Risk Measures on $\mathcal{P}(\mathbb{R})$ and Value At Risk with Probability/Loss function

Marco Frittelli

Milano University, email: marco.frittelli@unimi.it

Marco Maggis *

Milano University, email: marco.maggis@unimi.it

Ilaria Peri

Milano-Bicocca University, email: ilaria.peri@unimib.it

November 5, 2018

Abstract

We propose a generalization of the classical notion of the $V@R_\lambda$ that takes into account not only the probability of the losses, but the balance between such probability and the amount of the loss. This is obtained by defining a new class of law invariant risk measures based on an appropriate family of acceptance sets. The $V@R_\lambda$ and other known law invariant risk measures turn out to be special cases of our proposal. We further prove the dual representation of Risk Measures on $\mathcal{P}(\mathbb{R})$.

Keywords: Value at Risk, distribution functions, quantiles, law invariant risk measures, quasi-convex functions, dual representation.

MSC (2010): primary 46N10, 91G99, 60H99; secondary 46A20, 46E30.

Acknowledgment: We would like to thank Prof. Fabio Bellini, University Milano Bicocca, Samuel Drapeau, Humboldt University, as well as an anonymous referee for helpful discussion on this subject.

1 Introduction

We introduce a new class of law invariant risk measures $\Phi : \mathcal{P}(\mathbb{R}) \to \mathbb{R} \cup \{+\infty\}$ that are directly defined on the set $\mathcal{P}(\mathbb{R})$ of probability measures on \mathbb{R} and are monotone and quasi-convex on $\mathcal{P}(\mathbb{R})$.

As Cherny and Madan (2009) [4] pointed out, for a (translation invariant) coherent risk measure defined on random variables, all the positions can be

 $^{^*}$ The author acknowledges the financial support provided by the European Social Fund Grant.

spited in two classes: acceptable and not acceptable; in contrast, for an acceptability index there is a whole continuum of degrees of acceptability defined by a system $\{\mathcal{A}^m\}_{m\in\mathbb{R}}$ of sets. This formulation has been further investigated by Drapeau and Kupper (2010) [8] for the quasi convex case, with emphasis on the notion of an acceptability family and on the robust representation.

We adopt this approach and we build the maps Φ from a family $\{\mathcal{A}^m\}_{m\in\mathbb{R}}$ of acceptance sets of distribution functions by defining:

$$\Phi(P) := -\sup \left\{ m \in \mathbb{R} \mid P \in \mathcal{A}^m \right\}.$$

In Section 3 we study the properties of such maps, we provide some specific examples and in particular we propose an interesting generalization of the classical notion of $V@R_{\lambda}$.

The key idea of our proposal - the definition of the $\Lambda V@R$ in Section 4 - arises from the consideration that in order to assess the risk of a financial position it is necessary to consider not only the probability λ of the loss, as in the case of the $V@R_{\lambda}$, but the dependence between such probability λ and the amount of the loss. In other terms, a risk prudent agent is willing to accept greater losses only with smaller probabilities. Hence, we replace the constant λ with a (increasing) function $\Lambda: \mathbb{R} \to [0,1]$ defined on losses, which we call Probability/Loss function. The balance between the probability and the amount of the losses is incorporated in the definition of the family of acceptance sets

$$\mathcal{A}^m := \{ Q \in \mathcal{P}(\mathbb{R}) \mid Q(-\infty, x] \leq \Lambda(x), \ \forall x \leq m \}, \ m \in \mathbb{R}.$$

If P_X is the distribution function of the random variable X, our new measure is defined by:

$$\Lambda V@R(P_X) := -\sup \left\{ m \in \mathbb{R} \mid P(X \le x) \le \Lambda(x), \ \forall x \le m \right\}.$$

As a consequence, the acceptance sets \mathcal{A}^m are not obtained by the translation of \mathcal{A}^0 which implies that the map is not any more translation invariant. However, the similar property

$$\Lambda V @R(P_{X+\alpha}) = \Lambda^{\alpha} V @R(P_X) - \alpha,$$

where $\Lambda^{\alpha}(x) = \Lambda(x + \alpha)$, holds true and is discussed in Section 4. The $V@R_{\lambda}$ and the worst case risk measure are special cases of the $\Lambda V@R$.

The approach of considering risk measures defined directly on the set of distribution functions is not new and it was already adopted by Weber (2006) [19]. However, in this paper we are interested in quasi-convex risk measures based - as the above mentioned map $\Lambda V@R$ - on families of acceptance sets of distributions and in the analysis of their robust representation. We choose to define the risk measures on the entire set $\mathcal{P}(\mathbb{R})$ and not only on its subset of probabilities having compact support, as it was done by Drapeau and Kupper (2010) [8]. For this, we endow $\mathcal{P}(\mathbb{R})$ with the $\sigma(\mathcal{P}(\mathbb{R}), C_b(\mathbb{R}))$ topology. The

selection of this topology is also justified by the fact (see Proposition 5) that for monotone maps $\sigma(\mathcal{P}(\mathbb{R}), C_b(\mathbb{R})) - lsc$ is equivalent to continuity from above. In section 5 we briefly compare the robust representation obtained in this paper and those obtained by Cerreia-Vioglio (2009) [6] and Drapeau and Kupper (2010) [8].

Except for $\Phi = +\infty$, we show that there are no convex, $\sigma(\mathcal{P}(\mathbb{R}), C_b(\mathbb{R})) - lsc$ translation invariant maps $\Phi : \mathcal{P}(\mathbb{R}) \to \mathbb{R} \cup \{+\infty\}$. But there are many quasiconvex and $\sigma(\mathcal{P}(\mathbb{R}), C_b(\mathbb{R})) - lsc$ maps $\Phi : \mathcal{P}(\mathbb{R}) \to \mathbb{R} \cup \{+\infty\}$ that in addition are monotone and translation invariant, as for example the $V@R_{\lambda}$, the entropic risk measure and the worst case risk measure. This is another good motivation to adopt quasi convexity versus convexity.

Finally we provide the dual representation of quasi-convex, monotone and $\sigma(\mathcal{P}(\mathbb{R}), C_b(\mathbb{R})) - lsc$ maps $\Phi : \mathcal{P}(\mathbb{R}) \to \mathbb{R} \cup \{+\infty\}$ - defined on the entire set $\mathcal{P}(\mathbb{R})$ - and compute the dual representation of the risk measures associated to families of acceptance sets and consequently of the $\Lambda V@R$.

2 Law invariant Risk Measures

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and $L^0 =: L^0(\Omega, \mathcal{F}, \mathbb{P})$ be the space of \mathcal{F} measurable random variables that are \mathbb{P} almost surely finite.

Any random variable $X \in L^0$ induces a probability measure P_X on $(\mathbb{R}, \mathcal{B}_{\mathbb{R}})$ by $P_X(B) = \mathbb{P}(X^{-1}(B))$ for every Borel set $B \in \mathcal{B}_{\mathbb{R}}$. We refer to [1] Chapter 15 for a detailed study of the convex set $\mathcal{P} =: \mathcal{P}(\mathbb{R})$ of probability measures on \mathbb{R} . Here we just recall some basic notions: for any $X \in L^0$ we have $P_X \in \mathcal{P}$ so that we will associate to any random variable a unique element in \mathcal{P} . If $\mathbb{P}(X = x) = 1$ for some $x \in \mathbb{R}$ then P_X is the Dirac distribution δ_x that concentrates the mass in the point x.

A map $\rho: L \to \overline{\mathbb{R}} := \mathbb{R} \cup \{-\infty\} \cup \{\infty\}$, defined on given subset $L \subseteq L^0$, is law invariant if $X, Y \in L$ and $P_X = P_Y$ implies $\rho(X) = \rho(Y)$.

Therefore, when considering law invariant risk measures $\rho: L^0 \to \overline{\mathbb{R}}$ it is natural to shift the problem to the set \mathcal{P} by defining the new map $\Phi: \mathcal{P} \to \overline{\mathbb{R}}$ as $\Phi(P_X) = \rho(X)$. This map Φ is well defined on the entire \mathcal{P} , since there exists a bi-injective relation between \mathcal{P} and the quotient space $\frac{L^0}{\sim}$ (provided that $(\Omega, \mathcal{F}, \mathbb{P})$ supports a random variable with uniform distribution), where the equivalence is given by $X \sim_{\mathcal{D}} Y \Leftrightarrow P_X = P_Y$. However, \mathcal{P} is only a convex set and the usual operations on \mathcal{P} are not induced by those on L^0 , namely $(P_X + P_Y)(A) = P_X(A) + P_Y(A) \neq P_{X+Y}(A), A \in \mathcal{B}_{\mathbb{R}}$.

Recall that the first order stochastic dominance on \mathcal{P} is given by: $Q \leq P \Leftrightarrow F_P(x) \leq F_Q(x)$ for all $x \in \mathbb{R}$, where $F_P(x) = P(-\infty, x]$ and $F_Q(x) = Q(-\infty, x]$ are the distribution functions of $P, Q \in \mathcal{P}$. Notice that $X \leq Y$ \mathbb{P} -a.s. implies $P_X \leq P_Y$.

Definition 1 A Risk Measure on $\mathcal{P}(\mathbb{R})$ is a map $\Phi: \mathcal{P} \to \mathbb{R} \cup \{+\infty\}$ such that:

(Mon) Φ is monotone decreasing: $P \leq Q$ implies $\Phi(P) > \Phi(Q)$;

(QCo)
$$\Phi$$
 is quasi-convex: $\Phi(\lambda P + (1 - \lambda)Q) \leq \Phi(P) \vee \Phi(Q), \ \lambda \in [0, 1].$

Quasiconvexity can be equivalently reformulated in terms of sublevel sets: a map Φ is quasi-convex if for every $c \in \mathbb{R}$ the set $\mathcal{A}_c = \{P \in \mathcal{P} \mid \Phi(P) \leq c\}$ is convex. As recalled in [19] this notion of convexity is different from the one given for random variables (as in [10]) because it does not concern diversification of financial positions. A natural interpretation in terms of compound lotteries is the following: whenever two probability measures P and Q are acceptable at some level c and $\lambda \in [0,1]$ is a probability, then the compound lottery $\lambda P + (1-\lambda)Q$, which randomizes over P and Q, is also acceptable at the same level.

In terms of random variables (namely X, Y which induce P_X, P_Y) the randomized probability $\lambda P_X + (1 - \lambda)P_Y$ will correspond to some random variable $Z \neq \lambda X + (1 - \lambda)Y$ so that the diversification is realized at the level of distribution and not at the level of portfolio selection.

