending ∗  (1, 0). Therefore AbR

∼= R-mod ∼= Apoint
∂ (2) ∼=

Apoint(1) by Example 2.1.8. Note that the functor 2 → 2
� sending 1  (1, 0) and

0 (0, 0) yields

A ∼= Hompoint(2
�,A) ( Hompoint(2,A)

and rpoint∂ : Apoint(2)→→R-mod. Note that A ⊂ Hompoint(2,A) is determined by those
homologies H such that Hi(0) = 0 for i ∈ Z, cf. additive homologies defined below.

2.3.5. Example (Almost trivial homology). For C a category with a strictly initial
object 0 we say that X = 0 if there is a morphism X → 0 (note that if such a
morphism exists is an isomorphism). Assume that there is at least one distinguished
object ∗ 6= 0 as in the previous example and let 2� → C� be the unique functor induced
by 0 0 and 1 ∗. Let A be a non trivial abelian category and pick A ∈ A, A 6= 0.
The “almost trivial” homology H ! : C� → A is given by H !

i(X, Y ) := 0 for (X, Y ) ∈ C�,
either Y 6= 0 and i ∈ Z or Y = 0 and i 6= 0; moreover, H !

0(X) :=A ∈ A for all X 6= 0,
H !

0(0) := 0, and H ! is sending morphisms of C� to identities or zero morphism, e.g.
for f : X → X ′ with X,X ′ 6= 0 H !

0(f) is the identity of A. It is easy to check that
this is a relative homology satisfying the point axiom for C with ∗ as a point object:
by the universal property we then get an exact functor rH! : Apoint

∂ (C) → A which
is not trivial. Let Hom!(C

�,A) ⊆ Hom(C�,A) be the subcategory of almost trivial
homologies. We then get Hompoint(2

�,A) ∼= Hom!(C
�,A) by restriction.

The following is the relative analogue of Proposition 2.1.10
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2.3.6. Proposition. Let C be a category with a strictly initial object 0 and a final object
1. Then for each integer k ∈ Z there is a quotient

πk : A∂(C)→→R-mod

with a section ιk : R-mod → A∂(C) (see Definition 1.3.5, cf. Examples 2.1.8-2.3.4).
For k = 0 the functor π0 factors through a further quotient

!point : Apoint
∂ (C)→→R-mod

with a section !point : R-mod → Apoint
∂ (C).

Proof. For each X ∈ C, X 6= 0, let
∫

: X → 1 and get
∫
i
: Hi(X) → Hi(1) in A∂(C)

where H is the universal relative homology. For each fixed integer k consider the thick
subcategory of A∂(C) generated by Hi(X), i 6= k, Ker

∫
k

and Coker
∫
k

for X 6= 0.
Denote A∂(C)k the resulting quotient of A∂(C). Note that, if Y 6= 0, also Hi(X, Y ) is
vanishing in A∂(C)k for all i ∈ Z by the long exact sequence of the pair; for i = k we
have

0 // Hk+1(X, Y )
∫
k−1

��

∂k+1
// Hk(Y )

αk
//

∫
k

��

Hk(X)
∫
k

��

βk
// Hk(X, Y ) //

∫
k

��

0

0 // Hk+1(1, 1)
zero

// Hk(1)
=

// Hk(1)
zero

// Hk(1, 1) // 0

where the central square is a square of iso in A∂(C)k and therefore also Hk+1(X, Y ) =
Hk(X, Y ) = 0 in A∂(C)k. If Homk(C

�,−) ⊂ Hom(C�,−) is the subfunctor determined
by the trivial homology and those non trivial relative homologies H = {Hi} such
that Hi(X, Y ) 6= 0 implies i = k, Y = 0, X 6= 0 and

∫
k
: Hk(X) ∼= Hk(1) 6= 0,

then Homk(C
�,−) is represented by the category A∂(C)k. Clearly A ∼= Homk(C

�,A)
by sending A  Hk(1) :=A and R-mod ∼= A∂(C)k. We then get a quotient πk :
A∂(C)→→R-mod for each integer k ∈ Z. Now Hk(1) ∈ A∂(C) yields an exact functor
ιk : R-mod ∼= A∂(C)k → A(C) whose composition with the projection πk : A(C) →
A∂(C)k ∼= R-mod is the identity.

