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Preface

We are delighted to introduce the proceedings of the ninth edition of the European
Alliance for Innovation (EAI) International Conference on Wireless Mobile Commu-
nication and Healthcare (MobiHealth). This conference brought together researchers,
developers and practitioners around the world who are leveraging and developing
mobile and wearable technology for health monitoring and management.

The technical program of MobiHealth 2020 consisted of 13 full papers from the
main conference and 10 full papers from two workshops on Medical Artificial Intel-
ligence and on Digital Healthcare Technologies for the Global South. The main con-
ference tracks were: Track 1 – Wearable Technologies; Track 2 – Health Telemetry;
Track 3 – Mobile Sensing and Assessment; and Track 4 - Machine Learning in eHealth
Applications. Aside from the high-quality technical paper presentations, the technical
program also featured two keynote speeches. The two keynote speakers were Prof. Pan
Hui from Hong Kong University of Science and Technology and Prof. Ali Hessami
from Vega Systems Ltd., UK

Coordination with the steering chairs, Imrich Chlamtac and James C. Lin, was
essential for the success of the conference. We sincerely appreciate their constant
support and guidance. It was also a great pleasure to work with such an excellent
organizing committee team for their hard work in organizing and supporting the
conference. In particular, the Technical Program Committee, led by our TPC Chair, Dr.
Xiang Su, completed the peer-review process of technical papers and made a
high-quality technical program. We are also grateful to the Conference Manager,
Kristina Petrovicova, for her support and to all the authors who submitted their papers
to the MobiHealth 2020 conference and workshops.

We strongly believe that the MobiHealth conference provides a good forum for all
researchers, developers and practitioners to discuss all scientific and technological
aspects that are relevant to mobile health systems. We also expect that future Mobi-
Health conferences will be as successful and stimulating, as indicated by the contri-
butions presented in this volume.

November 2020 Juan Ye
Michael O’Grady

Gabriele Civitarese
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Experiences in Designing a Mobile
Speech-Based Assessment Tool

for Neurological Diseases

Louis Daudet1(B), Christian Poellabauer1, and Sandra Schneider2

1 Department of Computer Science and Engineering, University of Notre Dame,
Notre Dame, USA

{ldaudet,cpoellab}@nd.edu
2 Department of Communicative Sciences and Disorders, Saint Mary’s College,

Notre Dame, USA
sschneider@saintmarys.edu

http://m-lab.cse.nd.edu/

Abstract. Mobile devices contain an increasing number of sensors,
many of which can be used for disease diagnosis and monitoring. Thus
along with the ease of access and use of mobile devices there is a trend
towards developing neurological tests onto mobile devices. Speech-based
approaches have shown particular promise in detection of neurological
conditions. However, designing such tools carries a number of challenges,
such as how to manage noise, delivering the instructions for the speech
based tasks, handling user error, and how to adapt the design to be acces-
sible to specific populations with Parkinson’s Disease and Amyotrophic
Lateral Sclerosis. This report discusses our experiences in the design of a
mobile-based application that assesses and monitors disease progression
using speech changes as a biomarker.

Keywords: Speech analysis · Portable diagnostics · Proof of concept ·
Experience report · Mobile health

1 Introduction

Neurodegeneration is the process through which the neurons and neuronal struc-
tures are compromised, hindering their proper functions, or even leading to their
death. This neurodegenerative process is the cause of many diseases such as
Alzheimer’s Disease, Huntington’s Disease, Parkinson’s Disease (PD) [1] and
Amyotrophic Lateral Sclerosis (ALS) [2]. Although there exist some treatments
for these diseases aimed at slowing down their progress or helping with their
symptoms [3,4], they remain incurable. As these diseases progress, patients
struggle with a variety of symptoms such as speech disorders, tremors, difficul-
ties with movement coordination, cognitive decline, and sensory issues [5–7]. An
estimated 10 million people live with PD [8], while ALS is thought to impact 6
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people out of 100 000. Furthermore, with the aging of the population worldwide,
the impact of these diseases is on the rise. For example, the United Nations pre-
dicts that, due to aging, the number of people with ALS worldwide is expected
to go up 69% between 2015 and 2040, going from about 223,000 to 377,000 peo-
ple [9]. Besides the tragic effects these diseases have on a human level, they also
have a significant financial impact. The worldwide cost of dementia alone, with
both PD and ALS being contributing diseases [10,11], is 614 billion dollars, or
1% of the world GDP [12].

There has been a trend towards mobile-based health assessments, as mobile
devices are often constantly with their users, but also featuring an increasing
array of sensors that can be used to extract valuable health data. In [13], the
authors present the various sensors and mobile developments made that can be
used by medical professionals to diagnose and monitor conditions such as asthma,
hypertension, or diabetes. Specifically, speech has been used in several mobile
based health assessment tools. The field of mobile health is finding new applica-
tions for all of these developments in mobile technologies, as shown in [14]. When
trying to develop mobile health applications, specific challenges need to be taken
into account. In [15], the authors list privacy concerns and usability as some of
the main difficulties to be addressed. With a traditional test done in a medical
setting, the privacy of the patients data is handled by the strict regulations and
policies in place. But with a mobile application, the data is being collected from
the patients’ devices, and needs to be stored and transmitted securely at all
times, adding to the complexity of device based assessments. Usability is also
complicated by the small screen sizes, the complex inputs, and the sometimes
slow interaction speeds of some lower end mobile devices. Similarly, in [16], the
authors considered several categories of challenges when designing mobile-based
health applications. For the application itself, the two main challenges were the
user interface (i.e., how to make sure that the layout of the graphical elements
help and not overwhelm the patients), and the design of the task (i.e., how to
handle interruptions such as phone calls, how to handle the test being performed
in different types of environments). They also noted that several challenges came
from the devices’ hardware, such as the screen size (i.e. how to be read by differ-
ent populations on smaller screens, how to account for variations in screen size),
the input (i.e. how to handle various types of input scheme), and the network
(i.e. how to deal with sometimes spotty or even nonexistent connectivity).

We created a mobile-based application designed to detect the presence of PD
and ALS using speech analysis. The application uses speech based tests, adapted
from existing speech language pathology tests, to collect speech samples from
participants. Using several metrics extracted from these speech samples, we then
developed models to identify features that would help with the classification of par-
ticipants with PD and ALS. As we designed and developed our application how-
ever, we met several challenges that we had to address, such as user prompts, noise
handling, data safety, speech sample capture, and user error. This paper describes
details of our application and the challenges we met when developing it.
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2 Related Work

There has been extensive research in speech features and using speech as a
biomarker to detect neurodegenerative diseases. In [17], the authors showed
that variation in the fundamental frequency (F0) could be used to differenti-
ate between healthy and PD patients. Moreover, in [18], the authors found that
changes in F0’s variability could lead to an early diagnosis of PD. In this lon-
gitudinal study, which followed a PD patient for eleven years, including seven
years pre-diagnosis, they were able to detect abnormal variability in F0 five years
before the diagnosis was made. The work in [19] also identified specific speech
metrics that are affected by PD. The authors showed that besides the variabil-
ity of fundamental frequency already discussed above, breathiness and asthenia
(weakness) were the two metrics most impacted by PD. These two metrics were
measured by subjective means using the GRBAS scale, an auditory-perceptual
evaluation method for hoarseness. The Diadochokinetic (DDK) rate and maxi-
mum phonation time, both measured objectively by a computer, were also found
to be different (shorter) in PD patients.

Similar to our project, in [20], the authors used a ‘quick vocal test’ to assess
which of the participants in their sample, 46 native speaking Czech, had PD.
Their vocal test was made up of three different parts: a sustained phonation
task, a DDK task, and a running speech task. Although they were able to get
a classification performance of 85%, they used eight metrics from the frequency
domain such as jitter, shimmer, and variability of fundamental frequency, to
reach that result with only 24 PD patients. This means an average of only three
participants per significant metrics, which is below the five to ten recommended
to avoid overfitting [21,22].

PD is not the only disease that has been shown to impact the production of
speech. In [23], the authors found that ALS affected the speech of the patient by
causing abnormal pitch (either too low or too high), limited pitch range, high
harmonics-to-noise ratios, and increased nasality, among others symptoms.

From these studies’ results, we were encouraged in our hypothesis that dif-
ferent neurodegenerative diseases impact the speech of the patients in specific
ways, thereby different speech metrics patterns could assist with the diagnosis of
specific neurological diseases. These related efforts on PD detection are different
from our system since for one they only rely on a subset of the speech-based tasks
contained in our application. They also limited their research to the detection
of PD while we have a broader approach that allows for the detection of various
neurodegenerative diseases.

3 Application Design

3.1 Overview and Workflow

Developed on iOS, our application is used to collect metadata and speech samples
from participants with neurodegenerative diseases PD and ALS, as they have
been shown to have a strong impact on speech [17,18,23]. This paper focuses on
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the design and functionality of the application itself, as well as the challenges
involved in them, up to the upload of the data to our servers. The analysis of
the data made on the servers is outside of the scope of this paper.

Our application consists of a practitioner questionnaire, which includes an
optional feedback form, for research purposes to assess the ease of using the
application, a participant questionnaire, and a series of speech-based tasks, and
an optional participant feedback form. The workflow of the application can be
seen in Fig. 1. The workflow is composed of four main steps, detailed below in
different subsections.

Fig. 1. The workflow of the mobile application

Step 1: The practitioner input/selection. The first screen of the application
is the list of first and last names of practitioners registered on the device for
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selection. It also has two buttons, one to upload the device’s data to our cloud
servers, and one to create a new practitioner profile. The profile creation page
asks for a for basic information (i.e. name, degree, institution), and has an option
for the practitioner to submit feedback back to us.

Step 2: The participant input/selection. The participant questionnaire
collects the participant’s personal and medical information. In order to access
the questionnaire, the participant first has to read through and agree to the
consent form for our study.

The personal information section consists of asking the participant their
name, gender, birth date, and native language. As for the practitioner, we hash
the first name, last name and birth date, to create a unique ID for the partici-
pant.

The age, gender, and native language are relevant when extracting metrics
from the speech samples. The questions about the native language and the
strength of the accent serve two purposes. For our initial data collection, it
allows us to exclude participants with an accent, as their accents would have
been an extra parameter that biased our model. With more data being collected
in the future for different accents, we will be able to create specific models
for people with different accents. We also ask if the participant has undergone
speech therapy of any kind, as it might impact the characteristics of the speech
recordings.

The medical information section asks if the participants have an hearing
impairment, so that we can assist them if they have difficulties hearing the
prompts from the speech based tasks. We also record what cognitive changes if
any, have been experienced by the participant, if the participant has been expe-
riencing any unusual movements, or if the participant has felt more emotional
or anxious than usual. We also ask if the participant have any problem with
their speech. These questions are there for us to see if there is any correlation
between the answers obtained from the participants about their self-assess well
being, and the metrics extracted from their speech samples.

Finally, we ask what type of disease has the participant has been diagnosed
with, and when. For the participants with PD, we also ask when did the partici-
pant took the last dose of their treatment. PD having a very regular medication
cycle, we want to show a correlated impact on the metrics extracted from the
speech samples, by collecting data from the same participants at different point
of their medication cycle.

Step 3: The speech-based tasks. The speech-based tasks constitute the core
of our application. Fourteen tasks were designed based on de facto standards
in the field of speech-language pathology. A summary of the speech based tasks
can be seen in the list below.
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– Vowel Tests

• Vowel ‘Ah’ with Timer
• Vowel ‘Ah’ without Timer
• Vowel ‘Eh’ with Timer
• Vowel ‘Eh’ without Timer

Participants with speech impairments will have trouble maintaining a constant
pitch or power throughout, or will exhibit vocal fry and breathiness. Two dif-
ferent vowels are being used, ‘ah’ and ‘eh’. We chose these tasks because they
have been shown to be a good indicator to detect jitter and shimmer [24,25],
and have been used in research to monitor the evolution of PD in patients [26].
Both the time and non timed version of the task are used, in order to see if a
difference can be seen in the way control, ALS and PD populations managed
running out of air while performing this task.

– DDK Rate

• Repetitions of monosyllabic words. (“Pa”/“Ta”/“Ka”) and Repetition of a
polysyllabic word. (“PaTaKa”) for 5 s intervals

Measure the Alternating Motion Rate (AMR) and Sequential Motion Rate
(SMR). The DDK rate is the number of iterations per second a participant
is able to produce correctly over a five second window. This permits the assess-
ment of oral motor skills by giving a measure of the participant’s ability to make
rapid speech movement using different parts of the mouth. This task has been
shown to capture differences in control, PD and ALS populations [19,27,28].

– Grandfather Passage

• Reading the grandfather passage

The text of the grandfather’s passage was designed to contain almost every
phoneme in the English language, thus allowing us to see whether the partici-
pants have some difficulties with specific phonemes. As an aside, the history of
this text is interesting in its own right [29]. This task has been used in the past
to detect acoustic characteristics in speech [30,31], and characteristics specific
of PD and Multiple Sclerosis (MS) patients [32].

– Monosyllabic Words & Increasing Syllabic Words

• List of easy words. (mom, Bob, peep, bib, tot, deed, kick, gag, fife, sis, zoos,
church, shush, lull, roar)

• Increased syllabic count task. (cat, catnip, catapult, catastrophe/please,
pleasing, pleasingly/thick, thicken, thickening)

Here, we test to see at which point, if any, the participants either struggle or
become unable to produce the correct word. We look for a “breakdown” in their
ability to sequence the words correctly in order to rule out a “motor planning”
issue versus a specific motor issue. This task was designed to assess the produc-
tion of every consonant and vowel in the English language [33–36].



Experiences in Designing a Mobile Speech-Based Assessment 9

– Picture Description

• Describing a picture presented on the screen

Checking the participant capacity to handle volitional speech, with the extra
cognitive load it entails to construct the sentences. A picture is chosen at random
from ten possible pictures, and the participants are asked to describe it using
any words of their choosing. With this, we are able to both measure the ease
of the participants to select and program words on their own, with the extra
stress it involves with word finding, semantics, syntax and pragmatic language
features. by measuring features such as the rate of word production, the size of
the dictionary used (number of different words), and the complexity of the words
chosen.

– Multisyllabic Words

• List of complex words. (participate, application, education, difficulty, con-
gratulations, possibility, mathematical, opportunity, statistical analysis,
Methodist episcopal church)

Can the participant handle the complex motor patterns required to go from the
front to the back of the mouth when saying these words.

– Sentences

• Sentences. (We saw several wild animals, My physician wrote out a prescrip-
tion, The municipal judge sentenced the criminal, The supermarket chain
shut down because of poor management, Much more money must be donated
to make this department succeed)

Can the participant program the whole sentence while handling the formation
of complex words that compose it. Part of the sentences used in this task were
designed by Dr. Julie Liss from Arizona State University. Her goal with these
sentences was to determine the type of dysarthria of participants based on rhyth-
micity of speech while uttering these sentences [37]. These sentences are: In this
famous coffee shop they serve the best doughnuts in town, The chairman decided
to pave over the shopping center garden, The standards committee met this
afternoon in an open meeting.

– Automatic Speech Production

• Iterate the days of the week
• Iterate the months of the year
• Count from 1 to 30

Test the participants’ automatic speech production, and their endurance in pro-
ducing speech. It is considered automatic speech, as opposed to volitional or
imitative speech, as the participants do not repeat the words like with the other
tasks so far, but do not have to truly think about the words they are saying
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either, like in the picture description task, since they are part of sequences that
are deeply ingrained into the participants’ minds for having used them since
childhood. The endurance part of the task comes from the length these tasks
have, especially the first one. With some diseases, such as ALS, producing speech
over such a long list of words in a row can be difficult.

3.2 Challenges in Design

We began data collection with a first version of the application for 28 days in
November 2015 before implementing an improved V2 of our application. With
this first version, a total of 1260 recordings have been made, corresponding to
103 min recorded, but with unfortunately 34% of these recordings which could
not be used. We identified challenges that were addressed in subsequent versions;
these challenges being discussed in the remainder of this paper.

User Handicap. The first issue we ran into was the difficulty for some partic-
ipants, particularly ALS ones, to perform all of the tasks. They often did not
have the endurance to go through all of the tests without having to take long
pauses to recuperate, In order to deal with this, we added the option to skip
tasks, and modified the tasks’ order. This order is designed to allow the ALS
patients to perform as many tasks as possible before they had to stop the testing.
The screen listing the speech based tasks can be seen in Fig. 2.

Fig. 2. The list of tasks after completion of a series
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User Prompts. Each task needs audible instructions to explain to the partici-
pants what they are to do. Using a text-to-speech software avoid introducing any
bias for participants that would try to mimic the speech patterns of a human
voice. However, text-to-speech voice was reported as confusing for a lot of partic-
ipants and had a clear negative impact on the application’s usage, as participants
did not understand the prompts. Instructions provided by a human voice are now
used, that we made as even toned and accented as possible.

For the sustained vowel task, the challenge is to have the participant under-
stand that the sound has to be sustained for a relatively long time. We displayed
a long ‘aaaaaaaaah’ across the device’s screen, and had a small arrow going
under its length in 5 s. However, not everyone understood exactly what sound
they were expected to make, which was solved by using audible prompts. Also,
many participants did not understand that they were to start when the arrow
under the text started moving nor were they able to know exactly how long the
task was going to run for, and had trouble managing their breath to maintain
voicing throughout. So a timer is now used, indicating how long the task is going
to run for, and how much of it is left at all times, as can be seen in Fig. 3.

Fig. 3. From left to right: timer for timed tasks (here, the sustained vowel), screen
while the participants listen to a word, screen when the participants repeat a word,
picture description task while device in portrait mode, picture description task when
device has been switched to landscape mode

For the DDK test, special care had to be taken, as here we needed the
application to explain what specific sounds to produce, and the fact that these
sounds needed to be produced as fast as possible, but not too fast that it hindered
the proper production of the expected sounds. The initial design would show the
words go across the screen, but for one, people would read ‘Pa’ several different
ways, and, more importantly, the participants would, try to match the speed of
the text on the screen rather than reaching their own maximum speed. Like in
the sustained vowel task, an audible prompt is now used to indicate the proper
pronunciation and a timer is now used to indicate how long remains on the test.

With this grandfather passage, the difficulty is to choose how to display the
text. The ability to choose the font, and potentially make the page scrollable
would introduce too much variables from participant to participant. So we chose
to instead use a fixed font that would be as big as possible as to fit the whole text
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on the screen. After testing this design, feedback from the practitioners taught
us that it would be easier for most participants if the font was a bit smaller and
instead the line spacing a bit bigger, so these modifications were integrated into
the application.

Clipping of the Recordings. Another challenge with the design of the speech-
based tasks was to deal with participants not being timed properly with the
application’s prompts, talking before the end of the instructions, or going to the
next task, or part of a task, as they are still completing the previous one. We
thought it would be best to make one recording per word or sentence, making
it easier to know what words contained each recordings. After the end of each
instruction, a new recording would start, and end when the participant pressed
the ‘next’ button that was on the screen. After some data collection, it became
clear that a lot of clipping was happening, from people that would start to talk
a little bit before the instruction’s recording was done, or tap the next button
while they were still talking. This lead to a lot of recordings either too clipped
for use, or empty all together. Out of all the recordings that are not usable, 42%
of them where due to this issue.

To correct for this, we had a two-fold approach. The first thing we did was to
add a color code to the ‘next’ button making it clear that we were only recording
between after the word or sentences had been said aloud by the application, and
before the press of the button when the participant is done repeating it. During
that time, the button at the center of the screen turns red and a red label indicate
that a recording is in progress, as can be seen in Fig. 3. We also changed the way
we record, now doing so continuously throughout the task, from beginning to end.
We also keep track of the times at which any events happen (end of instruction
sound file being played, button being tapped by user, etc.). With this, we are
able to know when in the sound file we can find the participant talking. To deal
with what clipping still happens in spite of the clearer color coding during the
task, we can also crop the sound file for each word or sentences a few 10s of a
second before and after the timing information recorded the participant to be
talking, insuring that we capture all of the speech sample.

User Error. Another big challenge was handling incorrect inputs from the
participants. As seen in Fig. 3, there are two buttons present at the upper right
corner of the screen during each task: ‘Skip’ and ‘Stop’. When pressing skip,
the practitioner signals that the task was either avoided altogether or that the
participant could not complete it. This allows for a task series to be completed
even by participant who do not have the capacities to go through all the tasks.
When pressing the stop button, the task currently being performed is canceled
and the application goes back to the list of tasks. The recordings for that task
is not saved, nor are the meta-data about the task, which thus remains as non-
taken on the screen with the list of tasks. When doing all the tasks in a row,
we added a transition screen in between tasks to redo a specific task without
having to stop the series. This screen gives the option, at the end of every task,
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to either proceed to the next one if all went well, or redo it if the first attempt
was not performed properly, without leaving the current series.

After a test series is completed, and all the tasks as marked as taken, the
practitioner can still, if needed, redo any of the task that might not have been
properly performed by the participant. The data previously collected for that
task would then be overwritten by the new recording. This way, the data from
tasks that needed redoing are not kept, keeping the data collected as clean as
possible. By default, the task series are automatically reset at the end of each
day, so that if a task series exists for the selected participant, and it has been
started on a day prior to the current one, this task series is closed and a new
one is created at the current time and date.

Data Handling. As our application is dealing with medical data, privacy and
security are of the utmost importance. It is imperative that the data be kept
secured on the device, as well as on the backend servers, and in transit from
the former to the later. On the device, the data is kept encrypted by iOS which
prevent the data to be accessed by anyone without the device’s password.

Initially, our application’s data was stored in flat text files. This was easy to
implement but made analysing the data complex as dedicated scripts had to be
written to query the data. Starting with V2 of the application, we now use a
SQLite database through iOS Core Data, allowing the data to be queried using
SQL.

To increase the security of the participant’s private information, we upload
the anonymous information from the participant on a different server than the
rest of the data collected. This allows for an extra layer of security: even if one
of the server were to be breached, the data of each server would not be useful
for an attacker without to data from the other as they would either get access
to a list of name with no associated information, or to completely anonymized
data. When uploading, the application first separate the anonymous information
from the participants (first and last name of the participants), together with the
unique ID generated for each participants. The anonymous data is then sent
through an encrypted connection to an AWS server. The rest of the data is sent,
still through an encrypted connection, to a different server hosted by the Center
for Research Computing (CRC) at Notre Dame. Both servers are located behind
firewalls to prevent unallowed access.

4 Conclusion and Future Work

Data has been recorded between November 2015 and March 2019. The V2 has
been implemented from December 2015 while V3 was used from August 2018.
A total of 70 individuals were tested, including control group, ALS suffering
individuals and Parkinsons suffering individuals, and team members testing the
application. Out of those 70 individuals we excluded all the tests and all bad
recordings, which let us with a total of 64 individuals having contributed usable
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recordings. Each individual has been recorded under a single version of the appli-
cation, none has tested different versions of the application. The average number
of recordings per participant is 26, while the average total recording of an indi-
vidual is almost 7 min. Of all 64 participants, 56% were men and 44% were
female, while the distribution per pathology can be seen in Fig. 4.

Fig. 4. Distribution of the participants per pathology

A total of 509 min of recordings have been made, out of them 446 min are
considered ‘good’, i.e. can be properly analysed. For most individuals all record-
ing was conducted within a single day, while it was organized in 2 or even 3 d
for around 20% of them.

To determine the quality of the recordings, we created a small iOS applica-
tion that allowed us to efficiently check each of the recordings manually. For each
recording, we could set a boolean to indicate if the recording could be used in
our analysis, and a comment to indicate why not (no sound, loud ambient noise,
participant did not understand the test...). With each version of the application,
the percentage of good recordings kept on going higher. Through this data col-
lection process, learning from our errors, we have been able to overcome each of
the challenges detailed in this paper. From more than a third of the recordings
not fit for analysis, we achieved to go under the 10% threshold with less than
8% of poor quality recordings in the current version of the application, which
we consider acceptable, as can be seen in Fig. 5. With each version, the incre-
mental improvements made allowed for the application to perform better. In its
current state, it is able to record more accurately, prompting the users clearly
and without introducing biases, collecting more metadata for a richer and easier
analysis of the recordings.
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Fig. 5. Proportion of bad recordings per version of the application

With the data that we have now collected, we are working on building statis-
tical and machine learning models to classify the recordings with high accuracy.
We will first work on extracting metrics from each of the recordings, both from
the time and frequency domain. In the time domain, these could be the number
of utterance per second for the DDK test, or the number of words per second,
total time per sentences, amount of time in between each words for the sen-
tences tests, and grandfather passage. These can be measured by using Sphinx
[38] to measure the start and end of each words in the tests. For the frequency
domain, a large array of metrics will be extracted using python and praat [39],
such as the shimmer, jitter, average pitch, variance in intensity, breathiness...
All these metrics will then serve as the basis for our modelling work to classify
each recording as control, PD or ALS. The work is currently in progress and will
be presented as part of a future paper.
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Abstract. A schizophrenia relapse has severe consequences for a
patient’s health, work, and sometimes even life safety. If an oncom-
ing relapse can be predicted on time, for example by detecting early
behavioral changes in patients, then interventions could be provided to
prevent the relapse. In this work, we investigated a machine learning
based schizophrenia relapse prediction model using mobile sensing data
to characterize behavioral features. A patient-independent model pro-
viding sequential predictions, closely representing the clinical deployment
scenario for relapse prediction, was evaluated. The model uses the mobile
sensing data from the recent four weeks to predict an oncoming relapse
in the next week. We used the behavioral rhythm features extracted
from daily templates of mobile sensing data, self-reported symptoms col-
lected via EMA (Ecological Momentary Assessment), and demographics
to compare different classifiers for the relapse prediction. Naive Bayes
based model gave the best results with an F2 score of 0.083 when eval-
uated in a dataset consisting of 63 schizophrenia patients, each mon-
itored for up to a year. The obtained F2 score, though low, is better
than the baseline performance of random classification (F2 score of 0.02
± 0.024). Thus, mobile sensing has predictive value for detecting an
oncoming relapse and needs further investigation to improve the current
performance. Towards that end, further feature engineering and model
personalization based on the behavioral idiosyncrasies of a patient could
be helpful.

Keywords: Mobile sensing · Ubiquitous computing · Schizophrenia ·
Relapse prediction

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2021

Published by Springer Nature Switzerland AG 2021. All Rights Reserved

J. Ye et al. (Eds.): MobiHealth 2020, LNICST 362, pp. 18–33, 2021.

https://doi.org/10.1007/978-3-030-70569-5_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-70569-5_2&domain=pdf
https://doi.org/10.1007/978-3-030-70569-5_2


Schizophrenia Relapse Prediction Using Mobile Sensing Behavioral Rhythms 19

1 Introduction

Schizophrenia is a chronic mental disorder affecting about 20 million people
worldwide [11]. Patients with schizophrenia perceive reality abnormally and
show disturbances in their thoughts and behaviors. Some of the associated
symptoms are delusions, hallucinations, disordered thinking, incoherent speech
(putting together words that do not make sense), disorganized motor functions,
social withdrawal, appearances of lack of emotions, etc. [1,10]. A patient with
schizophrenia is generally treated with antipsychotic drugs and psycho-social
counseling. These patients are treated as out-patients, in the general non-serious
cases, and they visit the clinic for routine mental health assessment. During the
visit, the patient’s symptoms are tracked and medications/therapies are adapted.
Questionnaires such as BPRS (Brief Psychiatric Rating Scale) [15] are used to
keep track of the symptoms. A patient with schizophrenia under a treatment reg-
imen might sometimes experience a relapse, an acute increase of schizophrenia
symptoms and degrading mental health. The routine clinical visits and BPRS
based assessments are meant to keep track of symptoms and prevent any likely
relapses. However, the clinical visits happen only every few months and a patient
might have a relapse in between the visits.

A relapse has severe consequences for both the patients and their caregivers
(e.g. their family), even endangering their lives in some cases. So it is important
to detect an oncoming relapse and provide timely interventions for prevention. It
might be possible to use mobile sensing to predict an oncoming relapse by detect-
ing behavioral and emotional changes associated with schizophrenia symptoms.
Mobile sensors like accelerometer, GPS, ambient light sensors, microphones, etc.
can capture various aspects of a person’s behavior. These can then be com-
plemented by questionnaires (e.g. Ecological Momentary Assessments - EMA),
delivered through a mobile application, to assess the person’s self-reported symp-
toms, behavior and feeling and build a relapse prediction model. Mobile sensing
would be a low-cost and scalable solution for relapse prediction compared to
other alternatives such as the pharmacological approach [12].

In this work, we investigated mobile sensing based schizophrenia relapse pre-
diction using mobile sensing. Relapse prediction is framed as a binary classifi-
cation problem, associating an upcoming period as relapse or non-relapse based
on the features observed in the current period. We extracted daily behavioral
rhythm based features from mobile sensing data, which was also effective in
predicting self-reported schizophrenia symptoms in our previous work [17], com-
plemented by self-reported symptoms collected through EMA and demographics
features, and evaluated different classifiers for relapse prediction. Daily template
based rhythm features were found to outperform feature sets proposed in pre-
vious works for relapse prediction. Further, our proposed model is a sequential
prediction model trained and evaluated in a patient-independent setting. Such
a relapse prediction model, closer to a clinical deployment solution, has not
been investigated in previous works. Our work establishes the basic feasibility of
using mobile sensing for schizophrenia relapse prediction and identifies related
challenges, to be addressed in future work. The paper is organized as follows.
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In Sect. 2, we present some of the related works on relapse prediction in the
context of schizophrenia and other mental disorders. In Sect. 3, the dataset and
methodology used for developing the relapse prediction model are discussed. This
is followed by Sect. 4 where we present the evaluation results of the developed
model. These results are discussed in Sect. 5 and we present our conclusions in
Sect. 6.

2 Related Work

Several previous works have investigated the prediction of relapses in the context
of mental disorders and substance addiction. The authors in [4] studied the
prediction of psychotic symptoms relapses based on the linguistic and behavioral
features inferred from the Facebook post. The prediction model was evaluated to
have a specificity of 0.71 in a study of 51 participants. The work thus showcased
the potential of behavior profiling for relapse prediction in the context of mental
disorders. In [9], the authors are aiming to use mobile sensing based features
such as sleep quality, sociability, mobility, and mood changes to predict the
relapse of depressive episodes. Mobile sensing and social behavior (online or
offline social behavior) have also been found to be helpful in predicting relapses
of substance addictions. The authors in [22] analyzed social media posts and
social network influences to predict the relapse of opioid usages. Similarly, the
authors in [5] discussed the relevance of several contextual information such
as sleep deprivation, affect, environment, and location, derivable from mobile
sensing, for predicting relapse of alcoholism.

Some earlier works have already investigated schizophrenia relapse prediction
based on mobile sensing. For example, the authors in [2] investigated the rela-
tion of schizophrenia relapse with mobility and behavioral features derived from
mobile sensing. In their study population of 17 patients, 5 patients had a relapse.
The authors analyzed the anomaly of mobility and sociability features in this
population and found increased incidences of an anomaly in weeks leading up to
relapse. The anomaly was defined as the deviation of features from an expected
pattern. Though this work is one of the pioneering works on mobile sensing
based schizophrenia relapse prediction, generating novel qualitative insights, the
authors did not develop any prediction model probably due to the limited size of
the study population. The authors in [6] also explored the usage of mobile sens-
ing based features for schizophrenia relapse prediction. Sociability features based
on outgoing calls and messages were found to be significantly different before a
relapse, compared to a non-relapse period. This insight is helpful to predict an
oncoming relapse. However, the others only provided qualitative analysis and no
predictive models were evaluated. In contrast to these two earlier works which
offered qualitative analysis only, we proposed and evaluated relapse prediction
models in our work.
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Relapse prediction models have been investigated in a previous work of
[18,19]. The authors evaluated the potential of mobile sensing based features
to predict an oncoming relapse. The authors also framed relapse prediction as
a binary classification task, classifying an oncoming period as either relapse or
non-relapse. Mobility, sociability, and EMA features were computed for each
epoch of the day (morning, afternoon, evening, and night) and features from
N days (comparing for different values of N) were used to predict if there was
going to be a relapse in the next day. Several machine learning models were
evaluated for relapse prediction. Using 3-fold cross-validation, SVM (rbf kernel)
was found to give the best performance with an F1-score of 0.27. The study
population consisted of 61 patients with schizophrenia where 27 instances of
relapse were reported in 20 patients. We used the same dataset for our evalua-
tions and build upon the work of the authors to generate further insights on a
mobile sensing based relapse prediction model. The authors in [18] established
that the mobile sensing based behavioral features indeed have an association
with an upcoming relapse. However, there was likely a look-ahead bias in their
evaluations due to k-fold random cross-validation that was used. Within k-fold
cross-validation, mobile sensing data from the future is also used for building
a prediction model for a given test patient, while the model is being evaluated
using the currently observed data. In contrast to this approach, we developed a
sequential relapse prediction model evaluated in a patient-independent setting.
The relation between current/past mobile sensing data and future relapses is
first modeled from the patients in the training set only. The trained model is
then used to predict, sequentially over time, if the mobile sensing data from
the patient in the test set indicate an oncoming relapse. This approach of mod-
eling brings the evaluation closer to clinical deployment. Further, unlike the
work in [18], we do not impose any knowledge of relapse location to create the
feature extraction/evaluation windows. Its implication is that a sliding window
approach to relapse prediction has to be used, leading to a higher number of
feature extraction windows to be evaluated. Naturally, this leads to a higher
chance of incurring false positives during prediction and reduced classification
performance. Nonetheless, such an evaluation would better reflect a real clini-
cal deployment scenario. Finally, we used the daily behavioral rhythm features
extracted from the daily template, composed of the hourly averages of the mobile
sensing data, to characterize the behavioral patterns of a patient. Thus, finer
temporal resolution is retained for feature extraction compared to the work of
[18] where features were extracted for each of the 6-hour periods of the day
(6 am–12 pm, 12 pm–6 pm, 6 pm–12 am, and 12 am–6 am).

3 Methods

In this section, we describe the dataset and methodology that has been used to
develop our proposed relapse prediction model.
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3.1 Dataset

We used the dataset from the CrossCheck project [6,19–21] (available at
https://www.kaggle.com/dartweichen/crosscheck) for the development and eval-
uation of a relapse prediction model. The dataset consists of data from a clinical
trial where 75 schizophrenia patients were monitored for up to a year with the
Crosscheck system [3] continuously collecting passive sensing data from patients’
smartphones. The number of patients and the monitoring period are significantly
larger than those in previous works on schizophrenia patient monitoring [2]. The
data collected were: accelerometer, light levels, sound levels, GPS, and call/sms
log. Further, the Crosscheck system also routinely obtained self-assessments from
patients with EMA (Ecological Momentary Assessment) [16]. These EMA, which
were obtained up to three times in a week, consisted of 10 questions to assess
patients’ current emotional and behavioral state. The questions asked were, for
instance, Have you been feeling calm?, Have you been social? etc. Patients could
answer the EMA questions with four options: Not at all, A little, Moderately,
Extremely. EMA obtained at a low frequency, e.g. every few days only, makes
it less burdensome for the patients. In the dataset, data from 63 patients were
made available for analysis. The mean age and education years of these patients
were: 37.2 years (min: 18 years, max: 65 years) and 9.4 years (min: 5 years, max:
14 years) respectively. Among the 63 patients, 20 patients had a relapse and
there were 27 instances of relapse in total (some patients had multiple relapses)
as annotated by clinical assessors [18,19].

3.2 Relapse Prediction Model

We developed machine learning models that can predict if there is an oncoming
relapse in the next week (prediction window) based on the mobile sensing data
from recent 4 weeks (feature extraction window). A sliding window with a stride
of 1 week is used for feature extraction, thus obtaining a sequential prediction
for each week of monitoring. This approach of relapse prediction is shown in
Fig. 1. We trained and evaluated the model in a patient-independent setting,
using leave-one-patient-out cross-validation. The features that were used for our
relapse prediction model are described next.

Fig. 1. Relapse prediction approach in our model. Features are extracted from 4 weeks
of data to predict an oncoming relapse in the next week. A prediction for each week is
produced with a sliding window of stride length 1week.

https://www.kaggle.com/dartweichen/crosscheck
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3.3 Features

A summary of all the features extracted from the daily template (composed
of hourly averages) of mobile sensing data, EMA, and demographics data are
shown in Table 1. In this section, we describe how these different features are
extracted.

Table 1. Different features extracted from the mobile sensing, EMA, and demographics
for relapse prediction. Features are extracted from six mobile sensing signal using their
daily template representation and 10 items of the EMA.

Daily Rhythm features

Mean daily template (mDT) features: mean, standard deviation, maximum,
range, skewness, kurtosis

Standard deviation template (sDT) features: mean

Absolute difference between mDT and mxDT: maximum

Distance between normalized mDT(current) and mDT(previous)

Weighted distance between normalized mDT(current) and mDT(previous)

Distance between normlized mxDT(current) and mDT(previous)

Daily averages: mean, standard deviation

EMA features

EMA item values: mean, standard deviation

Demographics

Age, Education years

Daily Rhythm Features. Six mobile sensing signals, obtained continuously
throughout the day, were derived from the dataset for daily template based
rhythm feature extraction. The signals derived were: accelerometer magnitude
(magnitude from 3-axis accelerometer signal recordings), (ambient) light levels,
distance traveled (from GPS), call duration (from call log), sound levels, and
conversation duration. These signals were derived from the raw mobile sensor
recordings as in [18]. We obtained a daily template for each of the mobile sens-
ing signals by computing the hourly averages of the signal in a given day of
monitoring (thus the template consists of 24 points corresponding to each hour
of the day). The templates capture daily rhythmic behaviors which are relevant
for monitoring behavioral changes in schizophrenia patients [17]. An example
of a daily template obtained for the light level signal is shown in Fig. 2. Five
categories of features were extracted from the daily templates of mobile sensing
signals.
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Fig. 2. An example showing the daily template for the ambient light levels in two
consecutive days, obtained from the hourly averages of the light levels recorded from
the smartphone of a patient for the given days. Daily templates were obtained for six
different signal modalities available: accelerometer magnitude, light levels, distance,
conversation, sound levels, and call duration. These templates were then characterized
to obtain daily template features used for relapse prediction.

(i) Mean daily template features: Since we used a feature extraction window of
4 weeks, there are 28 daily templates of each of the mobile sensing signals
in a given feature extraction window. The daily templates of a mobile
sensing signal across the 4 weeks were averaged to obtain the mean daily
template (mDT). An example is shown in Fig. 3. The obtained mDT was
then characterized by six statistical features: mean, maximum, standard
deviation, range, skewness, and kurtosis.

(ii) Deviation daily template features: Just like the mean daily template which
was obtained by averaging the 28 daily templates in a feature extraction
window, deviation daily template (dDT) was obtained by taking the stan-
dard deviation of the daily templates (deviation of each of the points in the
template) across the 28 days, for each patient. The mean of the obtained
dDT was then extracted as a feature to characterize the signal variability
in a given feature extraction window.

(iii) Maximum daily template features: Maximum daily template (mxDT) was
obtained similarly as mDT and dDT by taking the maximum of the hourly
average points across 28 days in the daily templates, within a feature
extraction window. For computing features from mxDT, the difference
between mDT and mxDT was obtained and the maximum absolute dif-
ference (maxDiff = max(|mDT − mxDT |)) was extracted as a feature
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Fig. 3. Mean daily template obtained by averaging the daily templates of the days
within a feature extraction window.

characterizing the maximum deviation from the mean in a given feature
extraction window.

(iv) Template distance features: To characterize the changes between successive
feature extraction windows, we computed features based on the distance
between the templates for the current and the previous feature extrac-
tion window. In particular, distance based on mDT and mxDT were used.
First, we normalized mDT and mxDT of a feature extraction window with
their respective maximum value. Then the distance between the normalized
mDTs (mDT for the current and the previous feature extraction window)
was computed as a feature with:

distmDT =
24∑

i=1

((mDTnorm(curr)[i] − mDTnorm(prev)[i])2)

A weighted version of distmDT , considering the points in the template
between 9 AM–9 PM only, was also extracted as a feature to characterize
the differences seen in the main part of the day. The weighted distance was
computed as:

wdistmDT =
21∑

i=9

((mDTnorm(curr)[i] − mDTnorm(prev)[i])2)

The mxDT based distance feature was computed between the normalized
mxDT and mDT as:

distmxDT =
24∑

i=1

((mxDTnorm(curr)[i] − mDTnorm(prev)[i])2)
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(v) Signal mean and variability: The daily template (Fig. 2) consists of hourly
averaged values of mobile sensing signal modalities for each day. Daily
averages for each mobile sensing signal can be estimated by taking the
average of the points in the daily template. From these daily averages in a
given feature extraction window, mean and variability (standard deviation)
of a mobile sensing signal were computed as features.

EMA and Demographics Features. Besides the daily template-based behav-
ioral rhythm features extracted from the mobile sensing signals, we also com-
puted features from the 10-item EMA data (Sect. 3.1) in a given feature extrac-
tion window. For each of the EMA items, we computed its mean and standard
deviation within the window as features. Thus a total of 20 features are extracted
from the EMA data. Behavioral features and relapse characteristics might also
be dependent on the demographics (e.g. age group of a patient). To allow for
the implicit personalization of the relapse prediction model, we included the age
of the patient and their year of education (which could be a surrogate for their
work type) as demographic features. These demographic features (dimension 2)
were appended alongside the EMA features (dimension 20) and daily template
features (dimension 78) for each of the feature extraction window to characterize
the behavioral patterns in a given window.

3.4 Classification

Dataset Size. With our feature extraction and prediction window sizes (Sect.
3.2), we obtained a total of 2386 feature extraction windows from the entire
dataset. Of these, 23 windows were labeled as preceding (by a week) an incidence
of relapse. Some of the relapse incidents got excluded from the analysis as they
were too early in the monitoring period or there was no monitoring data around
the relapse dates. When a feature extraction window was identified as preceding
a relapse, then the next feature extraction window was obtained after a cool-
off period of 28 days (similar to the cool-off period concept used in [18]). This
was done to prevent any feature extraction window from being corrupted by
monitoring data during the actual relapse which might include hospitalization
or other interventions.

Model Validation. We used leave-one-patient-out cross-validation for the val-
idation of the relapse prediction model. Data from all the patients, except from
one (hold-out set), was used to train a classifier for relapse prediction. The
trained model was then evaluated using the data from the hold-out patient.
This process was repeated with a different patient in the hold out set every
time. Leave-one-patient-out for model validation reflects a clinical deployment
scenario where a trained model is expected to provide predictions for a new
unseen patient. The trained model could be adapted for the new patient with
different model personalization strategies.
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Classifiers. As our dataset size is fairly small, a simple classifier could be more
suited for the classification task. Therefore we chose to evaluate Naive Bayes
based classification for relapse prediction. We also evaluated other classifiers
for comparison. In particular, we evaluated Balanced Random Forest (BRF) [8]
and EasyEnsemble (EE) classifier [14]. These classifiers were selected since they
are suited for learning in an imbalanced dataset (The ratio of relapse to non-
relapse is ∼1:100 in our classification task and is thus imbalanced). Isolation
Forest (IF) [13], a one-class classifier commonly used for outlier detection, was
also evaluated. In the IF based classification, the relapse class was treated as
the outlier class. The number of trees for BRF, EE, and IF was empirically set
to 51, 101, and 101 respectively. We also evaluated a classification baseline by
randomly predicting relapse or non-relapse for each week of prediction in the
test set (within the leave-one-patient-out cross-validation setting). The ratio of
relapse to non-relapse in these random predictions was matched to the ratio
in the training set. The random predictions for 1000 independent runs were
averaged to obtain the baseline results.

Feature Transformation: There are different flavors of Naive Bayes classifier,
each imposing an assumption on the distribution of the underlying features. We
used the Categorical Naive Bayes model since features can be easily transformed
to be categorical with simple transformations. We transformed each of the fea-
tures extracted (Sect. 3.3) into 15 categories (empirically chosen) based on the
bin membership of each feature values in its histogram. The histogram is con-
structed from the training data only. These transformed features were then used
in a categorical Naive Bayes classification model. The categorization of features
quantizes the behavioral patterns and relapses could be linked as a shift in the
categorized levels. Feature transformation with categorization was found to be
beneficial (better classification performance) for use with the other classifiers
considered (BRF, EE, and IF). Thus we employed feature transformation in the
classification pipeline irrespective of the classifier used.

Feature Selection: Since we extracted a large number of features and our
dataset size is relatively small, we evaluated the classification pipeline with a
patient-specific feature selection strategy. A training sub-sample, consisting of
all the data points labeled as relapse in the training set and N non-relapse data
points from the training set patients closest in age to the patient in the test set,
is selected. From this training sub-sample, M top features are identified. We used
mutual information based criterion between features and the target label to select
the top M features. The machine learning model for relapse prediction was then
trained using these selected M features only. In our leave-one-patient-out cross-
validation, different feature sets would be automatically selected depending upon
the patient currently in the test set. The value of N was set to 100 (so that non-
relapse data from at least two patients are included in the training subset) and M
was set to 5 (which gave the best performance from the considered values: 3, 5,
10, 15, and 20). The underlying hypothesis for the age-based training sub-sample
creation is that the patients from a similar age group would have similarities in
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their behavior and thus the feature-target relations would translate within the
age groups.

3.5 Evaluation Metric

We evaluated the relapse prediction model using F2 score metric which is defined
as:

F2 =
5 ∗ precision ∗ recall

4 ∗ precision + recall

where precision = TP
TP+FP and recall = TP

TP+FN (TP: Number of True positives,
FP: Number of False positives, FN: Number of False Negatives). F2 score gives
higher priority to recall compared to precision. In the context of the relapse pre-
diction task, this translates to higher importance assigned for correctly predict-
ing an oncoming relapse which is more important than the associated trade-off
of avoiding a false alarm.

4 Results

Classifier Comparison. We evaluated the classification performance with dif-
ferent machine learning models using leave-one-patient-out cross-validation. The
obtained results are given in Table 2. Naive Bayes based classification gives the
best classification performance with an F2 score of 0.083.

Table 2. Comparison of different classifiers for relapse prediction models. Features
from the daily template of mobile signal data, EMA, and demographics are used for
the classifier.

Method F2-score Precision Recall

Naive Bayes 0.083 0.22 0.086

Balanced Random Forest 0.042 0.01 0.47

EasyEnsemble 0.034 0.007 0.43

Isolation Forests 0.045 0.01 0.39

Random classification baseline 0.020 ± 0.024 0.010 ± 0.012 0.026 ± 0.032

Feature Comparison. In our work, we computed daily template based rhythm
features to characterize behavioral patterns and changes. We compared the clas-
sification performance obtained with this feature set to that obtained using the
feature set from [18] where features are computed with lower temporal resolu-
tion. To optimize the classification pipeline using the feature set from [18], we
selected the best parameter (training subset size for feature selection N, and the
number of selected features M) using grid search. Similarly, the demographic fea-
tures were also added as it improved the classification performance. The obtained
results using Naive Bayes model, which provided the best performance in both
of the feature sets, are given in Table 3.
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Table 3. Comparison of feature sets for the relapse prediction task. The features
based on the daily templates, where the hourly averages of the mobile sensing signal
are retained, are compared with the features from [18] where features are computed
with a lower temporal resolution (6 h).

Feature set F2-score

Daily template based, EMA, demographics (this work) 0.083

Feature set from [18] 0.065

Modality Comparison. The template features were obtained from 6 mobile
sensor signals to characterize the behavioral patterns, and the EMA based fea-
tures were extracted to further characterize the emotional state of the patient.
We analyzed the classification performance obtained with the individual modal-
ities (feature set from 6 mobile sensor signals and EMA). The demographic
information is also included in the feature set for this analysis and we used
the Naive Bayes based classification pipeline. The obtained result is given in
Fig. 4, showing the top three modalities with the highest classification perfor-
mance. Distance traveled was found to provide the best classification perfor-
mance, followed by the EMA and the call duration modalities. An example of
the call duration time-series for a patient who had three instances of relapse is
shown in Fig. 5. Increased call duration activity are seen closer to the relapse
dates.

Fig. 4. F2 score obtained with different signal modalities (top 3 modalities) for the
relapse prediction task. Distance traveled (dist) is found to be most relevant for relapse
prediction followed by EMA and call duration (call).

Impact of Feature Selection and Demographics Features. We imple-
mented our relapse prediction model using mutual information based feature
selection. We evaluated the performance of the Naive Bayes based classifier when
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Fig. 5. An example showing the call duration time-series for a patient who has had
three relapses. Increased activity in call duration signal is seen near the relapse dates,
though there are other similar activities in few non-relapse periods too.

no feature selection is used. Similarly, we also evaluated the classification pipeline
without the demographic features, to quantify the impact of including those fea-
tures. The obtained result is given in Table 4. Both the feature selection and
inclusion of demographic features were found to be advantageous for the classi-
fication performance.

Table 4. Comparison of different evaluation setting to assess the impact of feature
selection and demographics feature on classification performance.

Evaluation setting F2-score

All features, Feature selection, Naive Bayes model 0.083

All features, No feature selection, Naive Bayes model 0.036

All except demographic features, Feature selection, Naive Bayes model 0.058

5 Discussion

We investigated mobile sensing based schizophrenia relapse prediction using
patient-independent evaluation in this work. Our implementation of the relapse
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prediction model is closer to clinical deployment and builds upon the insights
from the previous work in [18] where mobile sensing based features were found
to be associated with an upcoming relapse. We used features extracted from
the daily template of the mobile sensing data, EMA, and demographics. The
mobile sensing data and EMA characterized behavioral and emotional rhythmic
patterns while the demographics information helped to personalize the predic-
tion models. We obtained an F2 score of 0.083 with Naive Bayes based classifier
for relapse prediction. Though this classification performance is low, it is still
much higher than the random classification baseline (F2 score of 0.02). Thus,
mobile sensing data has predictive value for schizophrenia relapse prediction even
when employed in a patient-independent sequential prediction model, close to a
clinical deployment scenario. Nonetheless, the lower F2 score obtained indicates
that the relapse prediction task based on mobile sensing is difficult, and more
improvements need to be done. Towards this effort, we will investigate more dis-
criminatory features derived from the mobile sensing data (e.g. novel mobility
features as presented in [7]) in future work.

We evaluated different classifiers for the relapse prediction task. The simpler
Naive Bayes based classifier outperformed relatively complex Balanced Random
Forest and EasyEnsemble classifiers (Table 2). This could be because our dataset
size is small and complex models had difficulties generalizing. We also evaluated
a one-class classification (outlier detection) technique to detect relapses using
Isolation Forests. Though the obtained performance was better than the random
classification baseline, one-class classifier resulted in a slightly lower F2 score
than those obtained with the two-class Naive Bayes classifier. This shows that
supervised classification is helpful for relapse prediction, probably because the
dataset size is not large enough for unsupervised approaches to automatically
learn a good generalized model of the non-relapse cases.