As suggested by [19], we define the translation operator T_m on the set $\mathcal{P}(\mathbb{R})$ by: $T_m P(-\infty, x] = P(-\infty, x - m]$, for every $m \in \mathbb{R}$. Equivalently, if P_X is the probability distribution of a random variable X we define the translation operator as $T_m P_X = P_{X+m}$, $m \in \mathbb{R}$. As a consequence we map the distribution $F_X(x)$ into $F_X(x)$ into $F_X(x)$. Notice that $P \leq T_m P$ for any m > 0.

Definition 2 If $\Phi: \mathcal{P} \to \mathbb{R} \cup \{+\infty\}$ is a risk measure on \mathcal{P} , we say that

(TrI) Φ is translation invariant if $\Phi(T_m P) = \Phi(P) - m$ for any $m \in \mathbb{R}$.

Notice that (TrI) corresponds exactly to the notion of cash additivity for risk measures defined on a space of random variables as introduced in [2]. It is well known (see [7]) that for maps defined on random variables, quasiconvexity and cash additivity imply convexity. However, in the context of distributions (QCo) and (TrI) do not imply convexity of the map Φ , as can be shown with the simple examples of the V@R and the worst case risk measure ρ_w (see the examples in Section 3.1).

The set $\mathcal{P}(\mathbb{R})$ spans the space $ca(\mathbb{R}) := \{\mu \text{ signed measure } | V_{\mu} < +\infty \}$ of all signed measures of bounded variations on \mathbb{R} . $ca(\mathbb{R})$ (or simply ca) endowed with the norm $V_{\mu} = \sup \{\sum_{i=1}^{n} |\mu(A_i)| \text{ s.t. } \{A_1, ..., A_n\} \text{ partition of } \mathbb{R} \}$ is a norm complete and an AL-space (see [1] paragraph 10.11).

Let $C_b(\mathbb{R})$ (or simply C_b) be the space of bounded continuous function $f: \mathbb{R} \to \mathbb{R}$. We endow $ca(\mathbb{R})$ with the weak* topology $\sigma(ca, C_b)$. The dual pairing $\langle \cdot, \cdot \rangle : C_b \times ca \to \mathbb{R}$ is given by $\langle f, \mu \rangle = \int f d\mu$ and the function $\mu \mapsto \int f d\mu$ ($\mu \in ca$) is $\sigma(ca, C_b)$ continuous. Notice that \mathcal{P} is a $\sigma(ca, C_b)$ -closed convex subset of ca (p. 507 in [1]) so that $\sigma(\mathcal{P}, C_b)$ is the relativization of $\sigma(ca, C_b)$ to \mathcal{P} and any $\sigma(\mathcal{P}, C_b)$ -closed subset of \mathcal{P} is also $\sigma(ca, C_b)$ -closed.

Even though $(ca, \sigma(ca, C_b))$ is not metrizable in general, its subset \mathcal{P} is separable and metrizable (see [1], Th.15.12) and therefore when dealing with convergence in \mathcal{P} we may work with sequences instead of nets.

For every real function F we denote by $\mathcal{C}(F)$ the set of points in which the function F is continuous.

Theorem 3 ([17] Theorem 2, p.314)) Suppose that P_n , $P \in \mathcal{P}$. Then $P_n \xrightarrow{\sigma(\mathcal{P}, C_b)} P$ if and only if $F_{P_n}(x) \to F_P(x)$ for every $x \in \mathcal{C}(F_P)$.

A sequence of probabilities $\{P_n\} \subset \mathcal{P}$ is decreasing, denoted with $P_n \downarrow$, if $F_{P_n}(x) \leq F_{P_{n+1}}(x)$ for all $x \in \mathbb{R}$ and all n.

Definition 4 Suppose that P_n , $P \in \mathcal{P}$. We say that $P_n \downarrow P$ whenever $P_n \downarrow$ and $F_{P_n}(x) \uparrow F_P(x)$ for every $x \in \mathcal{C}(F_P)$. We say that

(CfA) Φ is continuous from above if $P_n \downarrow P$ implies $\Phi(P_n) \uparrow \Phi(P)$.

Proposition 5 Let $\Phi : \mathcal{P} \to \overline{\mathbb{R}}$ be (Mon). Then the following are equivalent:

- Φ is $\sigma(\mathcal{P}, C_b)$ -lower semicontinuous
- Φ is continuous from above.

Proof. Let Φ be $\sigma(\mathcal{P}, C_b)$ -lower semicontinuous and suppose that $P_n \downarrow P$. Then $F_{P_n}(x) \uparrow F_P(x)$ for every $x \in \mathcal{C}(F_P)$ and we deduce from Theorem 3 that $P_n \xrightarrow{\sigma(\mathcal{P}, C_b)} P$. (Mon) implies $\Phi(P_n) \uparrow$ and $k := \lim_n \Phi(P_n) \leq \Phi(P)$. The lower level set $A_k = \{Q \in \mathcal{P} \mid \Phi(Q) \leq k\}$ is $\sigma(\mathcal{P}, C_b)$ closed and, since $P_n \in A_k$, we also have $P \in A_k$, i.e. $\Phi(P) = k$, and Φ is continuous from above.

Conversely, suppose that Φ is continuous from above. As \mathcal{P} is metrizable we may work with sequences instead of nets. For $k \in \mathbb{R}$ consider $A_k = \{P \in \mathcal{P} \mid \Phi(P) \leq k\}$ and a sequence $\{P_n\} \subseteq A_k$ such that $P_n \overset{\sigma(\mathcal{P}, C_b)}{\longrightarrow} P \in \mathcal{P}$. We need to show that $P \in A_k$. Lemma 6 shows that each $F_{Q_n} := (\inf_{m \geq n} F_{P_m}) \wedge F_P$ is the distribution function of a probability measure and $Q_n \downarrow P$. From (Mon) and $P_n \preccurlyeq Q_n$, we get $\Phi(Q_n) \leq \Phi(P_n)$. From (CfA) then: $\Phi(P) = \lim_n \Phi(Q_n) \leq \lim_n \Phi(P_n) \leq k$. Thus $P \in A_k$.

Lemma 6 For every $P_n \stackrel{\sigma(\mathcal{P}, C_p)}{\longrightarrow} P$ we have that

$$F_{Q_n} := \inf_{m \ge n} F_{P_m} \wedge F_P, \ n \in \mathbb{N},$$

is a distribution function associated to a probability measure $Q_n \in \mathcal{P}$ such that $Q_n \downarrow P$.

Proof. For each n, F_{Q_n} is increasing and $\lim_{x\to-\infty}F_{Q_n}(x)=0$. Moreover for real valued maps right continuity and upper semicontinuity are equivalent. Since the inf-operator preserves upper semicontinuity we can conclude that F_{Q_n} is right continuous for every n. Now we have to show that for each n, $\lim_{x\to+\infty}F_{Q_n}(x)=1$. By contradiction suppose that, for some n, $\lim_{x\to+\infty}F_{Q_n}(x)=\lambda<1$. We can choose a sequence $\{x_k\}_k\subseteq\mathbb{R}$ with $x_k\in\mathcal{C}(F_P), x_k\uparrow+\infty$. In particular $F_{Q_n}(x_k)\leq\lambda$ for all k and $F_P(x_k)>\lambda$ definitively, say for all $k\geq k_0$. We can observe that since $x_k\in\mathcal{C}(F_P)$ we have, for all $k\geq k_0$, $\inf_{m\geq n}F_{P_m}(x_k)<\lim_{m\to+\infty}F_{P_m}(x_k)=F_P(x_k)$. This means that the infimum is attained for some index $m(k)\in\mathbb{N}$, i.e. $\inf_{m\geq n}F_{P_m}(x_k)=F_{P_{m(k)}}(x_k)$, for all $k\geq k_0$. Since $P_{m(k)}(-\infty,x_k)=F_{P_{m(k)}}(x_k)\leq\lambda$ then

 $P_{m(k)}(x_k, +\infty) \geq 1 - \lambda$ for $k \geq k_0$. We have two possibilities. Either the set $\{m(k)\}_k$ is bounded or $\overline{\lim}_k m(k) = +\infty$. In the first case, we know that the number of m(k)'s is finite. Among these m(k)'s we can find at least one \overline{m} and a subsequence $\{x_h\}_k$ of $\{x_k\}_k$ such that $x_h \uparrow +\infty$ and $P_{\overline{m}}(x_h, +\infty) \geq 1 - \lambda$ for every h. We then conclude that

$$\lim_{h \to +\infty} P_{\overline{m}}(x_h, +\infty) \ge 1 - \lambda$$

and this is a contradiction. If $\overline{\lim}_k m(k) = +\infty$, fix $\overline{k} \ge k_0$ such that $P(x_{\overline{k}}, +\infty) < 1 - \lambda$ and observe that for every $k > \overline{k}$

$$P_{m(k)}(x_{\overline{k}}, +\infty) \ge P_{m(k)}(x_k, +\infty) \ge 1 - \lambda.$$

Take a subsequence $\{m(h)\}_h$ of $\{m(k)\}_k$ such that $m(h) \uparrow +\infty$. Then:

$$\lim_{h \to \infty} \inf P_{m(h)}(x_{\overline{k}}, +\infty) \ge 1 - \lambda > P(x_{\overline{k}}, +\infty),$$

which contradicts the weak convergence $P_n \xrightarrow{\sigma(\mathcal{P}, C_b)} P$.

Finally notice that $F_{Q_n} \leq F_{P_n}$ and $Q_n \downarrow$. From $P_n \stackrel{\sigma(\mathcal{P}, C_b)}{\longrightarrow} P$ and the definition of Q_n , we deduce that $F_{Q_n}(x) \uparrow F_P(x)$ for every $x \in \mathcal{C}(F_P)$ so that $Q_n \downarrow P$.

Example 7 (The certainty equivalent) It is very simple to build risk measures on $\mathcal{P}(\mathbb{R})$. Take any continuous, bounded from below and strictly decreasing function $f: \mathbb{R} \to \mathbb{R}$. Then the map $\Phi_f: \mathcal{P} \to \mathbb{R} \cup \{+\infty\}$ defined by:

$$\Phi_f(P) := -f^{-1} \left(\int f dP \right) \tag{1}$$

is a Risk Measure on $\mathcal{P}(\mathbb{R})$. It is also easy to check that Φ_f is (CfA) and therefore $\sigma(\mathcal{P}, C_b)$ -lsc Notice that Proposition 22 will then imply that Φ_f can not be convex. By selecting the function $f(x) = e^{-x}$ we obtain $\Phi_f(P) = \ln \left(\int \exp(-x) dF_P(x) \right)$, which is in addition (TrI). Its associated risk measure $\rho: L^0 \to \mathbb{R} \cup \{+\infty\}$ defined on random variables, $\rho(X) = \Phi_f(P_X) = \ln \left(Ee^{-X} \right)$, is the Entropic (convex) Risk Measure. In Section 5 we will see more examples based on this construction.