For k = 0, assuming the point axiom we have Hi(∗) = 0 for i 6= 0, and we can argue

with
∫
0
: H0(X) → H0(1) and Hi(X) for X ∈ C, i 6= 0, in Apoint

∂ (C): the last claims are
clear. �

2.3.7. Remark. For C a category with a strictly initial object 0 and a final point
object 1, consider the almost trivial homology H ! : C� → Apoint

∂ (C) of Example 2.3.5

given by H !
0(X) :=H0(1) ∈ Apoint

∂ (C) for X 6= 0. We then get an exact functor rH! :

Apoint
∂ (C) → Apoint

∂ (C) such that A(H !) :=Apoint
∂ (C)/Ker rH! is equivalent to AbR and

rH! =!point!
point.

2.3.8. Axiom (Additivity). Let H be a homology or a relative homology. Say that H
is finitely additive if

Hi(X)⊕Hi(X
′)

≃
→ Hi(X

∐
X ′)

for X,X ′ ∈ C whenever the coproduct X
∐

X ′ exists in C, e.g. we may assume that
the category has finite coproducts. If C has (small) coproducts say that H with values
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in a Grothendieck category A is additive if it is finitely additive and moreover we have
an isomorphism

⊕

k

Hi(Xk)
≃

−→ Hi(
∐

k

Xk)

induced by the canonical morphisms Xk →
∐

Xk of C for an infinite (small) coproduct.

Denote Homadd(C
�,A) the category of relative finitely additive homologies in A and

HomAdd(C
�,A) the category of additive homologies in a Grothendieck category A.

2.3.9. Proposition. If C is a category with finite coproducts then

Homadd(C
�,−) : ExR → Cat

is representable by Aadd
∂ (C) which is a quotient of A∂(C). If C is a category with

(small) coproducts then there is a universal additive relative homology H = {Hi}i∈Z :
C� → AAdd

∂ (C) with values in a Grothendieck category AAdd
∂ (C) which is a quotient of

IndA∂(C) and also a quotient of IndAadd
∂ (C).

Proof. Let H : C� → A∂(C) be the universal homology. Let Aadd
∂ (C) be the quo-

tient of A∂(C) by the thick subcategory S generated by the kernels and cokernels of⊕
k Hi(Xk) → Hi(

∐
k Xk) for finite coproducts: the image of H under the projection

A∂(C)→→Aadd
∂ (C) yields the universal finitely additive relative homology.

Using Corollary 2.2.6 we can make the same construction in IndA∂(C) considering,
for all i ∈ Z, kernels and cokernels of

“
⊕

k∈I

”Hi(Xk) → Hi(
∐

k∈I

Xk)

where the “sum” over a small family {Xk}k∈I of objects is defined in [27, Notation
8.6.1]: we thus obtain AAdd

∂ (C) as a quotient of IndA∂(C) by S the thick and localizing
subcategory generated by the mentioned kernels and cokernels in such a way that
IndA∂(C)→→AAdd

∂ (C) is an R-linear exact functor commuting with (filtered) colimits
which factors through IndAadd

∂ (C). For K ∈ HomAdd(C
�,A) with A Grothendieck we

obtain rK : IndA∂(C) → A such that rK(H) = K, as in Corollary 2.2.6, and

⊕

k

Ki(Xk) = rK(“
⊕

k

”Hi(Xk))
≃
→ rK(Hi(

∐

k

Xk)) = Ki(
∐

k

Xk)

so that rK factors uniquely through the Grothendieck category AAdd
∂ (C) (cf. [20,