In our work, we used daily templates composed of hourly averages of mobile
sensing data to extract features characterizing behavioral patterns. This feature
set was found to provide better performance when compared to the features from
[18] where features were computed per 6-hour epochs of the day (Table 3). A
higher temporal resolution might be better to characterize finer nuances in the
behavioral patterns, leading to the higher classification performance obtained.
Similarly, individual signal modalities were found to provide lower classification
performance (Fig. 4) compared to the classification performance obtained with
multiple modalities combined together. This shows that a multi-modal assess-
ment of behavior is important for the relapse prediction task. With a single
modality, the observed behavioral pattern of an individual might be noisy and
incomplete. However, with the inclusion of multiple modalities, the resulting fea-
ture dimension is also large. When the dataset is small, as in our case, feature
selection is important to reduce the feature dimension (Table 4). In our relapse
prediction model, the feature selection aids for model personalization since the
selected features are made dependent on the age group. Further, demographic
features are also directly provided as input in the model for implicit person-
alization. Both of these approaches were found to be helpful for classification
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(Table 4). Other feature personalization approaches need to be investigated in
future work. Behavioral patterns before a relapse might manifest differently in
different patients. A relapse prediction model that can adaptively personalize to
the best signal modalities for a given patient, in a given period, might lead to
improved classification performance.

6 Conclusion

Mobile sensing could be used for detecting behavioral and emotional changes
associated with an oncoming schizophrenia relapse. In this work, we developed
a relapse prediction model based on the features extracted from the daily tem-
plate of the mobile sensing data, EMA, and demographics. Our relapse predic-
tion model, trained in a patient-independent setting and providing a sequential
relapse prediction, is closer to a clinical deployment scenario. The developed
model was found to give much better performance than a random classifica-
tion baseline. Thus, we conclude that the behavioral and emotional changes
detected using mobile sensing have predictive value for detecting an oncom-
ing schizophrenia relapse. The classification performance currently obtained for
relapse prediction is still low and much room for improvement exists. Relapse
prediction task is particularly challenging due to the limited instances of relapse
incidences which makes it difficult to develop a generalized model that works
across different patients. Even within the same patient, different relapse inci-
dences might manifest differently in terms of observed behavioral and emotional
changes. We will continue the investigation of optimal features and classification
framework that uniquely addresses the challenges of the relapse prediction task
in future work.
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Abstract. Depression is widespread and, despite a wide range of treatment
options, causes considerable suffering and disease burden. Digital health inter-
ventions, including self-monitoring and self-management, are becoming increas-
ingly important to offer e-mental health treatment and to support the recovery
of people affected. SELFPASS is such an application designed for the individual
therapy of patients suffering from depression. To gain more insights, this study
aims to examine e-mental health treatment using the example of SELFPASS with
two groups: healthy people and patients suffering from depression. The analysis
includes the measurement of the constructs Usability, Trust, Task-Technology Fit,
Attitude and Intention-to-use, the causal relationships between themand the differ-
ences between healthy and depressive participants as well as differences between
participants’ evaluations at the beginning and at the end of the usage period. The
results show that the Usability has the biggest influence on the Attitude and the
Intention-to-use. Moreover, the study reveals clear differences between healthy
and depressive participants and indicates the need for more efforts to improve
compliance.

Keywords: eHealth · Digital mental health · Depression · Individual therapy ·
Self-management · Structural equation modelling · ANOVA

1 Introduction

Depression is a severe andwidespread diseasewith considerable effects on people’swell-
being and quality of life [1]. Although evidence-based treatments such as psychotherapy
are available for depressive disorders, a significant portion of people afflicted with such
disorders do not receive treatment [1] or wait a long time for treatment to begin [2].
At the same time, a large portion of the world’s population uses the Internet, with
much of this usage being focused on health [3]. Consequently, self-monitoring and self-
management are becoming increasingly important [1], and digital health interventions
have proven to be a promising way of supporting people with depression [4]. These can
be an effective complement to personal psychotherapy or pharmacological treatment
and are particularly suitable for people who have insufficient access to psychological
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treatment or do notwish to get in personal contactwith a psychotherapist [5]. To seize this
potential, a web-based therapeutic platform for patient-individualized therapy and self-
management calledSELFPASShasbeendeveloped for people suffering fromdepression.
So far, web intervention research has mainly focused on the effectiveness of therapy and
changes in symptom severity [6], but little research (quantitative or qualitative) has been
conducted on gathering more insights about those systems in terms of their acceptance
or attitudes towards them. To close this gap, we analyze the underlying factors that
affect people’s decision to use e-mental health applications to manage depression. The
aim is to examine the Usability, Trust, Task-Technology Fit, Attitude and Intention-
to-use of those applications using the example of SELFPASS. Of particular interest
are the causal relationships between the above-mentioned constructs and the differences
between healthy and depressive participants aswell as differences between the beginning
and the end of the usage period.

2 Background

The background section consists of a practical and a theoretical part. Section SELFPASS
outlines the SELFPASS application, and section Theoretical Background presents the
theoretical foundation of the study.

2.1 SELFPASS

SELFPASS is a therapeutic platform designed for the individual therapy and self-
management of patients suffering from depression. It is based on a combination of
algorithms for a daily self-assessment and analysis of the patient’s biosignal data and
environmental information. SELFPASS enables therapy by offering self-assessment
of the severity of the patient’s mental distress and by suggesting practical steps for
self-management. This takes into account the integrated biosignal data (for example,
heart rate) and current environmental information (for example, weather). Depending
on his/her individual situation, the patient receives individualized guidance for self-
management and therapeutic interventions. The structure of the therapy sessions varies
according to the degree of severity indicated. SELFPASS is designed for depressive
people, who have received a diagnosis by a medical institution and are now waiting for
personal therapy. We conducted this study with a SELFPASS prototype, which did not
contain a link to biosignal data or environmental information. Instead, the participants in
the study were able to use the self-assessment and various interventions (diary, activity
plan, relaxation exercises and so on).

2.2 Theoretical Background

We have focused on the measurement of five constructs (Usability, Trust, Task-
Technology Fit, Attitude, and Intention-to-use), which are of crucial importance for
the evaluation of eHealth technologies. The term “Usability” describes the degree to
which a product can be used by a particular user in a certain context with effectiveness,
efficiency and satisfaction [7]. The usability of technology plays a significant role in
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increasing its acceptance and creating user loyalty, which is especially important in the
healthcare sector [8]. Usability factors remain one of the major obstacles to the adop-
tion of health technologies, emphasizing the necessity of usability evaluations [9]. Trust
“indicates a positive belief about the perceived reliability of, dependability of, and confi-
dence in a person, object or process” [10]. In addition, trust in technology is a key factor
in establishing a satisfactory relationship between the user and product in any interactive
situation [11]. Trust is a component of Trust andMistrust, where Mistrust is the comple-
ment of Trust [12]. We decided to integrate the positive part of Trust into our study and
excluded Mistrust. Goodhue and Thompson proposed the Task-Technology Fit theory
to highlight the importance of an adequate correspondence between the characteristics
of technologies and user tasks for achieving the desired effects in terms of individual
performance [13]. Therefore, the technology must be a good fit with the tasks it supports
in order to have a positive impact. We have used the two very established constructs
Attitude and Intention-to-use, known from the Technology Acceptance Model (TAM)
[14], to assess technology usage.

The five constructs presented above are not only an evaluation standard in themselves
but are also linked to each other in certain relationships. TAM, as awidespread innovation
adoption model, explains the use of new technology and outlines the Attitude construct
having a positive effect on the Intention-to-use construct [14]. Furthermore, the literature
shows that the Usability, Trust and Task-Technology Fit constructs have a positive effect
on the Attitude and Intention-to-use constructs [15–17].

Due to the high importance of the above-mentioned constructs for the success of
eHealth interventions, it is crucial for research and practice to thoroughly analyze them
with respect to new platforms such as SELFPASS.

3 Method

Between February andMay 2019, study participants were recruited in Berlin andHeidel-
berg (Germany), and the survey took place in the same period. Participants were acquired
offline at the University Hospital in Heidelberg and at the Technical University in Berlin
through personal information sessions pertaining to SELFPASS and to participation in
the study. Furthermore, the study was made public through online forums and in order
to attract more participants we used snowball sampling. Those deemed to be eligible
included adult people with German language skills and, with respect to the participants
in Berlin, those who had access to the Internet and owned an Internet-enabled device.
In Heidelberg, patients were provided with an Internet connection and tablets to access
SELFPASS. For each participant, the survey took place over a period of five consecutive
days, during which the participants used SELFPASS daily for a period of around 30min.
Each day, participants were asked to log in, complete the self-assessment and try at least
one intervention. They were also encouraged to test SELFPASS critically by skipping
some of the interventions or stopping them altogether and noticing anything conspicuous
as a result. At the end of the first day (point in time - T1) and the fifth day (point in time
- T2), the participants completed a questionnaire to assess SELFPASS. All participants
participated on a voluntary basis, and the procedures of the study were approved by the
Ethics Committee of the Heidelberg University. Furthermore, the study is listed in the
registry of clinical trials.
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3.1 Research Model and Hypotheses

We have conducted an empirical study on SELFPASS in order to first examine the
causal relationships between the following five constructs Usability (USA), Trust (TR),
Task-Technology Fit (TTF), Attitude (ATT) and Intention-to-use (INT).

The hypotheses regarding the causal relationships are derived from the literature and
shown in Table 1:

Table 1. Research hypotheses

Research hypotheses Path

H1: Usability relates positively to Attitude USA → ATT

H2: Usability relates positively to Intention-to-use USA → INT

H3: Trust relates positively to Attitude TR → ATT

H4: Trust relates positively to Intention-to-use TR → INT

H5: Task-Technology Fit relates positively to Attitude TTF → ATT

H6: Task-Technology Fit relates positively to Intention-to-use TTF → INT

H7: Attitude relates positively to Intention-to-use ATT → INT

Second, we determined differences between the scores of the constructs on the first
and on the last day of the trial period (T1 and T2) as well as differences between the
scores obtained by healthy participants and by those suffering from depression.

3.2 Questionnaire Design and Data Collection

The survey scheduled for T1 comprised relevant socio-demographic and demographic
questions as well as questions related to the participants’ experiences with digital tech-
nologies. Depression symptomsweremeasured using the Patient Health Questionnaire 9
(PHQ-9) [18] to verify whether the participant was suffering from depression. All partic-
ipants with low PHQ-9-scores (smaller than ten) were classified as not depressive while
the rest (PHQ-9 greater than or equal to 10) were classified into the comparison group
whose members suffered from depression. Additionally, the five constructs Usability,
Trust, Task-Technology Fit, Attitude and Intention-to-use were first assessed at T1 and
a second time at T2. All constructs have a reflective measurement, because the mea-
sured variables do not construct their respective latent variables, instead they measure or
manifest them. All used instruments had been previously validated. Usability was eval-
uated by the SUS (System Usability Scale) [19], which consists of ten items answered
on a 5-point Likert rating scale, ranging from “strongly disagree” to “strongly agree”.
Among them, five are positive statements, and the rest are negative. SUS can provide
a single score that ranges from 0 to 100, with higher scores denoting higher usability
(scores were manipulated to a 0 to 4 rating and multiplied by 2.5). For the measurement
of the Trust construct [12] the 7 Items of Jian et al. were used. They were arranged into
a 7-point Likert rating scale and consisted of positive statements. The Task-Technology
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Fit [20] comprised of 8 items answered on a 7-point scale, just like Attitude [21] (5
items) and Intention-to-use [22] (3 Items). The answer alternatives to the questions were
all formed with unweighted scores. The questionnaires were delivered in German after
being translated from the English original. In order to ensure that the content did not
lose its original meaning, one of the other authors translated it back from German into
English and compared it with the original.

Figure 1 summarizes the methodological procedure.

Fig. 1. Methodological procedure

The online questionnaire service SoSciSurvey was used to create and distribute the
questionnaires of the study in Berlin. The participants received an email with a web link
to the survey. At the clinic in Heidelberg, participants received a paper-pencil-version
of the questionnaire, which was handed out to them by the investigator-in-charge. They
received 50 Euro for completing the questionnaires. Each questionnaire was anonymous
and identified by a unique identification number. A cover letter presenting the study’s
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objectives and a brief overview of the key characteristics of SELFPASS was attached to
the questionnaire. The collected data were organized in Microsoft Excel. We excluded
questionnaireswith incomplete information (more than20%missing data) and thosewith
an obviously distorted response behavior. In case of missing values in the underlying
sample after the exclusion, we applied the method of medium value replacement.

3.3 Statistical Analyses

The data were analyzed in three different ways: descriptive statistics, structural equation
modelling (SEM) and analysis of variance (ANOVA) with repeated measures. Descrip-
tive analyses were used for obtaining the summary statistics of all measures and for the
study of general characteristics.

We applied partial least squares structural equationmodeling (PLS-SEM) to examine
the causal relationships between the individual constructs. This approach was deemed
suitable due to the complexity of the model and the high number of constructs and indi-
cators involved. SmartPLS 3 was used to validate the measures and to test the research
hypotheses. The quality measures factor loadings, composite reliability, displayed aver-
age variance and heterotrait-monotrait (HTMT) ratio were used as a basis for the evalu-
ation of the reflective measurement model. To assess the structural model, we used R2,
path coefficients significance and the effect size.

During the second phase ANOVA was used to compare changes in the constructs
at T1 and T2 as well as between the healthy and depressive participants. Mean scores
were calculated for all subscales, and the significance level for the tests was alpha =
0.05. Before performing data analysis, we used the Shapiro-Wilk test to assess normality
and calculated the Cronbach alpha coefficients to assess the internal consistency of the
theoretical constructs. Therefore, SPSS Version 25 was used.

4 Results

A total of 98 participants completed the questionnaire at T1, and 76 completed it at
T2. 66 were classified as having no symptoms of depression and 32 as suffering from
depression. The demographic data of the participants in this study largely corresponded
to the demographics of the population that uses health apps (more females, young and
with high education levels) [23]. Therefore, we conclude that we have a representative
and relevant sample for this study in terms of early adopters of eHealth applications,
but not with respect to the general population. The resulting samples formed the basis
for subsequent statistical analysis. Table 2 shows the demographic statistics of the sam-
ple, subdivided into healthy participants and those with depression. These include the
characteristics of all participants whose questionnaire responses at T1 and/or T2 were
included in the analysis.
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Table 2. Demographics

Healthy participants n
(%)

Participants
suffering from
depression n (%)

Gender Male
Female
Not specified

31 (51)
26 (43)
4 (7)

11 (37)
19 (63)
0 (0)

Age <25
25–35
35–45
>45
Not specified

18 (30)
29 (48)
0 (0)
8 (13)
6 (10)

18 (60)
6 (20)
2 (7)
4 (13)
0 (0)

Marital status Single
Married
Separated/divorced/widowed
Not specified

45 (74)
10 (16)
2 (3)
4 (7)

21 (70)
4 (13)
5 (17)
0 (0)

Highest degree No/lower education
Moderate/high education
Not specified

6 (10)
51 (84)
4 (6)

11 (37)
18 (60)
1 (3)

Computer skills Sufficient
Moderate
Good
Excellent
Not specified

2 (3)
3 (5)
25 (41)
30 (49)
1 (2)

2 (7)
4 (13)
17 (57)
7 (23)
0 (0)

Job situation Self-employed
Apprentice
University/school
Employee
Unemployed
Pensioners
Other/not specified

2 (3)
0 (0)
38 (62)
16 (26)
1 (2)
0 (0)
4 (7)

0 (0)
1 (3)
15 (50)
11 (37)
2 (7)
0 (0)
1 (3)

4.1 Structural Equation Modelling – Measurement Model

In order to perform structural equation modelling, we started with a validation of our
measurement model. First, we examined the factor loadings and eliminated items if
their factor loadings were smaller than 0.7 and if eliminating the item resulted in an
increase in the internal consistency reliability [24]. This method led to an elimination of
a total of 6 items (all eliminated items pertained to Usability). Thereafter, the considered
items had values greater than the minimum value of 0.4 (smallest value being 0.63)
and were regarded suitable [24]. Subsequently, we assessed the construct reliability by
determining the composite reliability. A construct reliability greater than 0.7was deemed
an acceptable reliability coefficient [25], and Table 3 shows that all the constructs met
this criterion and demonstrated their internal consistency. All constructs showed an
average variance extracted above 0.5, meaning that on average, the construct explains
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more than 50% of the variance of its indicators [25]. In discriminant analysis, the results
of the HTMT ratio met the discriminatory criterion (being below 0.9) [26]. Thus, the
measurementmodel had acceptable reliability and convergent validity, leading to a viable
structural analysis of the model.

Table 3. Validation of the measurement model

Construct Number of items Composite reliability Average variance extracted

USA 4 0.8 0.5

TR 7 0.9 0.6

TTF 8 0.9 0.8

ATT 5 0.9 0.7

INT 3 0.9 0.9

4.2 Structural Equation Modelling – Structural Model Assessment

Weestimated the structuralmodel paths and tested the research hypotheseswith the entire
sample (at T1 and T2, all participants) to identify the main determinants in the usage of
SELFPASS. The multi-group analysis did not show significant differences between the
causal relationships of T1 and T2 and revealed a significant difference between healthy
and depressive participants in only one causal relationship (TTF → INT). All other
relationships showed no significant differences. Therefore, it is reasonable to calculate
a structural equation model based on all subgroups.

The evaluation of the structural model included the execution of SmartPLS under
default settings with 5.000 samples, with a bootstrap of 5.000 resampling iterations and
withmean replacement ofmissing data. All constructs had variance inflation factor (VIF)
values less than 5, indicating that there was no multicollinearity problem.

The PLS-SEMmodel and its loadings are depicted in Fig. 2. The value in parentheses
is the p value, the result of calculating the significance of quality to success relationships
using the bootstrapping approach.

The model explains 44% of variance for the Attitude construct and 29% of variance
for the Intention-to-use construct. The results show that all hypothetical relationships
except for H4 and H6 are supported. The path coefficients of these hypotheses are very
close to zero. As predicted by H1 and H2, the study finds significant positive impacts
of Usability on Attitude and on Intention-to-use. The effect size of both relationships
proves to be moderate. Our findings confirm the favorable effect of Trust on Attitude
(H3); H5, which predicted a positive relationship between Task-Technology Fit and
Attitude, is also confirmed. Regarding H7, Attitude is found to be positively related to
Intention-to-use. The last three causal relationships mentioned have small effect sizes.
Table 4 shows the results of the modeling.
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Fig. 2. PLS-SEM model
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Table 4. PLS-SEM modelling results

Research hypotheses Coefficient P value Outcome f2

H1: USA → ATT 0.357 <0.000a Supported 0.12c

H2: USA → INT 0.444 <0.000a Supported 0.13c

H3: TR → ATT 0.173 0.069b Supported 0.02d

H4: TR → INT −0.069 0.562 Not supported 0.00

H5: TTF → ATT 0.212 0.052b Supported 0.03d

H6: TTF → INT −0.066 0.612 Not supported 0.00

H7: ATT → INT 0.244 0.006a Supported 0.05d

a: p ≤ 0.05 b: 0,05 < p ≤ 0.10 c: moderate d: small

4.3 ANOVA

The descriptive analysis of the chosen constructs shows an overall good evaluation of the
Usability of SELFPASS (SUS approx. 79). Among the four other constructs, the Task-
Technology Fit construct receives the best rating on the 7-point Likert scale with a value
of approximately 5, closely followed by Attitude and then Trust with an overall rating of
approximately 4.7. The Intention-to-use construct was rated worst with an overall rating
of approximately 4.0.

Table 5 illustrates the mean value and standard deviation of all constructs and
distinguishes between T1 and T2 and the healthy and depressive groups.

Table 5. Descriptive analysis results

Healthy
T1 Mean (SD)

Depressive
T1 Mean (SD)

Healthy
T2 Mean (SD)

Depressive
T2 Mean (SD)

Usability – SUS* 80.83 (12.30) 73.94 (14.23) 79.49 (14.87) 80.30 (9.07)

Trust** 4.81 (1.19) 4.20 (0.86) 5.03 (1.27) 4.69 (0.86)

Task-Technology-Fit** 5.32 (1.18) 4.55 (1.19) 5.18 (1.36) 5.25 (0.92)

Attitude** 5.19 (1.12) 4.38 (1.29) 4.99 (1.31) 4.81 (1.24)

Intention-to-use** 3.84 (2.15) 5.32 (1.37) 2.96 (2.04) 4.74 (1.57)

*Score from 0 to 100. **Score on a 7-point Likert scale

We calculated Cronbach’s Alpha at both points in time (see Table 6) in order to
determine sufficient reliability for the following analyses. Table 6 indicates, that the
reliability of Usability (T1 and T2), Trust (T1 and T2) and Attitude (T1 and T2) can
be rated as excellent [27]. The Task-Technology Fit and Intention-to-use construct have
high reliability measures, indicating them as redundant items. Since the elimination of
individual items did not lead to any significant improvement in reliability, we refrained
from doing so.
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Table 6. Cronbach alpha coefficients

Usability (10
items)

Trust (7 items) Task-technology
Fit (8 items)

Attitude (5
items)

Intention-to-use
(3 items)

T1 0.82 0.89 0.97 0.91 0.94

T2 0.76 0.87 0.94 0.90 0.97

As this sample is relatively small, we used the Shapiro-Wilk test to verify normal dis-
tribution. Turns out, not all constructs are normally distributed. However, we performed
an ANOVA because there is no non-parametric equivalent and studies have shown that
ANOVA is robust against violations of normality [28]. Table 7 presents the results of
the ANOVA.

Table 7. ANOVA results

Construct Group P-value Partial eta-squared

Usability - SUS Time of measurement (T1 vs. T2) 0.070 0.05

Condition (healthy vs. depressive) 0.006a 0.111c

Trust Time of measurement (T1 vs. T2) <0.000a 0.175d

Condition (healthy vs. depressive) 0.158 0.030

Task-Technology Fit Time of measurement (T1 vs. T2) 0.012a 0.095c

Condition (healthy vs. depressive) <0.000a 0.190d

Attitude Time of measurement (T1 vs. T2) 0.383 0.012

Condition (healthy vs. depressive) 0.018a 0.085c

Intention-to-use Time of measurement (T1 vs. T2) 0.002a 0.148d

Condition (healthy vs. depressive) 0.513 0.007

a: p ≤ 0.05 c: moderate effect d: strong effect

The analysis of the differences between T1 and T2 and among healthy and depressive
participants revealed a total of 6 significant differences from the 10 analyzed ones.

The Usability does not change significantly during the five days of use, but the two
groups differ significantly with a moderate effect. Figure 3 depicts clearly that at the
beginning the participants suffering from depression rate the Usability of SELFPASS
significantly worse than the healthy participants. However, the depressive participants
give a considerably better rating after the five days of usage, and their evaluation even
exceed that of the healthy participants.
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Fig. 3. Usability results

Trust in SELFPASS does not differ significantly between healthy and depressive
participants, but there is a noticeable change in the assessment of trust during use, in the
sense that trust in SELFPASS increases remarkably (strong effect, see Fig. 4). The Task-
Technology Fit shows significant differences between T1 and T2 as well as between
healthy and depressive participants. This construct also improves during application
with moderate effect, with the increase being observed within the group of depressive
participants. At the end of the usage period, the Task-Technology Fit is rated higher by
depressive participants than by healthy ones (Fig. 5).
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Fig. 5. Task-Technology Fit results

The Attitude construct shows a moderate, significant difference with respect to the
existing health condition, whereby healthy participants demonstrate higher Attitude val-
ues than the depressive ones. The Attitude of the healthy participants decreases over the
5-day usage, while the Attitude of the depressive participants increases. Intention-to-use
decreases significantly throughout the five days of usage with a strong effect (Figs. 6
and 7).
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5 Discussion

The causal relationships described in the PLS-SEM model clearly show that Usability
has the greatest influence on Attitude (path coefficient 0.36/f2 = 0.12) and on Intention-
to-use (path co-efficient 0.44/f2 = 0.13). Therefore, it is fundamentally important to
place a high significance on Usability when developing such therapeutic systems for
people suffering from depression. It is striking that the factor loadings of the items of
the Usability construct differ a lot and therefore do not show a satisfactory reliability
before elimination. The ambiguity of the points or the participants’ insufficient vocabu-
lary seems to be unlikely causes due to the previous validation of the questionnaires. One
reason could be the high complexity of the Usability construct which comprises various
aspects. Furthermore, it is noticeable that the elimination of precisely those items led
to an increase in reliability that were formulated with a negation (UX02,04,06,08,10)
and caused strongly distorted distributions. Altogether, SELFPASS already achieves a
good overall Usability evaluation (SUS ca. 79). On the first day of usage, the depressive
participants rated the Usability significantly worse than after the five-day usage period,
although this change is not observed among the healthy participants. This development
indicates that the depressive participants became accustomed to SELFPASS and to the
handling of the system. The SUS of approximately 73 at T1 is improvable and shows that
SELFPASS could not be operated easily enough at the beginning. Because depressive
people frequently suffer from lack of motivation and digital self-management systems
show high dropout rates [29, 30], an improvement of compliance could be achieved
through a specific Usability adapted to the target group. We should aim to enable effort-
less and intuitive usage in digital self-management systems for people suffering from
depression. Thus, the period of familiarizationwith the system could be reduced, thereby
preventing premature dropout. This finding is in accordance with the literature, which
shows that for example guidance regarding key functionalities [31], clearly structured
content and overviews [32], warning notices [33] and confirmation or congratulation
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messages after completed activities [34] are particularly important for people suffering
from depression to improve orientation and ease of use.

Trust (path coefficient 0.17/f2 = 0.02) and Task-Technology Fit (path coefficient
0,21/f2 = 0.03) have a positive influence on Attitude. The Trust score improves greatly
in the course of the five-day usage. This shows that trust in health-related digital plat-
forms is only built up over time and does not come about immediately. Other studies have
proven that trust in medical technology empirically differs from the general trust in tech-
nology [35]. Therefore, trust seems to be more indispensable if health-related aspects
are conveyed technologically [36]. Although the literature attaches a very critical impor-
tance to trust in the field of eHealth, SELFPASS achieves an overall moderate to good
evaluation with a mean of approximately 4.7. The evaluation of the Task-Technology Fit
improves among depressive participants during usage. This suggests that users recog-
nize an added value of SELFPASS while using the platform and shows that SELFPASS
fulfils its purpose as a self-management tool for depression. This goes hand in hand
with the observation, that this trend is not discernible among the healthy participants.
They are healthy and have no psychological strain; therefore, they naturally recognize
less benefit and improvement with SELFPASS, which is why the Task-Technology Fit
barely changes for them in the course of five days. On the fifth day of us-age, they rate
the fit slightly worse than the depressive group; hence, they assess SELFPASS as being
less helpful and suitable.

The Attitude construct shows a similar curve progression. Over the period of use,
the participants suffering from depression improve their attitude towards SELFPASS
while that of healthy participants diminishes slightly. From this, we conclude that people
suffering from depression generally have a positive estimation regarding e-mental health
applications such as SELFPASS. The coefficient of determination (R2) of Attitude is
approximately 0.44 and therefore, explains 44% of the variance. Compared to other
studies in the field of eHealth this is a good result [3, 37, 38]. This study is one in which
we measure human behavior and naturally in this area, numerous and of-ten not directly
measurable, influences come into play. Therefore, smaller R2 values are to be expected
here than in other disciplines, such as physics, with exactly measurable variables and
low disturbances.

The Attitude construct shows a positive influence on Intention-to-use (path coeffi-
cient 0.24/f2 = 0.05). We had expected this effect, and it is congruent with the literature
[14].The smallR2of Intention-to-use (approximately0.29) couldbeexplainedby the fact
that Intention-to-use strongly depends on the subgroup, and depressive and healthy par-
ticipants have generally different motivations for usage. Strikingly, in this study, healthy
participants quit the study rather earlier than the depressive ones. One reason could be
thenon-existingpsychological strain. Intention-to-usedecreasesover thefive-dayperiod,
highlighting the necessity to integrate strong elements into e-mental health applications
that increase motivation and compliance. Poor compliance is also discussed in the lit-
erature as a common obstacle to the use of eHealth applications [5] and gamification is
addressed among other things. There is promising evidence that suggests gamification
works. Innovativeways need to be found tomake digital health interventions entertaining
and appealing; thesemay include, for example, providingmeaningful rewards or making
the systemmore social [39]. Undoubtedly combining gamification and the special needs
of depressive people in a meaningful way would be a challenging task.
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6 Limitations

This study has some limitations. As conducting studies anonymously is a sensitive pro-
cess, especially in the health-related area, we used an identification code to maintain
confidentiality in the collection of the survey data. This in turn did not allow us to con-
firm whether the participants did in fact use SELFPASS daily in the manner required.
Furthermore, we assume that due to the iterative nature of Internet interventions and
the varying intensity and duration of time for which the users tested SELFPASS, the
intervention exposure was likely to be different for each user. The research used par-
ticipants’ self-reports, and we can’t guarantee that the participants correctly articulated
their assessments. Since patients of the Heidelberg University Hospital received a fee
for participating in the study, but the participants in Berlin did not, distortions cannot be
ruled out. The SELFPASS version used was only a prototype and did not have the full
range of the functions. A repeated measurement with the completed SELFPASS version
could lead to different results, especially in terms of the Task-Technology Fit. Due to
feasibility constraints, the resulting sample size was relatively small for such a complex
investigation, leading to limited generalizability of the findings to the population as a
whole. The small sample size of the group consisting of participants with depression
could be a reason why the multi-group analysis of the structural equation modelling did
not reveal significant group differences.

7 Conclusion and Future Work

The study contributes to the literature by pinpointing significant effects to help under-
stand the usage of e-mental health applications to manage depression. PLS-SEM struc-
tural equation modelling proves that the Usability, Trust and Task-Technology Fit con-
structs have a positive effect on Attitude towards SELFPASS and that Attitude has
a positive influence on Intention-to-use. The Usability has the biggest influence and
should therefore be given special consideration in the development of self-management
systems for people suffering from depression.

Overall, the ANOVA results reveal clear differences between healthy and depressive
participants. The trend observed is that depressive participants generally rate SELFPASS
better on the fifth day than on the first, therefore showing that they require a longer period
for familiarization with the system compared to the healthy participants. The Intention-
to-use decreases in both subgroups during the five-day usage, showing the necessity of
further research projects to improve compliance to digital self-management systems for
people suffering from depression. Furthermore, an effectiveness study of SELFPASS
compared to a waiting list group could be a topic of interest for future research and
practice. Whether self-management systems such as SELFPASSwill also be suitable for
patients suffering from severe depression, and under which conditions, remains largely
unknown and also requires further research.
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1 Introduction

The human brain is one of the most complicated organs of the human body, working
round the clock engaging with stimulus processing and activity coordination [1]. It
comprises multiple interconnected units that both specialize in specific functions (e.g.
vision) and work collectively in order to serve more convoluted operations such as
speech, motion and problem solving. This category also includes memory processes,
which have drawn intensive research interest due to the variety of cognitive processes
involved (stimulus processing, encoding, storage, consolidation, retrieval) as well as
their immense influence on one’s personality [2].

In this context, numerous studies have investigated the causes and underlyingmecha-
nisms of cognitive decline, focusing on the effects of age and cognitive disorders. To that
end, both healthy and cognitively impaired individuals have been recruited in multiple
experiments involving the completion of cognitive tasks that gauge cognitive capac-
ity and overall skills [3, 4]. Moreover, a multitude of research works have attempted
to implement non-pharmacological interventions in pursuance of maintaining or even
restoring cognitive functionality [5, 6]. Indeed, the human brain has been found to behave
much like a muscle, in a sense that it can be trained in order to “stay in shape” or even
improve its performance [7, 8].

From this standpoint, cognitive training has been implemented for maintaining or
improving cognitive capacity and processing skills, as well as for slowing down or even
mitigating the effects of age-relatedor impairment-relateddecline [7, 9]. For this purpose,
researchers have aimed at capitalizing on processes that normally do not diminish with
age and remain intact until the last stages of most cognitive disorders. In that spirit,
we opted to focus on the distinction between controlled and automatic processing, as
described by the dual process theory [10–12]. Specifically, automatic processing is a fast,
unconscious and stimulus-driven operation, while controlled processes are conscious
and demand more resources, deteriorating with age or under the presence of a cognitive
impairment. In addition, on investigating cognitive training outcomes, researchers often
analyze potential transfer effects [13], namely performance differences observed in other
tasks, closely (near transfer) or remotely (far transfer) related to the trained task.

On studying the above phenomena, electroencephalography (EEG) has emerged as
an invaluable tool, since it provides access to physiological activity reflecting cognitive
processes, enabling scientists to extract measurable – and therefore objective – infor-
mation with respect to brain functions [14]. However, high-density recordings employ
large-scale devices under laboratory settings, requiring time-demanding setups that lack
portability and convenience for the people involved. On that premise, the availability of
wearable non-invasive EEG recording devices [15] has allowed their easy application
on cognition analyses, greatly augmenting the interpretation of behavioral outcomes
[16]. Within this context, we developed a dedicated experimental protocol for assessing
cognitive training effects on memory and processing functions based on a combination
of EEG-related features and conventional behavioral metrics. In particular, we sought to
examine aspects of face-name memory related to familiarity and recollection processes
that bear a major role in the study of ageing and dementia effects [17] using a single-
channel dry EEG with high portability and user-friendly setup. Considering the fact that
very few studies have targeted the EEG aspect of training effects based on dual process
theory, our primary goal was to establish the applicability of minimal wearable EEG in
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studying cognitive training outcomes, as well as to assess the effects of the implemented
training routine on brain functions.

2 Materials and Methods

2.1 Participants

Data were acquired from six healthy adults (4 male, 2 female) aged 25–40 years old
with homogeneous educational level. All participants were right-handed and reported
no history of cognitive disorders or medication intake, as well as normal amount of sleep
for two days prior to the experiment. During the pre-experimental screening process,
they all scored over 28 at the Montreal Cognitive Assessment (MoCA) [18]. The study
was conducted in accordance with the Declaration of Helsinki, while written informed
consent was obtained from all individuals.

2.2 Experimental Design

The participants were divided into two groups (training group and control group, each
group consisting of twomen and one woman) and were requested to complete a series of
memory related cognitive tasks, duringwhich theywere placed in front of aTVmonitor at
a distance of 2m. The experimental protocol (Fig. 1) consisted of three stages, conducted
over a 6-day period. During the first stage (pre-training evaluation), the participants were
asked to complete a baseline evaluation consisting of a Face-Name Memory (FNM)
Test, the Verbal Paired Associates (VBA) Test [19] and an N-back task [20]. During
the second stage, beginning from the following day, the training group underwent a
4-day training program involving an application of the Repetition-Lag Procedure [21–
23] for two sessions per day. On the 6th day, a post-training evaluation (3rd stage) took
place, where both groups had to repeat the pre-training evaluation tasks. The control
group completed only the pre-training and post-training stages, while participants from
both groups were asked to not perform any further cognitive exercises (e.g. crosswords)
during the 4-day interval between the two evaluation stages.

Single-channel EEG data were recorded during the pre- and post-training stages
for all participants, while no recording was conducted during training in an attempt
to establish a comfortable training environment. For every task, each trial (stimulus
presentation& response intervals) followed a 5-s time interval, representing the reference
interval corresponding to baseline EEG activity. In order to avoid overextending the
duration of the evaluation stages, we limited the number of trials close to the minimum
required based on literature [24, 25], leading to a total duration of approximately 65min,
including three 3-min breaks between two consecutive tasks.

The FNM test comprised the main cognitive task of the experiment, gauging the
participants’ skills on face recognition and name recall, while the VBA test and the
N-back task were employed for examining transfer effects of training, assessing verbal
and working memory respectively. Our hypothesis was that the VBA test would reflect
near transfer, while the N-back task would reveal potential far transfer effects. Training
was conducted using the repetition-lag procedure, focusing on separating automatic and
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controlled memory processes and strengthening the latter, which are known to decline
due to age and cognitive impairment. Finally, it must be emphasized that participants
were strongly advised to use the samemnemonic strategy during each task for all sessions
(pre-training & post-training), in order to avoid performance differences due to strategy
effectiveness.

The 380 images used for the face recognition tasks (FNM & repetition-lag training)
were acquired from the FERET, PICS and IMMdatabases, selecting pictureswith neutral
facial expressions and no accessories (e.g. glasses or hats), while maintaining a uniform
age distribution and a unit ratio of males and females. All images were normalized
regarding their dimensions and were converted to grayscale and jpg format. The names
that were matched with the faces were derived based on the results of the survey given
in [26], consisting of the most frequent male and female names.

Face-Name Memory Test. Our FNM test involved two sessions of a study phase and
an immediate recognition phase, as well as a delayed recognition phase. During the study
phase, each participant was presented with a series of 15 face-name combinations, which
comprised the study list. This step was directly followed by the immediate recognition
phase (after 20 s), involving a series of 30 recognition tasks featuring the 15 studied
faces and 15 new faces (distractors). On each task, the participant was presented with
a face and was asked to respond on whether or not it was part of the study list. Upon
a positive response (correct or not) the participant had to also provide a name to match
with the face. After each recognition task, visual feedback was provided on the response
correctness. Subsequently, after time delay of 20 min, participants again completed a
series of recognition tasks with the same stimuli, which corresponded to a delayed recog-
nition phase, during which no response feedback was provided. Based on the respective
time windows after the study phase, the immediate and delayed recognition phases were
expected to evaluate short-term and long-term memory. The stimuli presentation order
was defined pseudorandomly and each stimulus was presented for 5 s followed by a 5-s
interstimulus interval, while the response was to be provided within 4 s.

Verbal Paired Associates Test. Similar to the FMN test, the VBA test included two
sessions of a study phase and an immediate recall phase, followed by a delayed recog-
nition phase. Instead of faces, the stimuli for this test consisted of word pairs presented
on the screen. During a study phase, the participants were presented with a sequence
of 15 word pairs (study list), the two words being semantically unrelated and displayed
aside one another. Afterwards, during the immediate recall phase, the first (left) word
of each pair was shown (representing the cue) and the participant was asked to voice
the second word (cued recall), followed by an acoustic feedback. It is noted that only
the left word of each pair was given as a cue, corresponding to the priming condition
for the VBA test [27]. Twenty minutes after the two sessions of study and immediate
recall, a delayed recognition phase was conducted where 45 word pairs were presented
and the individuals were asked to recognize whether they were part of the study list. No
response feedback was provided. The additional (non-study) word pairs were formed
by mixing the original word pairs, teaming the first word of each pair with the second
word of another. The stimuli presentation order was pseudorandom and each stimulus
was presented for 4 s followed by a 5-s interstimulus interval, while the response was to
be provided within 4 s.
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N-back Task. During the N-back task, the participants were presented with a sequence
of digits, while for each stimulus they had to respond within 2 s on whether this specific
digit appeared exactly N positions earlier in the sequence. Thereby, before each new
stimulus they had to remember the latest N digits, where theN value echoed the difficulty
level of the task. In the current study, we examined 3 distinct difficulty levels (N1 = 2,
N2 = 3, N3 = 4) that included 12, 13 and 14 trials for each level respectively. The
interstimulus interval was set at 3 s, with 5-s and 20-s intervals between levels and
sessions respectively. The digits for each sequence were determined pseudorandomly,
ensuring that each N-back level contained at least 4 digit repetitions. Each set of the three
difficulty levels was conducted three times and no response feedback was provided.

Fig. 1. Experimental Protocol. On the upper part of the figure the three protocol stages are dis-
played, relative to their duration and group participation. The bottom part depicts the specific tasks
of the pre- and post-training stages (left) as well as the training stage (right).

Repetition-Lag Training. For the training method selection, the criteria used by the
authors required a relatively uncomplicated method without a steep learning curve that
presented relevance with our targeted cognitive processes, namely face recognition and
name recall. In addition, we sought a method promoting implicit learning, presenting
a record of successful applications as per existing studies. Based on these criteria, we
decided to adopt the repetition-lag procedure (adjusted for face recognition), which
builds on the dual process theory described in the “Introduction” section.

Each session of the repetition-lag procedure consisted of a study phase and a recogni-
tion phase. During the study phase, the participant was presentedwith a series of 16 study
faces and a corresponding name, comprising the study list, which was displayed twice.
Each stimulus was presented for 5 s, while the interstimulus interval was set at 5 s. After
1 min the recognition phase was carried out, where each individual was subjected to a
series of yes/no recognition tasks.More specifically, we presented a list of faces (without
a name) and the participants were to decide (within a response time of 3 s) whether a
face belonged to the original study list or not. Whenever a face was recognized, the
individual was also asked to provide a name to match with the face (within 5 s), thus
completing the face-name recognition. After each recognition task, the individual was
provided with visual feedback on whether the responses on face recognition and name
recall were correct or incorrect.
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However, some of the non-study faces were presented more than once, in an attempt
to lure the individual into falsely recognizing them as parts of the study list, failing to rec-
ollect that they have indeed seen them before, although not among the study faces they
were expected to “learn”. These 16 faces were part of the repetition list, while the inter-
val between two consecutive presentations of a repetition item represented the lag inter-
val. The lag interval corresponded to the difficulty level of the recognition phase, since the
more items that intervenebetween twopresentations of the same face, the harder itwas for
the participants to recognizewhether they saw this specific face earlier during the recogni-
tion phase or as part of the study list. Indicatively, it has been reported that a healthy young
adult can achieve lags of about 18–19 [28]. Finally, the recognition phase included 8 addi-
tional faces that belonged neither to the study list nor to the repetition list, hence presented
onlyonceduring the recognitionphase, composed thefiller list.Therefore, the recognition
phase involved a total of 40 trials. If no more than two recognition errors were commit-
ted, the lag interval was increased for the next session, which was therefore carried out at
a higher difficulty level. Otherwise, the lag interval remains the same for the next session,
until the target criterion ismet. The basic version of the repetition-lag procedure employs
a single lag interval for each session, however some researchers have opted for a set of two
lag interval values, both fixed for each session [28]. For the purposes of this studywe have
adopted the second approach, defining sets of two lag interval values (“easy” and “hard”).
In that way, a participant could simultaneously practice with the two values during each
session,where the easyvalue reflects theperformance level achieved through theprevious
session and the hard value represents the elevated new practice level. It should be noted
that name recall errors did not impact level progression, as only face recognition errors
were taken into account for increasing the lag intervals of the next session. The lag inter-
val sets that were used in this studywere based on the research by [28], thus for our 4-day,
2 session-per-day training program we used the following eight sets: (1, 2), (1, 3), (2, 4),
(2, 8), (4, 12), (4, 16), (8, 20), (8, 24). Furthermore, every session employed a different
study list in order to avoid “learning” faces and instead trigger overall strengthening of
face-name encoding and recognition cognitive processes.

The distinctiveness of this procedure in introducing non-target items presented more
than once during recognition enables the dissociation of familiarity and recollection
memory processes, rendering the method particularly intriguing for the authors. Specif-
ically, each face that is part either of the study list or the repetition lists triggers an
automatic familiarity effect to the individual, who has already been presented with this
specific face. However, the participant has then to recall the learning context for this face,
meaning to remember whether it was presented as a study face or not. This function rep-
resents recollection, which has been identified as part of controlled processing, known
to decline due to age or cognitive impairment. In conclusion, by receiving feedback on
correct/incorrect responses and progressively increasing difficulty, it has been hypoth-
esized that the individuals implicitly (i.e. implicit learning) work on improving their
controlled processing skills and therefore their ability to recall contextual information
when recognizing familiar faces.

2.3 Data Acquisition and Pre-processing

Physiological recordings were conducted using theMindWaveMobile [29–31], a single-
channel wearable EEG device with an Fp1 dry sensor and a reference A1 sensor, able to
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record 12-bit signals of up to 100 Hz with a sampling rate of 512 Hz. For the purposes
of our study we used custom codes developed in MATLAB R2017b using the EEGLAB
toolbox. For establishing connectivity between MindWave Mobile and MATLAB we
used the necessary files provided in [32] as well as the recommended compiler from [33].
The experiment was conducted using two concurrent MATLAB sessions synced with
each other, one handling EEG recordings and the other administering the computerized
protocol, managing behavioral data and creating the appropriate event markers for the
EEG data processing.

Initially, the raw EEG data recorded during the pre-training and post-training stages
of the study were band-pass filtered by applying a windowed sinc FIR filter using a
Blackman windowwith a bandwidth of 0.7–40.0 Hz. Subsequently, data were detrended
before undergoing a denoising process. Specifically, due to the single-channel recording
device, we employed EMD-ICA [34] in order to isolate noisy signal components and
reconstruct the original EEG signal using only the desired components. According to
this method, we firstly applied Empirical Mode Decomposition (EMD) using the EMD-
LAB extension of the EEGLAB toolbox [35] in order to separate the one-dimensional
EEG signal into four components, constituting the IntrinsicMode Functions (IMFs). The
generated IMFs represent oscillations within the source signal and are by default sorted
based on their periodicity and decreasing frequency content. Afterwards, Independent
Component Analysis (ICA) was applied on these four modes in order to produce four
new signal components. The detection of components attributed to artifacts was based
on signal variance, amplitude and frequency content. Finally, the four IMFs were recon-
structed for each signal using the remaining components andwere subsequently summed
to produce the denoised EEG signal. Signals were then segmented into epochs based on
event markers and baseline-adjusted relative to a 1-s pre-stimulus baseline.

2.4 Estimation of Synchronization Waveforms

In order to evaluate the participants’ cognitive status and processing load during the
tasks, we studied the occurrence of event-related synchronization/desynchronization
(ERS/ERD) within the electrophysiological activity [36], representing collective
increases/decreases in neuronal activity at a given frequency. The main characteristic
of these manifestations is that they represent induced activity, meaning they are time-
locked but not phase-locked to the stimulus [37]. This method was implemented due
to its applicability on our single-channel data as opposed to techniques such as event-
related potentials (ERPs), though it should be noted that it requires larger time windows
for stimuli presentation and interstimulus intervals – combined with a lower number of
EEG epochs – compared to ERP analysis [24, 38].

Our analysis of the induced EEG activity was independently conducted for the five
EEG bands (δ: 0.5–4 Hz, θ: 4–8 Hz, α: 8–13 Hz, β: 14–26 Hz, γ: 30–40 Hz), aiming
to interpret results based on the known traits of each frequency band. As such, we
defined the frequency bands and then calculated the induced band power (IBP) for each
reconstructed signal xf using the inter-trial covariance method on each individual sample
j over all trials (i = 1, …, n) as follows:

IBP(j) = 1

n− 1

∑N

i=1

[
xf (i, j) − −

xf (j)
]2

(1)
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The
−
xf (j) signal corresponds to the mean filtered signal of a specific band across all

trials, representing evoked activity. Consequently, removing this signal gives prominence
to the non-phase-locked (i.e. induced) activity that does not include evoked potentials.

The occurrence of synchronization or desynchronization within the EEG signal is
identified by calculating for each sample j the percentage change P(j) of the IBP(j)
relative to the mean IBP of the reference interval [r0, r0 + k] recorded for each task.

IBPr = 1

k

∑r0+k

j=r0
IBP(j) (2)

P(j) = (IBP(j) − IBPr)/IBPr (3)

Evidently, positive values correspond to synchronization phenomena (ERS), with
negative values reflecting occurrence of desynchronization (ERD). Finally, to address
the lack of IBPwaveforms smoothness for the extraction of statisticalmetrics, we applied
a moving average filter with a window of 103 samples, corresponding to a recording
duration of 0.2 s.

Figure 2 summarizes the processing flow applied on the EEG data, including pre-
processing, induced activity waveform extraction and statistical analysis:

Fig. 2. Data Processing Workflow. Filtering and detrending were followed by the denoising pro-
cess, where we firstly decomposed the single-channel data and then applied ICA to the resulting
IMFs in order to identify and reject noisy components. The initial data channel was then recon-
structed, followed by spectral decomposition and estimation of waveforms reflecting induced
activity. Based on these waveforms, we extracted statistical measures for every task and each EEG
band.
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2.5 Statistical Analysis

Following the eventual waveform extraction, for each EEG band and each phase of every
cognitive task, we extracted statistical measures of location and variability, consisting of
maximum/minimum activity, mean activity, standard deviation, range and coefficient of
variation (CV). With the term “activity” we denote the percentage change in the induced
band power, reflecting ERS/ERD phenomena. Metrics were extracted for pre-training
and post-training data. In addition, we computed behavioral measures describing the
participants’ performance during the cognitive tasks by calculating quantities describing
sensitivity, specificity, accuracy, precision, recall rate and response time for all tasks,
namely face recognition, name recall, word recall rate and recognition, as well as N-back
recognition.

On comparing pre-training and post-training performances of the training and control
groups and taking into account our small groups (3 participants per group), we used
a t-test on each group in order to investigate the existence of features that presented
a statistically significant difference between the two evaluation stages. T-tests were
implemented on each feature data individually, while inference was conducted at a
significance level of 5%.

3 Results

Allmembers of the training group but one reached the set ofmaximum lag interval values
committing less than two errors per session, with one participant failing to progress
during one session. As regards the behavioral and EEG outcomes, the control group
presented a statistically significant difference between the two evaluation stages only
for FNM-IR recognition specificity (p = 0.0423), while no further differences were
observed in EEG or behavioral metrics. On the other hand, the training group displayed
significant differences for a total of thirteen features, presented in Table 1:

Table 1. Statistically significant features for the training group (t-test)

Feature type Task Task phase Feature name Band Change p-value

EEG FNM IR Coefficient of variation α D 0.0328

Coefficient of variation θ D 0.0363

DR Max activity β D 0.0241

Coefficient of variation δ D 0.0009

Max activity θ I 0.0399

Standard deviation θ I 0.0458

(continued)
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Table 1. (continued)

Feature type Task Task phase Feature name Band Change p-value

Behavioral FNM IR Recognition sensitivity D 0.0153

Recognition specificity D 0.0335

Recognition accuracy D 0.0206

Name recall specificity D 0.0075

N-back 2-back Sensitivity I 0.0257

3-back Precision I 0.0463

4-back Accuracy I 0.0390
*IR: immediate recognition, DR: delayed recognition, I: Increase, D: Decrease

4 Discussion and Future Research

In this study, we developed an experimental protocol aiming to evaluate specific aspects
of cognitive skills and investigate the influence of cognitive training in performance
by introducing single-channel EEG data acquired via a mobile user-friendly device.
Our minimal setup limits pre-processing alternatives, thus we resorted to a specialized
single-channel denoising method combined with conventional filtering. Likewise, since
extraction of reliable ERPs from cerebral areas of interest (i.e. face recognition) was not
possible, we analyzed band synchronization activity that has also been implemented on
previous works [39, 40]. This framework aimed to investigate inference capacity within
a simplified EEG setup.