3 A remarkable class of risk measures on $\mathcal{P}(\mathbb{R})$

Given a family $\{F_m\}_{m\in\mathbb{R}}$ of functions $F_m:\mathbb{R}\to[0,1]$, we consider the associated sets of probability measures

$$\mathcal{A}^m := \{ Q \in \mathcal{P} \mid F_Q \le F_m \} \tag{2}$$

and the associated map $\Phi: \mathcal{P} \to \overline{\mathbb{R}}$ defined by

$$\Phi(P) := -\sup\left\{m \in \mathbb{R} \mid P \in \mathcal{A}^m\right\}. \tag{3}$$

We assume hereafter that for each $P \in \mathcal{P}$ there exists m such that $P \notin \mathcal{A}^m$ so that $\Phi : \mathcal{P} \to \mathbb{R} \cup \{+\infty\}$.

Notice that $\Phi(P) := \inf \{ m \in \mathbb{R} \mid P \in A_m \}$ where $A_m =: \mathcal{A}^{-m}$ and $\Phi(P)$ can be interpreted as the minimal risk acceptance level under which P is still acceptable. The following discussion will show that under suitable assumption on $\{F_m\}_{m \in \mathbb{R}}$ we have that $\{A_m\}_{m \in \mathbb{R}}$ is a risk acceptance family as defined in [8].

We recall from [8] the following definition

Definition 8 A monotone decreasing family of sets $\{A^m\}_{m\in\mathbb{R}}$ contained in \mathcal{P} is left continuous in m if

$$\mathcal{A}^m =: \bigcap_{\varepsilon > 0} \mathcal{A}^{m-\varepsilon}$$

In particular it is left continuous if it is left continuous in m for every $m \in \mathbb{R}$.

Lemma 9 Let $\{F_m\}_{m\in\mathbb{R}}$ be a family of functions $F_m:\mathbb{R}\to[0,1]$ and \mathcal{A}^m be the set defined in (2). Then:

- 1. If, for every $x \in \mathbb{R}$, $F_{\bullet}(x)$ is decreasing (w.r.t. m) then the family $\{A^m\}$ is monotone decreasing: $A^m \subseteq A^n$ for any level $m \ge n$,
- 2. For any m, A^m is convex and satisfies: $Q \leq P \in A^m \Rightarrow Q \in A^m$
- 3. If, for every $m \in \mathbb{R}$, $F_m(x)$ is right continuous w.r.t. x then \mathcal{A}^m is $\sigma(\mathcal{P}, C_b)$ -closed,
- 4. Suppose that, for every $x \in \mathbb{R}$, $F_m(x)$ is decreasing w.r.t. m. If $F_m(x)$ is left continuous w.r.t. m, then the family $\{A^m\}$ is left continuous.
- 5. Suppose that, for every $x \in \mathbb{R}$, $F_m(x)$ is decreasing w.r.t. m and that, for every $m \in \mathbb{R}$, $F_m(x)$ is right continuous and increasing w.r.t. x and $\lim_{x\to+\infty} F_m(x) = 1$. If the family $\{A^m\}$ is left continuous in m then $F_m(x)$ is left continuous in m.

Proof. 1. If $Q \in \mathcal{A}^m$ and $m \ge n$ then $F_Q \le F_m \le F_n$, i.e. $Q \in \mathcal{A}^n$.

2. Let $Q, P \in \mathcal{A}^m$ and $\lambda \in [0, 1]$. Consider the convex combination $\lambda Q + (1 - \lambda)P$ and notice that

$$F_{\lambda Q+(1-\lambda)P} \leq F_Q \vee F_P \leq F_m$$

as $F_P \leq F_m$ and $F_Q \leq F_m$. Then $\lambda Q + (1 - \lambda)P \in \mathcal{A}^m$.

3. Let $Q_n \in A^m$ and $Q \in \mathcal{P}$ satisfy $Q_n \stackrel{\sigma(\mathcal{P}, C_b)}{\to} Q$. By Theorem 3 we know that $F_{Q_n}(x) \to F_Q(x)$ for every $x \in \mathcal{C}(F_Q)$. For each $n, F_{Q_n} \leq F_m$ and therefore $F_Q(x) \leq F_m(x)$ for every $x \in \mathcal{C}(F_Q)$. By contradiction, suppose that $Q \notin \mathcal{A}^m$.

Then there exists $\bar{x} \notin \mathcal{C}(F_Q)$ such that $F_Q(\bar{x}) > F_m(\bar{x})$. By right continuity of F_Q for every $\varepsilon > 0$ we can find a right neighborhood $[\bar{x}, \bar{x} + \delta(\varepsilon))$ such that

$$|F_Q(x) - F_Q(\bar{x})| < \varepsilon \quad \forall x \in [\bar{x}, \bar{x} + \delta(\varepsilon))$$

and we may require that $\delta(\varepsilon) \downarrow 0$ if $\varepsilon \downarrow 0$. Notice that for each $\varepsilon > 0$ we can always choose an $x_{\varepsilon} \in (\bar{x}, \bar{x} + \delta(\varepsilon))$ such that $x_{\varepsilon} \in \mathcal{C}(F_Q)$. For such an x_{ε} we deduce that

$$F_m(\bar{x}) < F_Q(\bar{x}) < F_Q(x_{\varepsilon}) + \varepsilon \le F_m(x_{\varepsilon}) + \varepsilon.$$

This leads to a contradiction since if $\varepsilon \downarrow 0$ we have that $x_\varepsilon \downarrow \bar{x}$ and thus by right continuity of F_m

$$F_m(\bar{x}) < F_O(\bar{x}) \le F_m(\bar{x}).$$

4. By assumption we know that $F_{m-\varepsilon}(x) \downarrow F_m(x)$ as $\varepsilon \downarrow 0$, for all $x \in \mathbb{R}$. By item 1, we know that $\mathcal{A}^m \subseteq \bigcap_{\varepsilon>0} \mathcal{A}^{m-\varepsilon}$. By contradiction we suppose that the strict inclusion

$$\mathcal{A}^m\subset\bigcap_{\varepsilon>0}\mathcal{A}^{m-\varepsilon}$$

holds, so that there will exist $Q \in \mathcal{P}$ such that $F_Q \leq F_{m-\varepsilon}$ for every $\varepsilon > 0$ but $F_Q(\overline{x}) > F_m(\overline{x})$ for some $\overline{x} \in \mathbb{R}$. Set $\delta = F_Q(\overline{x}) - F_m(\overline{x})$ so that $F_Q(\overline{x}) > F_m(\overline{x}) + \frac{\delta}{2}$. Since $F_{m-\varepsilon} \downarrow F_m$ we may find $\overline{\varepsilon} > 0$ such that $F_{m-\overline{\varepsilon}}(\overline{x}) - F_m(\overline{x}) < \frac{\delta}{2}$. Thus $F_Q(\overline{x}) \leq F_{m-\varepsilon}(\overline{x}) < F_m(\overline{x}) + \frac{\delta}{2}$ and this is a contradiction.

5. Assume that $\mathcal{A}^{m-\varepsilon} \downarrow \mathcal{A}^m$. Define $F(x) := \lim_{\varepsilon \downarrow 0} F_{m-\varepsilon}(x) = \inf_{\varepsilon > 0} F_{m-\varepsilon}(x)$ for all $x \in \mathbb{R}$. Then $F : \mathbb{R} \to [0,1]$ is increasing, right continuous (since the inf preserves this property). Notice that for every $\varepsilon > 0$ we have $F_{m-\varepsilon} \geq F \geq F_m$ and then $\mathcal{A}^{m-\varepsilon} \supseteq \{Q \in \mathcal{P} \mid F_Q \leq F\} \supseteq \mathcal{A}^m$ and $\lim_{x \to +\infty} F(x) = 1$. Necessarily we conclude $\{Q \in \mathcal{P} \mid F_Q \leq F\} = \mathcal{A}^m$. By contradiction we suppose that $F(\overline{x}) > F_m(\overline{x})$ for some $\overline{x} \in \mathbb{R}$. Define $F_{\overline{Q}} : \mathbb{R} \to [0,1]$ by: $F_{\overline{Q}}(x) = F(x)\mathbf{1}_{[\overline{x},+\infty)}(x)$. The above properties of F guarantees that $F_{\overline{Q}}$ is a distribution function of a corresponding probability measure $\overline{Q} \in \mathcal{P}$, and since $F_{\overline{Q}} \leq F$, we deduce $\overline{Q} \in \mathcal{A}^m$, but $F_{\overline{Q}}(\overline{x}) > F_m(\overline{x})$ and this is a contradiction.

The following Lemma can be deduced directly from Lemma 9 and Theorem 1.7 in [8] (using the risk acceptance family $A_m =: \mathcal{A}^{-m}$, according to Definition 1.6 in the aforementioned paper). We provide the proof for sake of completeness.

Lemma 10 Let $\{F_m\}_{m\in\mathbb{R}}$ be a family of functions $F_m:\mathbb{R}\to[0,1]$ and Φ be the associated map defined in (3). Then:

- 1. The map Φ is (Mon) on \mathcal{P} .
- 2. If, for every $x \in \mathbb{R}$, $F_{\bullet}(x)$ is decreasing (w.r.t. m) then Φ is (QCo) on \mathcal{P} .
- 3. If, for every $x \in \mathbb{R}$, $F_{\bullet}(x)$ is left continuous and decreasing (w.r.t. m) and if, for every $m \in \mathbb{R}$, $F_m(\bullet)$ is right continuous (w.r.t. x) then

$$A_m := \{ Q \in \mathcal{P} \mid \Phi(Q) < m \} = \mathcal{A}^{-m}, \ \forall m, \tag{4}$$

and Φ is $\sigma(\mathcal{P}, C_b)$ -lower-semicontinuous.

Proof. 1. From $P \preceq Q$ we have $F_Q \leq F_P$ and

$$\{m \in \mathbb{R} \mid F_P \le F_m\} \subseteq \{m \in \mathbb{R} \mid F_O \le F_m\},\$$

which implies $\Phi(Q) \leq \Phi(P)$.