Prop. 1.6]). �

We also get the refined exact functor

radd∂ : Aadd(C) → Aadd
∂ (C)

where Aadd(C) is a quotient of A(C) by the analogue thick subcategory indicated in
the proof of Proposition 2.3.9.
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3. Universal Grothendieck homological functors

Let C = A be an abelian category along with the distinguished subcategory given by
the objects of A but where a morphism is a mono of A. The category of pairs C� = A�

has objects (A,B) where B →֒ A is a mono of A and we clearly have a functor

(A,B) A/B : A� → A

which we donote by q : A� → A. Recall that a Grothendieck homological functor from
A to an abelian category B is a Z-indexed exact covariant ∂∗-functor, see [22, §2.1]:
this is a family of additive functors that we denote

T = {Ti}i∈Z : A → B

together with the boundaries ∂i decreasing the index, as it is well known; recall
that Grothendieck also considers [a, b] an interval in Z as a set of indexes includ-
ing [−∞,+∞] = Z. Denote by Hom∂(A,B) the category of such a functors plus
∂-naturality: we obtain

Hom∂(A,−) : Ex → Cat

the 2-functor of Grothendieck homological functors.

3.1. ∂-homology. For {Ti}i∈Z ∈ Hom∂(A,B), by restriction along q : A� → A, set

HT
i (A,B) := Ti(A/B)

and get a corresponding family {HT
i }i∈Z of functors on A�. Given a triple (B,C) →֒

(A,B) in A� we get the following

0 → B/C → A/C → A/B → 0

short exact sequence in A and for a ∂-cube in A� we get a morphism of the corre-
sponding short exact sequences in A; actually, the functor q lifts to a functor from the
category A� of ∂-cubes, see Remark 2.2.2 b), to that of short exact sequences in A.
Therefore, we get the long exact sequence

· · · → Ti(B/C) → Ti(A/C) → Ti(A/B)
∂i−→ Ti−1(B/C) → · · ·

along with the naturality with respect to ∂-cubes. Now HT := {HT
i }i∈Z ∈ Homadd(A

�,B)
is finitely additive in the sense of Axiom 2.3.8: note that HT

i (−) = Ti(−) : A → B is
an additive functor between abelian categories, i.e. one inducing homomorphisms of
the Hom-groups, and this is equivalent to say that HT

i (−) commutes with finite sums.
Clearly T  HT is functorial as a morphism ϕ : T → T ′ is assumed to be compatible
with the boundaries.

3.1.1. Definition. A finitely additive relative homology H ∈ Homadd(A
�,B) is a ∂-

homology if Hi(A,B)
≃
→ Hi(A/B) for all (A,B) ∈ A�.

Note that HT is a ∂-homology. We have:

3.1.2. Lemma. Let A be an abelian category and let A� be the category of monos. The
functor

T  HT : Hom∂(A,B) →֒ Homadd(A
�,B)

is fully faithful with essential image the subcategory of ∂-homologies.
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Proof. Since T is the restriction of HT along A →֒ A� the fully faithfulness is clear.
For a ∂-homology H = {Hi}i∈Z ∈ Homadd(A

�,B) define TH = {TH
i }i∈Z by considering

the restricted homology A  TH
i (A) :=Hi(A): this yields additive functors as H is

additive. If 0 → B → A → C → 0 is exact in A, C = A/B and Hi(A,B)
≃
→ Hi(A/B),

then

· · · → TH
i (B) → TH

i (A) → TH
i (A/B)

∂i−→ TH
i−1(B) → · · ·

is given by the long exact sequence of the pair (A,B) ∈ A� for the relative homology
H . Naturality of TH is also given by naturality of H . We thus obtain T ′ := TH ∈
Hom∂(A,B) such that HT ′

= H . �

3.1.3. Theorem (Universal ∂-homology). For A an abelian category the universal ∂-
homology exsits. Therefore, the universal Grothendieck homology T ∂ : A → A∂ exists,
i.e. the functor Hom∂(A,−) : Ex → Cat is representable by (A∂, T ∂).