At first glance, the EEG contribution to the study of the participants’ cognitive per-
formance is evident, since we identified multiple features presenting a statistically sig-
nificant change, thus confirming our initial assumption that the incorporation of single-
channel measures can assist in the interpretation and validation of behavioral results.
Moreover, statistical outcomes revealed almost no changes for the control group con-
cerning performance between pre-training and post-training stages, while the training
group showed differences on both EEG and behavioral metrics for a variety of features,
implying that our cognitive training program had a tangible effect on the participants.
Inspecting the related outcomes, we initially comment on the behavioral outcomes and
on a second level we attempt to interpret these results by introducing the EEG findings.

As such, Table 1 shows an unexpected overall performance decrease of the training
group for the face-name memory test. In an attempt to explain this result, we considered
the participants’ shared reports on occurrence of mental fatigue after the 3rd training
day, as well as their reported bias during the recognition tasks. In particular, having
undertaken the 4-day training program trying to avoid false recognition of familiar faces,
all participants admitted a lack of confidence during the post-training evaluation, where
their performance anxiety often led them into altering their intended responses, resulting
tomore errors compared to the pre-training evaluation. Taking into the EEG changes into
account, we observed that the performance decrease was accompanied by a decrease in
the coefficient of variation in the α and θ bands. Mathematically, this corresponds to a
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decrease in the ratio of standard deviation to the mean value for the induced band power
percentage waveform. Interestingly, this may reflect improved processing [41], despite
the fact that response bias and fatigue led to a reduced performance. Increases in the θ

band (ERS) during the delayed recognition task also reflect a high memory load [42],
with the comparison to the pre-training results supporting the participants’ self-reports
on fatigue occurrence.

Regarding the reduction in the β band maximum activity (ERD), this could simply
refer to verbal responses of the participants during recognition [43]. However, since
this was not observed during pre-training, it seems more likely that β ERD is related
to enhanced cognitive control during long-term memory retrieval [44] (since it was
observed during the delayed recognition task) or increasedworkingmemory information
maintenance [45]. Furthermore, the coefficient of variation decrement in the δ band is
also consistent with previous studies, reflecting concentration during task performance
[46, 47]. Finally, no indication was provided on whether the improvements in N-back
performance should be attributed to transfer effects or mere task experience.

On another note, we must highlight the observed distinction between controlled and
automatic processing which was evident on the participants during the training program.
Namely, when presented with a repetition face with a lag of over 10, it was clear that
the participants recognized the image before promptly recalling the learning context
and thus providing a negative response. The former event represented the familiarity
effect, followed by the recollection effect where the participants recalled that the spe-
cific face was not part of the study list. From the authors’ point of view, this observation
supports the dual process theory and encourages further investigation of its underly-
ing mechanisms as well of the repetition-lag procedure effects in a future study using
electroencephalography to distinguish and compare brain activity during familiarity and
recollection processes. On that premise, despite the fact that clear changes were ascer-
tained, fatigue reported by the participants and reflected on the results prevented us
from validating the beneficial effect of training, thus we intent to use a modified routine
in a future study, distributing training sessions along a wider time period and adding
days of rest for the participants. Furthermore, we intend to conduct a deeper analysis
regarding the contribution of electroencephalography on reliable cognitive evaluation
by recruiting a large number of participants in order to increase statistical power, as well
as by utilizing a modified and more targeted experimental design that will allow for the
recording of a higher number of EEG epochs in order to extract smoother and more
representative activity waveforms, without overextending the experiment duration. In
this regard, we also intend to explore the usage of a multi-channel portable EEG headset
in order to employ brain connectivity metrics and extract ERPs related to face recogni-
tion. The comparison of single-channel vs. multi-channel results is expected to provide
evidence with respect to the true applicability extent of single-channel measurements.
The potential outcomes could bear considerable value in further comprehending the
dual process theory, applying this knowledge on the study of cognitive disorders and
the development of non-pharmacological interventions based on objective measures of
physiological activity.
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5 Conclusion

Summarizing the conductedwork,we employed awireless portable EEGdevice to assess
the outcomes of cognitive training on memory processes. Our framework was able to
ascertain the benefits of EEG regarding the evaluation of these complicated functions
even in light portable setups, as well as to achieve the manifestation of statistically
significant outcomes that could be attributed to training. In particular, we managed to
identify changes for a variety of EEG features without the need for a multi-channel
recording station that can only be applied on laboratory settings. In addition, we were
able to jointly explain EEG and behavioral results, confirming the efficiency of our
experimental protocol. Ultimately, the participants that followed the proposed training
routine presented multiple differentiations regarding both behavioral and EEG metrics,
while the control group showed almost no changes but in one behavioral feature. No
EEG differences where observed for the members of the control group, as opposed to the
training group that displayed activity alterations. Building on these outcomes, we intend
to extend our study utilizing a refined experimental protocol employing advanced EEG
analytics for gaining comprehensive insight into the cognitive mechanisms of human
memory and the dual process theory.
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Abstract. Recent developments in Brain-Computer Interfaces (BCI)—
technologies to collect brain imaging data—allow recording of Electroen-
cephalography (EEG) data outside of a laboratory setting by means of
mobile EEG systems. Brain imaging has been pivotal in understand-
ing the neurobiological correlates of human behavior in many complex
disorders. This is also the case for tinnitus, a disorder that causes phan-
tom noise sensations in the ears in absence of any sound source. As
studies have shown that tinnitus is also influenced by complexities in
non-auditory brain areas, mobile EEG can be a viable solution in bet-
ter understanding the influencing factors causing tinnitus. Mobile EEG
will become even more useful, if real-time EEG analysis in mobile experi-
mental environments is enabled, e.g., as an immediate feedback to physi-
cians and patients or in undeveloped areas where a laboratory setup is
unfeasible. The volume and complexity of brain imaging data have made
preprocessing a pertinent step in the process of analysis, e.g., for data
cleaning and artifact removal. We introduce the first smartphone-based
preprocessing pipeline for real-time EEG analysis. More specifically, we
present a mobile app with a rudimentary EEG preprocessing pipeline and
evaluate the app and its resource consumption underpinning the feasi-
bility of smartphones for EEG preprocessing. Our proposed approach
will allow researchers to collect brain imaging data of tinnitus and other
patients in real-world environments and everyday situations, thereby col-
lecting evidence for previously unknown facts about tinnitus and other
conditions.
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1 Introduction

Brain imaging techniques offer different opportunities to examine the neurobio-
logical correlates of human behavior. Among different brain-imaging techniques,
for instance, Magnetoencephalography (MEG), Functional Magnetic Resonance
Imaging (fMRI), and Positron Emission Tomography (PET), Electroencephalog-
raphy (EEG) is the most adaptable and multifaceted one. EEG is a non-invasive
tool that allows the investigation of the resting-state electrical activity of the
brain by means of electrodes positioned on the scalp [8]. This enables the inves-
tigation of human brain functions by recording the communication between neu-
rons in the brain network measured in volts. EEG offers high time resolution
(high number of snapshots of electrical activity from various electrodes) in com-
parison to fMRI and PET [25], and is an inexpensive and low maintenance
technique compared to MEG. Thus, EEG is not only an inexpensive but a ver-
satile, lightweight, and portable brain-imaging technique, and it is extensively
applied in tinnitus research [3,7,11].

Tinnitus is a common disorder responsible for causing the perception of a
ringing sound in the ears without presence of any external sound source. The
reasons pertaining to causing this phantom sound are yet to be fully discov-
ered, but it has been firmly established that tinnitus is caused by an underlying
anomaly in the ear such as damage and loss of cochlear hair cells [14]. Despite the
fact that tinnitus is traditionally considered a problem of the inner ear, recent
studies using brain imaging have shown that the complexity of tinnitus goes
beyond the auditory cortex into non-auditory brain areas [8,13]. Brain imag-
ing techniques like EEG can be pivotal in collecting evidences for further yet
unknown facts regarding the neuronal activity of tinnitus.

Current developments in EEG research have progressed significantly to
record EEG outside a laboratory setting by means of ambulatory or mobile
EEGs [16,17]. Mobile EEG devices are equipped with necessary hardware to be
communicated by a wired (USB) or a wireless connection (Bluetooth or WiFi).
Generally, an EEG session is primarily recorded and temporarily stored on the
mobile EEG device (either on the built-in flash memory or an external SD card).
Since brain imaging outside a controlled laboratory setting and in real-world
scenario can result in unnecessary noise in data and useless subject-generated
artifacts [12], the EEG recordings are therefore transferred to a computer for pre-
processing steps like data cleansing, filtering and artifact removal using EEGLab
Scripts [6], MATLAB, or FieldTrip [23]. Alternatively, mobile EEG can also be
directly connected to a computer to transfer real-time EEG data and perform
on-the-run preprocessing [26].

Although the current paradigm of EEG recording and preprocessing is a
significant improvement over conventional EEG, including EEG analysis in real-
world settings, it is still limited in terms of offering real-time analysis with free-
dom of movement or mobility. A major shortcoming of the current EEG analysis
paradigm is the requirement of additional hardware for EEG data acquisition,
preprocessing, and visualization. For example, currently, the overall process of
EEG analysis and visualization requires additional steps of transferring EEG
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data to a computer, thereby hindering the mobility and introduction of requiring
specialized software for EEG data preprocessing. A possible alternative solution
to this problem can be Mobile Sensing—the process of acquiring sensory data of
an individual using a smartphone or mobile device while allowing mobility [20].
Smartphones are capable to be used, and some scientific literature has already
reported their successful usage [19,30].

Modern smartphones are ubiquitous devices that provide sophisticated com-
munication hardware, exceptional computing power, and reasonable battery.
Additionally, smartphones offer APIs for programming new apps. These charac-
teristics plus the fact that smartphones are literally mobile devices make smart-
phones an ideal candidate for real-time analysis and recording of EEG data in
non-conventional, exceptional, and atypical real-world settings such as swim-
ming, running, or hiking etc. However, it is also notable that the smartphones
are manufactured as general purpose devices and are not specialized for real-
time EEG recording and analysis, therefore, their feasibility and behavior in
such cases require efforts. For instance, continuous sampling of the EEG data
might result in excessive battery consumption problems [33], or might introduce
scarcity of computational power for general user experience [2]. Furthermore,
a continuous Bluetooth connection with the mobile EEG device might cause
data transmission problems [10], as well as its associated energy consumption
problem [32].

Therefore, for addressing the aforementioned challenges, this article proposes
a mobile-based preprocessing pipeline for EEG analysis, more specifically (i) the
development and design of a smartphone app with a rudimentary EEG prepro-
cessing pipeline, and (ii) an evaluation of the proposed app to show the feasibility
of smartphones to perform EEG preprocessing. The proposed work is motivated
and driven by the needs of tinnitus research within the context of the European
School for Interdisciplinary Tinnitus Research (ESIT) [29]. One core goal of the
ESIT project is the development of a generic, robust and flexible middleware
for mobile crowdsensing to monitor real-time measurements of tinnitus-related
parameters as well as electroencephalographic and physical activities. The pro-
posed approach will improve mobility for EEG data acquisition and analysis
using smartphones and enable preprocessing of EEG data without the need
of specialized software and hardware. The proposed smartphone app will also
allow researchers to collect brain-imaging data of tinnitus patients in a vari-
ety of experimental conditions in real-world environment, thereby, to collect
evidence for unknown facts regarding tinnitus in brain regions. In particular,
the proposed smartphone app will assist researchers in designing and gathering
EEG data for large scale longitudinal studies, for example, to investigate oscilla-
tory brain activity of tinnitus patients in a longitudinal design by investigating
patients that have moments with high and low tinnitus intensity. Furthermore,
the ability to collect and analyze real-time EEG data in real-world experimental
situations as well as in places where a laboratory EEG setup is impossible—
for instance, in underdeveloped or undeveloped rural areas—will be a significant
asset for brain-imaging and neuro-imaging research. The application possibilities



70 M. Mehdi et al.

are not limited to tinnitus research, but the proposed solution will also support
a variety of application domains where brain-imaging is vital.

Section 2 of this paper gives insights into previously reported related work in
this field and briefly discusses the existing preprocessing approaches. Section 3
details the overall design and implementation of the proposed work. The subse-
quent Sect. 4 evaluates the proposed approach by presenting results and data on
the feasibility of smartphones for preprocessing EEG data. Finally, we conclude
and present brief insights into future work in Sect. 5.

2 Related Work

In terms of specialized software packages for offline and online preprocessing and
analysis of EEG data, EEGLAB [6] and FieldTrip [23] are among the most promi-
nent. EEGLAB is an open source (GNU license) toolbox for MATLAB. It is used
for processing EEG data, including data filtering and artifact removal, as well as
analysis of EEG data using Independent Component Analysis (ICA). Similarly,
FieldTrip is also an open source (GNU license) toolbox for MATLAB for ana-
lyzing EEG data. In terms of developing BCI applications, OpenViBE (frame-
work for developing BCI applications for neurofeedback and biofeedback) [27],
BCILAB (EEGLAB plugin to develop EEG predictive models) [15], and BCI2000
(a C++ framework for developing real-time BCI applications) [28] are some of
the popular frameworks. Furthermore, Esch et al. [9] present the MNE software
project, which comprises tools required for EEG and MEG data acquisition,
preprocessing, analysis, and visualization. Similarly, Tadel et al. [31] present an
open-source platform for EEG and MEG data analysis and visualization.

With reference to existing preprocessing pipelines, it is pertinent to notice
that there exists no standard method. Usually, the preprocessing of EEG sig-
nals is supervised by EEG experts. However, there has been some existing lit-
erature reporting on automated preprocessing of EEG data. Usually, most of
the pre-existing preprocessing pipelines perform filtering, removal of line noise,
and detection of bad channels including interpolation. Among the preexisting
preprocessing pipelines, the PREP Pipeline [4] claims to standardize the prepro-
cessing of EEG data. The main idea of PREP is to distinguish externally gen-
erated noise, such as electrical interference and patient-generated artifacts via
muscular activation. For instance, the line-noise detection and removal is done
using a modified implementation of the CleanLine plugin from EEGLAB [1,22].
The PREP Pipeline has been reused in other preprocessing implementations,
Automagic [24] and the Batch Electroencephalography Automated Processing
Platform (BEAPP) [18]. In [5], da Cruz et al. propose a MATLAB-based auto-
mated preprocessing pipeline for EEG data called APP. APP uses the CleanLine
plugin from EEGLAB for line-noise removal like the PREP pipeline. Further-
more, APP applies a 3rd Order Butterworth filter 1 Hz in both forward and
reverse direction to correct the direct-current (DC) drift caused by changes in the
DC value. After removing the line noises, the channel data is re-referenced. Both
PREP and the APP preprocessing pipelines extensively use the EEGLAB pre-
processing library. Instructions on how to preprocess EEG data using EEGLAB
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Table 1. Overview of the preprocessing pipelines

PREP [4] APP [5] Makoto [21] Result

– 3rd order
Butter-worth
filter

Highpass filter 3rd order
Butter-worth
filter

Cleanline CleanLine CleanLine Band-stop filter

Signal true mean
estimation with
bad channels
interpolated

Signal true mean
estimation with
weighted mean

– Estimate signal
true mean with
bad channels
interpolated

Detect bad
channels relative
to mean and
interpolate

Detect bad
channels relative
to neighbors and
with high
dis-persion to
mean

– Detect bad
channels relative
to mean and
interpolate

Detecting noisy
or outlier
channels

– – –

– Detecting and
remove bad
epochs

Reject epochs for
cleaning

–

– ICA ICA –

– Detection,
removal and
interpolation of
bad channels in
epochs

– –

– Outlier detection – –

and development of preprocessing pipelines are given by Makoto Miyakoshi from
Swartz Center for Computational Neuroscience [21].

The three foremost and commonly used preprocessing pipelines (PREP, APP,
Makoto) are delineated in Table 1, along-with a comparison to our proposed
approach. We first apply a 3rd Order Butterworth filter in both forward and
reverse directions for signal filtering like the APP preprocessing pipeline. Next,
we use a Band-stop Filter (also called notch filter) as an alternative to the
Cleanline to remove power line interference between 50 and 60 Hz or 50 and
70 Hz. Despite that this can cause significant signal distortion around the band-
stop frequency and phase distortion [4], however, our choice of implementing
band-stop filter is due to resource scarcity on the smartphones. Currently, we
are working on implementing and optimizing the CleanLine algorithm for the
Android platform. Finally, in order to detect bad channels, we have implemented
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and modified both phases of the PREP’s ‘Referencing Procedure’ for the Android
platform.

In general, there exists a plethora of literature reporting on software packages
and toolboxes for online and offline analysis of EEG data. Similarly, there exist
plenty of literature reporting on automated preprocessing pipelines and stan-
dardizing the preprocessing of EEG data. Our literature review did not yield
any study that reports on any application of preprocessing EEG data using
smartphones. Specifically, we did not find any article that benchmarks the pre-
processing of EEG data using smartphones. To the best of our knowledge, the
proposed work is the first of its type towards mobile-based preprocessing pipeline
for EEG analysis, including visualization of EEG data, as well as to present
evidence regarding feasibility of smartphones to perform preprocessing of EEG
data.

3 Implementation

The proposed work aims at preprocessing of EEG data for analysis purposes
using a smartphone. Therefore, we have developed an Android application. The
overall architecture of the proposed app is presented in Fig. 1. The data from elec-
trodes of the EEG cap are transmitted to the EEG Amplifier. In our implemen-
tation, we have used the EEG Amplifier by Brain Products called LiveAmp 161.
The EEG Amplifier can be coupled with the smartphone using Bluetooth.

Preprocessing Pipeline

Graphical User Interface

EEG Data Receiver

Buetooth Connec on Manager

Highpass Filter Bandstop Filter

Rereferencing

EEG Visualiza onAndroid Device

EEG Cap

EEG Amplifier
LiveAmp 16 by Brain Products

Fig. 1. Architecture

To acquire live EEG data, an EEG cap is connected to LiveAmp 16 using
a wired connection. The Bluetooth Connection Manager module is responsi-
ble for establishing the first connection with LiveAmp 16, and maintaining the

1 https://www.brainproducts.com/productdetails.php?id=63 Accessed: 15/06/2020.

https://www.brainproducts.com/productdetails.php?id=63
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Bluetooth connection for the duration of EEG. The EEG Data Receiver mod-
ule is implemented in Java and included as an external library to the Android
application. The EEG data-receiver module is responsible for communicating
with the LiveAmp 16 based on the LiveAmp-16’s communication protocol, and
is assisted by the Bluetooth-connection manager module. All communications
between LiveAmp 16 and the Android application are done in a proprietary
binary data format using request-response method. Some examples of requests
sent to LiveAmp 16 are ‘Get Device Information’ and ‘Get Device Status’. In
order to start EEG data acquisition, the EEG data receiver sends a request of
type ‘Start Data Acquisition’ and starts receiving EEG data in binary responses
from LiveAmp 16. The data transformation is also managed by the EEG data-
receiver module. Once the data has been transformed into an internal Java for-
mat, the EEG data is forwarded to the Preprocessing-Pipeline module.

3.1 Preprocessing Pipeline

Our current implementation of the preprocessing pipeline offers filtering, removal
of line noise, and detection of bad channels including interpolation. As these
steps are usually part of any preprocessing pipeline, we identify these steps to be
principle components, and therefore we have limited our current implementation
to these. Herein, the filtering is offered by HighPassFilter with a 3rd Order
Butterworth filter. The line noise removal is carried out by BandStopFilter.
Finally, the bad-channel detection is done by adopting and implementing both
phases of the PREP’s ‘Referencing Procedure’ for Android platform, we refer
to as Rereferencer. The overall design of our current implementation of the
preprocessing pipeline is illustrated in Fig. 2, using a Class Diagram, and the
sequential object interactions of the Java classes is given in Fig. 3. The individual
classes as well as their relations are briefly discussed below:

Pipeline. The abstract Pipeline class defines all the necessary properties and
methods, such as the frequencies of filters, and the sampling rate. The Pipeline
class implements the Filter interface, where the Filter interface declares the
method called filter(). To ensure a flexible class design and a uniform filter
structure, all filter classes extend the abstract Pipeline class (HighPassFilter,
Rereferencer, and BandStopFilter). The filter-specific logic is implemented in
the overridden filter() method of each extending filter class. In addition to
other properties, the Pipeline class also defines an instance of EpochBuffer
class. During the filtering process, the Pipeline class initializes the buffer with
the EEG data values.

EpochBuffer. To work with continuously incoming data, an EpochBuffer
with a default length of 64 values is used. The EpochBuffer implements a
CircularBuffer and stores the incoming EEG data values. All filters are sequen-
tially applied on the values stored in buffer, thus modifying the EEG data one
after the other.
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<<abstract>>
Pipeline

+bufferLength:int

+nbChannels:int

+epochBuffer:EpochBuffer

+highPassOrder:int

+highPassSampleRate:int

+highPassCutOffFrequency:int

+bandStopSampleRate:int

+bandStopOrder:int

+bandStopCenterFrequency:int

+bandStopFrequencyWidth:int

+noiseFilterThreshold:int

initBuffer(int):void

addValues(doube[]):void

updateValues(doube[]):void

getLastValues():doube[]

<<interface>>
Filter

filter():void

HighPassFilter RereferencerBandStopFilter

Extends

Extends

Extends

CircularBuffer

+bufferLength:int

+nbChannels:int

+index:int

+pts:int

+buffer:double[][]

update(double[]):void

clear():void

EpochBuffer

+updateValues(doubel[]):void

+getChannelMean(int):double

+getLastValues():double[]

+bufferLength:int

Use

Fig. 2. Class diagram of preprocessing pipeline-related Java classes

HighPassFilter. Class HighPassFilter is implemented with the help of an
Infinite Impulse Response (IIR) filter library for digital signal processing2. The
library is integrated into the project using Maven. The library allows application
of 3rd Order Butterworth Filter with a default value 1 Hz and a sampling rate
250 Hz to the signal.

Rereferencer. For this filter, both phases of the PREP’s re-referencing algo-
rithm presented in [4] was implemented in Java for the Android platform. The
NoiseDetector from NeuroTechX3 used in EEG-101 was used to detect noisy
channels. The noise detector uses variance thresholding on the data available in
EpochBuffer to detect and mark noisy channels.

BandStopFilter. The aforementioned IIR library comes with an implementa-
tion of the band-stop filter. To remove line noise from the signal, our implemen-
tation re-uses the band-stop filter from the IIR library.

2 https://github.com/berndporr/iirj Accessed: 15/06/2020.
3 https://github.com/NeuroTechX/eeg-101 Accessed: 15/06/2020.

https://github.com/berndporr/iirj
https://github.com/NeuroTechX/eeg-101
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:NotifyQueue

onFixRate(values)

:App :Visualize
Activity

setupPipeline()
create()

:HighPass
Filter

:BandStop
Filter

:Re-
referencer

filter
(values)

:Acquisition
DataHandler

handle(data)

setVisualize
Handler(handler)

create(handler)

put(values) :Epoch
Buffer

create()
init()

add(values)
filter()

get()

values

update(v)

filter()
getValues()

values

update(values)

filter()

values

getValues()

update(values)

:List
Adapter

notifyHandler(values)

addValues()

Loop

filter(values)

filter(values)

data
packets

Fig. 3. Sequence diagram of data preprocessing

To better examine the results and behavior of the individual filters, as well
as the entire pipeline (all filters applied), a comparison of filter application to
the raw EEG data is shown in Fig. 4. In all represented graphs in Fig. 4(a–d),
the blue signal represents the raw EEG data without application of any filter,
while the blue signal represents the EEG data after application of individual
filter. Herein, Fig. 4a shows the comparison of raw EEG data and the high-pass
filter, Fig. 4b shows a comparison of the band-stop filter with raw EEG data,
and Fig. 4c shows a comparison of raw EEG data and the application of the re-
referencer filter. Similarly, Fig. 4d shows a comparison between raw EEG data
with all filters applied (high pass, band-stop, re-referencer).

From Fig. 4a, we can observe very minor difference between the two signals,
suggesting very little impact on changing the signal. Figure 4b gives a good
example of influence of the band-stop filter on the EEG data. Although the
signal looks quite similar to the original, but at some points the peaks become
more smoother. With the re-referencer filter results shown in Fig. 4c, it can be
noticed that the signal peaks remain in their amplitude, but in some places there
is a slight upward and downward shift in amplitude of the signal, particularly in
the signal comparison of Channel 1. The result of the entire pipeline, depicted
in Fig. 4d, shows a mixture of what we experienced at each individual filter.

The exact accuracy of application of individual filters can be questioned,
therefore, domain experts can be helpful in validating and improving the filter
implementation. Furthermore, please also note that the amount of influence of
applying individual filters as well as the entire pipeline on the EEG data is
dependent and subjective of the type of raw EEG data used. For instance, a
cleaner input EEG signal with minimum noise and noisy artifacts will present
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minimum change in the output EEG signal after application of the pipeline
filters.

It is also pertinent to note here that, even if the filters are cleaning the EEG
data, the inclusion of experts is necessary to clarify whether the resulting EEG
data after application of the pipeline filters does not contain any noisy artifacts.
Similarly, domain experts can also advise in case if the filters are responsible
for removing any significant information from the input EEG data, which is
critical for the domain-specific analysis. In both of these cases, respective filter
parameters can be modified and adjusted to find an optimal filter setting.

(a) Highpass Filter (b) Band-stop Filter

(c) Re-referencer (d) Pipeline

Fig. 4. Comparison between raw simulator data (red) and the filters applied (blue)
(Color figure online)

3.2 Graphical User Interface (GUI)

Workspace and Filter Settings

Before running an EEG recording session, the EEG device must be config-
ured properly. The proposed Android application uses workspaces for this task.
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(a) EEG workspace creation (b) Preprocessing filter set-
tings

Fig. 5. EEG application screenshots

Workspaces are stored and can be edited later. This allows the flexibility to exe-
cute multiple EEG sessions with the same workspace configuration. Additionally,
changing a single parameter of an existing workspace is also possible. Figure 5a
shows the screenshot from the app for the workspace creation. Each workspace
consists of several parameter settings like name, recording mode, and sampling
rate. Furthermore, the workspace screen also allows enabling and disabling of
EEG channels. The workspace configuration can be stored on the Android device
and are sent to the EEG amplifier before an EEG session via EEG Data Receiver
module.

In addition to the workspace configuration, the proposed Android applica-
tion also allows configuration of filters through a Pipeline Settings screen. The
pipeline-settings screen allows enabling and disabling of individual pipeline filters
as well as configuration of filter parameters. This allows the behavior of individ-
ual filters, or different combination of filters on the EEG data to be observed and
evaluated. Additionally, changing configuration parameters of individual filters
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allows optimization of filter application on the EEG signal. A screenshot from
the Android app for pipeline settings is depicted in Fig. 5b.

Visualization
In order to visualize EEG data (prior or post-preprocessing), we implemented
an Android-specific ListAdapter. This ListAdapter in an integral part of the
aforementioned EEG data receiver module, and is responsible for establishing
and managing data communication between the data model and visualization.
The overall structure of ListAdapter is depicted in Fig. 6. The Data Model com-
ponent is implemented as Java POJO Classes to hold specific data of EEG chan-
nels. As there is a lack of native Android chart libraries, the MPAndroidChart
library by Philipp Jahoda4 is used for creation of line charts to show EEG data.
Since not all channels should be displayed in a single chart, the ListAdapter
provides a ViewHolder for each and individual EEG channel using a line chart.
Once an EEG data packet of all channels has been preprocessed through the
pipeline, it is forwarded to the list of channels in the ListAdapter. The adapter
is then informed by the Notifier component (Java listener component trig-
gered on changes in EEG data packet values) that its list of channels has new
data values and can therefore update the ViewHolder. The ViewHolder holds
the line charts and updates them with each new EEG data packet. Since data
outside the Android viewport is invisible and is irrelevant for display, therefore,
the number of data values in individual line chart is limited to the viewport,
this allows conservation of the working memory of the smartphone. In order to
further conserve the smartphone resource, the RecyclerView component ensures
refreshing of ViewHolder based on last used EEG data packets in case the EEG
data packet values have not changed.

ListAdapter

ViewHolder

Data Model RecyclerViewNo fier

Fig. 6. Structure of the ListAdapter for visualization of EEG data

Figure 7a shows an example visualization of the test signal generated by the
EEG amplifier device for Channels 1 to 8. Furthermore, please note the control
buttons on the bottom right corner of the screen. The control buttons are divided
into three types: 1) The Record button starts recording (storage of EEG data
on smartphone and amplifier) of the EEG along with visualization of the EEG

4 https://github.com/PhilJay/MPAndroidChart Accessed: 15/06/2020.

https://github.com/PhilJay/MPAndroidChart
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signal on the smartphone, 2) the Monitor button starts visualizing the EEG data
without recording, and 3) Start/Stop testing starts respectively stops receiving
test signal (sinusoidal wave) generated by the amplifier to test connectivity and
data transmission. Figure 7b shows an example visualization of a real EEG data.
The pipeline latency on the top of the screen shows the time delay between the
preprocessing of two consecutive EEG data packet values. In this example, the
latency is shown for all three pipeline filters.

(a) Test Signal Visualization (b) EEG Data Visualization

Fig. 7. EEG application screenshots

4 Results and Discussions

Since one of the core goals of our proposed work was to test and evaluate the
feasibility of smartphones for EEG data preprocessing, in this section we detail
the experiments and results examining the performance of the proposed prepro-
cessing pipeline on a mobile device. We have exhaustively tested our proposed
approach and run experiments to provide a detailed comparison of resource con-
sumption on the mobile device for acquiring raw EEG data (non-processed EEG



80 M. Mehdi et al.

data), application of individual filters on the EEG data, and application of all
filters on the EEG data. Our experiments focus specifically on mobile resource
consumption in terms of CPU usage, working memory usage, and battery
consumption.

4.1 Experimental Setup

To measure the performance data of the proposed pipeline and its filters, the
Huawei P20 Lite with 4 GB RAM, with an Octacore processor Kirin 659 (4× 2.36
GHz + 4 × 1.7 GHz), and non-removable Li-Po 3000 mAh battery was used5.
The Android Profiler built into Android Studio was used to measure the app
performance. The workload and resource consumption of raw data, individual
filters and entire preprocessing pipeline were captured by running them for a
duration of 5 min. The entire process was repeated 3 times, the performance
data was recorded, and the arithmetic mean of 3 separate runs was computed.
The EEG amplifier configurations and filter settings used for the experiments
are given in Table 2.

Table 2. EEG amplifier and filter settings

Settings Type Values

Workspace EEG channels 1–8

Data type Test

Sampling rate 250

HighPass filter Order 3

Cut-off frequency 1

BandStop filter Order 3

Center frequency 60

Width frequency 10

Rereferencing Variance threshold 4000

4.2 Results

The comparative performance results of the proposed EEG preprocessing
pipeline are given in Fig. 8, where Fig. 8a gives performance in terms of CPU
usage in percentage, and Fig. 8b shows the amount of working memory used in
MB. The battery related results are shown in Fig. 9, where Fig. 9a shows the
energy consumption in percentage. Herein, please note that the Android Studio
Profiler only distinguishes between three energy levels namely light, medium,
and heavy. We divided each of those levels into three equal parts which results
5 https://consumer.huawei.com/de/support/phones/p20-lite/ Accessed: 15/06/2020.

https://consumer.huawei.com/de/support/phones/p20-lite/
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in nine same sized intervals. The introduced nine intervals were used for proper
quantization of the energy used by filters and allow better distinction of energy
consumption. Figure 9b shows the comparative results of over-all battery run-
time duration in hours (hh:mm format). For this purpose, the mobile device was
completely charged and the EEG data was continuously sampled, processed, and
visualized until the battery was exhausted.

4.3 Discussion

From Fig. 8, in general, we can see minimal usage of critical computing resources
of the smartphone. Note that this is suggestive as the regular user experience,
including the background services, can not be hindered by the preprocessing
and visualization of EEG data. Specifically, from Fig. 8a, the average CPU

(a) CPU load in percentage

(b) Memory consumption in MB

Fig. 8. Smartphone performance results
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(a) Energy Consumption
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Fig. 9. Smartphone battery results

usage ranges between 13%–17%, with highest usage by the entire preprocess-
ing pipeline. In case of maximum CPU usage, we see varying values between
28%–36% and highest consumption of 36% by the entire pipeline. In comparison
to acquiring and visualizing raw EEG data, the amount of extra CPU usage
(CPU overhead) by applying the entire pipeline is notably lower (average CPU
usage difference of 4% and maximum CPU usage difference of 8%). In case of
both average and maximum CPU usage, the values for each individual filters
remained on the same level with slight difference in comparison to the raw EEG
data CPU usage values.

From Fig. 8b, very nominal amounts of working memory or RAM usage
can be seen. The average memory usage ranges between 94–128 MB, with most
memory usage of 128 MB by the entire preprocessing pipeline. In case of max-
imum memory usage, a variation of values ranging between 102–135 MB were
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observed, where the highest memory usage of 135 MB was for the entire pipeline.
Comparatively, the amount of additional working memory required for applying
the entire pipeline as opposed to acquiring and visualizing raw EEG data is very
low (average memory usage difference of 34 MB and maximum memory usage
difference of 33 MB).

Apparently, the proposed preprocessing pipeline is resource-intensive in terms
of battery and energy consumption (see Fig. 9). A moderate to high require-
ment for energy consumption was already anticipated due to the involvement of
additional resources like Bluetooth and the smartphone screen usage. However,
from Fig. 9a, we can conclude an acceptable energy requirement by the app.
Specifically, since in case of average energy usage, all filters as well the entire
preprocessing pipeline consumed 33% of the smartphone energy, inline with the
battery usage for acquiring and visualizing raw EEG data. Conversely, in case
of maximum energy usage, we see values ranging from 56% (energy usage to
acquire, and visualize raw EEG data) to 78% (energy usage for acquiring, pre-
processing with entire pipeline, and visualizing raw EEG data). Herein, we see
a notable additional energy usage of 22% by the entire preprocessing pipeline.
For HighPass filter, the energy remains same as the raw EEG data acquisi-
tion and visualization, but an additional energy usage of 11% for band-stop and
referencing (Rereferencer) filters can be seen.

On the other hand, energy usage measure can be subjective in certain scenar-
ios, therefore, an objective measure in terms of overall battery run-time duration
is given in Fig. 9b. The overall battery run-time duration represents the amount
of time between a full battery charge and empty battery. From Fig. 9b, we
see a total of 5 h and 7 min alive time for continuous raw EEG data acquisi-
tion and visualization. The overall time duration varied for EEG data acquisi-
tion, visualization, and applying individual preprocessing filter. For instance, for
Highpass filter the battery lasted for 4 h 49 min, for bandstop filter the battery
run-time duration was 4 h 26 min, 4 h 17 min for the Rereferencer, and for the
entire pipeline (all filters) the battery lasted for 3 h and 59 min. Herein, we see
the lowest battery run-time duration of 3 h and 59 min, which is acceptable since
most conventional EEG sessions require maximum of 40 min.

5 Conclusion, Limitations, and Future Work

Portable, ambulatory, or mobile EEG devices allow monitoring of neuronal activ-
ities of human brain in real-life scenarios. The mobile EEG devices support
the wireless transmission of EEG data over Bluetooth, thus, enabling live EEG
data processing and visualization on standard smartphones. In this work, we
proposed an elementary mobile-based preprocessing pipeline for EEG analysis
and evaluated the feasibility of smartphones for EEG data preprocessing. Our
experiments and results show that contemporary smartphones have satisfactory
computational capabilities in terms of CPU and working memory to perform
EEG data acquisition, preprocessing, and visualization without hindering the
user-experience in relation to general smartphone use. Further, our experiments
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with battery consumption while preprocessing and visualizing EEG data show
moderate energy consumption and suggest that the smartphones hold ample
battery capacity to allow recording of multiple EEG sessions. The proposed app-
roach was realized within the context of tinnitus research to collect evidence for
unknown facts regarding tinnitus using brain imaging techniques. The significant
contributions of the proposed approach are to, (i) improve EEG data acquisition,
preprocessing, visualization, and analysis, (ii) enable preprocessing of EEG data
using smartphones and without the need of specialized software or hardware, (iii)
allow researchers the flexibility to gather brain imaging data of tinnitus patients
in a variety of experimental conditions in real-world environments. Furthermore,
the proposed app serves as an initial step towards smartphone-based automated
mobile neurofeedback and biofeedback for tinnitus patients. Nevertheless, our
approach can be applied for other domains needing mobile and real-time EEG
observations.

Two notable shortcomings of our proposed work are, 1) the number of fil-
ters included in the preprocessing pipeline, and 2) our choice of band-stop filter
for removal of line noise. For inclusion of additional filters in the preprocess-
ing pipeline, we have ensured the current design is flexible and extendable, and
therefore, the pipeline can be easily extended with additional artifact-removing
filters. For instance, we are currently implementing the Independent Component
Analysis (ICA) algorithm for Android platform. For line interference and noise
removal, although, we justify our use of band-stop filter, for future work, we are
currently working on an optimized and Android-specific implementation of the
CleanLine algorithm. Furthermore, we are running the aforementioned experi-
ments on additional smartphone devices (including old models as well relevantly
new models) to observe the behavior of proposed EEG preprocessing pipeline
in terms of resource consumption. Finally, for further future work, we intend to
apply the proposed smartphone app in the field to acquire and analyze EEG
data in real-world experimental settings. This will be specifically done within
the context of tinnitus research to gather EEG-related data of tinnitus patients.
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11. Güntensperger, D., Thüring, C., Meyer, M., Neff, P., Kleinjung, T.: Neurofeedback
for tinnitus treatment-review and current concepts. Front. Aging Neurosci. 9, 386
(2017)

12. Hassani, M., Karami, M.R.: Noise estimation in electroencephalogram signal by
using Volterra series coefficients. J. Med. Signals Sens. 5(3), 192 (2015)

13. Jastreboff, P.J.: Phantom auditory perception (Tinnitus): mechanisms of genera-
tion and perception. Neurosci. Res. 8(4), 221–254 (1990)

14. Jastreboff, P.J., Hazell, J.W.: A neurophysiological approach to tinnitus: clinical
implications. Br. J. Audiol. 27(1), 7–17 (1993)

15. Kothe, C.A., Makeig, S.: BCILAB: a platform for brain-computer interface devel-
opment. J. Neural Eng. 10(5), 056014 (2013)

16. Kranczioch, C., Zich, C., Schierholz, I., Sterr, A.: Mobile EEG and its potential to
promote the theory and application of imagery-based motor rehabilitation. Int. J.
Psychophysiol. 91(1), 10–15 (2014)

17. Lau-Zhu, A., Lau, M.P., McLoughlin, G.: Mobile EEG in research on neurode-
velopmental disorders: opportunities and challenges. Develop. Cogn. Neurosci. 36,
100635 (2019)

18. Levin, A.R., Méndez Leal, A.S., Gabard-Durnam, L.J., O’Leary, H.M.: BEAPP:
the batch electroencephalography automated processing platform. Front. Neurosci.
12, 513 (2018)

19. Lin, Y.P., Wang, Y., Jung, T.P.: Assessing the feasibility of online SSVEP decoding
in human walking using a consumer EEG headset. J. Neuroeng. Rehabil. 11(1),
119 (2014)

20. Mehdi, M.: Smart mobile crowdsensing for tinnitus research: student research
abstract. In: Proceedings of the 34th ACM/SIGAPP Symposium on Applied Com-
puting, pp. 1220–1223. ACM (2019)

21. Miyakoshi, M.: Makoto’s preprocessing pipeline. Swartz Center for Computational
Neuroscience (2018)

22. Mullen, T.: Cleanline EEGLAB plugin. Neuroimaging Informatics Toolsand
Resources Clearinghouse (NITRC), San Diego (2012)

https://doi.org/10.3389/fninf.2015.00016
https://www.frontiersin.org/article/10.3389/fninf.2015.00016
https://www.frontiersin.org/article/10.3389/fninf.2015.00016


86 M. Mehdi et al.

23. Oostenveld, R., Fries, P., Maris, E., Schoffelen, J.M.: FieldTrip: open source soft-
ware for advanced analysis of MEG, EEG, and invasive electrophysiological data.
Comput. Intell. Neurosci. 2011, 156869 (2011)

24. Pedroni, A., Bahreini, A., Langer, N.: Automagic: standardized preprocessing of
big EEG data. Neuroimage 200, 460–473 (2019)

25. Rajkumar, R., et al.: Comparison of EEG microstates with resting state fMRI
and FDG-PET measures in the default mode network via simultaneously recorded
trimodal (PET/MR/EEG) data. Hum. Brain Mapp. (2018)

26. Reiser, J.E., Wascher, E., Arnau, S.: Recording mobile EEG in an outdoor envi-
ronment reveals cognitive-motor interference dependent on movement complexity.
Sci. Rep. 9(1), 1–14 (2019)

27. Renard, Y., et al.: Openvibe: an open-source software platform to design, test, and
use brain-computer interfaces in real and virtual environments. Presence Teleoper.
Virtual Environ. 19(1), 35–53 (2010)

28. Schalk, G., McFarland, D.J., Hinterberger, T., Birbaumer, N., Wolpaw, J.R.:
BCI 2000: a general-purpose brain-computer interface (BCI) system. IEEE Trans.
Biomed. Eng. 51(6), 1034–1043 (2004)

29. Schlee, W., et al.: Innovations in doctoral training and research on tinnitus: the
European school on interdisciplinary tinnitus research (ESIT) perspective. Front.
Aging Neurosci. 9, 447 (2018)

30. Stopczynski, A., et al.: Smartphones as pocketable labs: visions for mobile brain
imaging and neurofeedback. Int. J. Psychophysiol. 91(1), 54–66 (2014)

31. Tadel, F., Baillet, S., Mosher, J.C., Pantazis, D., Leahy, R.M.: Brainstorm: a
user-friendly application for MEG/EEG analysis. Comput. Intell. Neurosci. 2011,
879716 (2011)

32. Xiong, H., Zhang, D., Wang, L., Chaouchi, H.: EMC3: energy-efficient data transfer
in mobile crowdsensing under full coverage constraint. IEEE Trans. Mobile Comp.
14(7), 1355–1368 (2015)

33. Zhuang, Z., Kim, K.H., Singh, J.P.: Improving energy efficiency of location sensing
on smartphones. In: Proceedings of the 8th International Conference on Mobile
Systems, Applications and Services (MobiSys), pp. 315–330. ACM (2010)



Machine Learning in eHealth
Applications



Forecasting Health and Wellbeing
for Shift Workers Using Job-Role Based

Deep Neural Network

Han Yu1(B), Asami Itoh2, Ryota Sakamoto2, Motomu Shimaoka2,
and Akane Sano1

1 Rice University, Houston, TX 77005, USA
{Han.Yu,akane.sano}@rice.edu

2 Mie University, Mie 514-8507, Japan
{amasui,sakamoto}@clin.medic.mie-u.ac.jp, shimaoka@doc.medic.mie-u.ac.jp

Abstract. Shift workers who are essential contributors to our society,
face high risks of poor health and wellbeing. To help with their prob-
lems, we collected and analyzed physiological and behavioral wearable
sensor data from shift working nurses and doctors, as well as their behav-
ioral questionnaire data and their self-reported daily health and wellbe-
ing labels, including alertness, happiness, energy, health, and stress. We
found the similarities and differences between the responses of nurses
and doctors. According to the differences in self-reported health and
wellbeing labels between nurses and doctors, and the correlations among
their labels, we proposed a job-role based multitask and multilabel deep
learning model, where we modeled physiological and behavioral data for
nurses and doctors simultaneously to predict participants’ next day’s
multidimensional self-reported health and wellbeing status. Our model
showed significantly better performances than baseline models and pre-
vious state-of-the-art models in the evaluations of binary/3-class classi-
fication and regression prediction tasks. We also found features related
to heart rate, sleep, and work shift contributed to shift workers’ health
and wellbeing.

Keywords: Shift workers · Health · Wellbeing · Wearables · Mobile
sensor · Deep learning

1 Introduction

Around 20% of the workforce in the world involves in shift work [48]. Their
irregular shift work brings a high risk of poor health and wellbeing. For example,
shift work disrupts workers’ circadian rhythms and causes problems such as sleep
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disorder and insomnia [10]. In addition to the sleep issues, decreased alertness
levels were found in healthy shift workers [9], which could lead to occupational
errors and accidents. Previous studies also showed the potential associations
between shift work and pathological disorders such as fatigue, gastrointestinal
malfunction [19], and an increased risk of colorectal cancer in night shift nurses
[38]. Moreover, more adverse mental health outcomes, emotional exhaustion, and
burnout were observed in shift workers compared to daytime workers [5,15,40,
43,46]. In health care domain, physician burnout is estimated to cost 4.6 billion
USD per year [13].

To support shift worker’s health and wellbeing, monitoring and predicting
their day-to-day health and wellbeing trajectories and providing aids to help
them prepare for challenging situations might be useful. Besides, mobile devices,
such as smartphones and wearable sensors, have become parts of people’s daily
life, and have been used to detect and predict self-reported health and wellbe-
ing with the help of machine learning models [2,16,21,41,42,49]. These previous
works targeted health and wellbeing detection or prediction as binary classifica-
tion [2,41], 3-class classification [25,49], and regression tasks [1,16,49]. Some of
these works developed personalized models by taking participants’ demographic
information into account [41] or fine-tuning general models to specific users [50].
Correlations among self-reported multi-dimensional labels - including subjective
mood, health, and stress- were also used in building multilabel neural network
models [41]. In addition, there are some prior works in monitoring shift workers
using wearable sensors. Feng et al. extracted a behavioral consistency feature
from shift worker wearable data and estimated anxiety levels with an accuracy
of 57.8% in binary classification. Mulhall et al. used sensors integrated in the
vehicles to monitor shift workers’ eye blinking as a marker of alertness [27] while
driving. Actigraphy has been also used widely for studying sleep for shift work
nurses [11,17].

Although these previous works have achieved promising results, there is no
work to thoroughly monitor and analyze different job types of shift workers’ mul-
tidimensional wellbeing and forecast them using machine learning. Furthermore,
the models developed previously considered the heterogeneity among partici-
pants and correlation among wellbeing labels separately; however, since these
two characteristics ubiquitously co-exist, modeling them simultaneously for dif-
ferent job types of shift workers might improve prediction model performance.

In this work, we collected physiological and behavioral data from hospital
shift workers, then we developed machine learning models to predict their next
day’s wellbeing in binary/3-class classifications and regression tasks. We also ver-
ified the rationale of leveraging job role information and multi wellbeing labels
simultaneously in the models by analyzing the data. Then, we proposed a mul-
titask multilabel deep learning model that leveraged job role information and
correlations among self-reported health and wellbeing labels.

Our contributions can be summarized as: (i) we collected physiological and
behavioral data from hospital shift workers, including nurses and doctors, (ii)
we analyzed their physiological and behavioral patterns and found similarities
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and differences, (iii) we developed a multitask multilabel deep learning model
to predict participants’ near future wellbeing using wearable sensor, surveys,
their job role information, and correlations among wellbeing labels. The details
of our proposed model structure, implementation and hyper-parameter infor-
mation are shared on: https://github.com/comp-well-org/multitask-multilabel-
wellbeing-prediction.

2 Related Work

There are numerous studies on shift workers’ health and wellbeing. Heath et al.
collected survey data from shift work nurses, and applied statistical analysis in
exploring the association among their work shift types, sleep, mood, and diet
[14]. They showed that shift work was significantly negatively related to shit
workers’ diet, sleep efficiency, and stress levels. Similarly, Books et al. analyzed
questionnaire data from shift-working nurses and showed an increased risk of
sleep deprivation, family stressors, and mood changes due to the night work
shift [3].

In addition, with the rapid development of mobile devices and mobile applica-
tions, objective data from wearables and smartphones have been used for study-
ing shift workers. For example, Pereira et al. collected wearable accelerometer
data from hospital shift workers and detected 4 levels of their physical activity
intensity with an 83% accuracy score [31]. Feng et al. used wearable devices to
collect physiological data from shift work nurses for ten weeks and applied a clus-
tering method for extracting behavioral consistency, which intuitively captures
unique behavioral patterns between different groups of nurses [7]. They further
found that behavioral consistency can help predict self-reported work behav-
iors and anxiety levels. In another work, Feng et al. analyzed physiological and
indoor location data from nurses with Fitbit wrist-wearable devices and Blue-
tooth hubs [6]. They extracted mutual information features and demonstrated
the dependency between an individual’s movement patterns and physiological
responses.

Machine learning models have been designed for detecting or predicting
health and wellbeing using mobile and sensor data. For example, Bogomolov
et al. developed daily stress detection algorithms based on five-month-long
weather, mobile phone data (e.g., calls, SMS, and screen usage), and personality
survey data from 117 participants [2]. They obtained stress detection accuracy
up to 72% in binary classification tasks. In Moodscope paper, mood (1: negative
to 5: positive) was detected with the best mean squared error of 0.229 using
the data from the mobile phone and a personalized linear regression model [21].
Similarly, Asselbergs et al. detected the current mood using mobile phone data
with a mean squared error of 0.15 out of −2 to 2 mood scale [1]. For further
improving the model performance, Taylor et al. developed a multitask machine
learning model to predict high/low self-reported stress, mood, and health and
separately used (i) the demographic information such as gender and personalities
of participants and (ii) correlations among labels [41]. This work also inspired
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us to use the combination of job role information and label correlations. In this
work, we study the differences in daily self-reported health and wellbeing, phys-
iology, and behavior between nurses and doctors, and focus on estimating shift
workers’ health and wellbeing using the data from mobile sensors and surveys
and job-role based deep learning models.

3 Methods

3.1 Data Collection

Two hundred and forty-one days of multi-modal data were collected from 14
shift workers, including 10 nurses (one male) and 4 doctors (all males) in a
hospital in Japan. The average age of all participants was 31.4 years old, with a
standard deviation (SD) of 4.2. For each study day, participants wore a Fitbit
wristwatch (Fitbit Charge 3) for monitoring their physiological and behavioral
activities such as heart rate, sleep, and step counts. The data sampled every
1 min was downloaded from the Fitbit server for data analysis and modeling.
In addition, participants filled out daily morning and evening questionnaires to
record their behavioral activities, including sleep, work schedule, and caffeinated
drinks, alcohol & drug intake.

Self-reported health and wellbeing labels - including alertness, happiness,
energy, health, and stress - were also collected in the morning questionnaire
using 0 to 100 scales, with 0 to the most negative and 100 being the most positive
(sleepy-alert, sad-happy, sluggish-energetic, sick-healthy, stressed-calm).

3.2 Features

We calculated the following features from the Fitbit data and daily question-
naires:

Heart Rate. Heart rate and heart rate variability are related to work stress
[44] and mood [39]. Based on heart rate collected from Fitbit sensor every 1
min, we computed features including daily mean, standard deviation (SD), and
entropy of heart rates. We computed sample entropy of heart rate, which rep-
resented the self-similarity of a sequence and has been used in physiological
time-series data analysis [34]. To calculate the sample entropy, we first need to
set an embedding dimension m. Using the given m, our sequence X with length
N can be divided into N − m + 1 sliding windows {X1,...,XN−m+1}, where
Xi = {xi, xi+1, ..., xi+m−1}. The equation of sample entropy is:

SampEn = − log
Um

Um+1
(1)

where

Um = − 1
N − m

N−m∑

i=1

Um
i (2)
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Um
i =

[# of j |d(Xi,Xj) < r]
N − m − 1

(3)

In our case, the distance d is:

d(Xi,Xj) = max |Xi − Xj | = max
k=1,...,m

|xi+k−1 − xj+k−1| (4)

Generally, m = 2 and r = [0.2 * (SD of X)].