2. We show that $Q_1, Q_2 \in \mathcal{P}$, $\Phi(Q_1) \leq n$ and $\Phi(Q_2) \leq n$ imply that $\Phi(\lambda Q_1 + (1 - \lambda)Q_2) \leq n$, that is

$$\sup \left\{ m \in \mathbb{R} \mid F_{\lambda Q_1 + (1 - \lambda)Q_2} \le F_m \right\} \ge -n.$$

By definition of the supremum, $\forall \varepsilon > 0 \ \exists m_i \ \text{s.t.} \ F_{Q_i} \leq F_{m_i} \ \text{and} \ m_i > -\Phi(Q_i) - \varepsilon \geq -n - \varepsilon$. Then $F_{Q_i} \leq F_{m_i} \leq F_{-n-\varepsilon}$, as $\{F_m\}$ is a decreasing family. Therefore $\lambda F_{Q_1} + (1-\lambda)F_{Q_2} \leq F_{-n-\varepsilon}$ and $-\Phi(\lambda Q_1 + (1-\lambda)Q_2\lambda) \geq -n - \varepsilon$. As this holds for any $\varepsilon > 0$, we conclude that Φ is quasi-convex.

3. The fact that $\mathcal{A}^{-m}\subseteq A_m$ follows directly from the definition of Φ , as if $Q\in\mathcal{A}^{-m}$

$$\Phi(Q) := -\sup \{ n \in \mathbb{R} \mid Q \in \mathcal{A}^n \} = \inf \{ n \in \mathbb{R} \mid Q \in \mathcal{A}^{-n} \} \le m.$$

We have to show that $A_m \subseteq \mathcal{A}^{-m}$. Let $Q \in A_m$. Since $\Phi(Q) \leq m$, for all $\varepsilon > 0$ there exists m_0 such that $m + \varepsilon > -m_0$ and $F_Q \leq F_{m_0}$. Since $F_{\boldsymbol{\cdot}}(x)$ is decreasing (w.r.t. m) we have that $F_Q \leq F_{-m-\varepsilon}$, therefore $Q \in \mathcal{A}^{-m-\varepsilon}$ for any $\varepsilon > 0$. By the left continuity in m of $F_{\boldsymbol{\cdot}}(x)$, we know that $\{\mathcal{A}^m\}$ is left continuous (Lemma 9, item 4) and so: $Q \in \bigcap_{\varepsilon > 0} \mathcal{A}^{-m-\varepsilon} = \mathcal{A}^{-m}$.

From the assumption that $F_m(\cdot)$ is right continuous (w.r.t. x) and Lemma 9 item 3, we already know that \mathcal{A}^m is $\sigma(\mathcal{P}, C_b)$ -closed, for any $m \in \mathbb{R}$, and therefore the lower level sets $A_m = \mathcal{A}^{-m}$ are $\sigma(\mathcal{P}, C_b)$ -closed and Φ is $\sigma(\mathcal{P}, C_b)$ -lower-semicontinuous.

Definition 11 A family $\{F_m\}_{m\in\mathbb{R}}$ of functions $F_m:\mathbb{R}\to[0,1]$ is feasible if

- For any $P \in \mathcal{P}$ there exists m such that $P \notin \mathcal{A}^m$
- For every $m \in \mathbb{R}$, $F_m(\cdot)$ is right continuous (w.r.t. x)
- For every $x \in \mathbb{R}$, $F_{\bullet}(x)$ is decreasing and left continuous (w.r.t. m).

From Lemmas 9 and 10 we immediately deduce:

Proposition 12 Let $\{F_m\}_{m\in\mathbb{R}}$ be a feasible family. Then the associated family $\{\mathcal{A}^m\}_{m\in\mathbb{R}}$ is monotone decreasing and left continuous and each set \mathcal{A}^m is convex and $\sigma(\mathcal{P}, C_b)$ -closed. The associated map $\Phi: \mathcal{P} \to \mathbb{R} \cup \{+\infty\}$ is well defined, (Mon), (Qco) and $\sigma(\mathcal{P}, C_b)$ -lsc

Remark 13 Let $\{F_m\}_{m\in\mathbb{R}}$ be a feasible family. If there exists an \overline{m} such that $\lim_{x\to+\infty}F_{\overline{m}}(x)<1$ then $\lim_{x\to+\infty}F_m(x)<1$ for every $m\geq\overline{m}$ and then $\mathcal{A}^m=\emptyset$ for every $m\geq\overline{m}$. Obviously if an acceptability set is empty then it does not contribute to the computation of the risk measure defined in (3). For this reason we will always consider w.l.o.g. a class $\{F_m\}_{m\in\mathbb{R}}$ such that $\lim_{x\to+\infty}F_m(x)=1$ for every m.

3.1 Examples

As explained in the introduction, we define a family of risk measures employing a Probability/Loss function Λ . Fix the *right continuous* function $\Lambda: \mathbb{R} \to [0,1]$ and define the family $\{F_m\}_{m \in \mathbb{R}}$ of functions $F_m: \mathbb{R} \to [0,1]$ by

$$F_m(x) := \Lambda(x) \mathbf{1}_{(-\infty,m)}(x) + \mathbf{1}_{[m,+\infty)}(x). \tag{5}$$

It is easy to check that if $\sup_{x \in \mathbb{R}} \Lambda(x) < 1$ then the family $\{F_m\}_{m \in \mathbb{R}}$ is feasible and therefore, by Proposition 12, the associated map $\Phi : \mathcal{P} \to \mathbb{R} \cup \{+\infty\}$ is well defined, (Mon), (Qco) and $\sigma(\mathcal{P}, C_b)$ -lsc

Example 14 When $\sup_{x\in R} \Lambda(x) = 1$, Φ may take the value $-\infty$. The extreme case is when, in the definition of the family (5), the function Λ is equal to the constant one, $\Lambda(x) = 1$, and so: $\mathcal{A}^m = \mathcal{P}$ for all m and $\Phi = -\infty$.

Example 15 Worst case risk measure: $\Lambda(x) = 0$.

Take in the definition of the family (5) the function Λ to be equal to the constant zero: $\Lambda(x) = 0$. Then:

$$F_{m}(x) : = \mathbf{1}_{[m,+\infty)}(x)$$

$$\mathcal{A}^{m} : = \{Q \in \mathcal{P} \mid F_{Q} \leq F_{m}\} = \{Q \in \mathcal{P} \mid \delta_{m} \leq Q\}$$

$$\Phi_{w}(P) : = -\sup\{m \mid P \in \mathcal{A}^{m}\} = -\sup\{m \mid \delta_{m} \leq P\}$$

$$= -\sup\{x \in \mathbb{R} \mid F_{P}(x) = 0\}$$

so that, if $X \in L^0$ has distribution function P_X ,

$$\Phi_w(P_X) = -\sup\{m \in \mathbb{R} \mid \delta_m \preccurlyeq P_X\} = -ess\inf(X) := \rho_w(X)$$

coincide with the worst case risk measure ρ_w . As the family $\{F_m\}$ is feasible, $\Phi_w : \mathcal{P}(\mathbb{R}) \to \mathbb{R} \cup \{+\infty\}$ is (Mon), (Qco) and $\sigma(\mathcal{P}, C_b)$ -lsc In addition, it also satisfies (TrI).

Even though $\rho_w: L^0 \to \mathbb{R} \cup \{\infty\}$ is convex, as a map defined on random variables, the corresponding $\Phi_w: \mathcal{P} \to \mathbb{R} \cup \{\infty\}$, as a map defined on distribution functions, is not convex, but it is quasi-convex and concave. Indeed, let $P \in \mathcal{P}$ and, since $F_P \geq 0$, we set:

$$-\Phi_w(P) = \inf(F_P) := \sup \{x \in \mathbb{R} : F_P(x) = 0\}.$$

If F_1 , F_2 are two distribution functions corresponding to P_1 , $P_2 \in \mathcal{P}$ then for all $\lambda \in (0,1)$ we have:

$$\inf(\lambda F_1 + (1 - \lambda)F_2) = \min(\inf(F_1), \inf(F_2)) \le \lambda \inf(F_1) + (1 - \lambda) \inf(F_2)$$

and therefore, for all $\lambda \in [0, 1]$

$$\min(\inf(F_1), \inf(F_2)) \le \inf(\lambda F_1 + (1 - \lambda)F_2) \le \lambda \inf(F_1) + (1 - \lambda) \inf(F_2).$$

Example 16 Value at Risk $V@R_{\lambda}: \Lambda(x) := \lambda \in (0,1)$.

Take in the definition of the family (5) the function Λ to be equal to the constant λ , $\Lambda(x) = \lambda \in (0,1)$. Then

$$F_m(x) : = \lambda \mathbf{1}_{(-\infty,m)}(x) + \mathbf{1}_{[m,+\infty)}(x)$$

$$\mathcal{A}^m : = \{Q \in \mathcal{P} \mid F_Q \le F_m\}$$

$$\Phi_{V@R_{\lambda}}(P) : = -\sup\{m \in \mathbb{R} \mid P \in \mathcal{A}^m\}$$

If the random variable $X \in L^0$ has distribution function P_X and $q_X^+(\lambda) = \sup\{x \in \mathbb{R} \mid \mathbb{P}(X \leq x) \leq \lambda\}$ is the right continuous inverse of P_X then

$$\Phi_{V@R_{\lambda}}(P_X) = -\sup \{ m \mid P_X \in \mathcal{A}^m \}$$

$$= -\sup \{ m \mid \mathbb{P}(X \le x) \le \lambda \ \forall x < m \}$$

$$= -\sup \{ m \mid \mathbb{P}(X \le m) \le \lambda \}$$

$$= -q_X^+(\lambda) := V@R_{\lambda}(X)$$

coincide with the Value At Risk of level $\lambda \in (0,1)$. As the family $\{F_m\}$ is feasible, $\Phi_{V@R_{\lambda}}: \mathcal{P} \to \mathbb{R} \cup \{+\infty\}$ is (Mon), (Qco), $\sigma(\mathcal{P}, C_b)$ -lsc In addition, it also satisfies (TrI).

As well known, $V@R_{\lambda}: L^0 \to \mathbb{R} \cup \{\infty\}$ is not quasi-convex, as a map defined on random variables, even though the corresponding $\Phi_{V@R_{\lambda}}: \mathcal{P} \to \mathbb{R} \cup \{\infty\}$, as a map defined on distribution functions, is quasi-convex (see [8] for a discussion on this issue).