Proof. The universal Grothendieck homology T ∂ is given by the universal ∂-homology
H∂ if Hom∂(A,−) is regarded as a subfunctor of Homadd(A

�,−) given by ∂-homologies,
by Lemma 3.1.2. Let A∂ be the quotient of Aadd

∂ (A) given by the thick subcategory
generated by kernels and cokernels of Hadd

i (A,B) → Hadd
i (A/B) for all (A,B) ∈ A�,

where Hadd : A� → Aadd
∂ (A) is the universal additive relative homology of Proposition

2.3.9. Then the image H∂ : A� → A∂ of Hadd under the projection is a ∂-homology
which yields the universal Grothendieck homology T ∂ := TH∂

by the argument in the
proof of Lemma 3.1.2. �

3.1.4. Remark. To see that A∂ 6= 0 for any A 6= 0 we point out that Ex(A,−) is a
subfunctor of Hom∂(A,−) given by F  Ta :=F and Ti := 0 for i 6= a and a ∈ Z fixed.
Moreover, for any object A ∈ A of an abelian category A such that A 6= A ⊗ Q, e.g.
A = Z-mod, let nA and A/n be the kernel and cokernel of the multiplication by n, a
fixed positive integer. Let T n

i (A) = 0 for i 6= a, a− 1, T n
a (A) := nA and T n

a−1(A) :=A/n
for a ∈ Z fixed. We have {T n

i }i∈Z ∈ Hom∂(A,A)

3.2. Satellite homology. Consider T = {Ti}i∈Z with T−i = 0 for i < 0 and set
T i := T−i now concentrated in positive degrees i ≥ 0, with the ∂i increasing degrees:
thus T 0 is left exact (this is an exact covariant ∂-functor in [22, §2.1]). We shall denote
by Hom+

∂ (A,B) ⊂ Hom∂(A,B) the subcategory of such ∂-functors. For a left exact
functor F : A → B denote RF = {RiF}i∈N the right satellite or right derived functor
which belongs to Hom+

∂ (A,B): it exists under the condition that every object of A
has an injective effacement, see [22, Thm. 2.2.2 & §2.3] and [12, Chap. III], e.g. if A is
Grothendieck, see also [27, Thm. 9.6.2].

Considering additive homologies on A� concentrated in non positive degrees [−∞, 0],
i.e. H = {Hi}i∈Z such that Hi = 0 if i > 0, we shall denote H = {H i :=H−i}i∈N and
Hom+

add(A
�,B) ⊂ Homadd(A

�,B) the corresponding subcategory. Now observe that for
a ∂-homology H the restricted functor H0 : A → B (cf. the proof of Lemma 3.1.2) is
a left exact functor. We may consider the right satellite RH0 of H0 and get another
∂-homology.

3.2.1. Lemma. Let A be an abelian category. If the right satellite RF exists for any left
exact functor F ∈ Lex(A,B) (e.g. if A is a Grothendieck category) then the forgetful
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functor

T = {T i}i∈N  T 0 : Hom+
∂ (A,B) → Lex(A,B)

has a left adjoint/left inverse given by the right satellite

F  RF : Lex(A,B) →֒ Hom+
∂ (A,B)

which is fully faithful. The fully faithtful functor

Lex(A,B) →֒ Hom+
add(A

�,B)

(induced by composition with that in Lemma 3.1.2) has essential image those ∂-homolo-
gies H which coincide with the right satellite of their H0.