Sleep. From Fitbit sensors, we obtained sleep duration and sleep efficiency.
Then, we calculated the mean and SD values of sleep duration and sleep efficiency
across the previous 7, 5, and 3 days. Moreover, using sleep data in one-minute
resolution, we calculated sleep regularity with sliding windows across 7 days of
participants’ data. Sleep regularity is a value of 0–1 based on the likelihood of
sleep/wake state being the same time-points 24 h apart, and is associated with
health, wellbeing, and academic performance in college students [8,32,37]. From
daily surveys, we obtained a daily feature of the time taken to fall asleep in
minutes. Participants also reported how they woke up in the morning: waking
up naturally, being awakened by the alarm, or other than alarm. Naps have
been shown a positive impact on shift workers’ performance, alertness [33], and
wellbeing [20]. From participants’ questionnaires, we summarized the times and
total duration of naps across a day.

Steps. Total daily number of steps and minute by minute number of steps
were recorded in the Fitbit dataset. To measure the variability of participants’
physical activities, we computed the mean and SD to indicate step variability
across the previous 7, 5, and 3 days. Excluding the sleep time, we counted the
minutes of: (i) duration of segments without steps (stationary segments) and (ii)
duration of segments with continuous steps (active segments) in 1-min bins. We
used the following information entropy equation to calculate the entropy of the
two types of physical activity based stationary and active segments:

En = −
∑

i

pi log pi (5)

where pi represents the probability that the ith item was observed.

Work. Work schedules and work hours are directly related to symptoms such
as sleep disorders and chronic fatigue [4]. Also, excessive work hours are harmful
to workers’ health and wellbeing [12]. We engineered work related features such
as daily work shifts, total work duration per day, and overwork duration in
minutes according to participants’ answers in the questionnaires. There were
three different work shifts, and each shift was for eight hours (1: 8:30-16:30,
2: 16:30-0:30, 3:0:30-8:30). Total work duration was actual work time, and the
overwork duration was the difference between the actual work hours and the
scheduled hours.
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Caffeine, Alcohol and Drug Use. Considering caffeine, alcohol, and drug
intake affects workers’ alertness [29,35], we computed features related to the
intake of caffeinated drinks, drug, and alcohol based on the participants’ reports:
the number of caffeinated drinks per day, and a binary feature for indicating
whether the participant had drug or alcohol each day.

3.3 Statistical Analysis of Physiological and Behavioral Features
Between Nurses and Doctors

We applied statistical tests to analyze the differences of physiological and behav-
ioral features between two groups, nurses and doctors. Seventy-seven days of data
were in the group of doctors, and 164 days of data were in the nurses’ group.
Between 2 groups, we compared the numeric features such as daily average heart
rate, steps, and overwork time using Mann-Whitney U test (non-normally dis-
tributed features) [23] and Welch’s t-test (normally distributed features) [45],
whereas the categorical features such as awakening types and working shifts
were compared with chi-square test [30].

3.4 Job-Role Based Multitask Multilabel Neural Network

Neural networks have been widely used in various areas, including face detection
[36], mood, health, and stress prediction [41]. These previous outstanding works
showed that the design of neural network structure needs the consideration of
unique characteristics of data sets used in different applications. As discussed
briefly in Sect. 1, in this work, we considered two important aspects: (1) different
distributions in health and wellbeing labels based on our participants’ demo-
graphic information and (2) correlations among health and wellbeing labels. We
observed differences in the distributions of self-reported health and wellbeing
labels from two job roles, nurses and doctors. Also, there are correlations among
the five labels. The details of the data statistics will be discussed in Sect. 5.1.

To learn different representations corresponding to participant job roles, we
applied a multitask learning method, which divided tasks according to partic-
ipants’ job roles. Furthermore, as another form of multitask learning, we used
multilabel learning for considering different health and wellbeing labels as tasks.
In this way, the model would also fit the correlation among labels. In this work,
we designed a job-role based multitask and multilabel neural network model
that leveraged user demographic information and correlations among labels at
the same time. Figure 1 shows a simplified version of our model. When train-
ing the model, there might be redundant features in our input data that would
not help health and wellbeing prediction. In contrast, some non-linear combina-
tions of features might improve our model performance. Thus, we applied a one-
dimension convolutional neural network (CNN) layer to extract auto-features
from our inputs. As shown in Fig. 1, we designed convolutional kernels to learn
higher-level features across every day feature vectors: 32 row-wise convolutional
kernels embedded 32 channels of new features. Then, the CNN extracted features
were fed into the multitask neural network. The shared layers in the network
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learn the representation from all participant data, and the divided branches of
the network structure learn the representation independently from participants
in different job roles, nurses and doctors. When doctors’ data are fed into the
model for training, the weights of loss and optimizer of the nurse branch will
be set to 0, and vice verse. Furthermore, each branch of the network outputs
all five labels (alertness, happiness, energy, health, and stress) from the shared
network layers. Therefore, the outputs of our model simultaneously provide the
prediction of all five labels for nurses and doctors. The batch loss function of our
model can be represented as:

L =
∑

nurse

Lml +
∑

doctor

Lml (6)

Lml =
∑

l={alert,happy,energy,health,stress}
loss(x, yl) (7)

Where x and y represent the input data and the expected output target, respec-
tively. loss is mean squared error loss in regression tasks and cross-entropy loss
in the classification tasks.

Fig. 1. A simplified version of our job-role based multitask multilabel neural network.
Convolutional neural network kernels are applied for extracting high-level features. Our
health and wellbeing prediction is designed for nurses and doctors using a portion of
the network trained only using data from either nurses or doctors. Shared layers learn
representation from all participants. The final output layers provide the prediction of
all five labels simultaneously.

4 Experiments

Our tasks are formulated in two ways for evaluation: regression and classification
tasks. The regression task is to predict the next day’s health and wellbeing scores,
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each in the range of 0–100, whereas the classification task is to predict next day’s
high/low (binary classification, defined as 100-51, 50-0) or high/mid/low health
and wellbeing levels, and high/ mid/low (3-class classification, defined as 100-
67, 66-34, or 33-0). Our models use the wearable and survey data up to and
including the current day for predicting nurses’ and doctors’ next day health
and wellbeing labels.

We compared our job-role based multitask multilabel model (MTML-NN)
with following approaches to evaluate the benefits of using demographic infor-
mation and the correlation among labels: (1) random forest (RF), (2) RBF kernel
based support vector machine (SVM), (3) multitask neural network (MT-NN)
that used clusters of participants and achieved state-of-the-art performance in a
previous study [41], (4) multitask neural network with labels as tasks (ML-NN).
In addition to applying ML-NN to all participants (ML-NN (all)), we also cal-
culated the prediction results for nurses (ML-NN(N)) and doctors (ML-NN(D))
separately.

For training and testing our models, we randomly split the dataset into train-
ing and testing data in a ratio of 80% to 20%. We applied 10-fold cross-validation
and grid search to finalize the hyperparameters for all models mentioned above
in the training set. Then, we tested models in the testing set. To make the
evaluation process more robust, we repeated the random data split strategy
(training/testing : 80%/20%) 10 times to evaluate the model performance. As
the evaluating metrics, we use mean absolute errors for the regression models
and f1-scores for classification tasks. Furthermore, we adopt focal loss[22] as the
objective function in the classification tasks to mitigate the unbalanced sam-
ple size in both binary and 3-class tasks. The Adam optimizer [18] was used in
training the neural networks, with a learning rate of 0.005 and 0.9, 0.999 for
β1 and β2.

4.1 Model Weights Analysis

In addition to the prediction performance, interpretability is also an essential
part of machine learning models. Ideally, we would like to provide our prediction
results along with reasonable explanations to our participants or health/medical
stakeholders. First, from the weights in the RF model, we analyzed the impor-
tance of input features. Then, in our deep learning MTML-NN model, we ana-
lyzed the importance of the features by examining the parameters in the first
CNN layer before the non-linear activation function. Since the CNN kernel we
designed is in one-dimension with a size of the number of features, and param-
eters in the CNN kernel would correspond to the input features. We calculated
the average value of each feature on all channels to check the importance of the
features. Also, we computed the correlations between the output of the CNN
layer and the input features. Features that have higher correlations with the
CNN outputs would also be considered important features.
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5 Results and Discussion

5.1 Data Statistics

As shown in Table 1, the average score of alertness label was the lowest among
all five labels; while the stress label (0: pressure-1: calm) showed the highest
average score. Compared with other labels, the SD of happiness score was lower.
Moreover, the distribution of health and wellbeing labels for nurses and doctors
were different. For example, doctors generally had higher subjective alertness
and energy than nurses in the morning. In addition, we computed correlations
among the five health and wellbeing labels. Figure 2 shows the correlation coef-
ficients matrix of all labels, and there are different degrees of correlation among
the labels. The Pearson test [26] showed that all five labels were significantly cor-
related. The linear fitting coefficient of determination (r2) values [28] between
the alert label and other labels ranged from 0.19 to 0.28, while the r2 values
among the happy, energy, health and stress labels were all higher than 0.55,
with the highest value being 0.70 (happy and stress).

We also compared feature distributions between nurses and doctors (Table 2).
We found that the mean heart rate of doctors was significantly higher than
that of nurses; whereas the variability of heart rate, defined as SD and sample
entropy, was higher in nurses than doctors. In terms of sleep, we found that
doctors showed higher sleep efficiency and lower sleep irregularity than nurses.
Further, We found statistical differences between nurses and doctors in move-
ment features, including mean and SD of daily steps across the previous 7 days,
and the entropy for stationary/active segments. We did not observe any statisti-
cal differences between nurses and doctors in working shifts and total work hours
among shift work features. However, we found that overwork was more common
among doctors.

Table 1. Mean (SD) of daily wellbeing & P-values from Welch’s t-test

Nurse Doctor p-value

Alertness 38.5 (22.9) 52.8 (23.5) <0.05

Happiness 57.2 (20.9) 59.2 (17.1) 0.38

Energy 54.0 (22.9) 60.5 (22.4) <0.05

Health 63.3 (22.1) 63.9 (22.4) 0.83

Stress 63.5 (23.4) 65.6 (17.5) 0.39

5.2 Wellbeing Prediction

The classification and regression performance using different models is shown in
Table 3. Our proposed job-role based MTML-NN performed the best for four
labels in binary classification and all wellbeing labels in 3-class classification
and regression (ANOVA, Tukey, p < 0.05). Our results showed the benefits of
our proposed simultaneous job role and correlated label modeling, especially in
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Table 2. List of main features and the statistics of nurses and doctors. The statistics
of numeric features are shown in mean (SD) values, and the differences are tested with
Mann-Whitney U-test (non-normally distributed features) and Welch’s t-test (nor-
mally distributed features, indicated with �); whereas we use percentages to reveal the
statistics of categorical features and apply the chi-square test to check their statistical
differences.

Source Daily Features Nurses (N = 10) Doctors (N = 4) P-value

Fitbit Heart Rate (HR) - Mean � 78.5 (7.1) 70.6 (6.8) <0.05

Heart Rate(HR) - SD 13.5 (3.5) 12.3 (3.2) < 0.05

Heart Rate(HR) - Entropy � 0.64 (0.23) 0.69 (0.20) <0.05

Sleep Duration (mins) 374.3 (134.0) 363.1 (106.3) 0.36

Sleep Efficiency (0–100) 93.1 (4.9) 95.5 (2.9) <0.05

Sleep Regularity � 0.31 (0.25) 0.26 (0.19) <0.05

Sleep Duration 370.5 (74.4) 359.0 (46.1) 0.21

- Mean across previous 7 days

Sleep Efficiency 94.8 (3.3) 93.2 (3.6) <0.05

- Mean across previous 7 days

Sleep Duration 106.8 (39.1) 88.4 (37.8) <0.05

- SD across previous 7 days

Sleep Efficiency 2.19 (1.31) 2.20 (1.02) 0.21

- SD across previous 7 days

Steps � 8931.2 (4030.3) 8139.9 (3350.8) 0.21

Steps 8684.8 (2372.8) 9063.4 (2236.9) <0.05

- Mean across previous 7 days �

Steps 3099.5 (1017.8) 2582.5 (849.7) <0.05

- SD across previous 7 days �

Entropy (stationary segments) 2.17 (0.53) 2.61 (0.24) <0.05

Entropy (active segments) 1.67 (0.45) 1.65 (0.19) <0.05

Survey Number of Naps 0.55 (0.68) 0.37 (0.66) <0.05

Duration of Naps (mins) 31.1 (68.4) 19.1 (49.4) 0.12

# of Cups of Caffeinated Drinks 0.47 (0.73) 0.45 (0.62) 0.45

Wake-up Type - - <0.05

- Natural 35.5% 35.6%

- Alarm 60.9% 46.5%

- Other than alarm 3.6% 17.8%

Time to Fall Asleep (mins) - - <0.05

- 0-5 34.0% 40.6%

- 6–15 31.4% 41.6%

- 16-30 17.3% 11.9%

- 31-45 6.6% 3.0%

- 45-60 3.6% 3.0%

- 60+ 7.1% 0%

Work Shifts - - 0.12

- Shift 1 53.8% 64.3%

- Shift 2 30.4% 19.8%

- Shift 3 15.7% 15.8%

Work Time (hours) 8.0 (0.0) 8.4 (1.7) 0.08

Overwork Time (mins) 11.0 (41.8) 202.6 (320.1) <0.05
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Fig. 2. Correlation coefficients matrix of wellbeing labels

3-class classification and regression. However, according to the performance in 3-
class classification, we found poor classification performance for some classes. For
example, in the 3-class alertness classification, the high-alertness class precision
and recall values were only 0.16 and 0.27 in respectively; and our low-energy
class prediction was also relatively low with a precision of 0.33 and a recall of
0.24. These errors might come from the data imbalance problem. In the 3-class
classification tasks, the high alertness labels accounted for only 20% of all labels,
and the low energy labels accounted for 15% of all labels.

Furthermore, we also found the benefits of using job role information or
multiple labels separately. For example, in the alertness prediction, job-role
based MT-NN showed significant improvement from NN for both binary and
3-class classification. Besides the overall f1-score, we observed some improve-
ments revealed in each class. For example, in the 3-class alertness classification
tasks, MT-NN model provided significantly higher recall and precision scores in
low and middle alertness classification compared to NN model (Welch’s t-test, p
< 0.05). We did not observe any significant improvement in the regression tasks.
However, the average prediction MAE of MT-NN was lower than that of NN.
Significant improvements were observed in ML-NN compared to NN in almost
all tasks. For example, in the regression tasks, the ML-NN (all) performed sta-
tistically significantly better than NN in predicting alertness, happiness, energy,
and stress labels.

5.3 Weight Analysis

From the RF model, for both the binary and 3-class classification happiness
prediction tasks, we found features including mean heart rate and heart rate
sample entropy across the day, sleep duration, sleep regularity, and the SD of
sleep efficiency across the previous seven days, were the most important. In the
alertness prediction tasks, work shifts, stationary segment entropy, mean step,



100 H. Yu et al.

Table 3. Prediction performance (f1-score for classification; mean absolute error
(MAE) for regression) of different algorithms. Bold entries represent statistically sig-
nificantly better results over the other models.

Tasks Algorithms Alertness Happiness Energy Health Stress

Binary RF 50% ± 7% 78% ± 4% 65% ± 4% 84% ± 3% 82% ± 3%

SVM 52% ± 4% 69% ± 4% 62% ± 6% 80% ± 4% 77% ± 5%

NN 55% ± 4% 71% ± 5% 65% ± 3% 82% ± 3% 80% ± 3%

MT-NN 60% ± 4% 76% ± 3% 69% ± 5% 83% ± 4% 83% ± 4%

ML-NN (all) 55% ± 7% 74% ± 7% 68% ± 4% 80% ± 4% 83% ± 3%

ML-NN (N) 55% ± 9% 69% ± 5% 64% ± 6% 79% ± 7% 79% ± 7%

ML-NN (D) 59% ± 8% 75% ± 5% 67% ± 7% 85% ± 5% 85% ± 7%

MTML-NN 64% ± 7% 79% ± 3% 71% ± 4% 81% ± 3% 84% ± 3%

3-class RF 53% ± 5% 39% ± 5% 46% ± 6% 49% ± 7% 44% ± 5%

SVM 47% ± 7% 40% ± 5% 43% ± 5% 49% ± 7% 46% ± 4%

NN 51% ± 5% 45% ± 6% 45% ± 5% 53% ± 6% 51% ± 4%

MT-NN 57% ± 6% 46% ± 5% 48% ± 6% 53% ± 5% 50% ± 5%

ML-NN (all) 52% ± 8% 53% ± 7% 48% ± 7% 55% ± 3% 54% ± 4%

ML-NN (N) 45% ± 7% 54% ± 5% 49% ± 5% 56% ± 2% 53% ± 5%

ML-NN (D) 54% ± 5% 51% ± 7% 45% ± 6% 54% ± 3% 52% ± 7%

MTML-NN 59% ± 5% 52% ± 4% 51% ± 4% 58% ± 7% 57% ± 5%

Regression SVR 20.6 ± 2.9 19.7 ± 2.5 21.3 ± 2.4 18.9 ± 1.8 21.7 ± 2.1

NN 19.9 ± 1.8 19.0 ± 1.9 20.3 ± 2.2 19.5 ± 1.9 20.4 ± 1.9

MT-NN 19.4 ± 2.1 18.8 ± 2.3 20.7 ± 1.6 19.3 ± 2.0 20.3 ± 1.7

ML-NN (all) 18.6 ± 1.3 16.9 ± 3.1 18.6 ± 2.0 18.7 ± 2.6 19.4 ± 2.6

ML-NN (N) 18.0 ± 1.1 15.9 ± 1.9 17.3 ± 1.7 15.6 ± 1.7 17.7 ± 1.3

ML-NN (D) 20.4 ± 2.1 16.0 ± 2.0 19.3 ± 2.0 17.4 ± 2.0 19.4 ± 3.1

MTML-NN 17.4 ± 1.4 15.1± 1.6 17.7 ± 1.2 15.4 ± 1.5 15.6 ± 1.9

and mean sleep duration across the previous 7, 5 days played important roles.
The analysis of the parameters in the CNN layer in the MTML-NN model and
the correlations between the CNN output and input features indicated that fea-
tures including heart rate sample entropy, sleep regularity, sleep efficiency, work
shifts, steps, and active segment entropy - contributed to health and wellbeing
prediction. For example, from the correlation analysis, we found that the sleep
efficiency, sleep regularity, and daytime work shift were positively related to the
wellbeing (Pearson test, p-value < 0.05/(# of features)); whereas the step and
the entropy of active segments were negatively related to the wellbeing (Pearson
test, p-value < 0.05/(# of features)). Our findings were consistent with some
prior results. For example, according to the previous works, sleep influences
physical and psychological health [47], and stress [24]; sleep regularity is asso-
ciated with mood [37]. Previous studies also indicated the association between
work shifts and stress levels [46].

6 Conclusion

In this work, we collected physiological and behavioral wearable sensor data
as well as survey data from shift-work nurses and doctors, and compared their
physiology and behaviors between two job roles. Then, we proposed a job-role
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based multitask and multilabel learning model structure to predict shift workers’
health and wellbeing for next day using sensor and questionnaire data. The
proposed model outperformed the benchmark models, including RF and SVM
as well as the previous state-of-the-art models. The analysis of model weights
showed that health rate, work shifts, sleep parameters such as sleep regularity
and sleep efficiency contributed to shift workers’ health and wellbeing labels. As
future work, we will collect more data from shift workers and design a system
to improve shift workers’ health and wellbeing.
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Abstract. The ability to accurately and automatically recognize and
count the repetitions of exercises using a single sensor is essential
for technology-assisted exercise-based rehabilitation. In this paper, we
present a single deep learning architecture to undertake both of these
tasks based on multi-channel time-series data. The models are con-
structed and tested using the INSIGHT-LME [1] exercise dataset which
consists of ten local muscular endurance (LME) exercises. For exercise
recognition, we achieved an overall F1-score measure of 96% and for
repetition counting, we were correct within an error of ±1 repetitions
in 88% of the observed exercise sets. To the best of our knowledge, our
approach of using the same deep learning model for both tasks using raw
time-series sensor data information is novel.

Keywords: INSIGHT-LME dataset · CNN · Wearable sensor ·
Exercise-based rehabilitation · Multi-channel time-series

1 Introduction

Community-based or home-based exercising are approaches commonly adopted
for rehabilitation. Exercise-based rehabilitation often needs to be long-term.
Unfortunately, for a variety of reasons (including travel distances, organized
classes not being schedule-friendly and some people not wanting to exercise in
front of others) adherence to organised programmes tend to be very low [2,3].
Alternatively, if people could exercise anywhere convenient to them, at any time,
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it may act to motivate the uptake and adherence to exercise-based rehabilitation.
Such an approach would be facilitated if information on the type and amount of
exercise was automatically detected for real-time and summary feedback, which
has been shown to be a motivating factor rehabilitating patients. Technology
advances in wearable sensors have resulted in cost-effective devices capable of
recording human movements effectively [4,5]. Human activity recognition (HAR)
is an increasingly important research topic where human movements and associ-
ated activities are studied using advanced artificial intelligence algorithms, e.g.
machine learning and deep learning models, applied to sensor data from wear-
ables. In recent years, the use of a single wearable sensor has gained prominence
in different areas of HAR such as: day-to-day activity(e.g. jogging, running, walk-
ing, drinking, sitting) [6–9], gym activity [10] and exercise [11–14] recognition
and in repetition counting [11,15,16]. Studies have shown that elderly rehabili-
tation patients (about 68%) have indicated their interest in using a single sensor
(inertial measurement unit) within exercise-based rehabilitation [2].

The increased interest in using deep learning models in the field of HAR and
especially exercise [1,11,17] has resulted in various models being used for exercise
recognition and repetition counting. However, it appears that no studies have
used a single deep CNN model architecture using multi-channel time-series data
for exercise recognition and repetition counting. Using a single model architec-
ture for both tasks simplifies implementation and training. This is an important
consideration if the AI-based technique were ultimately to be implemented as an
embedded function of the wearable sensing platform. As such, this study aims
to demonstrate how a single CNN model architecture can be used for automatic
exercise recognition and repetition counting using multi-channel time-series data
obtained from a single inertial measurement unit.

2 Proposed Framework

Figure 1 represents the end-to-end pipeline framework used for the exercise
recognition and repetition counting. This framework consists of a data processing
unit, two CNN models and an output processing component. The data process-
ing unit processes the INSIGHT-LME dataset [1] into 6D time-series arrays. Two
CNN models were constructed using a single architecture for both the exercise
recognition and the repetition counting tasks. The output processor consists of
two fully connected layers, the first one is used at the output of the CNN model
for exercise recognition and the second one is used at the output of the CNN
model for repetition counting.

3 Methodology

3.1 Data Set

We have used the INSIGHT-LME dataset, a data set recently made publicly
available (https://bit.ly/30UCsmR), consisting of eleven classes of movements
with first ten classes corresponding to ten LME exercises commonly used in

https://bit.ly/30UCsmR
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Fig. 1. End-to-End pipeline for exercise recognition and repetition counting.

exercise-based cardiovascular disease (CVD) rehabilitation and the eleventh class
corresponding to movements commonly observed between exercises. The ten
LME exercises consists of six upper-body LMEs (Bicep Curls (BC), Frontal Raise
(FR), Lateral Raise (LR), Triceps Extension Right arm (TER), Pec Dec (PD)
and Trunk Twist (TT)), and four lower-body LMEs (Squats (SQ), Lunges (L),
Leg Lateral Raise (LLR) and Standing Bicycle Crunches (SBC)). The dataset
consists of raw time-series data from a 3D accelerometer and a 3D gyroscope
using a single inertial measurement unit (IMU) mounted on the right-wrist and
was collected from 76 healthy and able bodied participants. The IMUa used in
the dataset was Shimmer3 IMUs which were light-weight wearable sensor units
from Shimmer1. Each IMU used in the data collection process was calibrated
using Shimmer’s 9DoF calibration application2 and a sampling rate 512 Hz was
used. Exercise data were collected in two sets from the participants under con-
strained and unconstrained environments. 6D time-series data (3D accelerometer
and 3D gyroscope) were further used in the data processing. As an illustrative
example, Fig. 2 represents 25 s segmented time-series sensor signal plots of 3D
accelerometer and 3D gyroscope for the Frontal Raise exercise.

(a) 3D Accelerometer plot (b) 3D Gyroscope plot

Fig. 2. 25 s segmented plots of Frontal Raise exercise

1 http://www.shimmersensing.com/products/shimmer3.
2 https://www.shimmersensing.com/products/shimmer-9dof-calibration.

http://www.shimmersensing.com/products/shimmer3
https://www.shimmersensing.com/products/shimmer-9dof-calibration
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3.2 Data Processing

Data processing was performed on the INSIGHT-LME dataset to have 6D time-
series array information with two target labels. The new 6D time-series infor-
mation was generated from data segmentation process using a sliding window
method. A window-length of 4 s and an overlap of 0.5 s was used in data segmen-
tation process. From every 4 s segment of exercise data, a 6D time-series data
array was formed and was computed for all exercise data. The processed data,
from 76 participants, was divided into three subsets. A training set was formed
with data from 46 participants. Additionally, from the remaining participants a
test set and a validation set were formed with data from 15 participants each.

The two class labels were generated for the new 6D time-series information.
First target labels were used for the exercise recognition task and the second
target labels were used in the repetition counting task. The first target labels
were for the exercise recognition task and were the eleven class label information
of the exercise movements. However, for the repetition counting task, a new
binary class label was added on each 4 s segmented array data using a 50% grid
method. Ground truth with the newer binary class information was generated
using dominant signal information for each exercise [1,16,18]. If the dominant
signal peak lay at the left half of the grid then a label information “Peak” (or
“1”) was added, otherwise “No Peak” (or “0”) label information was added.

3.3 A Deep CNN Architecture for Recognition and Repetition
Counting

HAR recognition, especially in the field of exercise recognition and repetition
counting, few recent studies [1,11,17] have used different deep CNN structures.
A single CNN architecture was used by [11] which uses one model for exercise
recognition but uses ten different models for repetition counting. However, in our
previous study [1] we have successfully demonstrated building two models using
the state of the art AlexNET architecture, one for all the exercise recognition
and the other for repetition counting from all the exercises in contrast to Soro
et al. [11]. However, it appears that no studies have used a single deep CNN
model architecture using multi-channel time-series data for exercise recognition
and repetition counting.

We designed and built deep CNN models from scratch using the same base
structure (Fig. 3), one for the exercise recognition and other for the repetition
counting. The architecture consists of seven 2D convolutional layers (ConvLayer)
in addition to an input layer, two fully connected layers and a dropout layer.
The number of filters used in seven convolution layers were 16, 16, 32, 32, 64, 64
and 96 respectively. The selection of the number of convolutional layers and the
number of filters in each layer of the CNN Model2 architecture were arrived after
the initial few trials with different configurations. Output of each ConvLayer
was batch normalized [19] and rectified linear units (ReLU) [20] were used along
with MaxPooling. The output of the seventh ConvLayer was flattened and a
fully connected layer was used. A drop out rate of 0.5 was used in the fully
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Fig. 3. CNN Model Architecture for exercise recognition

connected layer to prevent overfitting of the data. The LME exercise recognition
task was an 11 class classification problem and hence we used a fully-connected
output layer with a softmax activation function capable of classifying output
into 11 classes. Table 1 lists the complete list of the parameters of the CNN
architecture.

The same single CNN architecture 1 was used as a binary classifier for the
repetition counting task. We used a fully-connected output layer with a sigmoid
activation function capable of classifying binary class. The binary class label
information associated with the input was used for output prediction in the fully
connected output layer. This single CNN model for repetition counting works
parallel to the exercise recognition task and the predicted output are used along
with exercise-type information from the exercise recognition model. Finally, a
counting function was used to count the total number of repetitions using the
transition information associated with the binary predicted output (Fig. 4).

Fig. 4. Repetition Counter

The optimum model was evaluated for individual class performance based
on statistical measures such as precision, recall and F1-score using Eqs. (1)–
(3) respectively, where TP represents the number of times the model correctly
predicts the given exercise class, FP represents the number of times the model
incorrectly predicts the given exercise class and FN represents the number of
times the model incorrectly predicts other than the given exercise class.

Precision =
TP

TP + FP
(1)
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Table 1. All architecture parameters for CNN Model2. CL: Convolution Layer and
DL: Dense Layer

Layer Value Parameters

Input layer 2048 × 1 × 6 0

Convolution filters CL1 16 304

Kernel size CL1 (3, 1) –

Strides CL1 (1, 1) –

Convolution filters CL2 16 784

Kernel size CL2 (3, 1) –

Strides CL2 (1, 1) –

Convolution filters CL3 32 1568

Kernel size CL3 (3, 1) –

Strides CL3 (1, 1) –

Convolution filters CL4 32 3104

Kernel size CL4 (3, 1) –

Strides CL4 (1, 1) –

Convolution filters CL5 64 6208

Kernel size CL5 (3, 1) –

Strides CL5 (1, 1) –

Convolution filters CL6 64 12352

Kernel size CL6 (3, 1) –

Strides CL6 (1, 1) –

Convolution filters CL7 96 18528

Kernel size CL7 (3, 1) –

Strides CL7 (1, 1) –

Batch normalization CL1, CL2, CL3,

CL4, CL5, CL6, CL7

Yes 64 + 64 + 128 + 128 +

256 + 256 + 384

Activation function CL1, CL2, CL3,

CL4, CL5, CL6, CL7

ReLU 0

Dense Layer DL1 128 25165952

Dropout DL1 0.25 0

Dense Layer DL2 11 1419

Activation function DL2 softmax 0

Total parameters : 25,211,499

Trainable parameters : 25,210,859

Non-trainable parameters : 640

Recall =
TP

TP + FN
(2)

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall
(3)

4 Experimental Results

The CNN models for both tasks were constructed using Keras API [21] with the
TensorFlow [22] back end with the choice of optimizer function among stochastic
gradient descent (SGD) [23], Adam [24], and RMSprop [25]. The best learning
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rate was selected by training the model over a range of 1e−03 to 1e−10 with a
decay of 1e−01. The multi-class classification model for exercise recognition was
optimized using the loss functions such as categorical cross-entropy (CCE) [26]
and Kullback–Leibler divergence (KLD) [27] to have lower losses. However, the
binary-class model for repetition counting was optimized using binary cross-
entropy loss function. We used early stopping during model building by moni-
toring the validation loss. A learning rate scheduler was used effectively using
the “ReduceOnPlateau” function from Keras. Data augmentations like shearing,
resizing, flipping, rotation were not performed on the time-series data. Models
were trained using the training set and validated using the validation set. A
model with a minimum validation loss and with the best validation accuracy
was selected as the optimum CNN model in both tasks and was further tested
using the test set.

4.1 Exercise Recognition Using CNN Model

A CNN model with an Adam optimizer having a learning rate 1e-7 and a KLD
loss function was found to be the best model. The model recorded an overall
training score of 96.89% and a validation score of 88.97%. For the test set,
the model recorded an overall test accuracy of 95.61% and an overall F1-score
measure of 96% and an overall loss of 0.1288. Figure 5(a) and Fig. 5(b) shows the
learning curves in terms of training and validation accuracies as well as training
and validation losses.

(a) Training and validation accuracies (b) Training and validation losses

Fig. 5. Learning curves

The performance of the CNN model, in terms of statistical parameter mea-
surements such as precision, recall and F1-score, for individual exercise are tab-
ulated in Table 2. The model recorded an overall precision of 96.52%, overall
recall rate of 97.13% and an overall F1-score of 96.80% for the upper-body LME
exercises. The overall performance for the lower body LME in terms of precision,
recall rate and F1-score measures were 95.99%, 97.08% and 96.5% respectively.
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Table 2. Performance evaluation measures of the CNN model

Exercise type Precision Recall F1-score Support

Upper-body LME exercises Bicep Curls 0.9952 0.9713 0.9831 1290

Frontal Raise 0.8917 0.9574 0.9234 1290

Lateral Raise 0.9389 0.9178 0.9283 1290

Triceps Extension 0.9985 1.0000 0.9992 1290

Pec Dec 0.9953 0.9837 0.9895 1290

Trunk Twist 0.9721 0.9977 0.9847 1290

Lower-body LME exercises Standing Bicycle 0.9834 0.9651 0.9742 1290

Squats 0.9874 0.9698 0.9785 1290

Leg Lateral Raise 0.9771 0.9907 0.9838 1290

Lunges 0.8917 0.9574 0.9234 1290

Common movements Others 0.8975 0.8389 0.8672 1440

Micro average 0.96 0.96 0.96 14340

Macro average 0.96 0.96 0.96 14340

Weighted average 0.96 0.96 0.96 14340

4.2 Repetition Counting Using the CNN Model

The optimum model was selected based on the validation score and incorporated
an Adam optimizer and had a learning rate of 1e-06. The optimum model was
further tested with the test data set to count the repetitions. The test data set
consisted of 30 exercise data from each exercise type corresponding to the fifteen
participants performing each exercise twice and 6 to 7 repetitions over 25 s of
data segment.

Table 3. Number of error counts in the repetition using CNN model

Exercise type Acronym Total subjects Error count

e|0| e|1| e|2| e > |2|
Upper-body LME exercises BC 30 28 1 0 1

FR 30 25 4 0 1

LR 30 30 0 0 0

TER 30 29 1 0 0

PD 30 29 1 0 0

TT 30 27 3 0 0

Lower-body LME exercises SBC 30 18 7 4 1

SQ 30 15 9 4 2

LLR 30 23 5 2 0

L 30 6 4 4 16

Table 3 shows the results of repetition counting for individual LME exercise
in terms of the number of absolute errors. The total number of subjects used in



112 G. Prabhu et al.

the test set for testing each exercise is also indicated in the table. The repetition
error counts are indicated by the columns “Error Count” or “e|X|”, where “e|X|”
indicates the number of exercise sets with ‘|X|’ repetition error count. ‘|X|’
represents the absolute error count in terms of 0, 1, 2, or more than 2 errors.
The repetition counting method performed better for upper-body exercises like
BC, FR, LR and TER in comparison to the repetition counting of the lower-body
exercises. For example, from Table 3, for the upper-body LME exercises, zero
errors in repetition counting were reported in 168 instances among 180 observed
sets.

Fig. 6. Number of errors of the repetition counting using the CNN model (Color figure
online)

A significant amount of error count for the upper-body LME exercises was
with one count error. We could achieve 100% correct counting only in the case
of LR exercise trials. Repetition counting performance for Lunges, a lower-body
exercise, was very poor. Performance of the model can be evaluated with a
tolerance of one repetition count error (i.e. blue + yellow, Fig. 6). The repetition
counting from the model was within an error of ±1 repetitions in 88% of the
observed exercise sets.

5 Discussion

In this paper, we studied a deep CNN model architecture on the INSIGHT-LME
dataset for automatic recognition and repetition counting in LME exercises. The
dataset used was based on the data from single wrist-worn inertial measurement
unit from the exercises used in CVD rehabilitation program. We found that the
deep CNN model constructed on the time-series data was an efficient model
for exercise recognition and repetition counting in terms of accuracy measure.
In addition, we demonstrated a novel method of using a single model based
on multi-channel time-series data for the repetition counting from all the ten
exercises.

We would like to discuss the outcome of our study with the findings of recent
relevant studies in the area of exercise-based rehabilitation using wearables.
First, this study of ours was an extension of findings from our work [1], where a
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comparative approach was adopted in LME exercise recognition and repetition
counting using different supervised machine learning models and a deep CNN
model using AlexNet architecture. In addition, using the earlier study [1] we
had made the INSIGHT-LME dataset publicly available. The CNN model using
AlexNet architecture was the best approach, however, requires the input data in
terms of 2D images. However, this study of exercise recognition and repetition
counting uses the multi-channel raw time-series data and achieves the overall
same result.

Second, Soro et al. [11], a recent work on exercise recognition and repetition
counting on ten Cross-Fit exercises using deep CNN models uses two sensors one
on a foot and one on hand. The study makes use of a single deep CNN model
for the exercise recognition task but uses ten different models for the repetition
counting. 9D data from accelerometer, gyroscope and orientation sensor was used
and reports an overall accuracy measure of 97% in exercise recognition with only
exercise data. In contrast, our model for the exercise recognition uses 6D data
and the recognition task considers an additional eleventh class (“Others”), with
non-exercise movement data along with the ten exercise class data. We built
a single CNN model for repetition counting in contrast to the ten individual
models.

While our studies and those of Soro et al. [11] were on different exercises and
different data-sets, the main aim was to address exercise-based rehabilitation
using deep learning models. The current study using multi-channel information
with a deep CNN appear also shows that it is possible to use a single model to
count exercise repetition, with very little loss in accuracy. This may be bene-
ficial in reducing the dependency on the total number of resources required in
repetition computation in the case of multiple exercise evaluation.

6 Conclusion

We studied a single deep CNN architecture based model on the exercises used
in an exercise-based CVD rehabilitation program. The automatic recognition
and repetition counting of the exercises was achieved using multi-channel (6D)
time-series data obtained from a single wearable sensor. We achieved an overall
F1-score measure of 96% in the exercise recognition task and the repetition
counting was within an error of ±1 count among 88% of the observed exercise
sets. Our study also showed that it is possible to use a single CNN model for
repetition count with very little loss in accuracy.
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Abstract. The advances of sensing and computing technologies pave
the way to develop novel applications and services for wearable devices.
For example, wearable devices measure heart rate, which accurately
reflects the intensity of physical exercise. Therefore, heart rate pre-
diction from wearable devices benefits users with optimization of the
training process. Conventionally, Cloud collects user data from wearable
devices and conducts inference. However, this paradigm introduces signif-
icant privacy concerns. Federated learning is an emerging paradigm that
enhances user privacy by remaining the majority of personal data on
users’ devices. In this paper, we propose a statistically sound, Bayesian
inference federated learning for heart rate prediction with autoregression
with exogenous variable (ARX) model. The proposed privacy-preserving
method achieves accurate and robust heart rate prediction. To validate
our method, we conduct extensive experiments with real-world outdoor
running exercise data collected from wearable devices.

Keywords: Federated learning · Bayesian inference · Wearable
computing · Heart rate prediction

1 Introduction

Cardiovascular diseases (CVD) are the number one cause of death globally.
According to the world health organization report, 17.9 million people die from
CVD each year, an estimated 31% of all deaths worldwide [1]. Many factors can
trigger these diseases, including tobacco use, unhealthy diet, physical inactivity,
and harmful use of alcohol. Preventing CVD is becoming an urgent task. It is
well-known that exercising has a proven therapeutic effect on the cardiovascu-
lar system. Hence, predicting and controlling heart rates during the exercise is
important to avoid overstrain and prevent sudden heart rate break.

Wearable devices enable intelligent human-computer interactions. The wear-
able fitness, sport technologies, and service business are expected to grow
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exponentially in the near future. Users of wearable devices are expecting the
service that can guide their smart exercise coaching, rather than only tracking
their activities. Heart rate based training is a well-known technique to improve
the effectiveness of training and prevent over-exercising. Designing an optimal
exercise training plan to avoid overstrain is crucial. Ignoring the limits of the
physical activities will not only nullify the effect of the exercise but also cause
harmful effect on the cardiovascular system. The first step of designing the opti-
mal exercise training plan is predicting heart rate from the exercise, which will
be then used for the training control. The designed recommendation and control
systems can be adopted in the mobile phone or smart watches. Subjects can
use the control system in those smart devices to guide their exercise in order to
reach the desired heart rate response and avoid overtraining, which will benefit
the users’ health. However, most existing research work related to heart rate
prediction focuses on indoor exercises. For outdoor physical exercise, it is not
possible to automatically regulate the workload intensity due to the dependence
on environmental conditions. Hence, it’s typical for an outdoor exerciser to con-
tinuously check heart rate and increase or decrease the speed accordingly for
regulating his or her heart rate.

Machine learning has demonstrated its promising performance in providing
the users with recommendations regarding to physical activity and physiological
response [2,3]. Machine learning algorithms typically learn from centralized data
in order to train a powerful model. However, pooling data from many users to
the Cloud introduces significant privacy concern; for example, leaking sensitive
health information of users. Recently, EU General Data Protection Regulation
(GDPR) [4] states the need for trust to be built into personal data services and
allows users to control their own data, including data their devices generate.
Based on GDPR, collecting a massive amount of user data from wearables is
not allowed. Federated learning has been regarded as a promising architecture,
allowing learning from a large volume of distributed local data without pooling
users’ private data to the Cloud [5]. Federated learning preserves the users’
privacy by training the model in a decentralized manner where multiple local
models are synthesized to a global model which is used for future applications.

In this paper, we propose a Bayesian inference based federated learning for
heart rate prediction. Bayesian inference provides a statistically sound way to
combine local models; and at the same time achieves robust predictions even
when data are unevenly distributed among the peripheral nodes, which is com-
mon in real world applications. Our work is the first Bayesian inference federated
learning approach for heart rate prediction with autoregression with exogenous
variable model (ARX) and this framework can be extended to other ARX pre-
diction problems.

Our contributions are threefold:

– We propose two Bayesian federated learning methods, namely Federated
Learning based on Sequential Bayesian method (FD Seq Bayes) and the
Empirical Bayes based Hierarchical Bayesian method (FD HBayes-EB),
for heart rate prediction without pooling data to the Cloud for privacy
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preservation. The former model FD Seq Bayes is proposed to provide a sta-
tistically sound way of integrating local models; whereas the latter model, FD
HBayes-EB, provides an alternative but more scalable way from a Bayesian
hierarchical model perspective.

– We have conducted extensive evaluation on real-world data from wearable
devices. Compared to various state-of-the-art baseline models, our proposed
methods have demonstrated their strength in achieving higher prediction
accuracy on unseen, new users with lower computation cost.

– Our proposed Bayesian federated learning methods can be easily extended to
address other ARX regression problems taking consideration of user privacy
preservation and achieving good performance.

The remainder of this paper is organized as follows. Section 2 describes the
background and related work. Section 3 presents the proposed Bayesian inference
federated learning methods. We present experimentation setup and results in
Sect. 4 and summarize our insights and conclude the paper in Sect. 5.

2 Related Work

In this section, we review the state-of-the-art techniques in heart rate prediction
and federated learning.

2.1 Heart Rate Prediction

Heart rate modelling and prediction have been extensively studied. Existing
approaches to model and predict the heart rate response to running exercises
can be divided into two categories: (1) Physiological models, which are usually
described by deterministic mathematical formulas and used in specific biological
systems; and (2) machine learning approaches, which do not encode any prior
information but will learn and generalize the response model in the learning
process. While approaches in the first category gain its appeal from its analytical
closed-form notation, the approaches in the second category are more attractive,
because they allow accounting for environmental parameters and other relevant
information that is not represented in the analytic equations.

An ordinary differential equation (ODE) model had been proposed by Cheng
et al. [6] to describe the dynamical changes of heart rate from resting heart rate
by taking consideration of exercise speed and heart rate effects from hormonal
system. Levenberg-Marquardt algorithm is used for estimating the optimized
parameters. The proposed ODE model is designed for speed control in the tread-
mill for heart rate regulation. In order to use those models, the subject’s resting
heart rate need to be known beforehand and special test need to be performed
in order to get subject’s resting heart rate.

A nonparametric hammerstein model decoupled the linear and nonlinear
parts using pseudorandom binary sequences is proposed by Su et al. [7] for heart
rate regulation. Support vector regression is adopted to estimate the parameters
of the model. Mohammad et al. [8] have used takagi-sugeno fuzzy model for
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controlling the heart rate in cycling exercises. They build a takagi-sugeno fuzzy
model for each subject based on that subject’s own observed data. Subjects did
not share their data nor model parameters.

Machine learning methods, such as time series linear regression, support vec-
tor regression, feedforward artificial neural network, and long short-term memory
(LSTM) [2] have also been used in modelling and predicting the heart rate in
exercise. Ni et al. [3] propose an LSTM-based context-aware sequential model
to capture the heart rate and the personalized patterns of fitness data. Ludwig
et al. [9] summarize most of the recent models related to predicting and control-
ling heart rate response to exercise.

Current research work related to heart rate modeling and prediction for wear-
able devices mainly develop general models on the Cloud by sharing subjects’
data or developing the personal model with using each subject’s own data with-
out sharing other subjects’ data. Less attention has been paid on building a
general model that can be used for all subjects while keeping data isolated for
privacy preservation.

2.2 Federated Learning

Kairouz et al. [10] define federated learning as a machine learning setting where
multiple entities (clients) collaborate in solving a machine learning problem,
under the coordination of a central server or service provider. Each client’s
raw data is stored locally and not exchanged or transferred; instead, focused
updates intended for immediate aggregation are used to achieve the learning
objective [10]. Federated learning was firstly proposed by Google [5], aiming
to keep the training data on the device while collaboratively learning a shared
model by coveraging the parameters changes learned from local models. Privacy
and communication efficiency are most important concerns in federated learning.

Recently, federated learning has attracted widespread attention and made
considerable success in many applications [11]. McMahan et al. [12] have intro-
duced the Federate Averaging (FedAvg) algorithm, which learns the feder-
ated global model based on averaging of local learner parameters trained using
stochastic gradient descent. Smith et al. [13] treat federated learning as a multi-
task learning problem and develop MOCHA method to solve the statistical
challenges in federated setting. More significant research work on distributed
deep learning can refer to [14,15]. Chen et al. [16] develop a federated transfer
learning framework, named FedHealth, for wearable healthcare. Their proposed
approaches combine transfer learning and federated learning using the FedAvg
algorithm, which requires to share the same random initialization and is not
applicable for combing pre-trained models. Here, we look into a Bayesian model
for integrating local models.

Yurochkin et al. [17] propose a Bayesian federated learning framework to
aggregate pre-trained neural networks, each being trained locally in parallel with
its own specific dataset. The parameters of these local neural networks will be
matched to a global model, which is governed by the posterior of a Bayesian
nonparametric model. Different from existing work, we focus on learning time-
series data with ARX model and we propose two variants of Bayesian methods.
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3 Proposed Approach

This section presents the problem statement on federated learning for heart
rate prediction and introduces two Bayesian-based techniques: sequential and
hierarchical models.

3.1 Problem Definition

The objective of heart rate prediction is to predict the heart rate yt given the
historic readings of the previous heart rates and other useful inputs like speed:

yt = f(y1:t−1, x1:t) + et,

where et is the error term and f can be any parametric function, say a linear
function or neural network. The objective of federated learning is to learn such
a parametric model f in the server without sending each user’s raw data. In
particular, given data from n different users stored at each distributed node,
and denote the reading from user i as Di, the learning outcome is a trained
global model in the server with datasets {Di}n

i=1; and the global learning should
only involve model parameters rather than raw user data. For later prediction,
the trained model at the server can then be directly used for predictions of future
users with personalization if possible.

3.2 Autoregression with Exogenous Variable Model

As the heart rate data is a time series with serial correlations, a suitable model
for such data sets is ARX. An ARX model with p autoregression components
and q + 1 lagged inputs can be formally written as:

yt = θ0 +
p∑

i=1

θiyt−i +
q∑

j=0

ωjzt−j + et

where et ∼ N(0, σ2) is white noise with variance σ2, yt, zt are heart rate and
speed measurements at time t. By defining β,x as the vectors concatenating the
model parameters and covariates, the model can be succinctly written as

yt = xT β + et,

where βT = [θ0, θ1, . . . , θp, ω0, . . . , ωq] and xT = [1, yt−1, . . . , yt−p, xt, . . . , xt−q].

3.3 Federated Learning with Sequential Bayesian Inference

Bayesian inference provides a natural solution to the federated learning problem,
where the inference is on the posterior distribution of model parameters. By
making conditional independent assumption of the data at different nodes given
the model parameter, the posterior distribution of the model parameter can be
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learnt in a sequential manner. Denoting Di = {Xi,yi} as the dataset at node i
where yi = [yi,1, . . . , yi,ni

]T and Xi = [xi,1, . . . ,xi,ni
]T , and ni is the number of

time instances for user i; then the posterior distribution is

p(β, σ2|D1,D2, . . . Dn) ∝ p(β, σ2)p(D1,D2, . . . Dn|β, σ2) (1)

= p(β, σ2)
n∏

i=1

p(Di|β, σ2) ∝ p(β, σ2|D1,D2, . . . Dn−1)p(Dn|β, σ2), (2)

where the second equation has used the conditional independence assumption
and the last equation shows that the posterior can be recursively learnt by
updating the posterior of the previous n − 1 sites.

For an ARX model with fixed p, q terms, the model parameters are β and
σ2. A conjugate prior for the unknown parameters are Normal-Inverse Gamma
distribution, i.e.

p(β, σ2) = NIG(β, σ2;m0,Λ0, a0, b0) (3a)

= N(β;m0, σ
2Λ−1

0 )Inv-Gamma(σ2; a0, b0), (3b)

where N(μ,Σ) denotes a Gaussian distribution with mean and variance μ and
Σ; and Inv-Gamma(a, b) denotes a inverse Gamma distribution with shape and
rate parameter a, b respectively.

It can be shown that the posterior distribution can be obtained recursively in
a closed form by updating the prior parameters, {m0,Λ0, a0, b0}, and the infer-
ence result is summarized in Theorem 1. According to the update procedure in
Eq. (5a), instead of averaging all the model parameters learnt at different sites,
the Bayesian method essentially provides an alternative weighted average pro-
cedure that takes into account of the model uncertainties as well as the param-
eters themselves. That is, the weights depend on the variance Λ−1

n , indicating
the uncertainty of the parameter.

Fig. 1. Federated learning with sequential Bayesian inference

Theorem 1 (Sequential Bayesian inference). Adopt the NIG prior for
β, σ2|∅ as defined in Eq. (3) for some pre-determined parameters m0,Λ0, a0, b0;
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Fig. 2. Federated learning with hierarchical Bayesian inference and empirical Bayes
method

for user datasets {Di}n
i=1, the posterior distribution can be learnt sequentially,

i.e. for n > 0:

p(β, σ2|D1, . . . ,Dn) = NIG(β, σ2;mn,Λn, an, bn), (4)

where,

mn = (Λn)−1(Λn−1mn−1 + XT
nyn) (5a)

Λn = XT
nXn + Λn−1 (5b)

an = an−1 +
Nn

2
(5c)

bn = bn−1 +
1
2
(yT

nyn + mT
n−1Λn−1mn−1 − mT

nΛnmn) (5d)

and Nn is the number of data points at site n.