Example 17 Fix the family $\{\Lambda_m\}_{m\in\mathbb{R}}$ of functions $\Lambda_m : \mathbb{R} \to [0,1]$ such that for every $m \in \mathbb{R}$, $\Lambda_m(.)$ is right continuous (w.r.t. x) and for every $x \in \mathbb{R}$, $\Lambda_n(x)$ is decreasing and left continuous (w.r.t. m). Define the family $\{F_m\}_{m\in\mathbb{R}}$ of functions $F_m : \mathbb{R} \to [0,1]$ by

$$F_m(x) := \Lambda_m(x) \mathbf{1}_{(-\infty,m)}(x) + \mathbf{1}_{[m,+\infty)}(x). \tag{6}$$

It is easy to check that if $\sup_{x \in \mathbb{R}} \Lambda_{m_0}(x) < 1$, for some $m_0 \in \mathbb{R}$, then the family $\{F_m\}_{m \in \mathbb{R}}$ is feasible and therefore the associated map $\Phi : \mathcal{P} \to \mathbb{R} \cup \{+\infty\}$ is well defined, (Mon), (Qco), $\sigma(\mathcal{P}, C_b)$ -lsc

4 On the $\Lambda V@R$

We now propose a generalization of the $V@R_{\lambda}$ which appears useful for possible application whenever an agent is facing some ambiguity on the parameter λ , namely λ is given by some uncertain value in a confidence interval $[\lambda^m, \lambda^M]$, with $0 \le \lambda^m \le \lambda^M \le 1$. The $V@R_{\lambda}$ corresponds to case $\lambda^m = \lambda^M$ and one typical value is $\lambda^M = 0,05$.

We will distinguish two possible classes of agents:

Risk prudent Agents Fix the *increasing* right continuous function $\Lambda : \mathbb{R} \to [0, 1]$, choose as in (5)

$$F_m(x) = \Lambda(x)\mathbf{1}_{(-\infty,m)}(x) + \mathbf{1}_{[m,+\infty)}(x)$$

and set $\lambda^m := \inf \Lambda \ge 0$, $\lambda^M := \sup \Lambda \le 1$. As the function Λ is increasing, we are assigning to a lower loss a lower probability. In particular given two possible choices Λ_1, Λ_2 for two different agents, the condition $\Lambda_1 \le \Lambda_2$ means that the agent 1 is more risk prudent than agent 2.

Set, as in (2), $\mathcal{A}^m = \{Q \in \mathcal{P} \mid F_Q \leq F_m\}$ and define as in (3)

$$\Lambda V@R(P) := -\sup \{ m \in \mathbb{R} \mid P \in \mathcal{A}^m \}.$$

Thus, in case of a random variable X

$$\Lambda V@R(P_X) := -\sup \left\{ m \in \mathbb{R} \mid \mathbb{P}(X \le x) \le \Lambda(x), \ \forall x \le m \right\}.$$

In particular it can be rewritten as

$$\Lambda V@R(P_X) = -\inf \left\{ x \in \mathbb{R} \mid \mathbb{P}(X \le x) > \Lambda(x) \right\}.$$

If both F_X and Λ are continuous $\Lambda V@R$ corresponds to the smallest intersection between the two curves.

In this section, we assume that

$$\lambda^M < 1$$
.

Besides its obvious financial motivation, this request implies that the corresponding family F_m is feasible and so $\Lambda V@R(P) > -\infty$ for all $P \in \mathcal{P}$.

The feasibility of the family $\{F_m\}$ implies that the $\Lambda V@R : \mathcal{P} \to \mathbb{R} \cup \{\infty\}$ is well defined, (Mon), (QCo) and (CfA) (or equivalently $\sigma(\mathcal{P}, C_b)$ -lsc) map.

Example 18 One possible simple choice of the function Λ is represented by the step function:

$$\Lambda(x) = \lambda^m \mathbf{1}_{(-\infty,\bar{x})}(x) + \lambda^M \mathbf{1}_{[\bar{x},+\infty)}(x)$$

The idea is that with a probability of λ^M we are accepting to loose at most \bar{x} . In this case we observe that:

$$\Lambda V@R(P) = \left\{ \begin{array}{ll} V@R_{\lambda^M}(P) & \text{if } V@R_{\lambda^m}(P) \leq -\bar{x} \\ V@R_{\lambda^m}(P) & \text{if } V@R_{\lambda^m}(P) > -\bar{x}. \end{array} \right.$$

Even though the $\Lambda V@R$ is continuous from above (Proposition 12 and 5), it may not be continuous from below, as this example shows. For instance take $\bar{x}=0$ and P_{X_n} induced by a sequence of uniformly distributed random variables $X_n \sim U\left[-\lambda^m - \frac{1}{n}, 1 - \lambda^m - \frac{1}{n}\right]$. We have $P_{X_n} \uparrow P_{U[-\lambda^m, 1 - \lambda^m]}$ but $\Lambda V@R(P_{X_n}) = -\frac{1}{n}$ for every n and $\Lambda V@R(P_{U[-\lambda^m, 1 - \lambda^m]}) = \lambda^M - \lambda^m$.

Remark 19 (i) If $\lambda^m = 0$ the domain of $\Lambda V@R(P)$ is not the entire convex set P. We have two possible cases

- $supp(\Lambda) = [x^*, +\infty)$: in this case $\Lambda V@R(P) = -\inf supp(F_P)$ for every $P \in \mathcal{P}$ such that $supp(F_P) \supset supp(\Lambda)$.
- $supp(\Lambda) = (-\infty, +\infty)$: in this case

In the case $\lim_{x\to-\infty}\frac{F_P(x)}{\Lambda(x)}=1$ both the previous behaviors might occur. (ii) In case that $\lambda^m>0$ then $\Lambda V@R(P)<+\infty$ for all $P\in\mathcal{P}$, so that $\Lambda V@R$ is finite valued.

We can prove a further structural property which is the counterpart of (TrI) for the $\Lambda V@R$. Let $\alpha \in \mathbb{R}$ any cash amount

$$\Lambda V @R(P_{X+\alpha}) = -\sup \{ m \mid \mathbb{P}(X + \alpha \leq x) \leq \Lambda(x), \ \forall x \leq m \}
= -\sup \{ m \mid \mathbb{P}(X \leq x - \alpha) \leq \Lambda(x), \ \forall x \leq m \}
= -\sup \{ m \mid \mathbb{P}(X \leq y) \leq \Lambda(y + \alpha), \ \forall y \leq m - \alpha \}
= -\sup \{ m + \alpha \mid \mathbb{P}(X \leq y) \leq \Lambda(y + \alpha), \ \forall y \leq m \}
= \Lambda^{\alpha} V @R(P_X) - \alpha$$

where $\Lambda^{\alpha}(x) = \Lambda(x + \alpha)$. We may conclude that if we add a sure positive (resp. negative) amount α to a risky position X then the risk decreases (resp. increases) of the value $-\alpha$, constrained to a lower (resp. higher) level of risk prudence described by $\Lambda^{\alpha} \geq \Lambda$ (resp. $\Lambda^{\alpha} \leq \Lambda$). For an arbitrary $P \in \mathcal{P}$ this property can be written as

$$\Lambda V@R(T_{\alpha}P) = \Lambda^{\alpha}V@R(P) - \alpha, \quad \forall \alpha \in \mathbb{R},$$

where $T_{\alpha}P(-\infty, x] = P(-\infty, x - \alpha]$.

Risk Seeking Agents Fix the *decreasing* right continuous function $\Lambda : \mathbb{R} \to [0,1]$, with inf $\Lambda < 1$. Similarly as above, we define

$$F_m(x) = \Lambda(x) \mathbf{1}_{(-\infty,m)}(x) + \mathbf{1}_{[m,+\infty)}(x)$$

and the (Mon), (QCo) and (CfA) map

$$\Lambda V@R(P) := -\sup\left\{m \in \mathbb{R} \mid F_P \leq F_m\right\} = -\sup\left\{m \in \mathbb{R} \mid \mathbb{P}(X \leq m) \leq \Lambda(m)\right\}.$$

In this case, for eventual huge losses we are allowing the highest level of probability. As in the previous example let $\alpha \in \mathbb{R}$ and notice that

$$\Lambda V @ R(P_{X+\alpha}) = \Lambda^{\alpha} V @ R(P_X) - \alpha.$$

where $\Lambda^{\alpha}(x) = \Lambda(x + \alpha)$. The property is exactly the same as in the former example but here the interpretation is slightly different. If we add a sure positive (resp. negative) amount α to a risky position X then the risk decreases (resp. increases) of the value $-\alpha$, constrained to a lower (resp. higher) level of risk seeking since $\Lambda^{\alpha} \leq \Lambda$ (resp. $\Lambda^{\alpha} \geq \Lambda$).

Remark 20 For a decreasing Λ , there is a simpler formulation - which will be used in Section 5.3 - of the $\Lambda V@R$ that is obtained replacing in F_m the function Λ with the line $\Lambda(m)$ for all x < m. Let

$$\tilde{F}_m(x) = \Lambda(m)\mathbf{1}_{(-\infty,m)}(x) + \mathbf{1}_{[m,+\infty)}(x).$$

This family is of the type (6) and is feasible, provided the function Λ is continuous. For a decreasing Λ , it is evident that

$$\Lambda V@R(P) = \Lambda \widetilde{V}@R(P) := -\sup \left\{ m \in \mathbb{R} \mid F_P \le \widetilde{F}_m \right\},$$

as the function Λ lies above the line $\Lambda(m)$ for all $x \leq m$.

5 Quasi-convex Duality

In literature we also find several results about the dual representation of law invariant risk measures. Kusuoka [15] contributed to the coherent case, while Frittelli and Rosazza [12] extended this result to the convex case. Jouini, Schachermayer and Touzi (2006) [14], in the convex case, and Svindland (2010) [16] in the quasi-convex case, showed that every law invariant risk measure is already weakly lower semicontinuous. Recently, Cerreia-Vioglio, Maccheroni, Marinacci and Montrucchio (2010) [7] provided a robust dual representation for law invariant quasi-convex risk measures, which has been extended to the dynamic case in [11].

In Sections 5.1 and 5.2 we will treat the general case of maps defined on \mathcal{P} , while in Section 5.3 we specialize these results to show the dual representation of maps associated to feasible families.

5.1 Reasons of the failure of the convex duality for Translation Invariant maps on \mathcal{P}

It is well known that the classical convex duality provided by the Fenchel-Moreau theorem guarantees the representation of convex and lower semicontinuous functions and therefore is very useful for the dual representation of convex

risk measures (see [13]). For any map $\Phi: \mathcal{P} \to \mathbb{R} \cup \{\infty\}$ let Φ^* be the convex conjugate:

 $\Phi^*(f) := \sup_{Q \in \mathcal{P}} \left\{ \int f dQ - \Phi(Q) \right\}, f \in C_b.$

Applying the fact that \mathcal{P} is a $\sigma(ca, C_b)$ closed convex subset of ca one can easily check that the following version of Fenchel-Moreau Theorem holds true for maps defined on \mathcal{P} .