Proof. If RF exists then Nat(F, T 0) = Nat∂(RF, T ), where Nat are natural transforma-
tions and Nat∂ are morphisms of ∂-functors. This follows essentially by definition, see
[22, §2.2]: we have that any ϕ0 : F → T 0 extends to a unique ϕ : RF → T morphism
of ∂-functors. Since the restricted ∂-homology H (denoted TH in the proof of Lemma
3.1.2) is a ∂-functor we thus obtain a unique morphism ϕH : RH0 → H . Note that
for H = HRF we get ϕHRF = idHRF as RF is the restriction of HRF . Therefore the

essential image of F  HRF is given by those ∂-homologies that ϕH : RH0 ≃
→ H is an

isomorphism. �

3.2.2. Definition. Call a ∂-homology H ∈ Hom+
add(A

�,B) a right satellite homology if

the canonical morphism ϕH : RH0 ≃
→ H is an isomomorphism.

From Lemma 3.2.1 we have a canonical equivalence of the category of left exact
functors with right satellite homologies. The analogue of Theorem 3.1.3 for satellite
homologies is the following:

3.2.3. Theorem (Universal right satellite homology). Let A be an abelian category. If
the right satellite RF exists for any left exact functor F ∈ Lex(A,B) then the universal
right satellite homology exists and it is given as follows:

i) the universal left exact functor F lex : A → Alex exists, where Alex is a quotient
of Freyd’s category Ab(A), i.e. Alex is representing Lex(A,−) : Ex → Cat;

ii) the right satellite RF lex = {RiF lex}i∈N provides the universal right satellite
homology under the equivalence in Lemma 3.2.1;

iii) the universal property is the following: for RF = {RF i}i∈N ∈ Hom+
∂ (A,B)

any right derived functor of a left exact functor F we obtain an exact functor
rRF : Alex → B (unique up to isomorphism) and a factorisation

A
RF lex

//

RF
��

Alex

rRF
}}④④
④
④
④
④
④
④
④

B

such that rRFR
iF lex = RiF and rRF (∂i) = ∂i for all i ∈ N;
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iv) we have a factorisation

D+(A)
RF lex

//

RF
��

D+(Alex)

rRF
yyrr
r
r
r
r
r
r
r
r

D+(B)

of triangulated derived functors.

Proof. i) Consider Y := |A| : A →֒ Ab(A) the Freyd’s free abelian category of A
regarded as an additive category, see Theorem 1.3.2. Consider 0 → B → A → C → 0
an exact sequence in A and let 0 → Y (B) → Y (A) → Y (C) → 0 be the induced
complex in Ab(A). Denote HB and HA the homologies of this complex at Y (B) and
Y (A) respectively. Let S be thick subcategory of Ab(A) generated by the objects HB

and HA for all B →֒ A mono of A. Define Alex := Ab(A)/S and let F lex : A → Alex

be the composition of Y with the projection in such a way that the 0 → F lex(B) →
F lex(A) → F lex(C) is now exact in Alex. The left exact functor F lex is the universal
left exact functor as it easily follows from the universality of Freyd’s construction.

ii) It follows from i) and the proof of Lemma 3.2.1-3.1.2 since the right satellite
homology 2-functor is representable by RF lex regarded in Hom+

add(A
�,Alex).

iii) It is given by representability in ii).
iv) Since F = rRFF

lex and rRF is exact. �

3.2.4. Remark. Note that there is an exact functor FidA : Ab(A) → A whose restric-
tion to A is the identity. The functor FidA factors though Alex and yields an exact
functor ridA : Alex → A which is a section of the left exact functor F lex : A → Alex.

3.2.5. Example. Let R be an additive category such that R-mod is abelian, e.g.
R-mod for R a coherent ring. For A = R-modop we get Alex = Ab(R) and F lex = Y
is given by the Yoneda left exact embedding as shown (cf. [30, Example 4.9 ]). For F
left exact

R-modop Y
//

F
��

Ab(R)

rF
xxrr
r
r
r
r
r
r
r
r
r

B

where rF is given by the universal property of Ab(R) applied to the restriction of F
to R along the Yoneda R →֒ R-modop. In particular, for A = Z-modop we obtain
Alex = Z-mod.
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