To protect the privacy of the user, instead of sending all the raw data {Di}
to the server, we carry out the inference locally in a sequential manner. Each
node will learn the posterior sequentially, where the posterior parameters are
communicated. To achieve this, a pre-fixed sequential update order needs to be
decided at the server and the learning is done essentially by circulating the
posterior parameters among the sites. To be more specific, after an update
sequential order is initialized, each node i will first receive the model param-
eters Φi−1 = {mi−1,Λi−1, ai−1, bi−1} from the previous user, or the server if it
is the first update iteration, i = 1. Then the parameters will be updated accord-
ing to Theorem 1. The updated parameters Φi = {mi,Λi, ai, bi} will be relayed
to the next node i + 1 until all sites update their parameters. The server will
receive and keep the learnt posterior parameter Φn = {mn,Λn, an, bn} for later
prediction. The learning procedure is described in Fig. 1.

3.4 Federated Learning with Hierarchical Bayesian Inference

The sequential processing algorithm clearly does not scale well when the number
of users/nodes increases. A distributed inference algorithm that allows parallel
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processing therefore is more appealing. To achieve this, hierarchical Bayesian
model is proposed, where hyper-priors over the prior parameters are introduced
and the model parameters at each individual site become conditionally indepen-
dent. By using a hierarchical model, we also achieve a principled way of learning
hyperparameters, {m0,Λ0, a0, b0}.

Formally, a hierarchical Bayesian linear regression model can be formulated
as follows

yi|βi, σ
2
i ,Xi ∼ N(Xiβi, σ

2
i I)

βi, σ
2
i |m0,Λ0, a0, b0 ∼ NIG(m0,Λ0, a0, b0)

m0,Λ0, a0, b0|Ψ ∼ P (.),

where each user/node has its own model parameter {βi, σ
2
i }. A common Normal-

InvGamma prior is imposed on the model parameters and the model parameters
become conditionally independent or exchangeable given the hyperparameters
Φ0 = {m0,Λ0, a0, b0}. A further hierarchical hyper-prior P of appropriate form
is imposed on the hyperparameters Φ0. For example, Gaussian is for m0, Inverse-
Wishart is for Λ0, and Gamma is for a0 and b0. Usually vague uninformative
hyper-priors are used for the second tier distributions [18].

Empirical Bayes. The inference for the hierarchical model cannot be solved in
closed form any more. Usually computationally expensive inference procedures
like Markov Chain Monte Carlo (MCMC) has to be used. An alternative is
Empirical Bayes (EB) method where hyperparameters Φ0 = {m0,Λ0, a0, b0}
are not sampled but directly maximised against the model evidence

Φ̂0 = argmax
Φ0

P (D1,D2 . . . Dn|m0,Λ0, a0, b0).

By treating the model parameters {βi, σ
2
i }n

i=1 as missing data, an EM algorithm
can be derived to find the optimal hyperparameters. The detailed derivation and
the EM algorithm is listed in the appendix.

The EB-based federated learning becomes an iterative procedure to accom-
modate the learning of the hyperparameters Φ0. The learning procedure iterates
between the following two steps:

1. Update the hyperparameter at the server given P ({βi, σ
2
i }n

i=1|{Di}n
i=1, Φ̂

t−1

0 )
by an EM procedure listed Eq. (9):

Φ̂
t

0 = argmax
Φ0

P (D1,D2 . . . Dn|m0,Λ0, a0, b0).

2. At each site i, update the local posterior given Φ̂
t

0 = {m̂0, Λ̂0, â0, b̂0} in
parallel:

P (βi, σ
2
i |Φ̂t

0,Di) = NIG(mi,Λi, ai, bi), where (6a)
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Table 1. Physical characteristics of the subjects.

Age (yr) Height (cm) Weight (kg) BMI (kg/m2)

Mean 30.4 175.2 70.8 23.05

Standard deviation 2.5 7.5 9.2 1.6

Range (27, 34) (162, 187) (55, 87) (19.9, 24.8)

mi = (Λi)−1(Λ̂0m̂0 + XT
nyn)

Λi = XT
i Xi + Λ̂0

ai = â0 +
Ni

2

bi = b̂0 +
1
2
(yT

i yi + m̂T
0 Λ̂0m̂0 − mT

i Λimi) (6b)

To be more specific, at each iteration t ≥ 1, the server will propagate the current
hyperparameter Φ̂

t−1

0 to the clients (some initial non-informative piror’s param-
eters are used for the first iteration), each node then updates their posterior
distributions of the local parameters according to a variant of Theorem1 and
sends back the learnt posterior parameters Φt

i = {mi,Λi, ai, bi} to the server.
The server will then optimize the hyperparameter Φ̂

t

0 based on the received
posterior distributions by the EM algorithm. Figure 2 summarizes the learning
procedure at iteration t. Note that the local learning in Eq. (6) is still in closed
form hence computationally cheap. Thanks to this conjugacy, we find that only
two to three iterations are usually good enough for the EB method to work in
practice.

4 Evaluation and Results

This section illustrates our evaluation methodology, including the dataset and
comparison techniques, and then present the results.

4.1 Dataset

We analyze the performance of proposed Bayesian inference federated learning
with collecting real-world outdoor running exercise data from 10 subjects wearing
Polar smart watches. Exercise time, running speed, and heart rate are recorded
in each exercise. The physical characteristics of subjects are listed in Table 1. The
duration of one exercise ranges from 30 min to 90 min and heart rate ranges from
60 bpm to 200 bpm. Outliers are removed based on the interquartile range criteria
and missing values are imputed with linear interpolation. The ten subjects are
regarded as isolated to each other and cannot share their data due to the privacy
concern during the federated learning process.
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4.2 Evaluation Methods

We evaluate the two proposed Bayesian Federated learning, FD Seq Bayes and
FD HBayes-EB, with two baseline solutions.

– FedAvg: a simple average based federated learning method where the local
regression models are trained by the least squared error method. A simple
average of the learnt parameters is used for future testing and prediction.

– HBayes-MCMC: It refers to hierarchical Bayesian model inferred by Markov
Chain Monte Carlo (MCMC) method [18]. Note that this method does not
belong to federated learning realm as the training data from all the users is
aggregated and stored in the server.

4.3 Experiment Procedure

To evaluate the effects of the proposed methods thoroughly, we firstly randomly
select nine out of ten users as the existing users, leaving one user’s data for
testing as new users. For the nine chosen users, a random subset of each user’s
Ki exercises data is selected for model training: the selected exercises data is
further split into training and testing. The following three types of errors are
compared, including training error, testing error, and new exercise error (on the
left-out user’s and the unselected exercises’ data). We assume that the training
and testing data are drawn from the same population, and thus the training and
testing errors are used to assess the learning capability of the model. The new
exercise error represents the model performance on new users and new exercises
from selected users (which might have different distributions from the training
and testing data), indicating the generalization of the model. Squared errors
are used for evaluating the performance of the models. The errors are further
decomposed as by time-instance error and by-user error. The definitions of these
two errors are as follows.

errortime =
∑n

i=1

∑ni

t=1(yi,t − ŷ,it)2∑n
i=1 ni

,

erroruser =
∑n

i=1(
∑ni

t=1(yi,t − ŷi,t)2/ni)
n

,

where n is the total number of users (10 users in our case) and ni is the number
of data records of user i’s data.

4.4 Results

Table 2 and Fig. 3 report the experiment results of Ki = 10 for 100 repeated
experiments. Table 2 reports the means of squared errors and standard deviations
of means. As we can see that the proposed two federated learning methods, i.e.
FD Seq Bayes and FD HBayes-EB outperform the simple FedAvg by significant
margins in all six types of errors; e.g., FD Seq Bayes and FD HBayes-EB reduce
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Train Error by User Test Error by User New Exercise Error by User

Train Error Test Error New Exercise Error
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Fig. 3. Experiment results on the four methods; where Ki = 10 exercises data are used
for training; where the error bars are the standard error

Table 2. Experiment results of by user error on the four methods; where Ki = 10
exercises data are used for training. The mean and the standard deviations (in brackets)
are reported.

Train error by user Test error by user New Ex error by user

FedAvg 3.27 (0.27) 3.23 (0.31) 3.3 (0.18)

FD Seq Bayes 3.11 (0.26) 3.08 (0.28) 3.16 (0.19)

FD HBayes-EB 2.81 (0.23) 2.95 (0.33) 3.04 (0.19)

HBayes-MCMC 2.81 (0.23) 2.95 (0.33) 3.2 (0.26)

0.16 and 0.46 on the mean of train error and 0.15 and 0.28 on the mean of test
error from FedAvg.

The hierarchical Bayesian method achieves better result compared to the
sequential method. The empirical Bayes method also achieves very similar results
compared to the more computation intensive MCMC-based method in both
training and testing errors and outperforms its counterpart in the new exer-
cise error. Our results show that Bayesian based federated learning methods
provide a more sound model synthesis (smaller testing error) and also new user
personalization performance (new exercise error).
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Train Error by User Test Error by User New Exercise Error by User
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Fig. 4. Experiments on imbalanced training data scenario

Effects of Varied Training Datasets. To further demonstrate the effects
of the Bayesian inference federated learning method, we deliberately make the
training data imbalanced to better simulate the real world scenario. To be more
specific, a random selection ratio (0.01%, 25%, 50%, 75%, 100%) is applied to
each user’s training data to make the training data imbalanced among the users.
We assume different amounts of data from users might have a negative impact
on federated learning; for example, the prediction might be biased towards the
users whose data takes the majority. The results of 100 random experiments
are listed in Fig. 4. It is obvious that all Bayesian based methods, both feder-
ated and traditional learning, outperform the likelihood based average method.
When imbalanced training data is used, the average methods fail in all three
error categories, and their large standard error also signifies the instability of
the methods. The Bayesian methods however are all more robust, i.e. the perfor-
mance deteriorates to a much less degree. We can also observe that the sequential
Bayesian method achieves slightly better results than the hierarchical model, as
the sequential method essentially pools the data together by integrating all local
parameters with weights but at the price of scalability.

5 Conclusion

When users perform physical exercises, one important goal is to optimize the
training process. Heart rate has been used as a most important indicator for
monitoring the training strain. Therefore, predicting heart rate during physical
exercise is crucial for tracking physiological responses and improving the effect of
the exercise. The majority of the existing research focuses on pooling together a
large amount of users’ data for building a robust model, which often has incurred
much privacy concern. To tackle this issue, we leverage a statistically sound
model – Bayesian inference and propose two Bayesian-based federated learning
methods, i.e. FD Seq Bayes and FD HBayes-EB. They enable collaborative
model training under the orchestration of a central server, while not accessing
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to any user’s local data. Through extensive evaluation on real-world dataset, we
have demonstrated the advantages of our methods in accurate prediction and
low computation cost. In the future, we will extend our evaluation to other ARX
regression problems to assess the generalization of our methods.
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A EM Algorithm for Hyperparameter Estimation
for Hierarchical Bayesian Regression Model

E step: The complete data log likelihood is

L(Φ0) = log P ({βi, σ
2
i }n

1 , {Di}n
i |Φ0)

= log(P ({Di}n
i |{βi, σ

2
i }n

1 ,Φ0)P ({βi, σ
2
i }n

1 |Φ0))

= log

(
n∏

i=1

N(yi;Xiβi, σ
2
i I)NIG

({βi, σ
2
i };Φ0

)
)

=
n∑

i=1

log
(
NIG

({βi, σ
2
i };Φ0

))
+ C,

where C contains all the terms that are independent of Φ0. The conditional
expected complete data likelihood is:

Q(Φ0|Φt−1
0 ) = E{βi,σ

2
i }n

1 |Φt−1
0 ,{Di}n

i
[L(Φ0)]

≈ 1
nL

L∑

m=1

n∑

i=1

log(NIG({βi, σ
2
i }(m);Φ0)

where {βi, σ
2
i }(m) denotes the m-th i.i.d. sample from P (βi, σ

2
i |Di,Φ

t−1
0 ), which

are NIG distributed. Sampling from a NIG distribution is straightforward by
a standard two step procedure by firstly sampling σ2 from Inv-Gamma(ai, bi)
then sampling from β from N(mi, σ

2Λ−1
i ). Essentially, we are approximating the

conditional expectation with a Monte Carlo estimator with L samples from the
posterior P ({βi, σ

2
i }n

1 |{Di}n
1 ,Φt−1

0 ). The EM algorithm degenerates to a Monte
Carlo Expectation Maximization (MCEM) [19].

M step: the objective here is to maximize the conditional expectation, namely

Φ̂0 = argmax
Φ 0

Q(Φ0|Φt−1
0 ) (7)

= argmax
Φ 0

1

nL

L∑

m=1

n∑

i=1

log(N(β
(m)
i ; m0, σ

2(m)
i Λ−1

0 )) + log
(
G

(
σ

−2(m)
i ; a0, b0

))

(8)
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where we have used the property that if x ∼ Inv-Gamma(a, b), then 1/x is
Gamma distributed with shape and rate parameters a, b, denoted as G(a, b). It
is easy to see that the optimal â0, b̂0 w.r.t Q are just the maximum likelihood
estimator of a Gamma distribution with dataset {σ

2(m)
i }n,L

i,m=1 (the second term
of Eq. (8)). An iterative generalized Newton’s method can be used to find the
ML estimator of Gamma as follows [20].

1
a0

=
1
a0

+
log σ−2 − log(σ−2) + log a0 − Ψ(a0)

a2
0(1/a0 − Ψ ′(a0))

(9a)

b0 =
σ−2

a0
, (9b)

where

σ−2 =
∑L

m=1

∑n
i=1 1/σ

2(m)
i

nL
, log σ−2 =

∑L
m=1

∑n
i=1 log(1/σ

2(m)
i )

nL
.

Take the derivative of the Gaussian term in Eq. (8) w.r.t m0,Λ0 and set
them to zero, we can find the estimators for m0,Λ0:

m0 =

∑L
m=1

∑n
i=1

1

σ
2(m)
i

β
(m)
i

∑L
m=1

∑n
i=1

1

σ
2(m)
i

(9c)

Λ−1
0 =

1
nL

L∑

m=1

n∑

i=1

1

σ
2(m)
i

(β(m)
i − m0)(β

(m)
i − m0)T (9d)
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Abstract. Proprioception is fundamental for maintaining balance and moving-
hence for daily living. As proprioception deficits may occur with aging, neu-
rological and musculoskeletal (especially cervical) conditions, assessment of
proprioception can be relevant for a very large cohort of individuals.

We designed a web page that allows measuring the neck joint position sense
while sitting in front of a standardwebcam. Theweb page tracks the subjects’ head
movement and instructs them on how to perform a head repositioning accuracy
protocol. We performed a test retest analysis of this tool in order to assess its
feasibility and reliability. Eleven healthy subjects participated in two sessions
over consecutive days, at their homes. We calculated average errors across four
directions Bland-Altman level of agreement between the measurements on the
two sessions.

All participants could complete the test in approximately six minutes. The
average absolute error did not differ between the two sessions, showing close to
zero bias and a 95% limit of agreement of 1.676°. These values changed signif-
icantly across directions, suggesting that the performance of the head tracking
software for neck flexion movements may be limited.

By comparing our results with normative values, we suggest that the narrow
limit of agreement we observed makes the web page potentially capable of dis-
tinguishing healthy subjects from subjects with proprioceptive deficit in the neck
joint.

Keywords: eHealth ·Movement analysis · Proprioception

1 Introduction

Neck pain is a highly prevalent condition, as it is estimated that 37%of peopleworldwide
will experience neck pain at least once a year [1]. Not only it already is very common,
but due to population growth and aging it is expected to become even more relevant
in the next future [2]. The burden of neck pain worldwide is heavy both in terms of
disability [3] and economically [4].
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A coarse classification of neck pain can be made based on whether it is of known
(specific) or unknown (idiopathic) non-traumatic origin, or it is trauma-induced [5].

Regardless of the cause of neck pain, loss of proprioception (“the sense of one’s own
body”) is a symptom frequently associated with conditions which affect the neck joint.
Also, aging is frequently associated with a progressive loss for vestibular function [6].

As proprioceptive deficits significantly impact quality of living, it is not surprising
that several methods have been developed for assessment of cervical Joint Position Sense
(JPS). The standard to measure JPS in clinical practice is to place a headband with a
laser pointer on top of the person’s head, in order to observe the errors–as distance of the
laser dot from the center of a target placed in front of the person – when he/she moves
the head back to the central position [7] after an either passive or active movement of
the neck. However, this simple method is time-consuming as it requires a trained person
to administer the test.

Technology has come into help for measuring JPS with systems which have so far
been used mostly in research facilities. Proprioceptive assessment can be done with
electrogoniometers [8], electromagnetic trackers [9] and optoelectronic systems [10].
Unsurprisingly, amore recent technology likeVR headmounted displays have been used
tomonitor head stability [11]. Notably, all these systems require dedicated hardware, and
this may limit accessibility to these methods. Moreover, all of these systems also require
the subject to wear some equipment – with consequent burdens in terms of comfort and
hygiene.

We previously proposed the use ofwebcam-based head tracking tomeasure JPS [12].
Our method showed that results in neurologically intact individuals who participated in
a lab-based session under the supervision of a researcher were comparable to normative
values described in literature. In this work, we aim at evaluating the feasibility and the
reliability of remote unsupervised measurement of neck JPS.

2 Methods

2.1 Task

The task consisted in an active-active neck joint position sense test. The participant
was asked to sit still and look straight ahead. Each repetition consisted of five phases.
Transition between phases occurred based on subject’s movement or actions (click).

1) Initial. The neutral, starting position acquired when the participant clicks, at the
beginning of the session, is acquired as the reference (target) position with respect
to which errors are calculated.

2) Outward movement. Once the target position is set by clicking, the participant is
asked to close the eyes (so that the task relies only on his/her proprioception, and no
visual information is used) and to move the head, as far as possible, in one of four
possible neck movement directions (extension, flexion, right and left rotation)

3) Matching. The subject moves the head to return to the neutral position, trying to
match it as accurately as possible. He/she confirms the response (final position) by
clicking.
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Fig. 1. Each repetition of a JPS measurement articulates in 5 phases: initial, outward movement,
matching, distraction and return to center

4) Distraction. Once the final position was confirmed, the participants was asked to
move the head for an amplitude of at least approximately 5°, still with the eyes
closed; in this way, no feedback was provided before

5) Return to center. The subject can open the eyes and return to the target position (by
aligning a cursor showing the head angles on the screen) in preparation for the next
repetition.

2.2 Experimental Protocol

A convenience sample of eleven neurologically intact volunteers (5M/6F, age: 23 ±
1) participated in this study. A restricted access web page was set up, and participants
were recruited through referral among peers. Information about this study, including
instructions on how to take part in the experiment, and informed consent were provided
and acquired through the same website.

Participants accessed the website without any supervision, from their homes and
using their laptops. They were requested to place the camera at eye level in front of their
eyes and they were instructed to repeat the test on two consecutive days, at the same
time of the day. On each day, each participant performed a total of 28 repetitions (7
in each of the 4 directions) in a pseudo-randomized order. For each day, the first four
repetitions (one per direction) were considered as familiarization and discarded from
further analysis. Participants did not receive any feedback about their performance upon
completion of the first session, while a graph showing the final positions on day 2 was
display at the end of the second session.

2.3 Head Tracking Software

While the standard, responsive webpage was created using standard HTML and
JavaScript code, the core of the functionality for proprioceptive assessment (i.e. move-
ment analysis) was implemented using PoseNet [13]. PoseNet is a community supported
library formarkerless skeleton tracking. The library is built on top of TensorFlowmodels



136 A. Basteris et al.

trained to find human poses on still images [14]. Once a human pose is found, the soft-
ware provides an overall confidence for it (in range 0–1) and the estimates of 17 skeleton
points. For each of these points (nose, plus eye, ear, shoulder, elbow, wrist, hip, knee
and ankle on each side) the software measures horizontal and vertical coordinates on the
camera plane, in pixel with origin on the bottom left corner, and a confidence score again
in range 0–1. For the website, we used only the nose, eyes, and shoulders coordinates to
estimate angles of rotation of the neck.

Angles of left and right rotation were estimated using only the lateral coordinates of
the nose, left and right shoulder (xN , xLS and xRS , respectively). We indicate with L and
R the difference between the horizontal coordinates of the nose and of the left and right
shoulder, respectively:

L = xLS − xN ;R = xRS − xN (1)

Assuming that the subject is facing the camera and looking straight at it, these
distances will be equal and opposite in sign (L = −R). Leftwards rotation causes L to
decrease and R to increase, while rightward rotation provokes an opposite increase in L
and decrease in R. We thus estimated angle of lateral rotation of the head as

θL = +45− arctan
L

R
(2)

causing θL = 0° in the reference position and θL > 0 for rightward rotations.
We estimated neck flexion/extension movements by using the nose, left and right

shoulders vertical coordinates (yN , yLS and yRS , respectively). Let E be the vertical
coordinate of the midpoint between the eyes:

E = yLE+yRE

2
(3)

and D0 the value of E when the subject is facing the camera, in the initial position. As
the subject turns the head downwards, the value of E decreases (that is, the projection of
the eyes on the camera plane appear closer to the projection of the nose than in the initial
position), while upwards rotation likewise cause an increase of E. We thus estimated
angle of vertical rotation of the head as

θV = −45− arctan
yN − E

D0
(4)

causing θV = 0° in the reference target position and θV > 0 for neck extension.

2.4 Data Analysis

For each repetition, the software measured the absolute error and the constant error
(absolute value and value of the difference between final and target position).We retained
only the angle θL after lateral rotations and only θV after vertical movements, so that
movements off the main movement axis were not accounted for in the error amplitude.
We calculated the absolute error for each subject, direction and session as median value
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of the six repetitions, and the average of the four values as an indication of subject’s
accuracy.We compared the time taken to complete the experiment and the absolute error
for each day by a paired samples t-test.

We also performed a Bland-Altman analysis to establish the bias and the level of
agreement for the head tracking software across the two days [15]. The Bland-Altman
method reveals systematic differences between twomeasurements and the limit of agree-
ment represent the 95% confidence interval due to random fluctuations of the measure-
mentmethod.We repeated the sameBland-Altman analysis were repeated on themedian
values in each of the four directions, in order to understand whether reliability of the
proposed software method differed across movement direction.

3 Results

3.1 Test Duration

Figure 2 displays the duration of the test for each subject on both days. On the first day,
subjects could complete the test in an average of 400 s (range: 312–520 s). On the second
day, it took all subjects a lower time to perform the same test (p< .001), with an average
duration of 312 s (range: 240–366 s).

Fig. 2. Time taken to complete the full test (28 repetitions) by each subject on two consecutive
days

3.2 Absolute Error – All Directions

Figure 3 shows the average error for each subject on both days. Subject 11 showed errors
higher than the average of the other participants (three to four times higher) and his data
were than excluded from further analysis.
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Fig. 3. Mean absolute error for each subject, on both days. The mean value was calculated among
the four median values (one per direction) among six repetitions. Errorbars represent the standard
error of the mean.

Fig. 4. Average absolute error (left panel) and constant error (right panel) for each day, all subjects.

Figure 4 shows the average absolute error (among all subjects) on first and second
day, in the left panel. It is noteworthy that, despite the lower time, the absolute error
did not differ across days (p = 0.95). Figure 4 also shows, in the right panel, that the
constant error was positive on both days, meaning that subjects tended to overshoot the
target position, with a non-significant increase in constant error on the second day.

Figure 5 shows the agreement between the measurements on the two days. The
method was proven to have very low bias (0.079°) and a 95% level of agreement interval
of 1.676° (range between −1.597° and 1.755°).
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Fig. 5. Bland-Altman plot showing 95% level of agreement between repeated measures of neck
JPS

3.3 Effect of Movement Direction on Absolute Error

Fig. 6. Average error for all subjects after each of the four movement directions.

Errorbars represent the standard error of the mean.
Figure 6 shows the average error on both days, for each direction.While no significant

changes were observed among days, our results show higher error when trying to match
the target position after returning from flexion movement. Also, it is noteworthy left
rotation movements led to slightly higher error than right rotation.
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Not only the average absolute error, but the level of agreement showed strong varia-
tion among directions, as shown in Fig. 7. Along with the higher average absolute error,
flexion movements also led to the larger extent for the level of agreement.

Fig. 7. Bland-Altman plot for repeated measures across four different directions, all subjects.
Dashed lines mark 95% level of agreement.

Table 1 summarizes these results: the bias between days appeared higher for lateral
rotations than for flexion and extension. In a similar fashion as the average absolute
error, also the the level of agreement differed between left and right rotations.

Table 1. Average absolute error and Bland-Altman bias and 95% confidence level of agreement
between measurements on two consecutive days after movement in each of the four different
directions.

Direction Absolute
error
[°]

Bias
[°]

Level of
agreement
[°]

Extension 2.91 0.057 1.387

Flexion 4.89 0.135 4.14

Right rotation 3.21 −0.301 1.791

Left rotation 3.55 0.427 2.877
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4 Discussion

4.1 Feasibility of Self Administered Assessment of Neck Proprioception.

Our results prove the feasibility of a home-based, self-administered assessment of the
neck joint position sense. Previous work using hardware compatible with a home envi-
ronment included gaming devices like the WiiMote [16], and it was also suggested that
a 3D camera could be used for postural assessment [17]. Unfortunately, these devices
are not available to many users. A more inclusive solution is the use of smartphone for
vestibular rehabilitation [18]. However, our solution only relies on the availability of a
webcam, and it is thus potentially available to any user of a standard laptop or smart-
phone. Also, the same solution can be easily adapted to measure proprioception of the
other body joints (i.e. shoulder, elbow, knee) already tracked by the skeleton tracking
software used in this study.

The subjects participated in tests from their homes, without any live interaction with
the researchers. They only received an email with the information sheet and instructions
about their participation, and they were then guided by the website by means of voice
guidance provided through speech synthesis, during the test. This potentially saves work
hours from the healthcare professionals,who can then dedicate their time to treat patients,
and resources for unnecessary travels for the patients. Of the 11 subjectswho participated
in this study, only one (subject 11) showed abnormal values on both days. It is possible
that the instructions were somehow not clear to this participant, but as no information
about the participants’, other than the results of their tests was recorded, it is no possible
to ascertain the reason for this exceptionally high values.

The test proven to be quick to be performed, as all the subjects could complete
it in less than 9 min, with an average of 400 s on the first day. The fact that on the
second day all participants could perform within a smaller duration suggests that there
is some familiarization with the test. However, the similarity of results across the two
days, also considering that no feedback was provided, reduces the concerns raised by
this familiarization.

4.2 Test-Retest Reliability of the Proposed Method and Implications
for Diagnostic Value

The average absolute error across the two days was 3.64 ± 2.62°, with a small change
(0.08°) between the two days, and a 95% level of agreement of 1.676°. The average
value is comparable with the values reported by other studies which used conventional
methods for using the neck JPS. There are indeed two other studies reporting 3.6° as the
average absolute error for healthy subjects [19, 20]. Armstrong et al. reported 3.25 ±
2.32° as absolute error for healthy subjects [8] when averaging all movement directions,
while Revel et al. had previously suggested 3.50 ± 0.82° for lateral rotations and 3.37
± 0.73°.

A review about evidence of impaired proprioception in chronic idiopathic neck pain
considered 10 studies, indicating a absolute difference in error between people with
chronic neck pain and healthy controls ranging from 0.1 to 3.0 [21]. As the extent of our
level of agreement falls within this range, our test may be reliable enough to distinguish
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between people with chronic neck pain and healthy individuals, with potential diagnostic
value – that needs however to be assessed in a specific study.

4.3 Effect of Direction on Average Error and Test-Retest Reliability

Our system performed differently along movement directions. It is important to stress
that our system estimated the rotation angles based on the method described in Sect. 2.3
(Eq. 2 and 4). Concerning lateral rotations, there was a small difference between left
and right rotations. However, the amplitude of such difference is compatible with those
reported by a number of other studies (e.g. 0.3 [10]) and may be affected as an instance
by subjects’ handedness [22]. The high difference in level of agreement between the two
lateral directions may be a consequence of the low number of subjects who participated
in this study.

We found a high difference between errors after flexion and extension movement,
with higher errors after flexion. Also, the level of agreement for the former was approx-
imately three times higher than for the latter. These results may be a consequence by
factors that we could not control for, in particular, the camera positioning. If the camera
was placed below the participants’ head, the misalignment between the camera optics
and the head’s rotation axis would have caused errors in the vertical angle estimation.
We rely that this may have been the case, especially if subjects performed the test using a
standard laptop and did not follow the instructions of facing the camera directly. Further
studies may use the position of the shoulders– as it was successfully done for the lateral
angle - also for estimating the vertical angle.

4.4 Limitations of This Study

This study involved only young healthy individuals (average age 23 years). A population
with higher age range may show a significantly higher absolute error, and possibly
altering the level of agreement. Also, the head tracking system is not yet validated
against a gold standard, which would provide estimates of its precision in tracking the
head movement.

5 Conclusions

Our results prove that a webcam-based face tracking system can be used for a remote,
unsupervised assessment of proprioception. This will allow people with neck pain to
monitor their performance in proprioceptive tests at home, without the supervision of a
healthcare professional.

The good level of agreement observed in this study between measurements on two
consecutive days on healthy individuals suggests that the tool has good reliability, espe-
cially after extension, left and right rotation movements – while results after flexion
movements require further testing.

The level of agreement found in this study - lower than differences in JPS error
between healthy individuals and people with neck pain reported in literature – supports
future studies aimed at establishing the diagnostic value of this tool by comparing results
in populations with and without proprioceptive impairment.
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Abstract. This paper describes the process of developing the tech-
nical infrastructure of the Health Telescope: an interventional panel
study designed to measure the long term effects of eHealth usage. We
describe the design and implementation of both the Health Telescope
application—an Android application that allows us to interact with
participants and obtain measurements—and the researcher authoring
client—a web-based application that allows us to flexibly submit expe-
rience sampling tasks to participants. This paper serves as a blueprint
for those wanting to study long-term behavioral change in the wild. The
paper furthermore describes a pilot study that was conducted to evaluate
the research software. We conclude with design guidelines aimed at those
aiming to undertake a similar endeavor that are vital when developing
similar software; this paper aims to highlight both the importance and
challenges of measuring the effects of eHealth applications longitudinally.

Keywords: eHealth · mHealth · Longitudinal data collection ·
Interventional panel study · Wearable research · Technical guidelines

1 Introduction

Physical activity has decreased globally over the last 50 years [14]. In parallel, the
last 50 years have brought forth a lot of research on health and physical activity.
Given the developments in recent years, with new technological advances such as
smartphones, wearable bands, smart scales, and many other examples entering
the consumer market, we can now analyze health behaviors at an unprecedented
level by generating high amounts of data on activity and physical health.
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However, research utilizing modern technology like cellphones and activity
trackers still has some challenges: for one, long-term engagement with this tech-
nology has proven challenging [8,24]. The accuracy of devices is often inconsistent
[6] and not validated [15]. Measuring the effects of usage may stretch beyond
simply measuring step count for some period of time, and changes in health
behaviors are made in different ways. These factors, among others, make it hard
to conduct large-scale longitudinal research using activity trackers to measure
participant physical activity. Furthermore, developing the technical infrastruc-
ture for such research can be challenging, as the technologies used are complex.

This paper describes the development of the system design and technical
implementation of the Health Telescope, an interventional longitudinal study
investigating the effects of eHealth app usage. With this paper, we aim to show
the process through which the technical infrastructure for the Health Telescope
project was developed. The paper covers the thoughts going into building the
system, the details of the architecture, the evaluation process, done through a
pilot study, followed by the improvements made after receiving feedback. These
details on the development process may be interesting for readers trying to set up
longitudinal research using mobile phones to generate data, or to communicate
to participants. It can also be informative for researchers interested in using data
generated in the project.

In the Health Telescope study, we measure the activity and mood of N = 450
participants for a minimum of four months. During this time, participants will
be monitored and recommended to download existing applications for health
behavior change. This study is significant for the field of eHealth for the follow-
ing three reasons: (i) carrying out intensive longitudinal research contributes to
helping the general understanding of the effects of eHealth application usage, as
well as health behavior change; (ii) uncertainty exists regarding how to fully cap-
ture the effects of eHealth apps, in this study a broad range of information such
as daily activity, sleep, mood, and phone usage is collected, allowing a unique,
detailed look into the effects of usage of the apps distributed in the study; (iii)
different approaches for health behavior change can help different users. In the
study, we will experiment with personalization of eHealth app allocation: by pre-
scribing different applications to different users, we aim to learn if an eHealth
app is more effective for users with certain characteristics (i.e. “elderly women”,
“20-year olds that wake up at 6 am”, “participants that make intense use of their
smartphone”). We can then test these hypotheses by recommending the appli-
cations to users with similar characteristics. The study objectives are further
detailed in Sect. 2. A detailed setup for the study can be found in [26].

The remainder of this paper is structured as follows: the paper starts by
introducing the background, objectives and architecture of the Health Telescope
Project (Sect. 2); then, the implementation of the system created for the study is
described (Sect. 3). Next, we show how the system usage allows us to accomplish
use cases (Sect. 4). We furthermore expand on a pilot that was used to evaluate
and improve the system (Sect. 5) and close off by discussing improvements and
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related work, as well as describing a set of guidelines following our development
process (Sect. 6).

2 The Health Telescope Software

The infrastructure described in the paper was created as part of the Health
Telescope project. The project goals inspired us to build an infrastructure that
can communicate with study participants’ cellphones, and capture behavioral
data like step count and phone usage to investigate the effects of using eHealth
applications. In this section, we briefly discuss the Health Telescope project,
listing its goals and motivations. We do so to show the rationale behind the
development process and infrastructure that we discuss in the remainder of the
paper. Additionally, we describe the requirements that implementations will need
to satisfy. We first do this through sketching the data flow needed for the project,
followed up by use cases that help make the details of the architecture concrete.

2.1 Study Objectives

The system is designed as part of the Health Telescope project, an interven-
tional panel study measuring activity data using wearables. The objectives of
this project are as follows:

– O1. We aim to investigate the effect of using eHealth apps focused on increas-
ing physical activity on activity and mood, for a long period,

– O2. We want to see if there is a correlated effect between short-term measures
and long-term measures after interacting with eHealth apps,

– O3. We want to test different ways of personalizing eHealth offerings.

To effectively accomplish these objectives, we chose to not simply design or
test a single app, but instead investigate how individuals respond to existing
eHealth apps that focus on different, distinct persuasive elements. We will rec-
ommend study participants different, existing eHealth applications that all focus
on improving physical activity, using different behavioral change techniques. For
more information on the reasoning and design of the study, we refer to our study
protocol [26].

2.2 System Architecture

To enable the goals of the Health Telescope project, we developed a system that
allows a researcher to directly communicate to study participants, through a
mobile app, as well as have that app transfer data generated by participants
to the researcher. The architecture for this system has been largely inspired by
a previous application for conducting event and signal contingent experience
sampling studies, TEMPEST [11]. Like TEMPEST, the Health Telescope archi-
tecture consists of 3 software components:



148 B. Willemse et al.

– A mobile application for the Android OS, available to participants via Google
play store, which collects data in the background on app usage and location
from the phone, and steps, activity, and heart rate from the wristband. It
also receives and renders content as produced by the researchers, such as
questionnaires or cloud messages.

– An authoring web application, to be used by the researchers for creating
content and managing its distribution to the participants in the study.

– A server that stores content and collected data in a database, and allows
information to be shared between the authoring web application and the
mobile application.

2.3 Considerations in Developing the System

We intend to create an application that serves as an observer app: that is, it
gathers data relevant to the study from a user’s phone, and transfers it to the
database. The Health Telescope app is meant to a) transfer wearable and phone
data to the database, and b) help evaluate existing apps. Importantly, the pur-
pose of the app is not to function as a behavior change app in itself. Instead,
we would like to use the app to observe how active users are before, during and
after using eHealth apps that will be recommended to them during the study. To
accomplish this, focus is put on making sure communication and data transmis-
sion happen correctly, not on experimenting with incentivizing activity or ways
of engaging participants.

To ensure that the system can perform the tasks required to accomplish the
study goals, we used use cases as a measure of internal testing during develop-
ment [7]. These use cases resemble queries that need to be run during the study.
The value of use cases shows in two different stages of development: a concrete,
step-by-step plan on how the system should function can help during imple-
mentation by showing explicit restrictions that the system will need to uphold.
During evaluation, each action in a use case can be tested to effectively isolate
and communicate about existing flaws in the software. We expand further on use
cases by giving two examples in Sect. 4 as a way of demonstrating the system’s
flexibility, as well providing detail on our evaluation process.

3 Implementation of the System

In this section, we discuss the framework that was created for the project. Below,
we will detail the structure and interactions of the mobile app and authoring
client.

3.1 Mobile Application

The goals of the Health Telescope application are:

1. To serve as a tool for users to self-report on their mood;
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Fig. 1. Screenshots from the Health Telescope application. The first panel shows the
privacy configuration for data collection, the second panel shows an example of a
questionnaire loaded in the app, and the third panel shows the home screen, displaying
the daily step counts, a wearable connection menu, and a notifications bar.

2. To gather GPS and phone usage data;
3. To collect sensor data from the wearable band, visually display this data, and

transmit collected data to our servers;
4. To deliver interventions to participants; and
5. To monitor participant engagement.

The Health Telescope application is designed as a tool to observe participant
behavior closely, without requiring active effort from participants. The data col-
lection is completely passive, excluding the participant’s self-reporting on mood,
which is also designed to minimize the strain by making short multiple-choice
questions. Figure 1 shows screenshots of different parts of the Health Telescope
Application.

Data. The Health Telescope application collects a total of six different types of
data: step count, heart rate, sleep, experience sampling, GPS location, and phone
usage. Examples of these data can be seen in Table 1. We employ Experience
Sampling as a tool for participants to self-assess how they are feeling through-
out the week. To capture this, we investigated different constructs, such as well-
being [17], happiness [21], and mood [28]. Out of these options, we chose mood
and happiness. Mood is a construct chosen for its day-to-day variance, displaying
direct effects of events happening in the life of participants. Different ways of eval-
uating mood exist, and one commonly used dichotomy fundamentally separates
this mood into valence (the intrinsic attractiveness or aversiveness of the mood)
and activity/arousal (expressing the calm or exciting nature of the mood) [5].
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Table 1. Summary of data used in the Health Telescope

Data Type Frequency Example

Step Count Every hour, the number
of steps taken during
that hour is measured

14.00–15.00 - 739 steps

Heart rate Heart rate is measured
on one hour intervals

14.00 - 73 bpm

Sleep Data The start and end time
of sleep are measured

February 23: 23:16–07:12

Experience Sampling Up to once per day, we
ask participants brief
questions using push
messages

February 23 14:00:
I generally feel energetic: Yes
I currently feel happy: Com-
pletely agree
I feel good: Mostly agree

GPS Location GPS location is saved
every four hours

14:00: 38.8977N, 77.0365W

Phone Usage We measure screen time
and usage of
applications on
participants’ mobile
phones. Note: We only
measure the duration of
use, and do not in any
way measure what
happens within an
application

Chrome: 14:03–14:04
Facebook: 14:04–14:17
Messages: 14:23–14:25
Mail: 14:25–14:37

Most existing surveys measuring mood in this way consist of 10–30 questions.
Given our setup, it seems infeasible to regularly ask participants this many ques-
tions: participant burden is a large factor of dropout in longitudinal studies and
questionnaires are lengthy. As a result, we directly ask for the underlying con-
structs of the questionnaires: one question asks participants about activity, one
question asks participants about valence. A third question measures happiness
using a three-point smiley face question, with a face for sad, neutral, and happy.

Technical Implementation. The mobile application is a hybrid of a web-
based component and a native android component. The web-based component
is an Ionic/Angular app, which renders the User Interface and also renders the
questionnaires or other documents created by the researchers. The user interface
consists of two major parts; one is a setup guide, for allow participants to log
in and manage their system account, provide necessary permissions for data
collection and pair their wristband with the phone; the other is the main screen
which displays documents available for access, as well as an Inbox screen for
notifications received so far. Notifications are Firebase cloud-messages that can
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consist of a single message body, but can also have documents attached. All
documents in this environment can be any HTML/JavaScript content, which
gives researchers the freedom to serve rich styling and interactions according to
the needs of the study as it develops.

The native android component is tasked with downloading configuration and
content created by the researchers, setting alarms for signal-contingent experi-
ence sampling, receiving Firebase cloud messages, collecting app usage statistics
and location data, and connecting to the wristband via Bluetooth for sampling
step count, activity data, and heart rate. Data is stored in the phone’s SQLite3
database and is only uploaded to the server at opportune moments, as decided
by the android OS’s facilities for managing communications and power con-
sumption. Additionally, Firebase cloud messages are not only notifications to be
presented to the users but also commands to the application itself. This allows
researchers to remotely control functions of the application, such as forcing the
downloading of a new configuration, or the uploading of collected data.

3.2 Authoring Client

The authoring client is designed as a tool for researchers to carry out experi-
ments. It accomplishes this goal by providing a simple interface for researchers
to a) monitor enrolment and participant engagement; b) conduct experiments
by setting up scheduled surveys and alerts; c) communicate to participants. The
authoring client groups allow researchers to set up the following:

Participants. The authoring client allows researchers to monitor participants
in their activity and engagement with the panel. While participant data can
be directly accessed from the database, the authoring client provides a visual
interface tracking data transfer and daily activity. The authoring client provides
control of participant creation and deletion in the database.

Documents. The authoring client allows researchers to design any kind of con-
tent using HTML and JavaScript to create and serve rich styling and interactions
as the study progresses. Specifically for questionnaires though, the application
allows their creation using custom web components, which can be read in the
semantic terms of the questionnaire’s content and computational logic rather
than the syntactic features of their HTML structure. The motivation and method
of the approach for this particular feature can be found in [11]. It provides a live
preview of the documents to prepare (see Fig. 2).

Allocation and Rules. The authoring client allows researchers to assign doc-
uments to (groups of) participants, using rules and allocations. Rules specify
the conditions under which a document should be available for participants, and
allows for researchers to set moments for the phone to trigger. Rules can be
“always available”, or “time-triggered”. We can use the ‘always available’ set-
ting for documents that users will need to have the ability to fill in whenever
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they want, as often as they want (tracking water consumption is an application
for this rule). Time triggered rules, on the other hand, can be used when users
should respond up to once per day. After completion, a document shown with a
time-triggered rule will be hidden until the next day.

Allocations are the glue that holds everything together: an allocation is a
triplet connecting rules specifying a timeframe, to a document that will be
available for a (group of) participants. After an allocation has been created,
participants will be able to see a document in their task list to be filled in, as
well as receiving a system notification that they have a new task available (see
Fig. 4). After completing a task, it disappears from the home screen of the app.

Communication. Furthermore, the authoring app allows researchers to send
cloud messages to participants. Cloud messages are flexible: they can be used to
“silently” contact the phone or can make notifications appear in the participants’
Android notification screen. Cloud messages can contain the following: (i) a
simple message, containing a head and body; (ii) a prompt for the participant
phone to upload its allocation, forcing a new allocation onto the phone; (iii)
a prompt for the phone to sample sensor data (as described in Table 1) to the
server; and (iv) a notification that has a document attached to it. Cloud messages
that contain notifications are stored and available to view for participants in
the Messages tab of the app. In our setup, we use cloud messages to deliver
interventions.

Technical Implementation. The authoring web-application was built using
the Ionic/Angular framework. The interface components that are available in
the authoring client belong to two main categories: lists and editors. Lists cor-
respond to database tables and display the rows for a particular entity, such as
participants, documents, rules, etc. Editors allow the researcher to create new
such entities or edit existing ones, and they are generally custom UI components
that are tailored to the properties of each. Both lists and editors offer options
for accessing other related entities, e.g. a group editor can be opened from a
participant list because a listed participant might belong in that group.

4 Testing the Software: Use Cases

In this section, we will demonstrate the flexibility and ease of use of the described
system, by going over two distinct use cases and displaying step-by-step how
these use cases can be implemented in the system. The use cases are as follows:

– Use case 1 - Questionnaire: Set up a questionnaire that asks every par-
ticipant in the panel three questions daily for the next three months between
11:00 and 20:00.

– Use case 2 - Intervention: Send out a cloud message containing advice to
download an interventional application to participants that walked an average
of less than 7000 steps per day for the last 30 days.
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Fig. 2. Document creation interface. There are several pre-made buttons that create
blocks of HTML code to create multiple-choice questions, create screen sequences,
and more options. We are not limited to these pre-made buttons and could choose to
manually insert other HTML. There is a live preview button, that renders the document
in a separate pane.

4.1 Use Case 1 - Questionnaire

Here we describe how our system can be used to achieve the following steps:

1. Create a document in the authoring client to distribute to participants,
2. Select a group containing participant that will see the document,
3. Create a rule that makes this document appear within a time frame, and
4. Tie everything together by creating an allocation.

Figure 2 shows how a document can be created in the authoring client’s
document creation interface. On account creation, every new participant is added
to the ‘allParticipants’ group, containing the full set of participants, as part of
the information sent from Google Scripts to the database.

Next, we create a rule that determines when the document is visible for
participants. For this use case, we choose the latter, setting up a time-triggered
rule. Here, we set the interval for the document to appear to 11:00–20:00, and
enable the document for every day in the next three months.

After this, we have created the document we want to distribute, have chosen
the time frame during which participants should see it, and have a group of
participants that we would like to show the document to. To tie these three
parts together, we set up the allocation by navigating to the allocation creation
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Fig. 3. Allocation creation interface in the authoring client. Researchers can use this
to select documents to display for (groups of) users given some rule for when to show
the content.

interface in the authoring client. The allocation interface (shown in Fig. 3) allows
us to select the rule, participant, and document, which finalizes the use case.
After taking these steps, every user will receive a notification, every day at
11:00, asking them to fill out a questionnaire.

4.2 Use Case 2 - Intervention

To complete this use case, we need to:

1. create a group of participants that will receive the intervention,
2. create a document containing the intervention, and
3. add the document to a cloud message that will be sent to the group of selected

participants.

Use case 2 requires some work outside of the interface: we want to get to a
point where we’ve identified the group of users that walk an average of fewer
than 7000 steps per day, to feed this to the database. After this, we can create a
cloud message with the advice, to send to this group. The first part of this can be
done in any pre-made script, that connects to the database, selects the activity
data for all participants for the last 30 days, then averages this out. From the
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Fig. 4. Cloud message creation. Here, researchers can send notifications to participant
cellphones, and specify the content for these notifications. There is a live preview of
the notification at the top.

resulting list, select only the participants whose average activity is lower than
7.000 steps. Next, we add the IDs of these users that were insufficiently active to
a group and use the database connection to create a new group in the database,
containing this list of participants.

After these steps, the database contains the group of participants that will
receive the intervention. We use the authoring client to create the cloud message.
Cloud messages are messages appearing in the app’s message box, that can be
read back by users at any time. For this use case, we will attach a document
to the notification, containing the intervention. We create this document in the
same way we created the questionnaire in use case 1. Figure 4 shows how the
message is given a title and body, that will appear to users as a notification, then
add the document by selecting the key-value type openDocument, and selecting
the earlier created message as our document. Then, we select the group that
was created using the pre-made script as the receivers, and finally, we send the
message. With this, the second use case has been completed.
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5 Evaluating the System

Following recommendations for eHealth design in [20], part of the evaluation of
the system before starting the study consisted of several pilot studies, testing
elements of the study. Pilot studies can be used as an effective tool for testing
experimental setups before starting a study or trial [1]. [30] argues that “There is
a need for more discussion amongst researchers of both the process and outcomes
of pilot studies”. In this section, we aim to contribute to this discussion, by
expanding on a short pilot that was conducted as part of the development of
the app. Throughout development, three additional pilots have been held: one
to test the technical functioning on a diverse set on smartphones; one to test
the improved (after feedback from previous pilots) app, focusing mainly on user
experience; and one pilot enrolling medical professionals that will be involved
in recruitment, and were willing to learn more about the study by conducting a
pilot. We aim to show how a small-scale pilot can help detect a wide range of
necessary changes and improvements for a study.

A two-week pilot study was conducted, where participants were subjected
to an accelerated version of the panel experience containing every element that
participants will go through during the study. The goals of the pilot are to
investigate the user experience of partaking in the panel, as well as testing the
technical infrastructure as described in this paper. By testing the setup through
a pilot, the developed software could be used on different phone configurations,
and communication channels and data transfer can be validated. Below, we detail
the design of the pilot, as well as providing a summary of the findings obtained
in interviews that were held with pilot participants.

5.1 Pilot Design

The design for the pilot is as follows:

– Intro survey. Participants complete the introductory survey
– Installation. Participants download and install the application
– Set-up. Participants log into the app, set their data preferences, and set up

the connection to the wearable
– Daily survey. Every morning, the participants receive a notification to fill

in the three-question survey
– Intervention I. After three days, the participants receive a cloud message

containing an app recommendation for an eHealth app
– Intervention II. After ten days, participants that have not installed the

application recommended in Intervention I will receive another cloud message,
containing a recommendation for a different health app.

The pilot concludes with individual, semi-structured interviews with each
participant. During this interview, we have specific points on which we would
like to gather information. Section 5.2 expands on these points.



Health Telescope: System Design for Longitudinal Data Collection 157

Technical Functioning. One of the main objectives of the pilot was to test
the technical functioning of the system. The pilot was held briefly after the
first version of the software was developed, and while the system was tested on
multiple phones during development, the use of Bluetooth, connecting phone
and wearable, can function slightly differently for different phones. It is difficult
to comprehensively test Bluetooth functionality during the development of an
app, as Android Studio’s virtual machine can not utilize Bluetooth. As such,
connectivity and stability testing during development were limited - increasing
the value of a pilot.

There are several specific points that we were interested in seeing during
and after the pilot. The general stability of the software on different phone and
OS configurations; the quality of the data transfer from phone to database; the
functioning of our cloud messages, that should send alerts to users; the content
of the data generated being in the desired format; the connectivity and general
use of the wearable.

Users install the app through a platform called TestFairy. This platform pro-
vides valuable information for testing and developing software, by e.g. providing
crash reports that help isolate technical issues.

User Experience. The other main objective of the pilot was to improve the
user experience, by having a set of participants undertake the same actions that
participants of the study will. While the decreased duration of such an acceler-
ated version of the study may influence the perceived strain of participation, we
believe such an accelerated path can be used to effectively find possible issues in
user experience.

The interviews conducted after the pilot contained questions regarding the
ease of enrolment, the general use of the mobile application, experiences in using
the wearable, perceived strain of participation, privacy, and quality of the infor-
mation provided to participants.

5.2 Pilot Results

This section describes the results of the pilot. We begin by describing the partic-
ipant set, and split our findings up in two parts: first the technical functioning of
the software, which had just finished the first cycle of development; secondly the
user experience of participating in the study. We summarize the findings from
the interviews and include relevant participant quotes.