Proposition 21 (Fenchel-Moreau) Suppose that $\Phi : \mathcal{P} \to \mathbb{R} \cup \{\infty\}$ is $\sigma(\mathcal{P}, C_b)$ —lsc and convex. If $Dom(\Phi) := \{Q \in \mathcal{P} \mid \Phi(Q) < +\infty\} \neq \emptyset$ then $Dom(\Phi^*) \neq \emptyset$ and

 $\Phi(Q) = \sup_{f \in C_b} \left\{ \int f dQ - \Phi^*(f) \right\}.$

One trivial example of a proper $\sigma(\mathcal{P}, C_b)$ —lsc and convex map on \mathcal{P} is given by $Q \to \int f dQ$, for some $f \in C_b$. But this map does not satisfy the (TrI) property. Indeed, we show that in the setting of risk measures defined on \mathcal{P} , weakly lower semicontinuity and convexity are incompatible with translation invariance.

Proposition 22 For any map $\Phi : \mathcal{P} \to \mathbb{R} \cup \{\infty\}$, if there exists a sequence $\{Q_n\}_n \subseteq \mathcal{P}$ such that $\underline{\lim}_n \Phi(Q_n) = -\infty$ then $Dom(\Phi^*) = \varnothing$.

Proof. For any $f \in C_b(\mathbb{R})$

$$\Phi^*(f) = \sup_{Q \in \mathcal{P}} \left\{ \int f dQ - \Phi(Q) \right\} \ge \int f d(Q_n) - \Phi(Q_n) \ge \inf_{x \in \mathbb{R}} f(x) - \Phi(Q_n),$$

which implies $\Phi^* = +\infty$.

From Propositions (21) and (22) we immediately obtain:

Corollary 23 Let $\Phi: \mathcal{P} \to \mathbb{R} \cup \{\infty\}$ be $\sigma(\mathcal{P}, C_b)$ -lsc, convex and not identically equal to $+\infty$. Then Φ is not (TrI), is not cash sup additive (i.e. it does not satisfy: $\Phi(T_mQ) \leq \Phi(Q) - m$) and $\underline{\lim}_n \Phi(\delta_n) \neq -\infty$. In particular, the certainty equivalent maps Φ_f defined in (1) can not be convex, as they are $\sigma(\mathcal{P}, C_b)$ -lsc and $\Phi_f(\delta_n) = -n$

5.2 The dual representation

As described in the Examples in Section 3, the $\Phi_{V \otimes R_{\lambda}}$ and Φ_{w} are proper, $\sigma(ca, C_b)$ —lsc, quasi-convex (Mon) and (TrI) maps $\Phi : \mathcal{P} \to \mathbb{R} \cup \{\infty\}$. Therefore, the negative result outlined in Corollary 23 for the convex case can not be true in the quasi-convex setting.

We recall that the seminal contribution to quasi-convex duality comes from the dual representation by Volle [18], which has been sharpened to a complete quasiconvex duality by Cerreia-Vioglio et al. [7] (case of M-spaces), Cerreia-Vioglio [6] (preferences over menus) and Drapeau and Kupper [8] (for general topological vector spaces).

Here we replicate this result and provide the dual representation of a $\sigma(\mathcal{P}, C_b)$ lsc quasi-convex maps defined on the entire set \mathcal{P} . The main difference is that our map Φ is defined on a convex subset of ca and not a vector space (a similar result can be found in [8] for convex sets). But since \mathcal{P} is $\sigma(ca, C_b)$ -closed, the first part of the proof will match very closely the one given by Volle. In order to achieve the dual representation of $\sigma(\mathcal{P}, C_b)$ lsc risk measures $\Phi: \mathcal{P} \to \mathbb{R} \cup \{\infty\}$ we will impose the monotonicity assumption of Φ and deduce that in the dual representation the supremum can be restricted to the set

$$C_b^- = \{ f \in C_b \mid f \text{ is decreasing} \}.$$

This is natural as the first order stochastic dominance implies (see Th. 2.70 [10]) that

$$C_b^- = \left\{ f \in C_b \mid Q, P \in \mathcal{P} \text{ and } P \preccurlyeq Q \Rightarrow \int f dQ \le \int f dP \right\}.$$
 (7)

Notice that differently from [8] the following proposition does not require the extension of the risk map to the entire space $ca(\mathbb{R})$. Once the representation is obtained the uniqueness of the dual function is a direct consequence of Theorem 2.19 in [8] as explained by Proposition 29.

Proposition 24 (i) Any $\sigma(\mathcal{P}, C_b)$ -lsc and quasi-convex functional $\Phi: \mathcal{P} \to \mathbb{R} \cup \{\infty\}$ can be represented as

$$\Phi(P) = \sup_{f \in C_b} R\left(\int f dP, f\right) \tag{8}$$

where $R: \mathbb{R} \times C_b \to \overline{\mathbb{R}}$ is defined by

$$R(t,f) := \inf_{Q \in \mathcal{P}} \left\{ \Phi(Q) \mid \int f dQ \ge t \right\}. \tag{9}$$

(ii) If in addition Φ is monotone then (8) holds with C_b replaced by C_b^- .

Proof. We will use the fact that $\sigma(\mathcal{P}, C_b)$ is the relativization of $\sigma(ca, C_b)$ to the set \mathcal{P} . In particular the lower level sets will be $\sigma(ca, C_b)$ -closed.

(i) By definition, for any $f \in C_b(\mathbb{R})$, $R(\int f dP, f) \leq \Phi(P)$ and therefore

$$\sup_{f \in C_b} R\left(\int f dP, f\right) \le \Phi(P), \quad P \in \mathcal{P}.$$

Fix any $P \in \mathcal{P}$ and take $\varepsilon \in \mathbb{R}$ such that $\varepsilon > 0$. Then P does not belong to the $\sigma(ca, C_b)$ -closed convex set

$$C_{\varepsilon} := \{ Q \in \mathcal{P} : \Phi(Q) \le \Phi(P) - \varepsilon \}$$

(if $\Phi(P) = +\infty$, replace the set $\mathcal{C}_{\varepsilon}$ with $\{Q \in \mathcal{P} : \Phi(Q) \leq M\}$, for any M). By the Hahn Banach theorem there exists a continuous linear functional that strongly separates P and $\mathcal{C}_{\varepsilon}$, i.e. there exists $\alpha \in \mathbb{R}$ and $f_{\varepsilon} \in C_b$ such that

$$\int f_{\varepsilon} dP > \alpha > \int f_{\varepsilon} dQ \quad \text{ for all } Q \in \mathcal{C}_{\varepsilon}.$$
 (10)

Hence:

$$\left\{ Q \in \mathcal{P} : \int f_{\varepsilon} dP \le \int f_{\varepsilon} dQ \right\} \subseteq (\mathcal{C}_{\varepsilon})^{C} = \left\{ Q \in \mathcal{P} : \Phi(Q) > \Phi(P) - \varepsilon \right\} \quad (11)$$

and

$$\Phi(P) \geq \sup_{f \in C_b} R\left(\int f dP, f\right) \geq R\left(\int f_{\varepsilon} dP, f_{\varepsilon}\right)$$

$$= \inf\left\{\Phi(Q) \mid Q \in \mathcal{P} \text{ such that } \int f_{\varepsilon} dP \leq \int f_{\varepsilon} dQ\right\}$$

$$\geq \inf\left\{\Phi(Q) \mid Q \in \mathcal{P} \text{ satisfying } \Phi(Q) > \Phi(P) - \varepsilon\right\} \geq \Phi(P) - \varepsilon(12)$$

(ii) We furthermore assume that Φ is monotone. As shown in (i), for every $\varepsilon > 0$ we find f_{ε} such that (10) holds true. We claim that there exists $g_{\varepsilon} \in C_b^-$ satisfying:

$$\int g_{\varepsilon} dP > \alpha > \int g_{\varepsilon} dQ \quad \text{ for all } Q \in \mathcal{C}_{\varepsilon}.$$
(13)

and then the above argument (in equations (10)-(12)) implies the thesis. We define the decreasing function

$$g_{\varepsilon}(x) =: \sup_{y > x} f_{\varepsilon}(y) \in C_b^-.$$

First case: suppose that $g_{\varepsilon}(x) = \sup_{x \in \mathbb{R}} f_{\varepsilon}(x) =: s$. In this case there exists a sequence of $\{x_n\}_{n \in \mathbb{N}} \subseteq \mathbb{R}$ such that $x_n \to +\infty$ and $f_{\varepsilon}(x_n) \to s$, as $n \to \infty$. Define

$$g_n(x) = s\mathbf{1}_{(-\infty,x_n]} + f_{\varepsilon}(x)\mathbf{1}_{(x_n,+\infty)}$$

and notice that $s \geq g_n \geq f_{\varepsilon}$ and $g_n \uparrow s$. For any $Q \in \mathcal{C}_{\varepsilon}$ we consider Q_n defined by $F_{Q_n}(x) = F_Q(x)\mathbf{1}_{[x_n,+\infty)}$. Since $Q \preccurlyeq Q_n$, monotonicity of Φ implies $Q_n \in \mathcal{C}_{\varepsilon}$. Notice that

$$\int g_n dQ - \int f_{\varepsilon} dQ_n = (s - f_{\varepsilon}(x_n))Q(-\infty, x_n] \stackrel{n \to +\infty}{\longrightarrow} 0, \text{ as } n \to \infty.$$
 (14)

From equation (10) we have

$$s \ge \int f_{\varepsilon} dP > \alpha > \int f_{\varepsilon} dQ_n \quad \text{ for all } n \in \mathbb{N}.$$
 (15)

Letting $\delta = s - \alpha > 0$ we obtain $s > \int f_{\varepsilon} dQ_n + \frac{\delta}{2}$. From (14), there exists $\overline{n} \in \mathbb{N}$ such that $0 \leq \int g_n dQ - \int f_{\varepsilon} dQ_n < \frac{\delta}{4}$ for every $n \geq \overline{n}$. Therefore $\forall n \geq \overline{n}$

$$s > \int f_{\varepsilon} dQ_n + \frac{\delta}{2} > \int g_n dQ - \frac{\delta}{4} + \frac{\delta}{2} = \int g_n dQ + \frac{\delta}{4}$$

and this leads to a contradiction since $g_n \uparrow s$. So the first case is excluded.

Second case: suppose that $g_{\varepsilon}(x) < s$ for any $x > \overline{x}$. As the function $g_{\varepsilon} \in C_b^-$ is decreasing, there will exists at most a countable sequence of intervals $\{A_n\}_{n \geq 0}$ on which g_{ε} is constant. Set $A_0 = (-\infty, b_0)$, $A_n = [a_n, b_n) \subset \mathbb{R}$ for $n \geq 1$. W.l.o.g. we suppose that $A_n \cap A_m = \emptyset$ for all $n \neq m$ (else, we paste together the sets) and $a_n < a_{n+1}$ for every $n \geq 1$. We stress that $f_{\varepsilon}(x) = g_{\varepsilon}(x)$ on $D =: \bigcap_{n \geq 0} A_n^C$. For every $Q \in \mathcal{C}_{\varepsilon}$ we define the probability \overline{Q} by its distribution function as

$$F_{\overline{Q}}(x) = F_Q(x)\mathbf{1}_D + \sum_{n\geq 1} F_Q(a_n)\mathbf{1}_{[a_n,b_n)}.$$

As before, $Q \preceq \overline{Q}$ and monotonicity of Φ implies $\overline{Q} \in \mathcal{C}_{\varepsilon}$. Moreover

$$\int g_{\varepsilon}dQ = \int_{D} f_{\varepsilon}dQ + f_{\varepsilon}(b_{0})Q(A_{0}) + \sum_{n>1} f_{\varepsilon}(a_{n})Q(A_{n}) = \int f_{\varepsilon}d\overline{Q}.$$

From $g_{\varepsilon} \geq f_{\varepsilon}$ and equation (10) we deduce

$$\int g_{\varepsilon}dP \ge \int f_{\varepsilon}dP > \alpha > \int f_{\varepsilon}d\overline{Q} = \int g_{\varepsilon}dQ \quad \text{ for all } Q \in \mathcal{C}_{\varepsilon}.$$

We reformulate the Proposition 24 and provide two dual representation of $\sigma(\mathcal{P}(\mathbb{R}), C_b)$ -lsc Risk Measure $\Phi: \mathcal{P}(\mathbb{R}) \to \mathbb{R} \cup \{\infty\}$ in terms of a supremum over a class of probabilistic scenarios. Let

$$\mathcal{P}_c(\mathbb{R}) = \{ Q \in \mathcal{P}(\mathbb{R}) \mid F_Q \text{ is continuous} \}.$$

Proposition 25 Any $\sigma(\mathcal{P}(\mathbb{R}), C_b)$ -lsc Risk Measure $\Phi : \mathcal{P}(\mathbb{R}) \to \mathbb{R} \cup \{\infty\}$ can be represented as

$$\Phi(P) = \sup_{Q \in \mathcal{P}_2(\mathbb{R})} R\left(-\int F_Q dP, -F_Q\right).$$

Proof. Notice that for every $f \in C_b^-$ which is constant we have $R(\int f dP, f) = \inf_{Q \in \mathcal{P}} \Phi(Q)$. Therefore we may assume w.l.o.g. that $f \in C_b^-$ is not constant. Then $g := \frac{f - f(+\infty)}{f(-\infty) - f(+\infty)} \in C_b^-$, inf g = 0, sup g = 1, and so: $g \in \{-F_Q \mid Q \in \mathcal{P}_c(\mathbb{R})\}$. In addition, since $\int f dQ \geq \int f dP$ iff $\int g dQ \geq \int g dP$ we obtain from (8) and ii) of Proposition 24

$$\Phi(P) = \sup_{f \in C_h^-} R\left(\int f dP, f\right) = \sup_{Q \in \mathcal{P}_c(\mathbb{R})} R\left(-\int F_Q dP, -F_Q\right).$$

Finally we state the dual representations for Risk Measures expressed either in terms of the dual function R as used by [7], or considering the left continuous version of R (see Lemma 27) in the formulation proposed by [8]. If $R: \mathbb{R} \times C_b(\mathbb{R}) \to \overline{\mathbb{R}}$, the left continuous version of $R(\cdot, f)$ is defined by:

$$R^{-}(t, f) := \sup \{ R(s, f) \mid s < t \}.$$
(16)

Proposition 26 Any $\sigma(\mathcal{P}(\mathbb{R}), C_b)$ -lsc Risk Measure $\Phi : \mathcal{P}(\mathbb{R}) \to \mathbb{R} \cup \{\infty\}$ can be represented as

$$\Phi(P) = \sup_{f \in C_b^-} R\left(\int f dP, f\right) = \sup_{f \in C_b^-} R^-\left(\int f dP, f\right). \tag{17}$$

The function $R^-(t, f)$ defined in (16) can be written as

$$R^{-}(t,f) = \inf \left\{ m \in \mathbb{R} \mid \gamma(m,f) \ge t \right\},\tag{18}$$

where $\gamma: \mathbb{R} \times C_b(\mathbb{R}) \to \overline{\mathbb{R}}$ is given by:

$$\gamma(m, f) := \sup_{Q \in \mathcal{P}} \left\{ \int f dQ \mid \Phi(Q) \le m \right\}, \ m \in \mathbb{R}.$$
 (19)

Proof. Notice that $R(\cdot, f)$ is increasing and $R(t, f) \geq R^{-}(t, f)$. If $f \in C_b^{-}$ then $P \leq Q \Rightarrow \int f dQ \leq \int f dP$. Therefore,

$$R^{-}\left(\int fdP, f\right) := \sup_{s < \int fdP} R(s, f) \ge \lim_{P_n \downarrow P} R(\int fdP_n, f).$$

From Proposition 24 (ii) we obtain:

$$\begin{split} \Phi(P) &= \sup_{f \in C_b^-} R\left(\int f dP, f\right) \geq \sup_{f \in C_b^-} R^-\left(\int f dP, f\right) \geq \sup_{f \in C_b^-} \lim_{P_n \downarrow P} R(\int f dP_n, f) \\ &= \lim_{P_n \downarrow P} \sup_{f \in C_b^-} R(\int f dP_n, f) = \lim_{P_n \downarrow P} \Phi(P_n) = \Phi(P). \end{split}$$

by (CfA). This proves (17). The second statement follows from the Lemma 27.

The following Lemma shows that the left continuous version of R is the left inverse of the function γ as defined in 19 (for the definition and the properties of the left inverse we refer to [10] Section A.3).

Lemma 27 Let Φ be any map $\Phi : \mathcal{P}(\mathbb{R}) \to \mathbb{R} \cup \{\infty\}$ and $R : \mathbb{R} \times C_b(\mathbb{R}) \to \overline{\mathbb{R}}$ be defined in (9). The left continuous version of $R(\cdot, f)$ can be written as:

$$R^{-}(t,f) := \sup \{ R(s,f) \mid s < t \} = \inf \{ m \in \mathbb{R} \mid \gamma(m,f) \ge t \},$$
 (20)

where $\gamma: \mathbb{R} \times C_b(\mathbb{R}) \to \overline{\mathbb{R}}$ is given in (19).

Proof. Let the RHS of equation (20) be denoted by

$$S(t,f) := \inf \{ m \in \mathbb{R} \mid \gamma(m,f) \ge t \}, \ (t,f) \in \mathbb{R} \times C_b(\mathbb{R}),$$

and note that $S(\cdot, f)$ is the left inverse of the increasing function $\gamma(\cdot, f)$ and therefore $S(\cdot, f)$ is left continuous.

Step I. To prove that $R^-(t, f) \ge S(t, f)$ it is sufficient to show that for all s < t we have:

$$R(s,f) \ge S(s,f),\tag{21}$$

Indeed, if (21) is true

$$R^{-}(t,f) = \sup_{s < t} R(s,f) \ge \sup_{s < t} S(s,f) = S(t,f),$$

as both R^- and S are left continuous in the first argument. Writing explicitly the inequality (21)

$$\inf_{Q\in\mathcal{P}}\left\{\Phi(Q)\mid\int fdQ\geq s\right\}\geq\inf\left\{m\in\mathbb{R}\mid\gamma(m,f)\geq s\right\}$$

and letting $Q \in \mathcal{P}$ satisfying $\int f dQ \geq s$, we see that it is sufficient to show the existence of $m \in \mathbb{R}$ such that $\gamma(m, f) \geq s$ and $m \leq \Phi(Q)$. If $\Phi(Q) = -\infty$ then $\gamma(m, f) \geq s$ for any m and therefore $S(s, f) = R(s, f) = -\infty$.

Suppose now that $\infty > \Phi(Q) > -\infty$ and define $m := \Phi(Q)$. As $\int f dQ \ge s$ we have:

$$\gamma(m,f) := \sup_{Q \in \mathcal{P}} \left\{ \int f dQ \mid \Phi(Q) \leq m \right\} \geq s$$

Then $m \in \mathbb{R}$ satisfies the required conditions.

Step II : To obtain $R^-(t,f) := \sup_{s < t} R(s,f) \le S(t,f)$ it is sufficient to prove that, for all s < t, $R(s,f) \le S(t,f)$, that is

$$\inf_{Q \in \mathcal{P}} \left\{ \Phi(Q) \mid \int f dQ \ge s \right\} \le \inf \left\{ m \in \mathbb{R} \mid \gamma(m, f) \ge t \right\}. \tag{22}$$

Fix any s < t and consider any $m \in \mathbb{R}$ such that $\gamma(m, f) \geq t$. By the definition of γ , for all $\varepsilon > 0$ there exists $Q_{\varepsilon} \in \mathcal{P}$ such that $\Phi(Q_{\varepsilon}) \leq m$ and $\int f dQ_{\varepsilon} > t - \varepsilon$. Take ε such that $0 < \varepsilon < t - s$. Then $\int f dQ_{\varepsilon} \geq s$ and $\Phi(Q_{\varepsilon}) \leq m$ and (22) follows. \blacksquare

Complete duality The complete duality in the class of quasi-convex monotone maps on vector spaces was first obtained by [5]. The following proposition is based on the complete duality proved in [8] for maps defined on convex sets and therefore the results in [8] apply very easily in our setting. In order to obtain the uniqueness of the dual function in the representation (17) we need to introduce the opportune class \mathcal{R}^{\max} . Recall that $\mathcal{P}(\mathbb{R})$ spans the space of countably additive signed measures on \mathbb{R} , namely $ca(\mathbb{R})$ and that the first stochastic order corresponds to the cone

$$\mathcal{K} = \{ \mu \in ca \mid \int f d\mu \ge 0 \,\forall \, f \in \mathcal{K}^{\circ} \} \subseteq ca_{+},$$

where $\mathcal{K}^{\circ} = -C_b^-$ are the non decreasing functions $f \in C_b$.