Respondents. Recruitment for the pilot happened through one of the largest
health-insurance companies in the Netherlands, respondents were all employ-
ees of this company. Seven respondents expressed interest in participating in
the pilot. Two participants were unable to join due to not having an Android
phone. One respondent changed his/her mind and did not participate in the
pilot. The final pilot group consisted of four participants, aged 34 on average
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(SD = 6.76). All participants were male. The pilot took place in Tilburg, Noord-
Brabant, the Netherlands. Participants were given the information letter and
informed consent form before participation, as well as a letter explaining the
process of the pilot. These documents can be found at https://health-telescope.
com/documents/. Participants all used Android phones and were given a Xiaomi
MiBand 2.

Technical Functioning. The findings from the pilot and interviews are sum-
marized below:

– Stability of software. On the first day of the pilot, two participants reported
being unable to open the ESM questionnaires in the app. This issue got
resolved within the next day, and participants were able to open the app,
connect to the database, and respond to daily questionnaires. One participant
noted that they were unable to open a questionnaire from their phone’s home
screen, but manually opening the app would make the questionnaire show up
in his task list. This issue did not exist for the other participants.

– Data transfer. All of the data came into the database as expected: for each
participant, activity, phone usage, and GPS data are periodically sent from
the phone to the database.

– Cloud messages and documents. The cloud message functionality of the
app showed clear issues: Intervention I was received by three out of four
participants. Out of these three participants, two were unable to open the
message. Intervention II was not received by any participant. One participant
reported a measured step count of over 20.000 steps per day on average. This
is likely a result of a malfunctioning wearable.

– Wearable. Participants reported that the wearables mostly functioned prop-
erly: there was one participant whose wearable reported abnormally high step
counts, possibly caused by some malfunction in the band. Aside from this
issue, the bands stayed connected and reported activity hourly.

User Experience. Participants noted that the introduction questionnaire that
is asked on the website might be confusing, as it was written in English (as
opposed to the native language of participants, Dutch). Participants noted that
the questionnaire contains personal questions, but understood the significance of
the questions asked. Excluding the technical issues that users experienced on the
first day of the pilot, participants found the app easy in use. Three out of four
participants found the wording used within the app clear and understandable.
Participants thought the app UI was functional, but not visually attractive:

“I normally use a different wearable and am fairly spoiled with the app’s
dashboards. Because of that, I don’t think this app is particularly attrac-
tive”.

Participants noted the visualization of the heart rate in the app’s home screen is
nice, but they hoped to see more: distance metrics, a visualization of their ques-
tionnaire responses, sleep analysis, and heart rate graphs were all suggested.

https://health-telescope.com/documents/
https://health-telescope.com/documents/
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Participants found the effort of answering a survey every day to not be a prob-
lem, which they stated was because the questionnaires were very short and mul-
tiple choice. One participant pointed out that two years of answering the same
daily questions could bore participants, and suggested changing the questions
we asked periodically. Participants found the setup process to be well explained,
but reported not knowing what to do after completing the setup, and trying to
find actions that they were supposed to perform in the app:

“After the setup, I wanted to get more active, but I couldn’t find any tips
or activities in the app.”

When asked if it is realistic to expect panel members to participate for two years,
the pilot participants responded positively.

6 Discussion

This section of the paper discusses the changes made based on the pilot, as well as
listing related work that inspired us. Furthermore, we provide a list of guidelines
that we believe are important to consider during development of longitudinal
studies using electronic devices.

6.1 Lessons Taken from Pilot

The feedback received from the pilot allowed us to make the following changes
to the system:

Technical Functioning. The pilot showed us important technical issues that
needed to be worked out before starting the study. In the weeks following the
pilot, various technical improvements were made that ultimately led to stability
on, as far as we know, every Android phone version 7.0 and up. The pilot showed
that the configuration of data gathering and the transfer was correctly set up.
The issues concerning the allocation of cloud messages to different phones were
traced down and resolved after the pilot. Lastly, one of the take-aways from the
pilot is that while generally the wearable functions just fine, some wearables that
we distribute may malfunction. It is imperative to detect this and replace the
wearable. To allow for this, we now include a specific point on malfunctioning
wearables and replacement in the participant briefing of the study. Participants
can contact us if the wearable reports incorrect step counts, breaks, or gets lost,
to have the wearable replaced.

User Experience. Participants indicated that the amount of effort that partici-
pation took was reasonable, and could be done on a longer-term. One participant
described it as following:
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“The effort needed to participate is not too high. I think it’s reasonable
to expect people to participate for longer periods. Also, if I were to enroll
in a university study, there’d be some motivating aspect of contributing to
science that helps me stay engaged”.

After the pilot, we made significant changes to allow for easier understanding
of the setup process: texts were clarified and made simpler; and more emphasis
was put on the voluntary nature of the introduction survey, to ensure participants
are aware they do not need to fill in every question. The pilot also allowed us
to proceed with the planned rewards for participation: participants can earn
their wearable over time, and we will host guest lectures relevant to the general
understanding of eHealth that participants will be able to follow. Feedback from
the pilot showed that participants did not fully comprehend the intended purpose
for the app: despite information material outlining the interventional apps that
are supplied during the study, some participants were under the impression that
the Health Telescope app would provide them health advice. After hearing this,
we have made significant changes to the briefing, putting more emphasis on
the functions of the mobile application and communicating that the eHealth
apps recommended during the study are what is being tested. Additionally, the
introductory texts that guide participants through the setup now include at
multiple points that there are no immediate actions for users after finalizing the
setup.

6.2 Related Work

Here, we would like to highlight related research that guided us in this work. As
mentioned before, the TEMPEST architecture, which contributed to the Health
Telescope system, is described in [12], and the Health Telescope protocol is found
at [26].

There exists a large amount of work on tracking physical activity. Before
mobile phones became widely spread, these studies often had participants report
on their physical activity [16,29]. These studies however often utilize self-
reporting and surveys to measure activity/BMI. A possibly more reliable alter-
native used in longitudinal studies is to actively test their participants’ physical
condition periodically through exercise tests [18].

The rise of wearable technology may be able to provide researchers with a
very direct way to measure activity. Usability and acceptability studies have been
done on a wide range of participants and features [13,23,27], which can inform
researchers when a target audience or outcome variable is chosen. Research ana-
lyzing the attrition rate of wearable use [2,8] should be considered in the design
process. Additionally, research investigating the accuracy and reliability of data
created by wearable devices [6,10] can help choose an appropriate device for
a study, given the important trade-off in features, comfort, and accuracy for
different features.

Wearables can be utilized in studies investigating physical activity in several
ways: the reported activity can be used as an outcome variable [3,19]; notifi-
cations received on a wearable can be used to motivate participants [32], and
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there is a wide range of studies investigating individual wearables and their
effect [25,31,33]. Regarding study design using wearables for physical activity,
we advise researchers to use the informative design recommendations in [20].
Additionally, researchers should look into how wearables and their accompany-
ing apps incorporate behavior change [22].

In designing the database and data sharing policies, we drew inspiration
from various longitudinal Dutch studies, that we note here for their data sharing
policies: the Lifelines cohort study [4] is a large-scale longitudinal study following
the physical activity and weight in non-obese people. The Longitudinal Internet
Study for the Social Sciences (LISS) panel [9] is a longitudinal study sampling
the Dutch population and conducting periodical surveys and experiments. These
studies may be interesting for researchers looking for longitudinal datasets.

6.3 Design Guidelines

As part of our findings, we would like to present a set of design guidelines, based
on the experiences of developing this technical infrastructure:

Design and Implementation of Infrastructure

– When designing the technical infrastructure of a project, researchers should
choose to measure data that is appropriate for the study objectives. As an
example, for research regarding activity, step count is generally more accurate
and reliable than heart rate, especially at higher intensity activity.

– It is important to consider the details on how data should be collected, trans-
mitted and saved. We recommend regularly gathering the desired data, and
periodically, encryptedly transmitting this data to a secure database.

– We recommend careful investigation of factors both in user experience such
as comfort and battery life, as well as research done on the accuracy and
reliability of the data generated by the instruments (e.g. wearable) considered.

– We strongly encourage researchers to consider privacy and participant rights
while designing the study, to ensure the infrastructure is set up in a GDPR-
proof manner. As an example, it is necessary for the system to allow for
individual participant data excerpts, and full deletion of data belonging to
individuals. These rights should be considered in the design.

– Design the setup process of a study or app in a way that informs participants
of the purpose of the app, and actions they should take. As an example, we
discovered through feedback that users were confused on their next actions
after the initial setup, and considerably changed the information provided to
users during this setup to inform them of the possible actions within the app.

– When implementing software of this sort, it is important, besides data col-
lection, to collect data on how the client application functions, e.g., when a
cloudmessage was received, when something was downloaded from the server,
etc. This information can be helpful for isolating technical issues (e.g., if data
is missing, is it because the application is not capturing that particular source
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of data, or is the device perhaps turned off?). There are ways in which par-
ticipants use their phones which can account for what data gets collected,
which are not necessarily obvious from looking at the data of the experiment
itself. The Health Telescope app does record such events into a part of the
database that is separate from the data itself.

– Minimizing strain is important in long-term studies. Attrition rate is tradi-
tionally high in these studies, and efforts should be made to engage users,
make participation simple, and clearly communicate expectations to users.

Testing

– We believe it is beneficial to set measurable, concrete goals for the system
functionalities. We worked with specific, detailed use cases, that proved of
great help in streamlining our repeated testing process by isolating technical
issues.

– We recommend to test the software on multiple phones of different models
and Android distributions during development. The stability of software often
varies for different phones, in factors such as accessing specific data types,
setting alarms, Bluetooth functionalities, etc.

– Bluetooth is commonly used in wearable studies. This further emphasizes the
need to test the software on multiple phones, as it is not possible to test
Bluetooth connection for different Android distributions through Android
Studio’s virtual machines.

Evaluating

– We emphasize the importance of feedback: try to involve feedback from as
many people as possible in the development process. This can be colleagues, or
potential participants, depending on the goal of the interaction. Pilot studies
are an effective way of involving different individuals to gather feedback, and
test the software on multiple devices.

– When designing a pilot study, think carefully of the things you hope to take
away from it, and use this information in your design: Should the technical
stability be tested? Include as many phones as possible, and set up the pilot
to include these technical interactions, or stresstest the system. Should the
pilot test the burden of participating? Focus on ways to capturing the user
experience, by closely monitoring their actions and giving them opportunities
to provide feedback.

– We advise to use systems such as TestFairy that track bugs and technical
issues during testing. These systems can be used to quickly identify the spe-
cific issue when a technical problem occurs.

6.4 Conclusion

In this paper, we presented the development process of the system designed
for data collection during the Health Telescope study. By detailing the steps in
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development, we aim to contribute to longitudinal research using smartphones
and wearables. We gave a detailed look at the system architecture, and showed
how it can be used to accomplish the study interventions. We displayed the
role that pilot studies can play in the development of a system and showed the
changes made following this pilot.

We concluded the paper by providing a list of guidelines for researchers,
that we hope aid researchers interested in setting up longitudinal studies using
electronic tools in developing their study designs and technical infrastructure. In
doing so, we aim to show the value of sharing important lessons from developing
work like ours. We encourage colleagues to share their work, to contribute to
lowering the complexities in setting up longitudinal studies.
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Abstract. Mobile devices are becoming more pervasive in the monitor-
ing of individuals’ health as device functionalities increase as does over-
all device prevalence in daily life. Therefore, it is necessary that these
devices and their interactions are usable by individuals with diverse abil-
ities and conditions. This paper assesses the usability of a neurocognitive
assessment application by individuals with Parkinson’s Disease (PD) and
proposes a design that focuses on the user interface, specifically on test-
ing instructions, layouts, and subsequent user interactions. Further, we
investigate potential benefits of cognitive interference (e.g., the addition
of outside stimuli that intrude on task-related activity) on a user’s task
performance. Understanding the population’s usability requirements and
their performance on configured tasks allows for the formation of usable
and objective neurocognitive assessments.

Keywords: Neurocognitive tests · Parkinson’s Disease · Mobile app

1 Introduction

Mobile devices are becoming more pervasive in the monitoring of individuals’
health as device functionalities increase as does their overall prevalence in daily
life [1]. As individuals age, the challenges associated with using these mobile
health apps increase particularly due to cognitive and motor issues [2,3]. App
designs for usability and monitoring need to take these factors into account con-
sidering the prevalence of cognitive decline and neurodegenerative diseases in
the aging population. Traditionally, neurological conditions have been assessed
in clinical settings using various accepted pen-and-paper style assessments [4];
however, technology and its capabilities allow for the collection of far more infor-
mation and objective metrics than we ever could achieve using pen-and-paper
style tests [5]. Cognitive screening instruments such as the Montreal Cognitive
Assessment (MoCA) [6], Mini Mental State Examination (MMSE) [7], and the
Menu Task Assessment (MT) [8] are usually initially given whenever a pro-
gressive or acquired neurological condition (e.g., Parkinson’s Disease, dementia,
stroke, etc.) is suspected. These assessment instruments consist of functional
tasks such as, motor (e.g., fine and gross motor), speech, memory, and executive
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function all or some of which may be difficult for individuals with neurodegenera-
tive conditions like Parkinson’s Disease (PD) [9–11]. Subsequently, the transition
of cognitive assessments from paper versions to mobile devices calls for the con-
figuration of tasks to be clear and usable by individuals with diverse abilities and
conditions as to not impair their performance or assessment results. Therefore,
a focus should be placed on mobile user interface design, task design, and overall
usability to accommodate these potential user impairments while maintaining
the requirements of the functional test [12].

The objective of this paper is to address the issues of usability and effi-
cient assessment design to accommodate the aging population both with mild
cognitive impairment and with recognized neurodegenerative disabilities. This
paper proposes designs of the user interface, specifically testing instructions, lay-
outs, and subsequent user interactions. In addition, functional task designs are
explored to understand the potential benefits of cognitive interference (e.g., the
addition of outside stimuli that intrude on task-related activity) on task perfor-
mance. This paper focuses on individuals with Parkinson’s Disease since they
demonstrate impaired functionality of both motor and cognitive tasks [13].

Individuals diagnosed with PD were compared to age matched control indi-
viduals across mobile neurocognitive assessments for both usability and task
performance. Changes in the user interface design were intended to accommo-
date known disease symptoms (e.g., deficits in motor function, memory, exec-
utive function, and/or speech). Usability of these neurocognitive assessments
were enhanced by modifying the overall test layout, screen interactions (e.g.,
button sizing and location), and instructions (e.g., multiple versions for com-
plete understanding of the required task) for all types of functional tests (e.g.,
motor, memory, and executive function). In addition different methods of cogni-
tive interference on functional areas of cognition (e.g., motor, memory, speech,
and executive function) were explored for the understanding of a user’s task per-
formance and subsequent functional task designs. Cognitive interference is the
addition of outside information that intrudes on task-related activity and serve
to reduce the quality and level of performance [14]. Cognitive interference occurs
when the processing of a specific stimulus feature impedes the simultaneous pro-
cessing of a second stimulus attribute [15]. This interference can be derived from
many sources, however, maintaining testing design, layout, and desired func-
tionality between mobile assessment versions allows for the understanding of
cognitive interference in functional task versions.

2 Related Work

2.1 Testing Layout

Functional assessments should aim to minimize any additional outside cognitive
load for the user (e.g., the used amount of working memory resources). This
allows the user to focus only on the required tasks (e.g., motor, speech, memory,
executive function, or designed dual-task assessments). This would include the
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formation of simple test views (e.g., splitting information into sub-views to min-
imize amounts of material on the device screen) and instructional design (e.g.,
having only relevant information included) [2]. Further, the test layout should
minimize errors caused by user screen interactions through the placement of
navigation components in positions that are accessible but not error prone [16].

2.2 Screen Interactions

Touch technology on mobile devices must accommodate users with motor impair-
ments (e.g., minimizing unwarranted button presses while a user completes a
required functional task like tracing a shape on the device screen). Button loca-
tion and sizing are both important factors necessary for user interface design for
aging individuals and individuals with motor impairments [3,17]. Screen inter-
actions for right-handed users, typically result in significantly more time and
effort to reach the upper left and lower right corners of the device. The opposite
occurs for left handed individuals (e.g., resulting in significantly more time and
effort to reach the upper right and lower left corners of the device). However,
many current touchscreen interfaces have essential system functionality located
in these areas; especially the top and bottom corners of the device screen [16].
Further, device users tend to prefer and perceive bottom bar navigation menus
better than other types (e.g., the hamburger menu), and it is seen to be more
efficient [18].

2.3 Testing Instruction

As testing becomes readily available on mobile devices, it is important to main-
tain comprehensive instructions similar to clinical settings (e.g., having a trained
clinician explain the testing protocol to the user and/or answer any clarification
questions). User interpretations of instructions based on impairment, and/or lan-
guage barriers may lead to possible data quality and consistency issues [4,19].
Similarly, multiple forms of instruction (e.g., short explicit texts and clear visual
demonstrations of actions the user is required to perform) aid the users in under-
standing the required actions of the test [4,20]. The method in which these dif-
ferent users understand the functional assessments may change based on the
assessment focus (e.g., motor function, speech, memory, executive function, or
dual-task assessments) or their preferred learning style (e.g., visual or auditory).

2.4 Cognitive Interference

Since individuals with neurodegenerative conditions (e.g., Parkinson’s Disease)
demonstrate impaired functionality of both motor and cognitive tasks [13], the
assessment of these functional areas of neurocognition should occur in multi-
ple approaches. These can be assessed using both single and dual-task testing
approaches [21,22], both of which can examine cognitive interference effects.
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Table 1. Functional tasks

Functional task Function(s) Reference

Card matching task Memory [25]

Reaction time task Motor function [26]

Word sequence task Speech [27]

Trail making task Executive function/motor function [23]

Apraxia tasks Motor function/speech [28]

Single Task Interference. The purpose of single functional tasks is to focus on
one primary area of neurocognition (e.g., motor function, memory, or executive
function). A set of single modal tasks are seen in Table 1. Card matching, reaction
time, and word sequence tests are all seen as single function tests as they monitor
one main area of cognition. In the trail making task, testing configurations allow
for the focus on one primary area of neurocognition (e.g., executive function),
even if an individual’s motor function carries out the executive function task.
Structural variations (e.g., different visual cues or changing of depicted features)
can lead to the implementation of cognitive interference(s) [23,24]. Understand-
ing the extent of how these possible interference configurations affect individuals
both in PD and control groups is of interest and will be explored in this work.

Dual-Task Interference. Dual-tasks involve two functional areas of neurocog-
nition equally (e.g., walking and talking) at the same time [22]. Dual-tasks have
inherent interference as the processing and/or production of each of the func-
tional cognitive aspects (e.g., motor and speech) causes an intrusion in the other.
When this method is employed for individuals with neurological conditions, it is
to understand the prioritization strategies of the required activities compared to
control groups [13]. Table 1 provides a depiction of dual functional tasks. Under-
standing different configurations of dual functional tasks for the areas of motor
and speech across PD and control groups will be explored in this work.

3 Application Design

3.1 Test Layouts

As neurocognitive assessment instruments consist of multiple tasks, an assess-
ment instrument should take into consideration the minimization of any addi-
tional outside cognitive load to the user (e.g., the used amount of working mem-
ory resources needed) during each task [2]. This can be accomplished by minimiz-
ing the number of screen interactions by the user (e.g., minimizing unwarranted
button presses across assessments) [16] and maintaining all test instructions
and interactions on the task application screens [4,20]. Each test layout design
(Figs. 1 and 2) therefore was formatted to provide all necessary testing infor-
mation without the need for navigating to other pages or requiring additional
button presses by the user.
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3.2 Test Instruction

Testing instructions were given to the user verbally (e.g., by a test proctor
or clinician) [19] and via the tablet (e.g., short explicit texts and clear visual
demonstrations of actions the user is required to perform) [4]. Figure 1 shows
the instructional and interactive views of a fine motor functional tracing test.
The instructional view provides the user all testing instructions and a partial
demonstration (e.g., the image of an index finger with a trailing blue line). Once
the user interacts with the tablet (e.g., “tap to begin”), the interactive view
removes the demonstration image while the user is still shown the rest of the
instructions to complete the test. Figure 2 shows samples of interactive views for
gross motor function, memory, and executive function based tasks.

Fig. 1. Sample instructional and interactive views of a fine motor functional tracing
task. (Color figure online)

3.3 Test Interactions

The partial demonstration shown in Fig. 1 depicts how the user is intended to
interact with the fine motor tracing test (e.g., using their index finger to trace
the shape, in a clockwise motion starting from the left). The user is to tap on the
screen to enable the interactive view, and then trace the depicted shape based
on the given instructions. A gross motor task would include tapping on the
screen to enable the interactive view so they may manipulate the mobile device
to “air”-trace a prompted shape (e.g., asking the user to hold the device directly
in front of them with both hands, arms outstretched and move the device to
emulate a shape). Examples of a memory test would include tapping on cards
in pairs until all cards have been matched. In the trail making test the user is
intended to draw a line using their index finger to connect the dots in increasing
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Fig. 2. Sample interactive views of gross motor, memory, and executive function tasks.

order. Finally, each of these tasks depicted visual feedback to the user from their
interactions on the device screen (e.g., lines on the screen where the user has
traced or the cards flipping and staying face up when matched).

3.4 Test Submission

Following the completion of any of the aforementioned tests (e.g., tracing the
shape, emulating the shape, card matching, and trail making) the user is
instructed to tap the submit button in the navigation bar in the bottom right
corner of the screen. The submission button interaction denotes when the user
feels they have finished the functional task based on the given set of instructions.

4 Methods

4.1 Usability

Participants were 40 adults between the ages of 52 and 84. These participants
were divided into two groups; those with a confirmed diagnosis of Parkinson’s
Disease and age matched healthy controls. Participants were recruited through
advertisements, physician and clinician referrals, spouses/caretakers of the diag-
nosed population, and prior studies in our laboratory. Inclusion criteria for the
current study consisted of being age 50 years or older. Participants were excluded
from the current study if they were unable to provide informed consent or if their
native language was not English (as instructions and speaking tasks were all for-
matted in English).

All participants were required to complete the mobile versions of the tasks
mentioned previously (e.g., tracing the shape, emulating the shape, card match-
ing, and trail making) to gather objective metrics in the assessment of neu-
rocognitive functionalities (e.g., using device sensors and screen interactions)
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Table 2. Mobile device assessment features

Task type Description Utilized mobile device features

Fine motor Tracing depicted shapes User-screen interactions and timer

Gross motor Device manipulation Accelerometer, gyroscope, and timer

Memory Card matching User-screen interactions and timer

Executive function Trail making User-screen interactions and timer

(Table 2). Different task versions were completed to assess how to modify the
overall assessment system for higher quality interactions. The test set included
fine motor (e.g., tracing depicted shapes), gross motor (e.g., manipulating the
device to “air”-trace a prompted shape), memory (e.g., card matching), and
executive function (e.g., trail making) tasks. For usability, a focus was placed on
observing user device interactions for updating the overall testing design (e.g.,
device task instructions and button placement).

4.2 Cognitive Interference

Since individuals with neurodegenerative conditions (e.g., Parkinson’s Disease)
demonstrate impaired functionality of both motor and cognitive tasks, multiple
versions of each functional task were created (e.g., single and/or dual-task) to
examine cognitive interference effects in mobile task design.

Single Task Interference. Single functional tasks of card matching and trail
making were administered to all participants using two versions of each task.

Card Matching. Two versions of the card matching task prompt the user to
match cards with different stimulus constraints. During each task the user must
interact with only two cards per turn. If both cards match they remain face up
and are out of play the rest of the assessment; otherwise, they are turned back
over until the user matches the correct pair.

The first memory assessment (Version A) has the user match 6 pairs of cards
where each pair is set to be a different shape and color combination (e.g., match-
ing two grey squares, two red triangles, two purple hexagons, etc.). The second
assessment (Version B) introduces visual cognitive interference. The protocol has
the user match 6 pairs of cards where each pair has a different shape but only 2
colors (red and black) (e.g., matching two red hearts, two red diamonds, two red
stars, two black spades, two black clubs, and two black crosses).

The overall time to complete the task (e.g., time from the user’s interaction
with the first card, until the last pair is matched) is collected for both versions
of this test.

Trail Making. In two versions of the trail making task, the user must use their
finger to draw a line connecting shapes in increasing order of numerical count.
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The first trail making assessment (Version A) has the user connect the circles
in increasing order from 1–10. The second assessment (Version B) introduces a
visual cognitive interference. In this version the shapes are varied (e.g., circles,
squares, triangles, etc.) as are their location and fill colors (e.g., white and grey).
The protocol is maintained to have the user connect the shapes in increasing
order from 1–10.

Metrics collected for both versions of this task include the overall time (e.g.,
the time from user start to user submit), the total number of points drawn, and
the average distance from a true value point (e.g., the average distance between
the closest point drawn by the user and the center point or ‘true value’ of each
numbered shape).

Dual-Task Interference

Fine Motor Function with Speech. Understanding how fine motor function is
affected with speech, it is necessary to understand fine motor function without
speech. In a fine motor task without speech, the user is prompted to interact with
the device screen by tracing a shape (e.g., a circle) with their finger (Version A).

In the dual-task version of the assessment of fine motor function and speech
(Version B) the user is prompted to trace the same shape shown on the screen
while in tandem saying the months of the year, aloud, in reverse order (e.g.,
December to January). The reverse ordering of months without visual cues insti-
tutes a non-automatic task that increases cognitive interference.

Metrics collected for the single and dual-task approaches of fine motor testing
include the overall time (e.g., the time from user start to user submit) and the
total number of points drawn.

Gross Motor Function with Speech. Similar to the dual-task assessment above,
an understanding of how gross motor function is affected with speech, it is also
necessary to understand it without speech. The task version without speech (Ver-
sion A) has the user manipulating the mobile device to “air”-trace a prompted
shape (e.g., a square).

In the dual-task version (Version B) of this task the user is prompted to
manipulate the mobile device for the emulation of the shape in tandem with the
non-automatic task of saying the months of the year, aloud, and in reverse order.

Metrics collected for the single and dual-task approaches of gross motor test-
ing include the overall time (e.g., the time from user start to user submit) as well
as the average, maximum, and minimum magnitudes of the device’s acceleration.

5 Results

5.1 User Interface

The usability of the testing setup was analyzed across all participants to under-
stand the overall quality of the design (e.g., layout, instructions, and screen
interactions). This analysis was intended to allow for updating the testing pro-
cess for higher usability of individuals in diagnosed populations, specifically those
with Parkinson’s Disease.
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The overall usability was assessed by gathering the number of incorrect screen
interactions between groups. An incorrect screen interaction was denoted as any
time a user interacted with the screen incorrectly in terms of navigation (e.g.,
clicking submit prior to completing the test), or by interacting with the screen
in a way that was not depicted by instructions or demonstrations (e.g., tapping
on the screen when drawing was required). Table 3 looks at the total number
of incorrect interactions by group. Individuals in the PD group interacted with
the testing application incorrectly more than individuals in the age-matched
control group for baseline assessments (5.02% compared to 0.35%). Further,
when a representative subset of individuals in the PD group were asked to take
the mobile based assessment again (e.g., with the same test instructions given
both verbally and via the tablet) there were still a higher number of incorrect
interactions compared to the control group (3.15% compared to 0.35%).

Table 3. Overall frequency of incorrect screen interactions

Group Number of tests Number of incorrect interactions Ratio

PD baseline 598 30 5.02%

PD 2nd visit 286 9 3.15%

Control 286 1 0.35%

5.2 Test Design - Cognitive Interference

Single Task Interference

Card Matching. The analysis revealed a significant difference in both task ver-
sions for the time taken to complete the task between both groups (p < 0.05)
with individuals diagnosed with Parkinson’s Disease taking longer than the age
appropriate control group (Table 4).

Table 4. Card matching metrics

Metric Mean (SD) or p-val

Version A (without interference)

Time (PD) 64.43 (41.93)

Time (control) 36.54 (13.73)

T-Test p = 0.007

Version B (with visual interference)

Time (PD) 62.72 (51.47)

Time (control) 38.29 (17.10)

T-Test p = 0.048
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Trail Making. The analysis of both trail making task versions (Table 5) revealed
a significant difference (p < 0.05) for the metrics of time taken, and total points
drawn. The metric of the average distance (e.g., the average distance between
the closest point drawn by the user and the center point of a numbered shape) in
the task without visual interference (Version A) yielded a significant difference
between the PD and control groups (p < 0.05) whereas the task with visual
interference (Version B) did not (p = 0.457).

Table 5. Trail making metrics

Metric Mean (SD) or p-val

Version A (without interference)

Time (PD) 17.28 (4.68)

Time (control) 12.13 (2.26)

T-Test p = 0.011

Total points (PD) 387.74 (143.94)

Total points (control) 293.67 (57.85)

T-Test p = 0.010

Average distance (PD) 13.56 (3.11)

Average distance (control) 10.03 (3.92)

T-Test p = 0.008

Version B (with visual interference)

Time (PD) 18.38 (8.45)

Time (control) 11.67 (2.06)

T-Test p = 0.001

Total points (PD) 370.87 (103.71)

Total points (control) 252.58 (38.56)

T-Test p < 0.001

Average distance (PD) 12.85 (4.26)

Average distance (control) 11.76 (3.65)

T-Test p = 0.457

Dual-Task Interference

Fine Motor Function with Speech. The analysis of fine motor metrics without
speech found a significant difference (p < 0.05) between groups for total time,
and total points was found. Similarly in the dual-task version, (e.g., assessing
speech and fine motor function together) a significant difference (p < 0.05)
between groups for overall time and total points drawn by the user was found.
Overall individuals diagnosed with Parkinson’s Disease in both single and dual-
task versions took longer and interacted with the screen more (e.g., drawing
more points) than those in the control group (Table 6).
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Table 6. Fine motor metrics

Metric Mean (SD) or p-val

Version A (without interference)

Time (PD) 9.62 (5.26)

Time (control) 6.21 (1.17)

T-Test p = 0.007

Total points (PD) 216.91 (94.77)

Total points (control) 146.83 (69.07)

T-Test p = 0.018

Version B (dual-task interference)

Time (PD) 14.41 (8.58)

Time (control) 9.51 (1.97)

T-Test p = 0.015

Total points (PD) 515.78 (265.30)

Total points (control) 349.17 (80.06)

T-Test p = 0.010

Gross Motor Function with Speech. The single task version of the gross motor
functional task yielded a significant difference (p < 0.05) comparing the groups
for total time. All other metrics collected (e.g., the device’s average, maximum,
and minimum magnitudes of acceleration) were found to be non-significant (p =
0.796; p = 0.220; p = 0.058, respectively). The dual-task version (e.g., assessing
speech and gross motor function together) revealed a significant difference (p <
0.05) between groups for maximum and minimum magnitude of acceleration. The
metrics of overall time and average magnitude of acceleration were found to be
non-significant (p = 0.180; p = 0.96, respectively). Metrics and their respective
significance values for all gross motor functional testing are seen in Table 7.

6 Discussion

6.1 User Interface

The disparity in usability between PD and control groups of incorrect screen
interactions depicts that updates in the user interface design need to be com-
pleted. The number of user mistakes differed notably between groups in the
assessment (e.g., 5.02% compared to 0.35%). Although experience and/or train-
ing can address some of the problems had by users (e.g., the number of mistakes
from a representative subset of the PD group decreased in a secondary interac-
tion of the assessment; 3.15%), the disparity between groups calls for updates
to the application to create a more usable device for all intended populations.
Incorrect screen interactions are denoted as any time the user interacted with
the screen incorrectly in terms of navigation (e.g., clicking submit prior to com-
pleting the test), or by interacting with the screen in a way that was not depicted
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Table 7. Gross motor metrics

Metric Mean (SD) or p-val

Version A (without interference)

Time (PD) 7.88 (3.05)

Time (control) 4.97 (1.31)

T-Test p = 0.001

Average magnitude (PD) 1.00 (0.01)

Average magnitude (control) 1.00 (0.01)

T-Test p = 0.796

Maximum magnitude (PD) 1.27 (0.20)

Maximum magnitude (control) 1.35 (0.14)

T-Test p = 0.220

Minimum magnitude (PD) 0.78 (0.14)

Minimum magnitude (control) 0.68 (0.14)

T-Test p = 0.058

Version B (dual-task interference)

Time (PD) 9.05 (2.54)

Time (control) 7.98 (1.84)

T-Test p = 0.180

Average magnitude (PD) 1.00 (0.01)

Average magnitude (control) 1.00 (0.01)

T-Test p = 0.96

Maximum magnitude (PD) 1.19 (0.14)

Maximum magnitude (control) 1.32 (0.17)

T-Test p = 0.033

Minimum magnitude (PD) 0.832 (0.104)

Minimum magnitude (control) 0.725 (0.119)

T-Test p = 0.017

by instructions or demonstrations. Those processes in the user interface design
need to incur changes to reduce the number of incorrect instances of the diag-
nosed population. The following subsections discuss methods of updating the
application to address both task instructions (e.g., re-watchable demonstrations)
and navigational components (e.g., button placement) to help mitigate incorrect
screen interactions.

Test Layout. Figure 3 shows a depiction of the updated fine motor functional
tracing test version of the assessment for both instructional views and interactive
views. Figures 4, 5, and 6 shows the updated gross motor, memory, and executive
function test views. These updated test layouts allows for separated material
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Fig. 3. Updated instructional and interactive views of a fine motor functional tracing
task.

(e.g., moving the instructions to a separated screen from the interactive view)
while allowing for all test instructions to be viewed by the user at any point in
time through the inclusion of a drop down menu.

Test Instruction. Testing instructions for the updated versions can still be
given to the user verbally (e.g., by a test proctor or clinician) and via the tablet
(e.g., written in short texts in common language). The updated version also
includes a video demonstration of the functional task compared to a static partial
demonstration in the previous versions. Figure 7 is a depiction of this video
demonstration for the fine motor tracing test where a sample shape is being
traced by an animated index finger in the required direction in its entirety.
These videos can be played multiple times to allow the user to understand the
test completely prior to their interactions. On the interactive screen for certain
tests, a smaller prompt (e.g., a small circle with an arrow pointed in the direction
of intended interaction) is shown to give users a starting location and direction
as described in the video demonstrations.

Test Interactions. Updates to the testing layout were also completed to
enhance user test interactions. The updates of moving all buttons to the top
of the screen are to help mitigate incorrect screen interactions including click-
ing submit prior to completing the test. Although device users prefer and per-
ceive bottom bar navigation menus better than other types (e.g., hamburger
menu), populations with motor impairments show to have unintentional interac-
tions near the edges of the screen closest to their dominant hand (e.g., clicking
submit prior to being done with the functional task). Similarly, removing the
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Fig. 4. Updated instructional and interactive views of a gross motor task.

instructions and bottom navigational bars allows for the user to have more room
for interactions on the screen while maintaining desired functionality.

6.2 Test Design

Since individuals with Parkinson’s Disease demonstrate impaired functionality
of both motor and cognitive tasks, multiple versions of each functional task were
created (e.g., single and/or dual-task) to examine cognitive interference effects
in mobile task design. The following subsections discuss the potential benefits of
these different versions for the implementation in mobile assessment instruments.

Card Matching. Memory function metrics from both versions of the card
matching task showed that either task could be implemented in the formation of
a new testing suite. There were no significant differences in time between the card
matching tasks with or without visual interference in the case of reducing the
number of unique colors from six to two for the PD group (p = 0.902) or control
group (p = 0.785). Therefore either task version, A or B, could be implemented
to gather necessary timing metrics for memory function of individuals with PD.
An updated depiction of the card matching task is shown in Fig. 5.

Trail Making. Version B of the task showed a difference for control groups
compared to its non-interference counterpart, specifically for the metric of aver-
age distance (e.g., the average distance between the closest point drawn by the
user and the center point or ‘true value’ of each numbered shape). The desired
outcome of configured tasks is the formation of a version that separates the
groups maximally (e.g., yields the highest number of significant metrics between
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Fig. 5. Updated instructional and interactive views of a memory based task.

groups), therefore the implementation of Version A (e.g., having the user connect
circles in increasing order from 1–10) should occur as Version B does not provide
the maximum separation of the PD and control groups. An updated depiction
of Version A is seen in Fig. 6.

Fine Motor Function with Speech. Fine motor function metrics from both
singular and dual-task versions show that either version of the task could be
implemented in the formation of a new testing suite, however unlike the card
matching task, there are benefits to both. Version A of the fine motor task (with-
out dual-task interference) has a significantly shorter duration than the dual-task
version (p = 0.028 and p < 0.001) when comparing the PD and control groups
across versions. In the formation of a dual modal task (Version B), additional
information can be collected with the configuration of mobile device sensors and
capabilities. As the participant is required to speak aloud during Version B of the
test, the device’s speech recognizers can be implemented for the accuracy count
of words said. Further, audio recordings of the speech sample can be made for
the subsequent analysis of frequency measures. An updated depiction of Version
A is shown in Fig. 3 and Fig. 8 for Version B (dual modal).

Gross Motor Function with Speech. The collected gross motor metrics,
from singular and dual-task versions, show that both are needed for the collection
of significant, objective metrics. Having participants do either Version A (without
dual-task interference) or Version B (with dual-task interference) alone, removes
significant and objective information on the state of the person being assessed. In
new testing suites, gross motor function in a dual-task versions should be added.
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Fig. 6. Updated instructional and interactive views of an executive function based
task.

Fig. 7. Animation of fine motor tracing instructions.

An updated depiction of Version A is shown in Fig. 4 and Fig. 9 for Version B
(dual modal).

Comparing Interference Types. Interference types may have different effects
on overall cognitive function during assessments. Sensory interference (e.g.,
visual, auditory, and tactile) can be implemented as distraction mechanisms
during tasks where the main goal is to see if users can minimize these distrac-
tions and complete the task at hand. Multifunctional tasks can be implemented
to help understand prioritization strategies of the required tasks. Instances of
tasks with fine motor components were modified to implement both sensory
interference or dual-task interference. In the single modal task with visual inter-
ference, there was a decrease in the number of significant metrics collected as
the difference between PD and control groups for the metric of average distance
was non-significant. In a dual-task version of task interference the collected fine
motor metrics remained significant and there is also the potential for a vari-
ety of other metrics to be collected. In the formation of new functional testing
assessments, the implementation of the dual-task version should be added due
to the collection of additional relevant metrics, unless there are impending time
constraints.
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Fig. 8. Updated instructional and interactive views of a dual modal fine motor task.

Fig. 9. Updated instructional and interactive views of a dual modal gross motor task.

Interference Modalities. Although visual interference (e.g., single task inter-
ference) and motor and speech dual-task interference were monitored in this
study, there are additional ways to implement cognitive interference into test-
ing platforms. Extensive interference processes could also be completed in the
case of tri- or multi-task interference (e.g., having the user engage in three or
more functional areas of interest at one time) or compounded task interference
(e.g., increasing interference signals over the course of a test). Similarly, multi-
functional assessments could implement one or multiple sensory interference(s)
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for the simulation of more real world scenarios (e.g., walking and talking with
implemented sensory stimulus).

For individuals with Parkinson’s Disease, visual cognitive interference in both
memory and executive function did not provide additional significant metrics
compared to control groups. In dual-task cognitive interference, fine motor func-
tion maintains significance for all explored metrics but ultimately allows for
the collection of speech samples for further analysis and expanded metric sets.
Dual-task interference for gross motor function showed varied significance met-
rics compared to a non-interference version. In this capacity, the use of both task
versions allows for the collection of additional, relevant, and objective metrics.

7 Conclusions and Future Work

Mobile devices are becoming more prevalent in the monitoring of individuals’
health in many capacities. Based on the findings in this study, a focus should
be given to updating mobile assessment instruments for both usability and task
performance. This should be done by changing layouts to minimize incorrect
interactions (e.g., moving submission buttons, making locations for screen inter-
action much clearer/understood), while maintaining all necessary instructional
information such that the user understands the functional task. Although healthy
populations tend to be able to interact with various features across many appli-
cations, overall application development should focus on all possible users. With
regards to the mobile neurocognitive assessment systems; the configuration of
devices and user interactions for an aging population across diverse abilities and
conditions is necessary for the monitoring of individuals task performance and
can yield the highest usability and accuracy across all groups. This can be com-
pleted by updating overall user interface design, specifically testing instructions,
layouts, subsequent user interactions, and task configurations. In the formation
of relevant and objective task configurations, for various progressive and acquired
neurological conditions, an understanding of how cognitive interference plays a
roll is necessary. Different implementations should be explored to understand
when cognitive interference is beneficial in different neurological task versions.
This should be done across all functional neurocognitive areas of interest and
against an extensive set of configurable device metrics. The understanding of new
interference modalities can further aid in the formation of comprehensive assess-
ments for all neurological conditions. Other conditions including stroke, demen-
tia, or traumatic brain injuries may call for different user device configurations
and/or different cognitive interference types across digital tests for the collection
of important objective metrics. Ultimately, the formation of usable mobile neu-
rocognitive assessment systems for digital testing can assist in the understanding
of new relevant, objective, and significant metrics. Further understanding of the
usability of mobile devices for individuals with neurological conditions in addi-
tion to the implementation of cognitive interference to address task performance
may allow for the increase in accuracy for both diagnostic and rehabilitative
monitoring purposes for all neurological conditions.
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13. Löfgren, N., Conradsson, D., Rennie, L., Moe-Nilssen, R., Franzén, E.: The effects
of integrated single- and dual-task training on automaticity and attention alloca-
tion in Parkinson’s disease: a secondary analysis from a randomized trial. Neu-
ropsychology 33, 147–156 (2019)

14. Sarason, I.G., Sarason, B.R., Pierce, G.R.: Cognitive interference. In: Saklofske,
D.H., Zeidner, M. (eds.) International Handbook of Personality and Intelligence.
PIDF, pp. 285–296. Springer, Boston (1995). https://doi.org/10.1007/978-1-4757-
5571-8 14

15. Scarpina, F., Tagini, S.: The stroop color and word test. Front. Psychol. 8, 557
(2017)

16. Wiegand, K., Patel, R.: Impact of motor impairment on full-screen touch interac-
tion. Technical report (2015)

17. Sesto, M.E., Irwin, C.B., Chen, K.B., Chourasia, A.O., Wiegmann, D.A.: Effect
of touch screen button size and spacing on touch characteristics of users with and
without disabilities. Hum. Factors J. Hum. Factors Ergon. Soc. 54, 425–436 (2012)

https://doi.org/10.1186/s40064-016-2877-y
https://doi.org/10.1186/s40064-016-2877-y
https://doi.org/10.1007/978-1-4757-5571-8_14
https://doi.org/10.1007/978-1-4757-5571-8_14


Design of a Mobile-Based Neurological Assessment Tool 185

18. Tsiodoulos, D., Kth, D.T.: Comparison of hamburger and bottom bar menu on
mobile devices for three level navigation. Technical report (2016)

19. Templeton, J.M., Poellabauer, C., Schneider, S.: Enhancement of neurocogni-
tive assessments using smartphone capabilities: systematic review. JMIR mHealth
uHealth 8, e15517 (2020)

20. Kobayashi, M., Hiyama, A., Miura, T., Asakawa, C., Hirose, M., Ifukube, T.:
Elderly user evaluation of mobile touchscreen interactions. In: Campos, P., Gra-
ham, N., Jorge, J., Nunes, N., Palanque, P., Winckler, M. (eds.) INTERACT 2011.
LNCS, vol. 6946, pp. 83–99. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-23774-4 9

21. Di Rosa, E., Pischedda, D., Cherubini, P., Mapelli, D., Tamburin, S., Burigo, M.:
Working memory in healthy aging and in Parkinson’s disease: evidence of interfer-
ence effects. Aging Neuropsychol. Cogn. 24, 281–298 (2017)

22. LaPointe, L.L., Stierwalt, J.A.G., Maitland, C.G.: Talking while walking: cognitive
loading and injurious falls in Parkinson’s disease. Int. J. Speech-Lang. Pathol. 12,
455–459 (2010)

23. Fellows, R.P., Dahmen, J., Cook, D., Schmitter-Edgecombe, M.: Multicomponent
analysis of a digital trail making test. Clin. Neuropsychol. 31, 154–167 (2017)

24. Salthouse, T.A., et al.: Effects of aging on efficiency of task switching in a variant
of the trail making test. Neuropsychology 14(1), 102–111 (2000)

25. Cook, D.J., Fellow, I., Schmitter-Edgecombe, M., Jönsson, L., Morant, A.V.:
Technology-enabled assessment of functional health (2018)

26. Stuss, D.T., Stethem, L.L., Hugenholtz, H., Picton, T., Pivik, J., Richard, M.T.:
Reaction time after head injury: fatigue, divided and focused attention, and con-
sistency of performance. J. Neurol. Neurosurg. Psychiatry 52, 742–748 (1989)

27. Yadav, N., et al.: Portable neurological disease assessment using temporal analysis
of speech. In: BCB 2015–6th ACM Conference on Bioinformatics, Computational
Biology, and Health Informatics, pp. 77–85. Association for Computing Machinery
Inc., September 2015

28. Christensen, A.L.: Neuropsychological experiences in neurotraumatology. In: von
Wild, K.R.H. (ed.) Re-Engineering of the Damaged Brain and Spinal Cord. NEU-
ROCHIRURGICA, vol. 93, pp. 195–198. Springer, Vienna (2005). https://doi.org/
10.1007/3-211-27577-0 34

https://doi.org/10.1007/978-3-642-23774-4_9
https://doi.org/10.1007/978-3-642-23774-4_9
https://doi.org/10.1007/3-211-27577-0_34
https://doi.org/10.1007/3-211-27577-0_34


Improving Patient Throughput by Streamlining
the Surgical Care-Pathway Process

David Mc Mahon1(B), Joseph Walsh2, Eilish Broderick3, and Juncal Nogales1

1 Tralee Institute of Technology Co., Kerry, Ireland
david.martin.mcmahon@research.ittralee.ie,

juncal.nogales@staff.ittralee.ie
2 Head of School (STEM), Tralee Institute of Technology Co., Kerry, Ireland

joesph.walsh@staff.ittralee.ie
3 Head of Department, Tralee Institute of Technology Co., Kerry, Ireland

eilish.broderick@research.ittralee.ie

Abstract. The delivery of a patient, to the operating theatre, in every hospital,
consists of several heterogeneous departments working synchronously via com-
municating and sharing information, in relation to the current state of a patient’s
care, as they travel through the surgical care-path way. The surgical care-pathway
typically starts at admissions and finishes as the patient is leaving recovery. The
problem being, as a patient navigates the care-pathway, there are numerous risk
factors in the forms of technical, environmental and human that can influence a
delay in the delivery of care. This paperwill discuss these risk factors and highlight
different approaches taken by several authors to address such issues. Additionally,
a software application will be discussed that has being developed by the author
that uses portable mobile devices, to address similar issues, for a private health
care provider in the south of Ireland. The results of implementing the new solution
show a potential decrease in patient throughput time and an overall increase of
task visibility, across the surgical care-pathway.

Keywords: Surgical care-pathway · Communication & information · Portable
mobile devices

1 Introduction

Proper communication systems and methods are vital for hospitals to obtain maximum
efficiency in the delivery of care [1]. When transferring a patient from one department
in the hospital to another, workers depend heavily on accurate clinical information [2].
Clinical staff who make decisions about the current state of a patient’s health depend
on information from numerous departments inside a patients care-path-way [3]. This
information needs to be non-ambiguous and accessible in order to reduce delays to a
patient’s care and to avoid clinical errors that place the patient’s health at risk [4].
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In order to reduce the patient risk rate and improve the workflow and patient through-
put, of the surgical care-pathway, key areas have been identified in literature that form
both the problem and solution definition and can have a positive or negative influence on
the patients surgical care-pathway and subsequently the hospitals throughput average.
These being; communication structure [5, 6]; communication culture [7, 8]; commu-
nication quality [9, 10]; interdepartmental communication [1, 11–14]; and information
sharing and collaborative systems [4, 15, 16].

In order to address the risk factors mentioned above, newer technologies such as
portable communication applications have been introduced into hospitals [17–20]. These
technologies offer a solution by enabling rich content of information to be shared between
both individuals and departments. Additionally, these systems allow for asynchronous
communication, accessibility of information at the point care and accessibility to clini-
cal decision makers without disrupting their workflow [10]. In doing so these systems
increase a patient’s care by reducing delays in their care-pathway and promote inter-
departmental communication, patient task visibility, task compliance and information
security and distribution [21–23].

The main aims of this research paper is to; (1) identify and understand the potential
negative impact of the five key risk factors mentioned above inside the patient surgical
care-pathway; (2) highlight how assisitve and complementary technologies are been
used to counteract these risk factors; (3) demonstrate through a case study in an elective
surgery based hospital in Ireland how streamlining the surgical care-pathway using a
bespoke software application can improve patient throughput.

The following sections of this paper will be formatted as follows. Section 2 will
present an overview of the problems associated with communication and collaboration
in the hospital environment. Section 3 will present implemented solutions taken from
studies that highlight both technical and non-technical solutions to the problem space.
Section 4 will present the case study and implement solution and finally Sect. 5 will
highlight results of the case study with conclusions.

2 The Problem Domain

This section will now explore the problem domain of some of the key influencers to poor
communication and information sharing inside the patient surgical care-path that have
a negative impact on the delivery of care and patient throughput.

2.1 Interdepartmental Communication and Collaboration

Interdepartmental communication in hospitals is the process of several departments
collaborating and communicating, patient care objectives, in relation to their current
health status, care-pathway trajectory and assessments [16]. In doing so, clinicians can
make best practice decisions, for a patient, based on their findings [1]. Issues arise, if
there is no collaboration between departments which can lead to ambiguity of facts,
around information shared, between departments [2]. This can delay care for a patient,
or put the patient at risk, of being misdiagnosed.
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Additionally, hospitals can be held liable, if it is deemed that inefficient commu-
nication methodologies are being implemented, that could potentially place a patient
at risk [24]. Furthermore, inventory management is effected by poor interdepartmental
communication practices. If the auditing of surgical instruments is not communicated,
in a timely manner, the hospital may incur a delay, in the purchasing or ordering, of the
instruments. This in turn, effects the theatre scheduling process and can cause a delay
to surgery [25].

2.2 The Hierarchical Influence

Another barrier to effective communication and information sharing in the hospital
environment is the hierarchical structure. This structure is unique, unlike most indus-
tries where there is one leader and all decisions and objectives filter down through,
sub-teams and management groups, hospitals usually have a dual hierarchy, consisting
of, the medical management group and the traditional management group [26]. These
hierarchies tend to form work silos [27]. Work silos promote partitioning of services
that are detrimental, to the collaborative effort, needed from all departments, to deliver
the best possible care for a patient [28]. Similarly, the work culture is affected by this as
staff should be represented at all levels should a strategic change happen in relation to
the hospitals current business objectives [8].