Definition 28 ([8]) We denote by \mathbb{R}^{\max} the class of functions $R: \mathbb{R} \times \mathcal{K}^{\circ} \to \overline{\mathbb{R}}$ such that: (i) R is non decreasing and left continuous in the first argument, (ii) R is jointly quasiconcave, (iii) $R(s, \lambda f) = R(\frac{s}{\lambda}, f)$ for every $f \in \mathcal{K}^{\circ}$, $s \in \mathbb{R}$ and $\lambda > 0$, (iv) $\lim_{s \to -\infty} R(s, f) = \lim_{s \to -\infty} R(s, g)$ for every $f, g \in \mathcal{K}^{\circ}$, (v) $R^+(s, f) = \inf_{s' > s} R(s', f)$, is upper semicontinuous in the second argument.

Proposition 29 Any $\sigma(\mathcal{P}(\mathbb{R}), C_b)$ -lsc Risk Measure $\Phi : \mathcal{P}(\mathbb{R}) \to \mathbb{R} \cup \{\infty\}$ can be represented as in 17. The function $R^-(t, f)$ given by 18 is unique in the class \mathcal{R}^{\max} .

Proof. According to Definition 2.13 in [8] a map $\Phi : \mathcal{P} \to \overline{R}$ is continuously extensible to ca if

$$\overline{\mathcal{A}^m + \mathcal{K}} \cap \mathcal{P} = \mathcal{A}^m$$

where \mathcal{A}^m is acceptance set of level m and \mathcal{K} is the ordering positive cone on ca. Observe that $\mu \in ca_+$ satisfies $\mu(E) \geq 0$ for every $E \in \mathcal{B}_{\mathbb{R}}$ so that $P + \mu \notin \mathcal{P}$ for $P \in \mathcal{A}^m$ and $\mu \in \mathcal{K}$ except if $\mu = 0$.

For this reason the lsc map Φ admits a lower semicontinuous extension to ca and then Theorem 2.19 in [8] applies and we get the uniqueness in the class $\mathcal{R}^{\max}_{\mathcal{P}}$ (see Definition 2.17 in [8]). In addition, $\mathcal{R}^{\max} = \mathcal{R}^{\max}_{\mathcal{P}}$ follows exactly by the same argument at the end of the proof of Proposition 3.5 [8]. Finally we notice that Lemma C.2 in [8] implies that $R^- \in \mathcal{R}^{\max}$ since $\gamma(m, f)$ is convex, positively homogeneous and lsc in the second argument.

5.3 Computation of the dual function

The following proposition is useful to compute the dual function $R^-(t, f)$ for the examples considered in this paper.

Proposition 30 Let $\{F_m\}_{m\in\mathbb{R}}$ be a feasible family and suppose in addition that, for every m, $F_m(x)$ is increasing in x and $\lim_{x\to+\infty} F_m(x) = 1$. The associated map $\Phi: \mathcal{P} \to \mathbb{R} \cup \{+\infty\}$ defined in (3) is well defined, (Mon), (Qco) and $\sigma(\mathcal{P}, C_b)$ -lsc and the representation (17) holds true with R^- given in (18) and

$$\gamma(m,f) = \int f dF_{-m} + F_{-m}(-\infty)f(-\infty). \tag{23}$$

Proof. From equations (2) and (4) we obtain:

$$\mathcal{A}^{-m} = \{ Q \in \mathcal{P}(\mathbb{R}) \mid F_Q \le F_{-m} \} = \{ Q \in \mathcal{P} \mid \Phi(Q) \le m \}$$

so that

$$\gamma(m,f) := \sup_{Q \in \mathcal{P}} \left\{ \int f dQ \mid \Phi(Q) \leq m \right\} = \sup_{Q \in \mathcal{P}} \left\{ \int f dQ \mid F_Q \leq F_{-m} \right\}.$$

Fix $m \in \mathbb{R}$, $f \in C_b^-$ and define the distribution function $F_{Q_n}(x) = F_{-m}(x)\mathbf{1}_{[-n,+\infty)}$ for every $n \in \mathbb{N}$. Obviously $F_{Q_n} \leq F_{-m}$, $Q_n \downarrow$ and, taking into account (7),

 $\int f dQ_n$ is increasing. For any $\varepsilon > 0$, let $Q^{\varepsilon} \in \mathcal{P}$ satisfy $F_{Q^{\varepsilon}} \leq F_{-m}$ and $\int f dQ^{\varepsilon} > \gamma(m,f) - \varepsilon$. Then: $F_{Q_n^{\varepsilon}}(x) := F_{Q^{\varepsilon}}(x)\mathbf{1}_{[-n,+\infty)} \uparrow F_{Q^{\varepsilon}}, F_{Q_n^{\varepsilon}} \leq F_{Q_n}$ and

 $\int f dQ_n \ge \int f dQ_n^{\varepsilon} \uparrow \int f dQ^{\varepsilon} > \gamma(m, f) - \varepsilon.$

We deduce that $\int f dQ_n \uparrow \gamma(m, f)$ and, since

$$\int f dQ_n = \int_{-n}^{+\infty} f dF_{-m} + F_{-m}(-n)f(-n),$$

we obtain (23).

Example 31 Computation of $\gamma(m, f)$ for the $\Lambda V@R$.

Let $m \in \mathbb{R}$ and $f \in C_b^-$. As $F_m(x) = \Lambda(x) \mathbf{1}_{(-\infty,m)}(x) + \mathbf{1}_{[m,+\infty)}(x)$, we compute from (23):

$$\gamma(m,f) = \int_{-\infty}^{-m} f d\Lambda + (1 - \Lambda(-m))f(-m) + \Lambda(-\infty)f(-\infty).$$
 (24)

We apply the integration by parts and deduce

$$\int_{-\infty}^{-m} \Lambda df = \Lambda(-m)f(-m) - \Lambda(-\infty)f(-\infty) - \int_{-\infty}^{-m} f d\Lambda.$$

We can now substitute in equation (24) and get:

$$\gamma(m,f) = f(-m) - \int_{-\infty}^{-m} \Lambda df = f(-\infty) + \int_{-\infty}^{-m} (1 - \Lambda) df, \qquad (25)$$

$$R^{-}(t,f) = -H_f^l(t - f(-\infty)),$$
 (26)

where H_f^l is the left inverse of the function: $m \to \int_{-\infty}^m (1 - \Lambda) df$.

As a particular case, we match the results obtained in [8] for the V@R and the Worst Case risk measure. Indeed, from (25) and (26) we get: $R^-(t, f) = -f^l\left(\frac{t-\lambda f(-\infty)}{1-\lambda}\right)$ if $\Lambda(x) = \lambda$; $R^-(t, f) = -f^l(t)$, if $\Lambda(x) = 0$, where f^l is the left inverse of f.

If Λ is decreasing we may use Remark 20 to derive a simpler formula for γ . Indeed, $\Lambda V@R(P) = \Lambda \widetilde{V}@R(P)$ where $\forall m \in \mathbb{R}$

$$\widetilde{F}_m(x) = \Lambda(m) \mathbf{1}_{(-\infty,m)}(x) + \mathbf{1}_{[m,+\infty)}(x)$$

and so from (25)

$$\gamma(m,f) = f(-\infty) + [1 - \Lambda(-m)] \int_{-\infty}^{-m} df = [1 - \Lambda(-m)] f(-m) + \Lambda(-m) f(-\infty).$$

References

- [1] ALIPRANTIS C.D., AND K.C. BORDER (2005): Infinite dimensional analysis, Springer, Berlin, 3rd edition.
- [2] ARTZNER, P., DELBAEN, F., EBER, J.M., AND D. HEATH (1999): Coherent measures of risk, *Math. Finance*, 4, 203–228.
- [3] BIAGINI, S., AND M. FRITTELLI (2009): On the extension of the Namioka-Klee theorem and on the Fatou property for risk measures, *In: Optimality* and risk: modern trends in mathematical finance, Eds: F. Delbaen, M. Rasonyi, Ch. Stricker, Springer, Berlin, 1–29.
- [4] Cherny, A., and D. Madan (2009): New measures for performance evaluation, *Review of Financial Studies*, 22, 2571-2606.
- [5] CERREIA-VIOGLIO, S., MACCHERONI, F., MARINACCI, M. AND MONTRUCCHIO, L. (2009) "Complete Monotone Quasiconcave Duality", forthcoming on *Math. Op. Res.*
- [6] Cerreia-Vioglio, S. (2009): Maxmin Expected Utility on a Subjective State Space: Convex Preferences under Risk, preprint.
- [7] CERREIA-VIOGLIO, S., MACCHERONI, F., MARINACCI, M., AND L. MON-TRUCCHIO (2011): Risk measures: rationality and diversification, *Mathe-matical Finance*, 21, 743-774.
- [8] Drapeau, S., and M. Kupper (2010): Risk preferences and their robust representation, preprint.
- [9] FENCHEL, W. (1949): On conjugate convex functions, Canadian Journal of Mathematics, 1, 73-77.
- [10] FÖLLMER, H., AND A. SCHIED (2004): Stochastic Finance. An introduction in discrete time, 2nd ed., de Gruyter Studies in Mathematics, 27.
- [11] Frittelli, M., and M. Maggis (2011): Dual representation of quasiconvex conditional maps, SIAM Jour Fin Math, 2, 357–382.
- [12] Frittelli, M., and E. Rosazza Gianin (2005): Law-invariant convex risk measures, *Advances in Mathematical Economics*, 7, 33-46.
- [13] FRITTELLI, M., AND E. ROSAZZA GIANIN (2002): Putting order in risk measures, *Journal of Banking & Finance*, 26(7), 1473-1486.
- [14] JOUINI, E., SCHACHERMAYER, W., AND N. TOUZI (2006): Law invariant risk measures have the Fatou property, *Advances in Mathem. Economics*, 9, 49-71.
- [15] Kusuoka, S. (2001): On law invariant coherent risk measures, *Advances in Mathematical Economics*, 3, Springer, Tokyo, 83-95.

- [16] SVINDLAND, G. (2010): Continuity Properties of Law-Invariant (Quasi-) Convex Risk Functions, *Math. and Financial Economics*, 39–43.
- [17] Shiryaev, A.N. (1995): *Probability*, Graduate Texts in Mathematics, Springer 2nd Edition.
- [18] Volle, M. (1998): Duality for the level sum of quasiconvex functions and applications, Control, Optimisation and Calculus of Variations, 3, 329-343.
- [19] Weber, S. (2006): Distribution-Invariant Risk Measures, Information, and Dynamic Consinstency, *Math. Finance*, 16(2), 419–441.