2.3 Hospital Information Systems

Most hospitals use information systems to store and sort, patient information in the
form of EMR (Electronic Medical Records), [15].The patient’s data should be, easily
accessible to the medical staff who are providing care for a patient. Information systems
help to collaborate different departments who are providing care for a patient. The
processing of information is vital, as it must be conducted across all departments, in
order to keep all departments aligned, with the current state of the patient’s care [4].
Complex systems that involve trawling through data, to obtain patient information, are
counterproductive [29]. Furthermore the use of arcane legacy systems, due to the time
taken to retrieve the relevant information, is not efficient [30]. This can lead, to costly
software migration approaches being adopted, as the interoperability of the system, does
not exist, in relation to the porting functionality, with newer systems [31]. Finally, poor
logic implementation and the use of unintuitive interface design, has a negative impact
on information sharing and data distribution [32].

2.4 Conventional Forms of Communication

Conventional forms of communication, involve the use of letters, wired phones, pagers,
email and fax to distribute, or audit information that directly influence, a patients care.
By law, hospitals must use conventional forms of communication, when signing clini-
cal documentation in a paper format, however, the document has then to be distributed
manually, to different departments, for other clinicians to read. This relaying of infor-
mation is inefficient and time consuming [33]. During peak demand or capacity periods
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in the hospital a failure to communication the patient task status in real-time, can create
a backlog of tasks to be completed, hence conventional methods of communication and
human error, are one of the main causes of bottlenecks in a patients care pathway [34].

Peri-operative nurses, rely heavily on information gained, via telephone calls and
written messages, to assist them in relaying important information, to the surgeon and
also serve as a first phase assessment tool, for post-operative care. This is a long labo-
rious process that can lead to ambiguity of facts, about the patients care needs and can
delay surgery [35]. Communication methods such as face to face conversations, between
clinical workers, are the most informative methods used, in the hospital environment.
The problem with this method of communication is that department representatives,
directly responsible for a specific patients care, that were not engaging in the primary
conversation could now be missing vital information, about the patient. This method of
conversation is not robust or transparent and can lead to ambiguity of facts and increased
waiting time for patients [36].

2.5 Patient Handover and Transfers

A failure to communicate efficiently, during the clinical handover process, is recognized
as the key factor that causes major incidents, in the care of patients and also contributes
highly, to patient and staff dissatisfaction [10]. Additionally, a standard protocol in the
transfer of care often involves, paper based check lists, consisting of patient information
such as type of surgery, current allergies, medical history, frequency of medication
and any immediate concerns, that the patient may have [11]. Notifications are then
communicated to the workers, in the receiving department via telephone and computer
email. The transfer is also logged in the unit admission transfer and discharge log sheet.
This form of data capture and communication is not efficient and prone to be lost, or
possibly discarded out of human error [12].

2.6 Patient Security

GDPR (General Data Protection Regulation) in hospitals, is now being implemented, as
a form of patient security and patient confidentiality. Under GDPR, data is not to bemade
available, about patients, if it breaches, the principle of purpose limitation, guidelines.
This simply means, that the amount data, should be condensed or limited, with regards
to its necessity, in completing a patients-care path process [37]. For development of new
applications in the health care sector under GDPR privacy by design is a new method of
development whereby all data that is being collected must be anonymised.

Additionally, any algorithm’s that are used in the sorting and processing of data must
carry out a data protection impact statement (DPIA).This is a risk evaluation process
that is mandatory to all types of data processing practices. In particular, evaluating the
risk associated with the processing of sensitive patient data [38]. By adhering to the
new GDPR guidelines developers need to take numerous precautions when designing
applications in the healthcare sector and this can be a costly process that is difficult to
police.Additionally,making existing applicationsGDPRcompliant can cost a substantial
amount of money due to the possible need to overhaul and test the entire system.
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2.7 From an Irish Context

With regards to the key areas defined in Table 1 below, the National Service Plan,
published in 2020, provides a strong correlation between the literature based problem
domains mentioned above and the proposed priorities and actions outlined by the Office
of the Chief Information Officer (OoCIO). The OoCIO are responsible for the delivery
of ICT health services at a national level in Ireland. With regards to communication and
collaboration, data distribution and security, the following actions have been scheduled
for the implementation pillar titled Enabling Healthcare Delivery [39].

Table 1. A table representation of someof the priorities and actions under the national service plan
2020, X= not applicable to column value, 0= applicable to column value, CC= communication
& collaboration, DD = data distribution, S = security.

# Action description CC DD S

1 Design and develop the summary and shared care record 0 0 X

2 Implement digital patient records for all strands 0 0 X

3 Establish the ePharmacy and the ePrescribing programmes X 0 X

4 Finalise the procurement of an acute floor information system 0 X 0

5 Implement the telehealth strategy 0 0 0

6 Establish an eHealth solution to support referral pathways 0 X X

7 Deliver a single software architecture approach to promote better access and sustainability 0 0 0

8 Enhance the data dictionary to facilitate the adoption of common definitions and promote interoperability 0 0 X

8 Enhance the data dictionary to facilitate the adoption of common definitions and promote interoperability 0 0 X

9 Implement the cyber security strategy to protect sensitive patient data X 0 X

10 Migrate older legacy systems to more sustainable software solutions X 0 0

11 Establish a centre of excellence to support and promote the implementation of cloud based technologies 0 0 0

12 Establish the interRAI It based assessment system 0 0 0

13 Establish mobile data integration and distribution services 0 0 0

Table 1 outlines a strong correlation between the actions proposed at a national
level and the findings from the literature with regards to the problem domain and how
communication, collaboration information sharing and security are to be prioritized
going forward into 2020.

Furthermore, it has being identified in the eHealth Strategy for Ireland 2020, that ICT
sector spending needs to increase to the European rate of 2–3% from the current rate of
0.85%.This new investment will go towards the implementation and maintenance of the
programs mentioned above in Table 1 and help fund key research into new approaches
of improving health care via eHealth solutions [40].

2.8 From a European and American Context

Based on data obtained from the European RiskObservatory Report in relation to emerg-
ing issues and crisis in the healthcare sector, communication, collaboration and infor-
mation sharing are key developments that need to be addressed. The uses of eHealth
systems and mHealth frameworks are of high importance when advancing the efficiency
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of the collaborative effort needed to deliver positive clinical and administrative work-
flows [41].With regards to cyber-security the European commission for ICT has provided
funding for several pilot projects such as Serums, Secure Hospitals and Sphinx. These
are all aimed at safe guarding the patients data during the storage and distribution pro-
cess [42]. In the US the trend in the problem space is similar with poor communication
practices and the use of arcane communication technologies leading to escalating costs
in the delivery of care [43] (Fig. 1, Tables 2 and 3).
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Fig. 1. The 2014 Imprivata report on the economic impact of inefficient communications in health
[44]. Highlighted are the main reasons for time wasted when communicating with colleagues in
US Hospitals.

Table 2. The 2014 imprivata report on the economic impact of inefficient communications in
healthcare [44]. Highlighted are the cost saving estimates from adopting a mobile text messaging
service to replace conventional forms of communication.

Output descriptor Mins per patient Mins per day Hr per year Annual labour cost

The collective total time
spent per patient

51.2 5,223,2 31,774,5 $1,123,228

Time wasted because of
communications
efficiencies

33.2 3,365.1 20,592.8 $727,957

Estimated time savings
using mobile text
messaging

16.3 1,667.5 10,144.2 $358,596
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Table 3. Continued findings from the imprivata report on the economic impact of inefficient
communications in healthcare.

Workflow descriptor Extrapolated Annual
cost of Inefficient
Time per hospital

Number of registered
hospitals

Extrapolated annual
impact for the industry
(U.S. $ billions)

Patient admissions $727,957 6.409 $4.67

Emergency response $265,254 6.409 $1.70

Patient transfers $753,755 6.409 $4.83

Total $1,746,966 6.409 $11.20

3 Current Solutions

In order to improve the communication and workflow process inside the surgical care-
pathway, varying types of devices applications and technologies have be introduced to
the hospital environment. Some of these new approaches are mobile solutions [45–47];
the digital capture and intra distribution of medical records [48–50]; data visualization
and availability [51, 52]; and patient identification and security [53, 54].The following
section will now highlight some of these approaches and their impact in the delivery of
patient care and patient throughput.

3.1 Mobile Based Approaches

Tran [55], identified the use of pagers, as a direct cause of bottlenecks in the patient
care pathway. Not only were pagers disruptive to the workflow, they did not provide
the capability, for sharing and distribution of rich content. To address this issue, Vocera
communication badges were introduced. This enabled staff, to communicate on the go,
without the disruptive polling of paging, and in doing so, it reduced the communication
time, associated with specific tasks by 25%. O’Connor [18], also addressed the issue of
team coordination and how pagers, due to their lack of functionality and their disruptive
alert system, were not efficient, at coordinating team objectives. Instead a push email
service was implemented, that allowing users to communicate asynchronously, without
delay and provided rich content in their messaging.

Additionally, Wu [56], promoted the idea of using mobile phone applications, to
address the issue of inadequate interdepartmental communication, between x-ray and
oncology. The problem being that for specific x-rays, both parties needed to be present,
to make clinical decisions. This would often cause bottlenecks, for patients waiting for
x-ray. To address this issue, the use of mobile applications was introduced, whereby
information and imagery could be shared between workers and in doing so, promote
collaboration and reduce the waiting time for x-ray services.

3.2 Data Capture and Information Sharing

Abraham [14] highlighted the need to improve the hospital information systems capa-
bilities, as the storing of patient data is essentially static and not distributed efficiently,
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throughout the care path-way. Additionally, these stationary systems, offer little commu-
nication capabilities, or task compliance functionality. Qiaoyu [20], re-iterated the same
points and proposed the concept of, cross platformmobile technologies that are portable,
and allow, for the collaboration of key decision makers to be available at all times. This
reduces waiting times for patients and improves collaboration between departments and
clinical workers Meijla [57].

Vezyridis [58], suggested that there is a lack of clarity in relation, to the patient
data being stored. This data influences hospital workflow and if the data is inefficient or
inaccurate, bottlenecks can happen in the care pathway. The use of digital whiteboards to
assist nursing in their patient tasks enables nurses to view their workload in a structured
manor. Additionally, the new system could be distributed throughout the care path-way,
allowing a nurse to access information, view pending tasks and discuss prioritization of
patients, without disrupting their workflow.

3.3 Data Visualisation

Traditionally white boards are used in hospitals, to organize staff in relation to their
workload. Bossen [59], identified the use of white boards as inefficient in the scenario
where, a workers tasks change, as this involves, a worker finding out what their next
task is, where it is happening and with which patient. This can delay patient care and
be disruptive, to the hospital workflow. To address this issue, a digital white board
was implemented allowing workers to track, communicate and audit their tasks in real-
time. The application could also be used to coordinate a group of workers, to specific
tasks and in doing so promote, worker collaboration, compliance of tasks and improve
communication. Vezyridis [58] also eluded to the same point by introducing, a digital
display board to improve worker collaboration and information access.

Additionally, Kim [60], expanded the concept of digital white board to be more
cognitive and interlink related information, about a patient from various departments,
in the hospital. This in turn, reduced the workload and improved accessibility, to the
patient’s information, by efficiently tracking the patient’s workflow, via event feeds and
time line markers, on the display.

3.4 Patient Identification and Security

Troester [61], highlighted the need to improve interdepartmental communication and
collaboration between workers. A key problem area was, the need to track medication
and provide an audit trail, so the pharmacy department would know in advance, what
medication was needed on a daily basis. The use of a barcode tracking and compli-
ance application was introduced, improving the workflow and reducing waiting times
for dispensing medication. In relation to QR code scanning, Wangwan [62] proposed
QR codes, to track patients status in the hospital environment, improving operational
efficiency. The main reason for this was, the patients chart was an inefficient medium
of sharing and distributing, patient information. Furthermore, static workstations were
not efficient at updating patient information, in real-time. To address the problem, RFID
readers were used to provide updates via mobile device scanning.
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Additionally, Anton [63], addressed the same point, by using QR codes and RFID
to capture, patient data more securely via encryption and also improve the distribution
of, patient data by moving away from, remote workstations and paper based patient
documentation. Finally, Li-Chuan y[64] highlighted similar points in relation toQR code
security and used a similar system, to track surgical equipment that needed repairing.
This simplified the auditing and compliance process and helped to control inventory
management in real-time.

4 Case Study – The Development of a Bespoke Software
Application That Streamlines the Surgical Care-Pathway

Having explored the problem and solution domain from approaches found in the liter-
ature, this section will discuss the implementation of a new software solution to solve
similar issues such as the patient throughput and delay paradigm discovered in a hospital
in the south of Ireland.

4.1 Case Study Background

A hospital group in the south of Ireland wanted to improve their patient throughput by
identifying and reducing the bottlenecks inside their surgical care pathway. The hospital
has a capacity of 144 beds, with four theatres and typically uses an elective surgery
framework. The hospital relies heavily on conventional forms of communication such
as wired phones, pagers and face to face communication to receive updates about a
patient’s pre-post operation state, from different departments that provide a care service
as the patient navigates their surgical care-pathway. The use of fixed workstations that
involve complex ad-hoc querying is common through all the wards. These are typically
located in corridors away from the patient’s point of care.

With this information in mind, the hospital wanted to explore the concept of possibly
introducing a new technology to cater for all the idiosyncrasies of each departments input
into the patients surgical care pathway and in doing so, create a streamlined service that
if implemented efficiently, would reduce the turnaround times for elective patients and
improve the quality of care in the hospital. Additionally, the new system would serve
to combine all departments under a uniformed communication system that is easy to
use and relays information about a patient’s state throughout the course of the patient’s
surgical care-pathway.

4.2 Solution Methodology Introduction

The bespoke software application was designed by implementing a hybrid of a spiral
model SDLC and a water fall model. This was primarily due to the need to provide
rapid prototypes to demonstrate to the stakeholders on a monthly basis. These were then
critiqued and the best components were kept for the next iteration. Once enough compo-
nents were finalised the waterfall model could be implemented for the final development
process.
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4.3 Requirements Gathering and Analysis

In order to capture and define the system user’s requirements, observational research
was carried out over a two-year period. This consisted of arranging to meet and inter-
view all department staff and managers that have an influence on the patient as they
navigate the surgical care-pathway. The process flow of the patients was captured by
shadowing patients who were going for surgery. This shadowing proved to be a vital
task, as some of the information obtained from the interview process did not corre-
late, with the findings from the shadowing process. By using the spiral SDLC model,
these new findings could be addressed and the user requirements could be re-defined.
Additionally, due to the variability of a patient’s health on the day of surgery a patients
workflow could alter its trajectory from the perceived norm. This had to be considered
when designing the system and determining the system limitations and real-life process
correlation, hence re-enforcing the importance of adopting a spiral SDLC methodology.
Furthermore, meetings had to be arranged with the administrative staff with regards to
the overheads required to get a software system up and running. The engagement with
the hospital IT department had to start early in the project as hospital resources tend be
at capacity. If a solution was to be piloted the IT department would have to dedicate
resources outside of their current planned horizon and this process would need to be
determined.

Finally, if the system was to use mobile technologies the Wi-Fi access points of the
hospital would have to be mapped and all black-spots would have to be known. To map
the hospitals coverage a mobile tracking application was used on a standard smart phone
and the speed and access points along the surgical care-pathway were determined.

4.4 Application Design - Overview

Having obtained data from the iterative observational research phase, the second phase
in the project was to use this data to pin-point the key areas for improvement and remove
the risk of potential bottlenecks, in the surgical care-path workflow process. From the
qualitative analysis of the data, itwas determined, that therewerefive key communication
points, inside the surgical care-pathway, that needed to be streamlined and at certain
points the calling mechanism, needed to be automated. Additionally visibility in the
surgical care-pathway needed to be improved as the patients state with regards to their
admission status, current location, current and pending workflow process task status and
patient transfer eligibility status was not available to all the departments connected to
the patient inside their surgical care-pathway. Furthermore to identify the patients and
to provide security, the system uses QR codes.

These QR codes will be added to the existing 2D barcode patient wristband and will
provide unique content about the patient. Finally as access to patient data, inside the
surgical care-pathway currently involves performing relatively complex ad-hoc queries,
at fixed workstations, that are located away from the point of care, it is not feasible to
assume, that this process is efficient, patient centric, or that the data capture, is accurate,
to real-time. To address these issues, the use of mobile technologies, will allow users, to
capture and distribute, patient data. This data is then securely filtered for the user, based
on their role within the hospital work group (Fig. 2).
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Fig. 2. The QR code scanning mobile application for the admissions process.

4.5 Application Design - Communicating Transfer Requests

The first communication process to be streamlined was a request for transfer from the
theatre to the pre-op ward and porter service, for all patients, except the first patient.
The second process was a patient transfer request being initiated from the anaesthetist
in the ward to the theatre and the porter service. The third transfer request was from the
theatre to the ward and the porter service, for the transfer of a patient to the holding bay.
The fourth communication process was a request to transfer a patient from the recovery
ward to their assigned returning ward. The final communication process was a request
from the receiving ward to the porter service to collect the patient from the recovery
ward. These transfer requests are currently all manually initiated by staff members, using
conventional forms of communication such as wired phones. The proposed new system
will champion the use of a push message service that alerts the application users when
a transfer request has being initiated (Fig. 3). Additionally where applicable the push
message service will be automated based on a task being completed. An example of this
would be where a delay is initiated by the returning ward with regards to their capacity
to initiate the transfer request. If the delayed time estimate is reached and the request has
not being resolved the message will automatically be sent again without being initiated
by the message source (Table 4).

4.6 Application Design – Task Visibility

Based on the observational research, it was concluded that task visibility, needed to
be available throughout the entire surgical care-pathway, as a means to pseudo-inter-
connect, all the departments that interact with the patient, during their surgery process.
Additionally, the format of the visibility would have to vary, per device, device compo-
nent and user. For instance, visibility in the theatre, on a large touch screen computer,
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Table 4. A communication process table to be streamlined by the new system.

Request origin Receivers Description

Theatre Porters, Pre-op Ward A request to deliver the patient to the operating theatre is broadcast to the porters and
the pre-op ward. Additionally all assessments have being completed

Ward/Anaesthetist Pre-op Ward, Porters Based on the first patient selection process the anaesthetist broadcasts a message to
the ward and the porters to deliver the patient to the operating theatre

Theatre Pre-op, Porters A request to deliver the patient to the operating theatre is broadcast to the porters and
the pre-op ward. The anaesthetic assessment has not been completed

PACU Returning Ward The returning ward receives a request from the PACU ward to collect a patient from
their recovery bay

Returning Ward Porters, PACU The returning ward broadcasts a reply to the porters to collect the patient and provides
compliance for the PACU ward via a verification message

Fig. 3. An example of the porter application message acknowledge & distribution process as it
relates to the theatre screen view.

of a patient who has being admitted, would be represented by, a dynamic animation in
a process flow chain, that updates based on the next completed event (Fig. 4). Respec-
tively, the same process, for the patient escort, on a mobile device, would be the dynamic
addition of the patient values to a text based work-list (Figs. 5 and 6).

4.7 Application Implementation – Software and Architecture

Havingfinalised sections of the design and theprojectworkbreak-down structure the next
phase was to actually develop the application. This involved writing code for the controls
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Fig. 4. A patient escort mobile device and a theatre touch-screen pc view of a patient’s status as
they have been admitted into the system.

Fig. 5. Apre-op ward view depicting the traffic light system implemented by the new system. The
amber status indicates that assessments for the patient are pending and the green status indicates
that all assessments have being completed and the patient is ready to be called for surgery. (Color
figure online)

Fig. 6. A theatre view of the received popup-message that indicates that all assessments have
being carried out on the patient and they are now ready to be called to surgery. (Color figure
online)

for the front end components of the Microsoft Powerapps framework and connecting
them to stored procedures in the back end. The stored procedures and tables associated
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with them were written in Microsoft SQL Server 2018. The physical devices were
connected via an SQL connector API and the data XML transforms were carried out
inside embedded Microsoft flow connections. To remove the load on the SQL connector
the application was divided into seven different applications. This reduced the demand
to poll the applications from the same source and improved efficiency. From a ‘look
and feel’ perspective, the application design adopted a colour scheme similar to the
hospital colour scheme. The application was designed to be user friendly with text
prompts to informusers about the next process. The scanning process has a colour system
whereby a patient would be scanned with a green theme in the application screen and
the patient location would be scanned using an amber theme. This theme was further
developed in the pre-op-ward screen and the PACU unit screen, where a traffic light
system was used to signal, if the patient had, processes to be completed (Amber), was
delayed (Red), was ready for the next phase of process (Green).These processes varied
as the patient navigated the surgical care-pathway, however, the colour theme remained
uniform. With regards to security, most of the stored procedures had input validation to
prevent SQL injection, and there was additional client-side validation, on the QR code
scanning component as well. Finally, every selection component is either a drop-down
menu of controlled content or a checkbox. This further re-enforced the security of the
application by not allowing the user to type bad input data into the system (Fig. 7).

Fig. 7. The newly implemented systems architectural design.

4.8 Application Implementation - Hardware

The new system consists of two largemedical grade touch screen computers that are used
in a day ward and an operating theatre. Additionally based on the observational research
eight medical grade handheld devices will be used by various personnel throughout the
surgical care path-way. Furthermore, five tablets are dispersed throughout a recovery
ward to provide alerts and compliance for messages from the PACU to collect patients.
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These additional tablets were based on new features which form the basis of the second
case study which is outside of the scope of this paper.

4.9 Application Testing

Once the local and remote testing phases were completed the system was now ready to
be piloted in a hospital environment. The first phase of the pilot ran over four months,
from September 2019, until December 2019. The pilot covered the care-pathway from
admissions to recovery, for all paediatric patients, who were being operated on, by a
particular consultant, in a set theatre. It was observed, that the paediatric patients, can
have varying times of admission and the average time of surgery, due to the complexity,
of the surgery type, is hard to define. This was a robust test for the new system, as most
of the functionality, would be used, throughout the course of the pilot. Additionally,
only patients that were admitted on the day of surgery were tested by the pilot. This
was primarily due to the need to form comparative analysis, of admission times, versus
patient surgery arrival times. The systemwas piloted three days aweek, typically starting
at 7:30 am and finishing at 8:00 pm.

5 Results

In order to compare the old process of data capture and workflow the comparison will
be divided into two sections. The first analysis will compare the new and existing sys-
tems with regards to their ability to provide, visibility, verification, data distribution and
communication of completed or pending tasks for a patient inside their care-pathway.
The second will compare the task completion times, targeting two key processes of the
patient care-pathway. These processes are, the admissions to surgery call process, and
the surgery call to arrive in theatre holding process. These were selected, as there was
comparative data available, in the current system for these processes. There was no valid
visibility of the recovery transfer process, for this phase of the pilot.

5.1 Task Visibility, Communication, Verification and Data Distribution

With regards to task visibility the new system improves the visibility by 80%.With
regards to the task verification process the new system improves this process by increas-
ing the amount of verification points by 60%.With regards to the data distribution process,
the new system increased the distribution of data by 60% throughout the patient surgical
care-pathway. Finally the new communication process automates the entire patient call-
ing process. This reduces the need to constantly poll wards for acknowledgement and
verification and in doing so increases incidence of proactive communication by 80%.
Table 5 is an example of how the new system when implemented in the admissions pro-
cess generated an increase of over 50%more incidents of process capture, task visibility
and data distribution across three separate scenarios’.
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Table 5. Adata capture comparison table of the old and new system for the pre-op patient transfer
call process with pending anesthetic assessment 0 = yes X = no

Sceanario Stake holders Process capture Old sys Pilot sys

A theatre worker selects a
patient to transfer to the
holding bay for surgery

Current ward
Theatre
Porters

1. Call verification
2. Call time
3. Ward verification
4. Porter verification
5. Patient departure time
6. Patient arrival time

0
0
X
X
X
0

0
0
0
0
0
0

A theatre worker selects a
patient to transfer to the
holding bay for surgery
pending an anaesthetic
assessment

Current ward
Theatre
Porters

1. Call verification
2. Call time
3. Ward verification
4. Porter verification
5. Patient departure time
6. Patient arrival time
7. Patient pending

assessment status

0
0
X
X
X
0
X

0
0
0
0
0
0
0

A porter receives a
notification and collects
the patient from the ward

Current ward
Operating
Porters
PACU

Call verification
Call time
Patient location
Patient name
Delay patient transfer
Patient arrival time
Patient pending assessment
status

X
X
X
X
X
0
X

0
0
0
0
0
0
X

5.2 A Time Comparison of the New and Old System from Admission to Surgery
Transfer Request

The results of this process comparison suggest several assumptions about the new sys-
tem. The first being, the new pilot system was more efficient in the numerical sense,
however, it is still limited to the process flow of the current hospital workflow (Table
6). With more training and possible process change, the system should deliver higher
turnaround times. Secondly, even though there was an increase of 80% in the visibility
and verification of tasks, there remained a high correlation between the old system and
the new system (Fig. 8). This would again re-iterate the influence of process change and
additionally suggest the accuracy of the data being captured by the current system is
prone to error. Finally, overall the new pilot system navigated a patient 9.3min faster than
the current system from admissions to the surgery transfer request phase of the surgical
care-pathway. The impact that time alone, if repeated for all surgical cases, would mean
significant increase in patient throughput, which in turn generates more revenue for the
hospital and improve the patient care experience.
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Table 6. A time capture comparison between the new and old system based on the time taken to
admit the patient and the theatre calling the patient to surgery. The data here is based on patients
who were admitted between 7:00 am and 7:45 am. All of the patients are from a specific surgeon
who had booked a block of time in a specific operating theatre. All surgical procedures are of a
similar type. The larger times found in patients 7–10 are based on patients who were admitted
early even though they were scheduled to operate on in the afternoon.

Patient# Manual time Pilot time

1 68 min 44 min

2 73 min 90 min

3 118 min 61 min

4 111 min 118 min

5 107 min 84 min

6 74 min 48 min

7 78 min 97 min

8 174 min 180 min

9 334 min 334 min

10 139 min 127 min

Fig. 8. A regression model built in R studio depicting a strong correlation between the old and
new system times for the admissions to surgery request process.

5.3 A Time Comparison Between the New and Old System from Surgery
Transfer Request to Theatre Arrival

Based on the results, it can be concluded than the communication system is far more
efficient than the current system in the navigation of a patient from the pre-op ward to
the surgery holding bay (Table 7). With an improvement of 80%more visibility and task
verification this new communication system, once fully implemented, should create even
more efficient task turnaround times. Due to the highly complex multitasking nature of
the work inside the surgical care-pathway it extremely difficult to connect key decision
makers and influencers at the same time. The new system streamlines the communication
process by connecting the right people to the right process at the same time. The system
additionally provides security via patient identification in the transfer process and also
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allows for the user to issue a delay in the transfer process. This delay is then broadcast
to the appropriate departments and allows the user to handle this delay. In doing so, the
repetitive and costly process of polling departments for service is eliminated. Finally, the
impact of reducing the patients transfer time by 22 min is highly cost effective, taking
into consideration the cost of overheads for a delay to surgery, and this also serves to
improve the patients overall care experience inside their surgical care-pathway (Fig. 9).

Table 7. A time capture comparison between the new and old system based on the time taken to
call the patient and deliver them the patient to surgery.

Patient # Manual time Pilot time

1 25 min 6 min

2 40 min 7 min

3 12 min 6 min

4 15 min 9 min

5 14 min 6 min

6 18 min 9 min

7 19 min 11 min

8 59 min 7 min

9 18 min 4 min

10 69 min 4 min

Fig. 9. A regression model built in R studio depicting a weak correlation between the old and
new system times for the admissions to surgery request process.
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6 Conclusion

This paper has examined how the streamlining of the surgical care-pathway can improve
patient throughput by; enhancing task visibility and verification; promote interdepart-
mental communication and successional task compliance; securely identify and locate a
patient for assessment processing and transfer; communicate with and integrate services
autonomously based on adopting a task workflow completion messaging mechanism.
This approach was devised from firstly exploring the varying problem domain that was
identified in several studies and current government initiatives from an Irish, European
and American context. Then, through several months of observational research and data
analysis in a hospital in the south of Ireland, similar trends were discovered that cor-
related to problem domain. From here, a software solution was developed, tested and
deployed and returned positive results in relation to improvements on the time taken to
navigate the pre-op sections of the surgical care-pathway.

Finally, efficient patient calling in the surgical care-pathway can only be achieved by
efficient interdepartmental communication at the point of patient transfers. The effect
that technology has in relation to improving communication is difficult to measure.
Once a technology has promoted and addressed the lack of communication and this
issue has being addressed via process change, the technology may become obsolete
again. Most of the technologies in the literature are aimed at improving the current state
of communication. Additionally, as the surgical care-pathway is interconnected to a
least 4 departments, the technical solution are not merely a messaging service to replace
wired phones. This was evident in the pilot whereby every process that lead to making
a wired phone request for transfer had to be, documented, digitized and re-engineered
to match the existing workflow. Whether the pilot will prove to be efficient across the
post-operative surgical care-pathway process remains to be seen, however the current
results are very positive.
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Abstract. The COVID-19 pandemic in 2020 has resulted in increased
fatality rates across the world and has stretched the resources in health-
care facilities. There have been several proposed efforts to contain the
spread of the virus among humans. Some of these efforts involve appro-
priate social distancing in public places, monitoring and tracking tem-
perature at the point of access, etc. In order for us to get back to the
“new normal”, there is a need for automated and efficient human contact
tracing that would be non-intrusive and effective in containing the spread
of the virus. In this paper, we have developed “Connect”, a Blockchain
and Self-Sovereign Identity (SSI) based digital contact tracing platform.
“Connect” will provide an automated mechanism to notify people in
their immediate proximity of an occurrence of a positive case and would
reduce the rate at which the infection could spread. The platform’s self-
sovereign identity capability will ensure no attribution to a user and the
user will be empowered to share information. The ability to notify in
a privacy-preserving fashion would provide businesses to put in place
dynamic and localized data-driven mitigation response. “Connect’s” SSI
based identity wallet platform encodes user’s digital identities and activ-
ity trace data on a permissioned blockchain platform and verified using
SSI proofs. The user activities will provide information, such as places
travelled, travel and dispatch updates from the airport etc. The activ-
ity trace records can be leveraged to identify suspected patients and
notify the local community in real-time. Simulation results demonstrate
transaction scalability and demonstrate the effectiveness of “Connect”
in realizing data immutability and traceability.
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1 Introduction

The COVID-19 pandemic has challenged countries to invest in resources to con-
trol the spread of the virus. The number of positive COVID-19 cases have been
rising all over the world, with the majority of the confirmed cases found in the
U.S. The reasons for the rapid spread through humans have been attributed
to symptomatic, pre-symptomatic and asymptomatic cases [30]. The current
approaches to limit the spread of the virus includes various methods to enforce
safe social distancing and limiting air travel. Though these approaches have
value, there is a need for a platform that can alert the presence of a positive case
to a regional community in a timely and privacy-preserving fashion.

Organizations are working on “safe back to work” policies to realize a “new
normal working environment”, that would provide a data-driven mitigation
response to limit the spread of the virus. These “back to work” policies are
not just limited to COVID-19 and will also be effective against any infectious
disease. It has been acknowledged that an effective means to limit the spread of
the virus is to continuously track user activities at various points of visit and
access [15] and notify potential cases or exposure to local and regional commu-
nities. The resultant data-driven insights would help organizations to operate
safely and people to access public spaces.

However, on the flip side, current approaches that provide capabilities to
address the aforementioned need are plagued with data centralization, privacy
concerns and location tracking concerns. The centralization of user data in a
cloud environment can be vulnerable to adversarial attacks. The privacy concern
for both potential patient and the people they could come in contact should be
preserved [2].

In this paper, we propose “Connect”, a “back to work safely” system based
on a blockchain and self-sovereign identity (SSI) empowered digital contract
tracing platform. The platform keeps employees’ digital identities and events
related to testing/symptoms on a blockchain platform using SSI [27] proofs. The
employer can use a mobile app to self-report the requested information that uses
SSI to record results anonymously and without location tracking. The employer
can use the back end analytics to monitor workplace conditions and use a data-
driven approach to inform workplace safety policies and guidelines. The main
contributions of “Connect” are as follows.

1. Blockchain and SSI empowered digital contact tracing platform to realize
decentralized and privacy-preserving digital contact tracing

2. SSI based identity wallet to capture/verify the user identity proofs and activ-
ity trace record proofs.

3. Store user identity data and activity trace record data on blockchain platforms
by using self-sovereign identity proofs.
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4. Self-sovereign identity proof-based identity and activity trace storage address
the common issues in cloud-based data storages (e.g. lack of data privacy, lack
of data immutability, lack of traceability, lack of data provenance [25,35]).

The rest of the paper is organized as follows. Section 2 discusses the architec-
ture of the Connect platform. Section 3 implementation details of the Connect
platform. Section 4 performance evaluation, Sect. 5 surveys related work. Section
6 concludes the Connect platform with suggestions for future work.

2 Connect Platform

2.1 Overview

Connect is a blockchain, self-sovereign identity-based user identity, and activity
tracking platform. It can be used to track the activity of COVID-19 suspected
patients during a quarantine process. The Connect platform is built using a
layered architecture shown in Fig. 1 containing four main layers.

1. Distributed ledger - Where all user cryptographic artifacts for identity (DIDs)
and proofs of activity are stored.

2. DID communication layer - Where peer to peer data exchange between user
identity wallets happens within the DID communication layer.

3. Credential layer - Where different entities in the platform (users, admins)
create and exchange credentials for verification via credential layer.

4. Activity trace layer - Where user activity trace recording and verification
happens.

Distributed ledger is the blockchain-based peer to peer storage system used in
the Connect platform. The blockchain can be deployed among multiple organiza-
tions such as government organizations, hospitals, airport/port customer offices,
banks, identity authorities etc. Each organization in the network can run its
own blockchain node connected as a ring cluster, Fig. 8. It stores all user digital
identity proofs (which are identified as DID or decentralized identity proof [6])
and user activity trace record proofs on Connect platform.

The DID communication layer is used to exchange the actual credential
information (such as user image, id numbers, etc.) between the credential
approvers/versifiers (admins) mobile wallet and the credential owners (users)
mobile wallets. Peer to peer data exchange between user identity wallets hap-
pens in this layer. When a user’s identity needs to be verified/approved, the
admin requests proof of identity from the holder, the holder consents and shares
data along with cryptographic proof stored on the blockchain. The Connect
mobile app fetches the identity information stored in local storage to send to the
admins Trace mobile wallet. The admin can do further verification/approvals
based on this information.

There are two main types of entities (users) in the connect platform, cre-
dential owners, credential verifiers (admins). Connect provides a self-sovereign
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Fig. 1. Connect platform layered architecture. Distributed ledger used to store DIDs.
Peer to peer data exchange between user identity wallets happens in the DID commu-
nication layer. Credential create, verification happens in Credential layer. User activity
trace recording and verification happens in the activity trace layer.

identity based mobile wallet application for each type of user. Credential owners
use “Connect mobile wallet” and admins use “Trace mobile wallet”. Creden-
tial owners register their DID proofs on blockchain and enroll in the Connect
platform with the Connect mobile application. Admins verify credentials (DID
proofs) via Trace mobile wallet. The credential exchange process happens in the
Credential layer, where credential owners and admins exchange the credentials
for verification.

All user activity trace data in the Connect platform are stored in the
blockchain ledger based on an SSI approach. When a user goes to a specific
place (e.g. airport, bank, hospital, office) the admin officers there can verify
the identity of the user and create an activity trace record for the user on the
blockchain. This identity verification and activity trace data creation process is
done via Trace mobile wallet application given to the admin officers. Admins also
can fetch user activity trace records which are stored in the blockchain when con-
sent is given, verify them, and view through the Trace mobile application. Trace
mobile app comes with a QR code scan-based identity and activity trace data
verification process. All activity trace data is handled with functions (activity
trace data creation, activity trace data verification) implemented in the Activity
trace layer.

2.2 Functionality

Consider a scenario where a blockchain network is deployed at the Airport, Hos-
pital network, Government Bank and Identity office. The admin officers at each
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organization installed the Trace mobile app. A user who comes from overseas
installed the Connect mobile wallet and registered on it before entering the air-
port. As shown in Fig. 3, when registering it first captures basic user information
with Id no/Passport no. After that, it asks users to capture their photo and put
a signature on top of the photo. This information can be used as additional proof
which administrators can use to approve/verify the user identity. The captured
information will be saved in secure storage in a mobile application and the proof
of this information will be uploaded to the blockchain as self-sovereign identity
proof (DID proof). When uploading credentials, the app will generate a pub-
lic/private key pair which corresponds with the user/mobile wallet. The private
key will be saved on the Keystore on the mobile application. The public key and
base58 [16,28] hash of the public key will be uploaded to the blockchain along
with other DID proof information. The base58 hash of the public key will be
used as the digital identity (DID) of the user on the Connect platform. Figure
2 shows the format of the DID proof on the connect platform. This DID will
be embedded to QR code in the mobile app, which the user can show to admin
officers (e.g. admin at hospitals, custom officers at the airport, banks officers)
for verification, Fig. 3.

Fig. 2. DID format which generated in Connect app and DID asset format which stored
in blockchain.

Assume a user comes from an overseas country and installed the Connect
wallet on his/her mobile phone. When the user comes to the airport he/she
needs to show the QR code identity which is embedded in the Connect mobile
wallet to the admin officer (e.g. customer officer) at the airport in order to have
their digital identity issued, Fig. 3. The officer will scan the QR code via Trace
application and fetch the user identity proofs which are saved in the blockchain.
After that, it requests for consent to specific data and connects to users through
the “Connect mobile wallet” application. This process is achieved via push noti-
fication (DID communication layer) in order to fetch the actual user identity
information (e.g. Id numbers, photo, signature) to the Trace mobile app, Fig. 4.
Then the admin could check the information against the passport/id card of the
user. If the data is correct according to the passport/id card, the admin approves
the identity of the user. When approving, it updates the status of users’ digital
identity in the blockchain. This is the first-time vetting process which needs to
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(a) Add identity infor-
mation

(b) Capture photo and
signature

(c) Connect identity in
QR code

Fig. 3. Connect mobile wallet application. It will embed users’ digital identity on QR
code.

be done in order to approve the user identity saved in the blockchain is authen-
tic and verified by a trusted source. Once identity is approved by an authorized
administration user can use his/her identity wallet in any other place to prove
his/her identity (ex in a bank, hospital etc.). When approving the identity, it will
use the Identity smart contact. After identity approved blockchain will create
an activity trace record (along with user digital identity/DID, date/time and
location) by using Trace smart contract. This activity trace record specifies the
user is dispatched from the airport. Once the activity trace record is created in
the blockchain node at the airport, it will be available to other blockchain nodes
at hospitals and banks.

For example, assume the user goes to a bank a few days after he/she enters
the country. User needs to show his/her identity wallet QR code in order to
prove identity at the bank. Then the admin at the bank scans the QR code,
fetches the identity proof of the blockchain and verifies the user. At the end of
this process, blockchain will save another activity trace record which mentions
that the user came to the bank with date/time and location, Fig. 5. In this way,
the connect platform traces all the user activities as self-sovereign identity proofs
(or proof of location). Now assume the user goes to the hospital for some various
treatment. The user shows the identity wallet with QR code, then an officer at
the hospital scans it and fetches the user identity proof with all user activity
record proofs from the blockchain. The activity trace contains an activity that
mentions the user came from a foreign country and dispatched from the airport
on a specific date, Fig. 4. With this information, it can be easily identified if a
person could be suspected of Covid-19. Further precautions can be taken before
spreading the virus to more people.
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(a) Scan user identity (b) View user identity (c) View activity trace

Fig. 4. Trace mobile application. It can view users’ identity information and activity
trace.

By recording an activity trace of users, Connect platform can support in
identifying spread from three main transmission methods of Covid-19 virus,
Symptomatic transmission (direct transmission from an asymptomatic individ-
ual), Pre-symptomatic transmission (direct transmission from an individual that
occurs before the source individual experiences noticeable symptoms), Asymp-
tomatic transmission (direct transmission from individuals who never experience
noticeable symptoms).

2.3 Contact Tracing

The users in the Connect platform can be notified via the peer to peer notification
system. These notifications can be used to notify the users who are at risk of get-
ting infected with Covid-19 virus. For example, assume a user who has registered
in the Connect platform is diagnosed as a Covid-19 infected person. The medical
officer at the hospital can report the patient to the Connect platform via Trace
mobile application. Additionally, the Connect mobile wallet provides a feature to
self-report the diagnosis of the users. This diagnosis information will be uploaded
and stored in the blockchain. Once Covid-19 case is reported, the Connect plat-
form can identify all places where the patient has visited (during the last 14 d) by
using the activity trace data in the blockchain. The activity trace data contains
information about user identity (DID), times and location (latitude, longitude)
the diagnosed person has visited. Based on these activity trace information, it can
identify the other users who have been in these places at the same time with Covid-
19 infected person without revealing personal information.Then Connect platform
can send the notifications to these users mentioning there is a risk of contact with
Covid-19 since they have been in a place where Covid-19 infected person visited,
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Fig. 5. Admin officer scans QR code identity of the user and creates activity trace
record in the blockchain. The trace record contains the information about user identity
(DID), time and location (latitude, longitude)

Fig. 6. Covid-19 contact tracing. Once a user is identified as Covid-19 infected person,
Connect platform finds the other users who have contacted that person and notify
them.

Fig. 6. With the notification function, the user can be aware of the risks in time
and take some actions accordingly.
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Based on the activity trace data of the Covid-19 diagnosed people, Connect
platform can identify Covid-19 hot spots. These hot spots information will be
shown in a Map view (Fig. 7(a)) on Connect mobile wallet application. The
users can search for a specific location in the map and see the critical level of
that place, red zone (Fig. 7(b)) or green zone (Fig. 7(c)). Hot spot critical level
is decided based on the infected people count visited that place recently. These
location data traced with the activity trace records of the Covid-19 diagnosed
people in the Connect platform.

(a) Hot spots (b) Red zone (c) Green zone

Fig. 7. View hot spot information. Hot spot critical level decided based on the infected
people count visited to the place. These location data are traced with the activity trace
records of the Covid-19 diagnosed people in Connect platform.

3 Connect Implementation

We have built the production version of the Connect platform with the collabo-
ration of Sentara hospital chain USA [32]. The Connect platform has been built
using microservices architecture [33] to support high scalability and high trans-
action load. All the services in the Connect platform are implemented as small
services (micro-services) with the single responsibility principle. These services
are dockerized [26] and deployed using Kubernetes [9] container orchestration
system. To cope with high transaction load and back-pressure [14] operations
we have adopted reactive streams based approach with using Akka streams [12].
All the microservice communications are handled via Apache Kafka [20,23] mes-
sage broker. We run 3 Kafka broker nodes with 3 Zookeeper nodes in Connect.
The platform is running as a permissioned blockchain system in a private cloud.
Figure 8 shows the architecture of the Connect platform.
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Rahasak blockchain has been used to implement the functionalities of the
Connect platform. Rahasak blockchain [7] comes with concurrency enabled Aplos
smart contacts [8] which are written with Scala [1,29] and Akka actor-based [4]
concurrency handling [18,19]. All the functionalities of blockchain implemented
with Aplos smart contracts. There are four main smart contracts a) identity con-
tract, b) asset contract c) notification contract d) verification contract. “Con-
nect” and ‘Trace” mobile wallets are the client applications on the Connect
platform. The functions which are implemented in the blockchain smart con-
tracts will be invoked by Mobile clients. The requests generated from Mobile
apps will be directed to blockchain smart contracts via Connect gateway ser-
vice which is HTTPS REST API [3] built with Golang [31]. There is a peer
to peer communication channel between “Connect” and “Trace” mobile wal-
lets (to exchange the credential data). Firebase push notification service [22]
has been used to implement the peer to peer communication between mobile
wallets. Client authentication/authorization will be handled by JWT-based [21]
auth service in the Connect platform. Client credential information will be stored
in auth-storage (database) in the auth service.

Fig. 8. Connect platform’s microservices based architecture. All the services are dock-
erized and available to deploy with kubernetes.
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4 Performance Evaluation

Performance evaluation of Connect was completed and is discussed. To obtain
the results, we deployed the Connect platform with multi peer Rahasak
blockchain cluster in AWS 2xlarge instances (16 GB RAM and 8 CPUs). Rahasak
blockchain runs with 4 Kafka nodes, 3 Zookeeper nodes and Apache Cassan-
dra [24] as the state database. The smart contracts on the Rahasak blockchain
implemented with Scala functional programming and Akka actor based Aplos [8]
smart contract platform. The evaluation results are obtained for the following,
with a varying number of blockchain peers (1 to 5 peers) used in different eval-
uations.

1. Transaction throughput
2. Transaction execution and validate time
3. Transaction scalability
4. Transaction execution rate
5. Block generate time

4.1 Transaction Throughput

For this evaluation, we recorded the number of DID proof create transactions and
DID proof query transactions that can be executed in each peer in the Connect
platform. When creating a DID, an invoke transaction will be executed in the
underlying blockchain. Invoke transaction creates a record in the ledger and
updates the status of the assets in the blockchain. Query transaction searches
the status of the underlying blockchain ledger. They neither create transactions
in the ledger nor update the asset status. We flooded concurrent transactions
for each peer and recorded the number of completed results. As shown in Fig. 9
we have obtained consistent throughput in each peer on the Connect platform.
Since queries are not updating the ledger status, it has high throughput (2 times)
compared to invoke transactions.

4.2 Transaction Execution and Validation Time

In this evaluation, we evaluated the transaction execution and transaction valida-
tion time. We recorded time to execute and validate different sets of transactions
(100, 500, 1000, 2000, 3000, 5000, 7000, 8000, 10000 transactions). Transaction
validation time includes the double-spend checking time. Transaction execution
time includes the double-spend checking time, ledger update time, data replica-
tion time. Figure 10 shows how transaction execution time and validation time
varies in different transaction sets.
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Fig. 9. Invoke transaction throughput
and query transaction throughput of
Connect blockchain.

Fig. 10. Time to execute transactions
and validate transactions in the Con-
nect platform.

Fig. 11. Transaction scalability of
Connect blockchain.

Fig. 12. Transaction execution rate
with no of peers in the Connect
blockchain.

Fig. 13. Transaction execution rate
and transaction submission rate in a
single blockchain peer.

Fig. 14. Block creation time against
the no of transactions in the block.

4.3 Transaction Scalability

For this evaluation, we recorded the number of transactions that can be executed
(per second) over the number of peers in the network. We flooded concurrent
transactions in each peer and recorded the number of executed transactions.
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Figure 11 shows transaction scalability results. When adding a node to the clus-
ter, it nearly linearly increases the transaction throughput. Query transactions
have high scalability when comparing to invoke transactions. The main reason is
question transactions are not updating the ledger status like invoke transactions.

4.4 Transaction Execution Rate

Next, we evaluate the transaction execution rate in the Connect platform. We
tested the number of submitted transactions and executed transactions in dif-
ferent blockchain peers recording the time. Figure 12 shows how transaction
execution rate varies when having a different number of blockchain peers in the
Connect platform. When the number of peers increases, the rate of executed
transactions is increased relatively. Figure 13 shows the number of executed
transactions and submitted transactions in a single blockchain peer. There is a
back pressure operation [14] between the rates of submitted transactions and
executed transactions. We have used a reactive streaming-based approach with
Apache Kafka to handle these backpressure operations in the Connect platform.

4.5 Block Generate Time

Finally, we have evaluated the time taken to create blocks in the underlying
blockchain storage of the Connect platform. The statistics recorded against the
no of transactions in a block. Block generate time depends on a). data replication
time b). Merkel proof/block hash generate time c). transaction validation time.
When the transaction count increases in the block, these factors will be increased.
Due to this reason, when the transaction count increases, block generation time
also increases correspondingly. As shown in Fig. 14 to create a block when having
a 10k transaction, it takes 8 s.

5 Related Work

There are some research works which have been conducted to find contract
tracing technologies to control Covid-19 outbreak [5,11,34]. In this section, we
outline the main features and architecture of these research works.

TraceTogether [34] is a mobile application-based platform to detect poten-
tial Covid-19 virus carriers in Singapore. It works by exchanging short distance
Bluetooth signals with other users of the app, giving officials a database to track
potential Covid-19 carriers. If a user is diagnosed with Covid-19, the respiratory
illness caused by the coronavirus, they could allow Singapore’s health ministry to
access their app data to identify people who had close contact with the infected
individual. Then the app alerts those who come in contact with someone who
has tested positive or is at high risk for carrying the coronavirus.

Google/Apple Contact Trace [17] Google and Apple recently announced
a joint initiative to build a contact tracing application to help contain the Covid-
19 spread. They will be launching a comprehensive solution that includes appli-
cation programming interfaces (APIs) and operating system-level technology to
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assist in enabling contact tracing. Their system uses Bluetooth, a standard way
for most mobile devices to communicate with each other. Apple and Google
stressed that their system preserves users’ privacy. Consent is required and loca-
tion data is not collected. The technology also won’t notify users who they came
into contact with, or where that happened.

WeTrace [13] is a fully privacy-preserving approach and application, which
built on top of BTE (Bluetooth Low Energy). This solution meets major GDPR
(General Data Protection Regulation) requirements, which are in force in cer-
tain European countries. WeTrace here fulfils exactly this key requirement on
privacy-preserving for arbitrary mobile devices, being able to communicate via
BTE and being used by their owners in a once-used, once-associated manner.
The application of low-range BTE communications determines a highly suitable
coincidence between the COVID-19 “social distancing” requirements and the
communications technology.

COVID Credentials Initiative (CCI) [10] is a collaboration of more than
60 organizations working to deploy self-sovereign identity (SSI) based verifiable
credential solutions to help stop the spread of COVID-19. The goal of CCI is to
build an “immunity passport”, which is a digital certificate that lets individuals
prove (and request proof from others) that they have recovered after testing neg-
ative, have tested positive for antibodies, or have received a vaccination once one
is available. These digital certificates would be issued by health care institutions
but controlled by the user and shared in a peer-to-peer manner. The CCI group
includes individuals who are part of Evernym, ID2020, uPort, Dutch research
organization TNO, Microsoft, ConsenSys Health and consultants Luxoft.

The comparison summary of these platforms and the Connect platform is pre-
sented in Table 1. It compares Architecture (Centralized/Decentralized), Run-
ning blockchain, Supported credential types (e.g. biometric), SSI support, Activ-
ity trace support, Privacy level details.

Table 1. Self-sovereign identity and activity trace tracking platform comparison

Platform Architecture Running
blockchain

Credential
type

SSI support Activity trace
support

Privacy level

Connect Decentralized Rahasak Any Yes Yes High

TraceTogether Centralized N/A Any No Yes Low

Google and Apple
Contact Trace

Centralized N/A N/A No Yes Mid

WeTrace Centralized N/A N/A No Yes High

CCI Decentralized Sovrin Medical Yes No High

6 Conclusions and Future Work

In this paper, we have presented “Connect”, a Blockchain and SSI empowered
digital contract tracing platform that can leverage the information on positive
cases and let people in the immediate proximity be notified, which would thereby
reduce the rate at which the infection could spread. This would particularly
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be effective if sufficient people use the platform and benefit from the targeted
recommendations. The recommendations would be made in a privacy-preserving
fashion and contain the spread of the virus without the need for an extended
period of lockdown. We have developed a prototype for the proposed platform
and conducted simulations to evaluate scalability and transaction throughput.
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Abstract. According to the United States’ Center for Disease Control
and Prevention (CDC) between 39 and 56 million people in the US suf-
fered from Influenza Like Illnesses (ILI) in the 2019-20 flue season. From
which, 410 to 740 thousand were hospitalized and 24 to 62 thousand
succumbed to the disease. Therefore, the existence of an early warning
mechanism that can alert pharmaceuticals, healthcare providers, and
governments to the trends of the influenza season well in advance, would
serve as a significant step in helping combat this communicable disease
and reduce mortality from it.

As reported in the [ACM Special Interest Group in Computers
and Society (SIGCAS) 2020 Computers and Sustainable Societies
(COMPASS)], [IEEE Technology and Engineering Management Soci-
ety (TEMS) 2020 International Conference on Artificial Intelligence for
Good (AI4G)], and [IEEE Global Humanitarian Technology Conference
(GHTC) 2020] Long Short-Term Memory (LSTM) neural networks are
utilized by Santa Clara University’s EPIC (Ethical, Pragmatic, and Intel-
ligent Computing) and BioInnovation & Design laboratories for contin-
ued research and development of an eVision (Epidemic Vision) machine
learning tool to predict the trend of influenza cases throughout the flu
season.

There we reported eVision’s success in making 3, 7, and 14 weeks
in advance predictions for the 2018–2019 United States flu season with
88.11%, 88%, and 74.18% accuracy respectively and delineated future
steps of expanding eVision’s granularity by 1) adding state level predic-
tions in order to enhance national predictions and 2) utilizing metropoli-
tan area keyword trends to improve both state level and national pre-
dictions. This resulted in the improvement of the model’s accuracy to
90.38%, 91.43%, and 81.74% for 3, 7, and 14 weeks in advance predic-
tions respectively. This paper is to report on the methodology of obtain-
ing these improved results.
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Memory (LSTM) neural networks · Medical machine learning
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1 Introduction

Influenza (a.k.a. the flu) is a pervasive respiratory infection caused by Influenza
viruses with an estimated 3 to 5 million severe cases annually, which lead to
between 290 to 650 thousand respiratory deaths world wide [12]. For the 2019–
2020 US flu season, which started October 1, 2019, and ended April 4, 2020,
the United States’ Center for Disease Control and Prevention (CDC) estimates
between 39 and 56 million cases of flu illness, which led to between 410 and 740
thousand hospitalizations and between 24 and 62 thousand deaths [2].

During the 2018–2019 flu season, influenza vaccines prevented between 3.4
and 7.1 million flu cases and, thus, prevented 30 to 156 thousand hospitalizations
as well as 1 to 13 thousand deaths [3]. At the time of this writing, the 2019–2020
flu season’s flu vaccine effectiveness statistics were not yet finalized and released
by the the CDC.

Since Influenza vaccination is the primary strategy to prevent influenza [16],
an accurate prediction model is essential for pharmaceutical companies and
healthcare providers to be able to properly prepare for an upcoming flu season.
For instance, vaccine manufacturers in the US rely heavily on seasonal influenza
data provided by the CDC [1] which, due to the two-week reporting lag of the
CDC, leaves the vaccine manufacturers insufficient time to produce enough flu
vaccines for the appropriate flu strains that can be distributed through the health
care network in time.

However, the CDC only collects US data and thus for the rest of the countries
the World Health Organization (WHO)’s global estimates must be used as a
basis for a prediction model. Though, improvements are required to gain more
accurate results, as the WHO only extrapolates based off of the limited data it
receives from the countries [12].

2 Related Work

Between 2008 and 2015, the Google Flu Trends project provided an influenza
activities forecaster with a linear model [9]. The idea being that since many
potential patients or relatives and friends of potential patients will use Google
Searches as a first attempt at diagnosis, by monitoring a region’s population’s
Google search queries into influenza related terminology and symptoms, the
presence of ILI in the population of that region may be predicted. However, no
actual flue statistics from the CDC or WHO were used to validate or enhance
the predictions.

Ginsberg et al. estimated weekly influenza activities by finding and monitor-
ing Google search queries that are highly correlated with CDC data, achieving
an accurate estimate with a one-day reporting lag [8]. However, their aim was
only to overcome the two week reporting lag of the CDC. No attempt was made
to help predict future numbers of ILI cases.

Dugas et al. applied a generalized linear model to Google Trends data [6] on
a city level. Similarly to Ginsberg et al. predictions of future influenza trends
was not within the scope of the research.
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Paul et al. used both Google Trends and Twitter data to forecast influenza
outbreak, but because people usually only tweet about influenza after the out-
break has happened, their research can only be used for post-verification [17].

Xie used a vector auto-regression model which factors state population den-
sity, weekly temperature, and precipitation as predictors to forecast ILI incidence
rate based on the Google Flu Trends and the CDC ILI incidence [23]. However,
the goal of her project was not as narrowly focused as eVision. It does not aim to
provide companies and health providers with an easily understood forecast of an
upcoming influenza season, and as such it cannot provide a long term forecast.

3 Vector Autoregression (VAR) Model

Regression modeling is a technique which provides a relationship between depen-
dent and independent variables. One such model is the Vector Auto Regression
(VAR) model, which generalizes the uni-variate auto regression model by allow-
ing it to include more than one predictor variable. The VAR model is thus an
extension of the Autoregression model that is used to predict multiple time
series variables using a single core model. Therefore, VAR helps in performing
multivariate time series forecasting between multiple predictors and a response
variable. This model works on the concept of lags, which means that each vari-
able is a linear combination of past lags of itself and past lags of the other
variables [18].

For example to measure three different time series variables, denoted by
xt,1, xt,2, xt,3. the Vector Autoregression model of order 1, denoted as VAR(1),
is as follows:

xt,1 = α1 + φ11xt−1,1 + φ12xt−1,2 + φ13xt−1,3 + wt,1

xt,2 = α2 + φ21xt−1,1 + φ22xt−1,2 + φ23xt−1,3 + wt,2

xt,3 = α3 + φ31xt−1,1 + φ32xt−1,2 + φ33xt−1,3 + wt,3

3.1 Utilization of the VAR Model for Flu Prediction

The VAR model was built in MATLAB. It was entirely constructed with the
functions provided by MATLAB’s Econometric Toolbox. Initial pre-processing
of the data was carried out and then the VAR(4) model was created. The model
was constructed using a function called varm() provided in the aforementioned
toolbox, which returns a varm object, which in turn characterizes the model [14].

The VAR model was constructed to take in the same data as the eVision
model to predict across the same distances. However, as the results (depicted in
Sect. 6.1) show, this model does not perform as accurately as eVision’s LSTM
model described below (with results in Sect. 6.2).
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4 Modifications to eVision

Prior work on eVision has established the base LSTM model which takes in the
number of ILI reported cases along with Google Trends data to make long-term
forecasts on the number of cases [20–22]. While work had previously been done
on making national level predictions using state-level data, the optimal selection
of states was not yet found and the effects of lower level division data were not
explored.

4.1 Selecting States

Adding states was the first step in augmenting national level forecasts with more
granular data.

The CDC, in addition to national level influenza statistics, provides statewide
statistics for influenza. Similarly, Google Trends provides popularity of keywords
by state. Thus eVision is capable of incorporating these state level indicators as
features to augment its predictions.

4.2 Adding Metropolitan Data

Adding metropolitan data was done as an attempt to see if the granulation of
Google Trends data would correlate to a higher level of prediction accuracy.

The municipalities on Google Trends are broken up into what were known
as Designated Market Areas (DMA). DMA are 210 regions in the Unites States
which receive the same radio and television options created by the Neilsen Media
Research firm [11]. Having the option of a metropolitan level, it allows further
testing to see if the granulated Google Trends data leads to more accurate pre-
dictions. Each of these DMA has a distinct three digit code, which Google Trends
used to differentiate the different metropolitan areas from one another.

5 Data Acquisition

5.1 Google Trends

Google Trends data was used as the basis for the LSTM and VAR models. It
provided a great level of flexibility because of the volume and scope of Google
searches that people frequently make. Google Trends data is presented in time
intervals that can range from the last 24 h to the last 10 years. The data in Google
Trends is normalized from data points that correspond to searches at a given time
and place. The data is normalized on a scale of 0–100 with respect to the time
interval allocated, with time periods of higher search frequency corresponding
to a higher number [10].

Google Trends provides data on three levels: region-wide, state-wide, and
metropolitan. The region-wide levels consist of countries across the world and
the state-wide areas consist of the 50 states plus the municipality of the District
of Columbia.
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5.2 Google Search Keywords

eVision uses four key terms: cough, flu, sore throat, and tamiflu. The search
frequency for these influenza related terms strongly correlate to the frequency
of influenza cases, making them an excellent source of information for training
the model.

5.3 Data Acquisition Accommodations Due to COVID-19

The current COVID-19 pandemic has severely skewed data for many of our rel-
evant search terms. As mentioned earlier, Google Trends comparatively ranks
search frequency on a normalized scale from 0–100. When a significant and irreg-
ular event occurs, such as a pandemic, there is usually a corresponding alteration
in search frequency for relevant terminology. This has caused an intense spike in
the number of searches for virus related keywords (cough, flu, etc.), which due
to Google’s data post processing, eliminates the variance in weekly data.

A prime example of this is the search term “fever”, which is a common
symptom for both COVID-19 and influenza. Figure 1 illustrates this discrepancy
by showing search frequency for a given time before and after COVID-19. When
using a custom time range that does not encroach upon the hysteria of COVID-
19 related Google searches, its magnitude becomes comparatively much smaller
than the time range which includes COVID-19 related searches.

Fig. 1. Past 5 Years (blue) vs. Custom Date Range (orange) Search Frequency for
Search Term “fever” (Color figure online)

The date range used for testing was a five year interval between February
16, 2015 to February 16, 2020, who’s difference with modern data can be seen
in Fig. 1.
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5.4 Python Scraper

To obtain data from Google Trends, the publicly available Google Trends API
was utilized. Using this API, a scraper was created that was able to extract
selected data from Google Trends.

An older scraper created for the previous version of eVision [21], did not meet
all requirements for the new additions to eVision. The main features implemented
for the scraper were to allow for settings that can be toggled in order to extract
results by the regional levels that Google supported: state, metropolitan, and
country. It allows for the mass extraction of search data from any region in a
matter of seconds.

Geographical codes were needed in order to successfully distinguish between
the different regions being scraped. Since there are different scopes of regions
that can be searched, Google Trends differentiates the geographical scopes in
distinct ways. The way that the API accepts inputs for search terms such as
geographical region, date range, etc., is by the URL of a search term on the
Google Trends site as depicted in Fig. 2.

Fig. 2. Standard URL for Google Trends search

In order for the scraper to be able to yield data from different regions, a
database of country, state, and metropolitan codes was needed. This is because
Google differentiates locations by ISO 3166-2 codes for countries and states,
while using DMA codes for metropolitan areas. These codes would be needed
as an essential parameter within the scraper that would allow it to scrape data
from any area in the world.

A list of all the existing DMA codes in the United States was found online
[15], along with a comprehensive database of country and state codes from a
public GitHub repository [7]. This proved to be sufficient to allow the scraper
to swiftly and efficiently extract data from any region in the US recorded by
Google Trends.

5.5 Data Selection

In addition to including a national forecast without any states and a forecast with
all states to serve as comparative baselines, two main approaches for selecting
states with which to make the prediction were undertaken: selecting states with
the highest population and selecting those which are the largest transit hubs
with the highest level of traffic.
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For selecting the states that have the highest level of international trans-
portation, it was decided that the largest ports of entry and the states with the
busiest airports would be used. To find the busiest airports, the total number
of passengers each airport reported to have serviced in the year 2019 was stud-
ied, and the six airports that serviced over 60 million passengers that year were
selected. These airports were located in the states of Georgia, California, Illinois,
Texas, Colorado, and New York.

Airports were selected as they represent the most rapid and commonly used
method of transportation into the United States, especially from countries that
do not directly border it. As such, it represents a major vector of disease trans-
mission from abroad, and it could be argued that these busiest transit states
would exhibit a growth in infections before the national average begins to in any
significant way. Thus, under this hypothesis, data of infections in these states
would be useful for predicting the total amount of infections in the future.

Data on the busiest ports of entry into the United States from Mexico and
Canada was gathered from the Department of Transportation’s Bureau of Trans-
portation Statistics. Data from 2019 shows that San Ysidro, California and El
Paso, Texas were by far the largest ports of entry with Buffalo, New York com-
ing in as a distant third. The logic behind these three states serving as useful
precursors to a national epidemic is the same as with airports.

The six highest population states were chosen to contrast with the airport
selection, with an anomaly in the Floridian data resulting in two versions being
created with and without the state. The anomaly in question is that in the CDC
FluView state by state records of influenza like illnesses, data from Florida is
not included resulting in it appearing as if it has always had no cases. While this
does not prevent data gathered on the google keyword trends in Florida, it was
determined that this could be harmful to the model and a version of the data
without Florida was generated to determine if this was the case.

As previous research has determined that national level predictions can be
enhanced with state level data, it raised the question of whether or not metropoli-
tan level data could enhance these predictions further.

In order to explore this possibility, four data sets were made consisting of
the top five, ten, fifteen, and twenty most populated metropolitan areas in the
United States and their Google keyword search results. National level predictions
were made using only national data and the metropolitan data sets. Predictions
were run with and without state data as well to observe the effect of including
all three levels.

For the purposes of investigating the ability for metropolitan level data to
boost state level predictions, a simple set of predictions were made for California,
Texas, and New York, using the state data sets alone for each of them, followed
by collecting metropolitan data sets for every metropolitan area that Google
Trends collected data for in each state.
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6 Results

The calculation error is measured using the same metrics established in the pre-
vious paper on eVision [21]. Originally Mean Absolute Percentage Error (MAPE)
[4] was used to determine error, but after review it was determined that Symmet-
ric Mean Absolute Percentage Error (SMAPE) [13] would be a more effective
metric to make use of. The methodology behind the construction of the con-
fidence intervals in use for the LSTM results were also not changed from the
aforementioned paper.

6.1 VAR Results

Various forecasts were conducted with the VAR model in order to compare its
results with the ones of the LSTM model. Table 1 contains the series of national
VAR forecasts, including SMAPE scores for 3, 7, and 14 weeks ahead predictions.

Table 1. VAR national forecast results

Forecast States 3week SMAPE 7week SMAPE 14week SMAPE

National all All states 28.31 36.98 41.21

National ports of entry CA, TX, NY 30.12 43.98 51.15

National population CA, TX, FL, NY, PA, IL 32.96 48.10 67.80

National only N/A 32.10 40.79 72.22

The best results were obtained for the national level prediction when all the
states were included. Across every forecast, the level of error increased the further
out the prediction was made. The best national results given by VAR was an
error rate of 28.31%, 36.98%, and 41.21%, for 3, 7, and 14 weeks respectively. In
the case of a curated selection of states, the Top 3 largest Ports of Entry proved
to be a better selection of states than using the 6 largest population states.
The results for 3 weeks ahead prediction between both selections was 2.84%, and
the difference only rose to 4.12% for 7 weeks, but for the 14 week forecast the
difference became a significant 16.65%.

Finally, the model provided with national data only had the most varied
performance. With SMAPE errors of 32.1%, 40.79%, and 72.22% for 3, 7, and
14 weeks, its placement varies from third to second to last place respectively. The
resulting graphs produced by these predictions can be seen in Fig. 3 For all the
results obtained, it can be seen that the forecast for initial weeks matched the
number of cases but completely missed the peak period, leading to high SMAPE
as compared to the LSTM model.

The results in Fig. 3 were promising for 3 weeks ahead predictions but failed
as the length of the prediction was increased. Considering different combinations
of states for forecasting on the National level, the results were almost the same.
For all the results, the model is unable to predict the peaks at the expected time
interval.
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Fig. 3. National only (3, 7, 14weeks)

State Level Forecast. Forecasts were also created to for state level predictions
using no further outside data to augment them. The states selected for examina-
tion were California, Texas, and New York as they are held in common between
the population selection and the ports of entry selection.

Fig. 4. Top: Texas only (3, 7, 14 weeks) Bottom: New York only (3, 7, 14 weeks)

The following Table 2 contains the SMAPE scores for the state forecasts at
3, 7, and 14 weeks ahead predictions.

Figure 4 demonstrates the results for the Texas and New York predictions.
It should be noted that although the Texas forecasts have significantly higher
SMAPE scores than the New York forecasts, the utility of the predictions gen-
erated are both abysmal as can be seen in the figure. Although both California
and Texas manage to obtain error rates of 30% in their 3 week forecasts, and
7 week forecast, in the case of California these forecasts fail to consistently pro-
vide accurate information on the start, peak, and magnitude of an influenza
outbreak.
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Table 2. VAR state forecast results

Forecast VAR SMAPE 3 week SMAPE 7 week SMAPE 14week

California only 23.52 27.00 41.62

New York only 56.16 57.17 61.76

Texas only 27.43 31.69 47.64

Overall Model Analysis. The regression model used here generates hypothesis
functions which produce a nonlinear curve. From the results obtained, it can be
seen that the model was unable to predict the peak week of an outbreak, missing
its mark by 10 weeks when it predicts an outbreak at all.

Therefore, it can be inferred from these results that this model under-fits
on the data, and as such fails to extrapolate useful patterns with which it can
create accurate predictions. It even fails to capture patters as basic as continuing
a steady rise in cases until a shift downwards is noticed. All results generated in
the VAR model would be greatly improved upon with the LSTM model, which
makes use of recursive neural networks to ensure that the problem of under-
fitting would be avoided and that long term patterns could be noticed in order
to provide accurate, and long term forecasts.

6.2 LSTM Results

Numerous trails were conducted with the LSTM in order to determine the effects
of various combinations of states, as well as the inclusion of Google keyword
popularity in metropolitan areas on the accuracy of national and state forecasts.
The results of these trails are included in the tables below, with SMAPE scores
for three different extents of prediction, 3 weeks, 7 weeks, and 14 weeks ahead of
the present week.

Two other important measures consist of the ability for a model to predict
the peak week of a influenza outbreak, and its ability to predict the number of
reported cases. While these two are related to the SMAPE score, severe failures
on either measure would cause significant damage to the score as they are not
directly related and it is possible for one model to have a higher SMAPE score
than another yet fall behind on other metrics.

Most Effective State Selection for National Forecast. While there is no
one selection of states that performed the best across all levels of forecasts, in
fact each level performs best with a different selection, there are some important
patterns that can be gleaned from the data.

The first point that stands out is the clustering that occurs in the accu-
racy between the levels of forecast. Across every national forecast, the difference
between the SMAPE score for the 3 week and 7 week forecasts are less than the
difference between either level of forecast and the 14 week forecasts.
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Table 3. State selection for national forecast

Forecast States 3weeks
SMAPE

7weeks
SMAPE

14weeks
SMAPE

National airports GA, CA, IL, TX, CO, NY 10.85 10.43 18.26

National all All states 19.69 16.08 23.22

National ports of
entry

CA, TX, NY 09.87 08.57 22.56

National
population

CA, TX, FL, NY, PA, IL 11.85 09.10 19.80

National
population Sans
Florida

CA, TX, NY, PA, IL 09.62 08.96 20.68

National only N/A 11.89 12.00 25.82

Table 4. Effect of metropolitan data on national forecast

Forecast 3 weeks SMAPE 7 weeks SMAPE 14weeks SMAPE

National top 5 metros 11.02 12.72 26.39

National top 10 metros 10.87 10.33 19.47

National top 15 metros 12.67 09.89 23.77

National top 20 metros 12.27 11.06 23.73

National top 10 with states 11.56 10.23 21.47

National top 10 states only 10.31 10.08 21.33

National top 20 with states 15.07 10.46 25.62

National top 20 states only 10.60 12.01 20.22

Table 5. Effect of metropolitan data on state forecast

Forecast SMAPE 3week SMAPE 7 week SMAPE 14week

California metro 14.34 16.07 20.84

California only 37.01 23.28 18.54

New York metro 20.43 22.79 33.35

New York only 38.42 13.03 29.32

Texas metro 19.85 19.40 41.37

Texas only 20.20 25.13 35.77

The 14 week forecasts also notably always show a higher level of SMAPE
error than any of the earlier weeks. However, as can be seen in Fig. 5, a model’s
predictions can still be useful even when they do not follow the results of the
outbreak perfectly. For the first outbreak in the testing data, the model is able to
determine the peak week of the outbreak within one week of error, while keeping
the number of cases comfortably within the confidence intervals. Although the
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Fig. 5. National airports, 14weeks

model performs more poorly after that point, it maps a general path of the virus
in the off season, and more importantly, manages to keep the second outbreak
at the end of the testing data close to its maximum confidence interval. Another
consistent pattern is that the magnitude of the sharp, second outbreak is best
captured by the 14 week forecasts.

The second point of note is that the no states added and all states added
categories both performed worse than any of the curated state selections. As can
be seen in Table 3 the all state model demonstrates the worst performance in
the 3 and 7 week levels achieving 19.69% and 16.89% error rates respectively,
far worse than any other model. While it does perform better in the 14 week
forecast, it only does so by 2.6%. Furthermore, the accuracy with which the all
state model predicts the magnitude and location of the peak week is worse than
the no state model, which are the main benefits of the 14 week forecast to begin
with.

The models based on largest ports of entry and highest population states,
excluding Florida, are the only models that manage to break below 10% error
in the 3 week forecast, and 9% error in the seven week forecast. Of the two, the
model based on population performs best in the 3 week and 14 week forecast, but
the ports of entry model achieves the lowest SMAPE score of only 8.57% error in
the 7 week forecast. As can be seen in Fig. 6 the overall results are qualitatively
similar, and it should be noted that the major difference between the two data
sets is the inclusion of the states of Pennsylvania and Illinois in the population
model.

Finally, the last major point of note can be seen in the effect that the inclusion
of the state of Florida has in the population model compared to the one that
excludes it. Similar to the no states/all states comparison, excluding Florida
allowed the population model to perform better in the 3 and 7 week levels, but



Expanding eVision’s Granularity of Influenza Forecasting 239

Fig. 6. Top: Ports of Entry (3, 7, 14 weeks) Bottom: Population sans FL (3, 7, 14weeks)

in the 14 week level it performed 0.88% worse than the model containing Florida’s
ILI cases and keyword trends. In terms of the magnitude and peak week location
measures, the two models also perform similarly, with only minor differences in
the 3 week and 7 week forecasts where the Florida excluding model provides a
better measure of the number of cases in the first outbreak in the testing data.

Effect of Metropolitan Data on National Forecast. For the models con-
sisting of the top metropolitan areas, the results follow a pattern similar to state
selection. The model performs worse both in the case of being provided with
too little supporting data, and when provided with too many features. As each
metropolitan data has four keywords to keep track of each as their own inde-
pendent feature, the total number of metropolitan features can reach as many
as 80 in the case of the Top 20 model.

Overall, the best performing model of the four was the Top 10 model as can
be seen in Table 4. Achieving the best SMAPE scores for the 3 week and 14 week
levels, and coming just 0.44% short of the best 7 week result, the model provides
the most consistently accurate results across the three levels of forecast. With a
total of 40 features added from the keyword trends, it has a higher feature count
than most state selections, though only by ten.

Two additional models were created for the Top 10 and Top 20 data sets,
adding the data for every state of the metropolitan areas as well as including a
data set with only the state data. In all but a single case, the 7 week forecast for
the Top 20 model, the models with both state and metropolitan data performed
worse than either of the two data types alone. This was expected as adding state
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data would increase the number of features and harm the LSTM’s ability to
detect patterns.

When placing the two data types head to head against each other, it can
generally be said that state data performs better at the 3 and 7 week levels,
though the difference is more pronounced in the case of the Top 20 model.
In the case of the 14 week forecast, the metropolitan data does manage to out-
perform the state data by 1.86% in the Top 10 model, where as the Top 20 shows
the state data 3.51% more accurately. The most likely source of the superiority
of the state level data would be their ILI data. Though as can be seen in the
results, the benefits of the ILI data prove to be mostly marginal compared to
the keyword trends data.

Effect of Metropolitan Data on State Forecast. The major outstanding
pattern with regards to applying metropolitan data to state level forecasts is
that there is no major pattern.

Smaller patterns do exist, such as metropolitan augmented forecasts per-
forming worse at the 14 week forecast across all three states as can be seen in
Table 5. But beyond that the results become more varied, such as the metropoli-
tan data increasing accuracy in the 3 week forecasts, but with its improvements
varying from highly significant in California (22.67%), to almost negligible in
Texas (0.35%). In the case of the 7 week forecast, metropolitan data aids in the
case of California and Texas, but adds even higher error in the case of New York.
Furthermore, it should also be noted that this was not an exhaustive study of
the effects of metropolitan data on state level forecasting. The states of Califor-
nia, New York, and Texas were examined as they were the states that appeared
in every stat selection for national level predictions. The inconsistencies in the
results here may suggest that the utility of metropolitan level forecasts may
vary depending on the state in question. Further study will be required to draw
serious conclusions, particularly in the case of low population states.

7 Future Work

7.1 Google Trends Data Ranges and Adjustments

As a result of the COVID-19 outbreak, a lot of the data has been skewed. Because
of this, the model is currently trained on data predating the outbreak so that it
would not be affected by this anomaly. However, the end goal of this software
is for it to be practical for commercial use by pharmaceutical companies, which
necessitates the creation of a solution to the current skewing of Google Trends
data. This is because, in the future, there will likely still be a level of corruption
in Google Trends data from COVID-19.

It may be possible to simply omit that data and work around it, but it is
unknown how a missing chunk of data will affect the model’s ability to make
accurate predictions.
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7.2 Influenza Strain-Level Predictions

The model is also expected to be able to predict the trends of influenza strains.
There are four distinct strains of influenza: A, B, C, and D. Of these strains,
influenza types A and B lead to the majority of influenza cases [5].

Ideally, predictions for different influenza strains would yield similar results
as the influenza forecaster. However, this may need to be achieved through a
different means than what is currently done. Types A and B do not have dis-
tinguishing symptoms [19], therefore symptoms of the strains cannot be used to
predict the trends.

However, there are some general trends of the timing of the dominant strain,
with type A being most prevalent at the start of the flu season and type B
becoming more frequent in the latter half of the season [19]. Common trends
of timing like this will be the starting point in helping the model determine a
dominant strain during a given period of time.

7.3 Ease of Use

For future versions of eVision, there are hopes for a more uniform prediction
process. Currently, there exists a multi-step prediction process involving run-
ning the Python scraper, acquiring the data, and running the MATLAB script
that makes the prediction. There is the end goal of making the entirety of the
model mostly autonomous by having the model run continually on a server. This
will allow the model to make predictions more frequently and no longer require
trained programmers to make edits to allow for said predictions.

There is also hope to incorporate a user-friendly and simplistic UI. The end
goal for eVision has always been for it to be a tool used by pharmaceutical
companies and healthcare providers to gauge the quantity of tester kits, vaccines,
and medication they need to manufacture or resources they need to allocate in
order to prevent and treat Influenza. Having a quality GUI for instance, will
allow for its ease of use by even nontechnical staff at said organizations.

8 Conclusion

Through adding state level predictions in order to enhance national predictions
and utilizing metropolitan area keyword trends to improve both state level and
national predictions, eVision’s success in making 3, 7, and 14 weeks in advance
predictions were improved from 88.11%, 88%, and 74.18% accuracy to 90.38%,
91.43%, and 81.74% respectively. Furthermore, it was determined that the LSTM
model is superior to the VAR model on all counts, and that generally speaking
for national level forecasts state level data is superior to metropolitan data or
a mixture of the two. Meaning, granularity in prediction is helpful in improving
overall prediction as long as the grains are not selected to be too small, and not
too many of them are selected such that the model is overwhelmed with features.
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Abstract. Neural Networks are powerful classifiers. However, they are
black boxes and do not provide explicit explanations for their deci-
sions. For many applications, particularly in health care, explanations
are essential for building trust in the model. In the field of computer
vision, a multitude of explainability methods have been developed to
analyze Neural Networks by explaining what they have learned during
training and what factors influence their decisions. This work provides an
overview of these explanation methods in form of a taxonomy. We adapt
and benchmark the different methods to time series data. Further, we
introduce quantitative explanation metrics that enable us to build an
objective benchmarking framework with which we extensively rate and
compare explainability methods. As a result, we show that the Grad-
CAM++ algorithm outperforms all other methods. Finally, we identify
the limits of existing explanation methods for specific datasets, with fea-
ture values close to zero.

Keywords: Explainable deep learning · Convolutional Neural
Network · Explanation quality metric · Medical time series data

1 Introduction

Neural Networks have become the state-of-the-art to model complex problems
in computer vision [1], speech recognition [2], and many other areas [3]. Given
enough data, they can be trained to be exceptionally accurate classifiers, some-
times even surpassing human performance. While some classical machine learn-
ing models such as Decision Trees are inherently interpretable, Neural Networks
are unfortunately black boxes when it comes to understanding why a classifi-
cation decision was made. However, for many applications, e.g. in autonomous
driving or in healthcare, it is of uttermost importance that the decisions of

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2021

Published by Springer Nature Switzerland AG 2021. All Rights Reserved

J. Ye et al. (Eds.): MobiHealth 2020, LNICST 362, pp. 244–256, 2021.

https://doi.org/10.1007/978-3-030-70569-5_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-70569-5_15&domain=pdf
https://doi.org/10.1007/978-3-030-70569-5_15


Explainable Deep Learning for Medical Time Series Data 245

Explainability
Methods

Model
Explanation

Activation
Maximization

Filter
Visualization

Decision
Explanation

Linear
Approximations

Gradient/SaliencyGradient
Methods

Perturbation
Methods

Input*Gradient

Integrated
Gradient

Layer Relevance
Propagation

Grad-CAM

Occlusion

Multiplication with Input

Alternative Backprop Rule

Properties

Gradient with respect to
Intermediate Layer

Fig. 1. Taxonomy of a few explanation methods for Neural Networks

machine learning models can be explained and therefore trusted. Decisions may
have severe consequences, especially in healthcare. Therefore, medical experts
need to be able to trust their models to make the right decisions for the right
reasons. Additionally, Neural Network explanations could be used to identify
new patterns in convoluted signals such as electroencephalography (EEG) and
therefore, advance scientific knowledge.

In the last few years, there has been an effort to develop different Neural
Network explanation methods [1,3–11]. Most of these methods have been pro-
posed for computer vision tasks. They highlight the areas of the model input
that are most relevant to the decision process. These so-called attributions or
heat maps associate a relevance score with each individual input feature. Some
algorithms generate explanations in more complex feature spaces such as the
frequency domain. Ultimately, one could aim for explanations in a given expert
language - meaning that the explanation from a more complex feature space
is translated into terms that are familiar to the user (e.g. text book rules in
medicine).

In this study, our goal is to adapt and benchmark Neural Network explain-
ability methods for medical time series data (Sect. 2). So far, researchers have
mainly compared explanation methods on image data, using a qualitative assess-
ments of the resulting explanations by humans. There have been some theoretical
attempts at defining characteristics of good explanations [12,13]. In contrast, we
introduce and apply quantitative explanation metrics (Sect. 3). This allows us
to rate and compare the different methods objectively (Sect. 4). Additionally,
the metric demonstrates the strength and limitations of the various approaches.
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2 Taxonomy of Explanation Methods for Neural
Networks

Machine Learning models can be divided into inherently interpretable models
(e.g. Decision Trees) and black box models (e.g. Neural Networks) that use
formulations too complex to be interpreted by humans. In an attempt to offer
explanations for decisions made by such models, a multitude of methods have
been proposed to analyze the model after training (a posteriori explanations) [1,
3,4,6–11,14,15]. These algorithms visualize what a Neural Network has learned
and how classification decisions are made. Most of these methods have been
developed in the context of computer vision (image data). However, the lack of
quantitative evaluation metrics does not allow an objective benchmarking.

The existing a posteriori explainability methods for Neural Networks can
be classified into multiple categories according to their underlying algorithms
and properties (see Fig. 1). At high level, they can be split into two types of
explanations:

– Model Explanations are visualizations of the patterns and concepts that
the network has learned during training.

– Decision Explanations highlight the most relevant parts of a given model
input that led to a specific classification decision.

2.1 Model Explanations

Two kinds of model explanations are most relevant: Filter Visualization [7] and
Activation Maximization [8]. The former depicts the kernel weights of the first
few layers of Convolutional Neural Networks (CNN), indicating the patterns each
filter is most susceptible to. The latter is based on the idea that each neuron
is looking for a particular pattern in the input. If this pattern is present, the
activation of the neuron is high, otherwise the activation is low or zero. This is
achieved by optimizing the input to the network with the objective of maximizing
the activation of a particular neuron. In the case of CNNs, there is the choice
between optimizing the activation of a neuron, a layer, a channel, a class logit,
or a class probability.

2.2 Decision Explanations

Decision explanations explain a specific classification decision, given a particular
input sample, by attributing relevance scores to single pixels (for images) or
time steps (for time series). The higher the relevance, the more impact a pixel
or time step has on the classification decision. It is important to note that the
terms saliency map, attribution map, heat map and relevance scores are used
interchangeably to describe the same concept.
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Decision explanations can be further divided into methods that linearly
approximate the model, methods that use the internal gradient flow within the
network, and perturbation based methods that alter the input while observing
the change in output probabilities to calculate attribution:

1. Linear approximation methods (e.g. LIME [9]) construct a linear proxy
model that serves as an approximation of a black box model by probing the
output behavior around a given input sample.

2. Perturbation-based methods (e.g. Occlusion [16]) calculate attributions
by removing or altering the input while observing how the classification prob-
abilities change. The higher the change, the more relevant is the part of the
input that has been altered.

3. Gradient-based methods (e.g. Saliency Maps [14], Gradient*Input [11] [6],
Integrated Gradients [17], Epsilon Layer Relevance Propagation (Epsilon-
LRP) [18], Grad-CAM [10], Grad-CAM++ [19]) make use of the partial
derivative of the logits of the output class with respect to the input or
with respect to the output of an intermediate layer as a measure of sensitiv-
ity, and thereby as a measure of attribution. Because gradient-based meth-
ods are computed with a single forward and backward pass, they are typ-
ically faster than occlusion or linear approximation methods. Additionally,
Gradient-based methods can be classified using the following three character-
istics as show in Fig. 1:

– Backpropagation: Some methods (Epsilon-LRP) change the distribu-
tion of the gradients during backpropagation, to improve certain proper-
ties of the attribution map.

– Gradient: Some methods either use the gradient with respect to the
input (Gradient, Gradient*Input, Integrated Gradient, Epsilon-LRP) or
the gradient with respect to an intermediate layer (Grad-CAM, Gad-
CAM++).

– Multiplication with the Input: Some methods (Gradient*Input, Inte-
grated Gradient, Epsilon-LRP) use a multiplication with the input in their
calculation of attribution.

0 25 50 75 100 125 150 175 200
Time steps

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Si
gn

al

−0.01

0.00

0.01

0.02

0.03

Ex
pl

an
at

io
n

Signal
EGT
Explanation

P

Q

R

S

T
FNR

Fidelity

0 25 50 75 100 125 150 175 200
Time steps

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Si
gn

al

−0.04

−0.02

0.00

0.02

0.04

0.06

0.08

0.10

Ex
pl

an
at

io
n

Signal
EGT
Explanation

0 25 50 75 100 125 150 175 200
Time steps

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Si
gn

al

−0.01

0.00

0.01

0.02

0.03

Ex
pl

an
at

io
n

Signal
EGT
Explanation

)c()b()a(

Fig. 2. Synthetic heartbeats (ECG) depicted as P, Q, R, S, T-complex with corre-
sponding Explanation Ground Truth (EGT) and example explanations resulting in:
(a) a Fidelity Score of 0.5 and a False Negative Rate of 0.5 for a normal sinus rhythm,
(b) a Fidelity Score of 1.0 and a False Negative Rate of 0.8 for atrial fibrillation, (c) a
Fidelity Score of 1.0 and a False Negative Rate of 0.0 for a normal sinus rhythm.
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3 Explanation Ground Truth and Quality Metrics

To the best of our knowledge, no method exists to rate different explanation
methods quantitatively with respect to a ground truth explanation. Most pub-
lications make use of qualitative comparisons. Alvarez-Melis et al. [20] proposed
a quantitative metric to assess how faithful the generated explanation is with
respect to the model. The basic idea is to observe the change in the model’s
predictions while removing pixels or time steps and correlating the attribution
score of the explanation method with that change. This faithfulness metric is not
a measure of how well the attributions correlate with a ground truth explanation
of the input, but only indicates how faithfully the explanation represents what
the model bases its decision on.

In order to asses the quality of generated explanations, we have to anno-
tate the data with a “true” explanation, also called the Explanation Ground
Truth (EGT). We can then assess individual explanations relative to this ground
truth. It contains all pixels or time steps that provide distinctive information for
the relevant class. The EGT does not contain features which are not distinct for
the specific class and could appear in other classes as well. Figure 2 depicts an
example of the EGT for a synthetic heartbeat as recorded by a ECG.

The P-Wave (first peak of the heartbeat waveform) is one of the distinctive
factors to distinguish a sinus rhythm from atrial fibrillation. The patient is suf-
fering from atrial fibrillation if the P-Wave is missing. Therefore, for the sinus
rhythm class, we place the EGT on all time steps containing the P-Wave (see
Fig. 2a). For the atrial fibrillation class, we define the EGT on all time steps
where the P-Wave could be located if it would be present (see Fig. 2b).

We constructed our own synthetic time series datasets with distinct features,
indicative for a specific class, to benchmark the explanation methods on con-
trolled cases. Furthermore, this approach allowed us to identify strengths and
limitations of the methods for time series data with different characteristics.

In order to benchmark an explanation, we defined Scores that allow to
perform a quantitative comparison. First, the generated explanation A =
{A0, ..., AN} needs to be normalized to a total area of 1, for N time steps.

Āi =
Ai∑
i Ai

(1)

We then propose two new metrics, which in combination characterize the
generated explanation under investigation: the Fidelity Score and the False Neg-
ative Rate.

– Fidelity Score: This metric measures how much of the explanation appears
inside the actual “true” explanation. We define it as the total sum of all attri-
bution values (area under the curve) inside the EGT. Due to the normalized
total area, this corresponds to the precision metric in classification.
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SFidelity =
∑

i∈Z
Āi where i ∈ Z if EGTi = 1 (2)

– False Negative Rate (FNR): This metric measures the completeness vs.
narrowness of an explanation. We define it as the number of non-relevant
pixels or time steps inside the EGT divided by the total number of pixels or
time steps in the span of the EGT. Since the explanation values are almost
never exactly zero, we use a threshold ε below which we consider the pixel or
time step to have no relevance. This threshold is chosen to be equal to the
explanation values of a perfectly distributed explanation (given a signal of
length N): ε = 1/N .

SFNR =

∑
i∈Z 1{Āi≤ε}
∑

i EGTi
where i ∈ Z if EGTi = 1 (3)
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Fig. 3. Synthetic datasets (blue) generated for the benchmarking of the explanation
methods: (a) Dataset Noise, (b) Background Dataset Noise, (c) Background Wide
Dataset Noise, (d) Background Dataset Inverse; Example Explanations (green) for
the Background Dataset Noise as resulted from: (e) Epsilon-LRP, (f) Grad-CAM++.
EGT’s are depicted in red for all cases. (Color figure online)
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4 Experiments and Results

To evaluate our explanation score and the explanation methods, four synthetic
datasets were designed and a Neural Network architecture was defined. Detailed
results of the experiments are reported and discussed in this chapter. Each chosen
explanation method was tested and analyzed. Finally, we show the limitations of
existing explanation methods when applied to a carefully constructed dataset.

4.1 Datasets

The four synthetic datasets consist of uni-variate time series signals, with the
following characteristics:

1. All generated datasets only contain clearly separable classes (1000 samples
per class). There is no ambiguity about the class membership.

2. Each class must be characterizable by features present in a specific region of
the signal. We call these regions Explanation Ground Truth (EGT) and use
them to qualitatively measure how close an attribution map is to the “true”
explanation.

The following four synthetic datasets were used for the experiments (see Fig. 3):

1. Dataset Noise: This dataset places a square wave signal within a class
specific region. Class one is represented by a negative square wave, while class
two is represented by a positive one. Additionally, white noise was added to
increase the classification problem complexity.

2. Background Dataset Noise: This dataset augments the Dataset Noise by
adding a constant background signal which forces the network to not only
recognize a non zero region, but also to identify the class specific signal on
top of another constant signal.

3. Background Wide Dataset Noise: This dataset considers two periods of
the Background Dataset Noise. In contrast to the Background Dataset, there
are two locations which simultaneously contain the class identifying signal,
testing the network’s ability to base its decision on multiple relevant regions.

4. Background Dataset Inverse: This dataset inverts the square wave such
that, in the relevant region, the signal goes from the background value to
zero. The explanation method is thus forced to cope with a zero signal where
the explanation value should be high. Thus, no noise was added.

4.2 Models

For our experiments, we use a LeNet [4] and VGG [15] inspired Convolutional
Neural Network (CNN): two convolutional layers and a MaxPooling layer make
up a block that is repeated three times. This is followed by a single fully con-
nected output layer.
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Fig. 4. Performance experiment results for three different datasets showing Grad-
CAM++ outperforming all other methods.

4.3 Explanation Method Experiments

In our experiments, we investigated how well each method performs on a net-
work that has been trained to perfect test accuracy. We then focused on the
investigation of the convergence of explanation methods during training of the
neural network.

Comparison of Converged Explanation Methods: In these experiments,
we investigated the quality of the generated explanations using the proposed
metrics. For every explanation we calculated the Fidelity Score and the FNR.
As shown in Fig. 4, we observed that we can split the methods into four groups:

1. Gradient shows the lowest Fidelity Score and the highest FNR. This method
clearly performs worse than any of the other explanation algorithms.

2. Gradient*Input, Integrated Gradients and Epsilon-LRP form a group
of similarly performing methods. We attribute this to the shared property of
these three methods: multiplication with the input resulting in attribution
maps that are largely dominated by the input signal. Additionally, Ancona
et al. [21] show that Gradient*Input and Epsilon-LRP are equivalent if the
model under investigation exclusively uses ReLU activation functions. We
therefore chose Epsilon-LRP as a representative for this group of the remain-
ing experiments (ε = 10−7).

3. Grad-CAM and Grad-CAM++ build a third group, outperforming all
other methods in terms of Fidelity-Score and FNR. The improved Grad-
CAM++ method slightly outperformed the original Grad-CAM algorithm.
We used Grad-CAM++ as a representative of this group for the remaining
experiments.

4. Occlusion performed slightly better than the second group but still worse
than the third.

We note that Grad-CAM, Grad-CAM++ and Occlusion perform well, but
show some artefacts, which result from the up-sampling of the embedding’s attri-
bution map, which in general is not aligned with changes in the signal. Therefore,
we observe an attribution value that is an average of the attributions of either
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Fig. 5. Behavior of explanation methods during the training process of the Network.
All methods converge to a steady state during training.

side of the input signal change. Figure 3e and 3f show two samples of gener-
ated explanations. We observe that methods which generate explanations using
a partial derivative with respect to the input produce more noisy explanations
as opposed to the Grad-CAM++ method. In summary, Grad-CAM++ outper-
formed all other methods with regard to Fidelity Score and FNR.
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Fig. 6. Performance collapse of existing explanation methods on the inverse dataset
due to an explicit or implicit multiplication with the input which is close to zero within
the EGT.

Comparison of Explanation Methods During Training. In the next step,
we investigated the evolution of explanations and their convergence during train-
ing of the Neural Network. We evaluated the performance of the explanation
methods at different stages during training.

Figure 5 shows the change of the Fidelity Score and FNR during training.
All methods improved the Fidelity Score and the FNR while the network was
learning. Once the network converges to a state where the accuracy does not
improve anymore (approximately after 20 epochs), the metrics converge to a
steady state.

4.4 Limitations of Explanation Methods

We observed that the nature of the dataset influences the performance of the
explanation methods. This is especially pronounced for methods that make use
of a multiplication with the input signal. We push this to an extreme by con-
structing a dataset (Background Dataset Inverse 3(d)) for which these methods
completely fail: The samples are constructed in such a way that the input signal
is close to zero for time steps which belong to the EGT.

Figure 6 depicts the performance drop of methods that contain a multiplica-
tion with the input (i.e. Gradient*Input, Integrated Gradients, Epsilon-LRP) for
the “Background Dataset Inverse” (Fig. 3(d)). The occlusion method also failed,
since it replaces the original values of the input with zeros - replacing zeros with
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zeros does not perturb the input, thus no change in output probabilities can be
measured. Surprisingly, Grad-CAM also failed, even though it had been supe-
rior to the other methods. We explain this as follows: Grad-CAM incorporates a
multiplication with the embedding to calculate the attribution for each spatial
location. If all of the inputs in the receptive field of a convolutional layer are
zero, the output map of that layer will also be zero. This propagates through
the network to the embedding. Therefore, Grad-CAM also indirectly contains
a multiplication with zero, which makes the method fail similarly to the other
algorithms.

5 Conclusion

We introduced two quantitative metrics to benchmark a Neural Network expla-
nation quality: the Fidelity Score and the False Negative Rate. The Fidelity
Score measures the overlap of the generated explanation with the Explanation
Ground Truth while the False Negative Rate measures the number of time steps
of the Explanation Ground Truth not covered by the generated explanation.

Using these two metrics in combination with our specifically crafted syn-
thetic datasets, we investigated the performance of various explanation methods
and concluded that the Grad-CAM++ algorithm outperforms all other methods
(Saliency, Gradient*Input, Integrated Gradient, Layer Relevance Propagation
and Occlusion).

Additionally, we demonstrated that existing explanation methods suffer from
a performance collapse for input data with values close to zero within the Expla-
nation Ground Truth.

5.1 Future Work

In Future work, the benchmarked explainability methods should be applied to
actual ECG data. Additionally, the explanation methods described in this work
produce explanations that indicate which locations of the input are responsible
for the network’s decision. However, location is not the only factor that influ-
ences a classification decision. There can also be frequency factors - the structure
of an object - that are essential for discerning two classes. Existing explanation
methods are not capable of communicating a reliance on frequency components
(structural features). To fully explain a network’s decision, an explanation algo-
rithm should be developed that can visualize dependencies on a combination of
location and frequency.
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Abstract. The classification of skin lesion images is known to be biased
by artifacts of the surrounding skin, but it is still not clear to what
extent masking out healthy skin pixels influences classification perfor-
mances, and why. To better understand this phenomenon, we apply dif-
ferent strategies of image masking (rectangular masks, circular masks,
full masking, and image cropping) to three datasets of skin lesion images
(ISIC2016, ISIC2018, and MedNode). We train CNN-based classifiers,
provide performance metrics through a 10-fold cross-validation, and anal-
yse the behaviour of Grad-CAM saliency maps through an automated
visual inspection. Our experiments show that cropping is the best strat-
egy to maintain classification performance and to significantly reduce
training times as well. Our analysis through visual inspection shows that
CNNs have the tendency to focus on pixels of healthy skin when no malig-
nant features can be identified. This suggests that CNNs have the ten-
dency of “eagerly” looking for pixel areas to justify a classification choice,
potentially leading to biased discriminators. To mitigate this effect, and
to standardize image preprocessing, we suggest to crop images during
dataset construction or before the learning step.

Keywords: Skin cancer · Convolutional neural networks · Masking ·
Reducing bias · AI standardization roadmap · Preprocessing

1 Introduction

As reported in the 2019 USA cancer statistics, skin diseases have been steadily
increasing over the years, whereby skin cancer represents 7% of the total cancer
cases. As of 2019, there were 104,350 expected cases of skin cancer, of which
96,480 were melanomas. The importance of promptly detecting skin cancer is
evident from the high percentage of survival (92%) after surgery resulting from
early detection [19].
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The classification of skin lesions using computer vision algorithms has been
a subject of recent research [6,10,13]. One of the breakthroughs being the pub-
lication of Esteva et al. [8], reporting a better performance than expert derma-
tologists using transfer learning on a deep convolutional neural network (CNN).
The network was first trained on a set of about one million diverse images, and
then fine-tuned with more than 100k images of skin lesions.

Given the promising progress of computer vision algorithms in aiding skin
lesion classification, the ISIC1 (International Skin Imaging Collaboration) hosts
a competition for the automated analysis of skin lesions. In the years 2016 [12],
2017 [5], and 2018 [4], the challenge included three tasks: segmentation, attribute
extraction, and classification. These tasks replicate the procedure usually fol-
lowed by dermatologists: to identify the contour of the skin lesion, highlight
the areas in the lesion that suggest malignancy, and classify the specific type of
lesion.

To accomplish these tasks, the ISIC challenge provides a public dataset that
has grown from 900 images as of 2016 to more than 33,000 images for the 2020
edition. This is the largest publicly available dataset of dermoscopic images, and
is widely used by many researchers throughout the world.

Masking skin lesion images, i.e., using segmentation to remove the pixels
pertaining to the healthy skin and retaining the pixels belonging to the lesion,
is an image pre-processing technique that is supposed to help the classification
of skin lesions by removing unneeded, unwanted image artifacts.

In fact, Winkler et al. [23] found that the presence of gentian violet ink,
often used by dermatologists to mark the skin in proximity to suspicious lesions,
can disrupt the correct classification and lower the specificity of commercial DSS
(Diagnosis Support Systems). Moreover, recently, Bissoto et al. [2] found a strong
bias in the ISIC dataset; by completely removing 70% of the central part of the
images (hence removing the totality of pixels containing the skin lesions), the
CNN model was still able to reach 0.74 AUC (with respect to 0.88 AUC reached
with full images). This suggests a strong bias of the dataset at its borders.

To date, while there seem to be clear advantages of masking out the skin
surrounding the lesion area, it is not clear to what extent masking images influ-
ences (positively or negatively) the quality of classification (e.g., by removing
bias). And what are other consequences for the process of training classifiers?

In this paper, we present a further investigation on image masking by, first,
assessing the presence of biases at the dataset images’ borders, and, second,
comparing the classification performances when applying several types of masks.
Third, we analyse the bias patterns through a visual inspection of Grad-CAM
saliency maps [18]. This analysis employs four types of masks (see Fig. 1):

1. Rectangular Mask (RM) removes 30% of the image surface around the border.
This is a direct contrast to the masking utilized by Bissotto et al. [2] to show
the presence of bias at the borders and its influence on model performance.
With this masking type, we verify whether removing the border affects the
performance of a classifier.

1 https://www.isic-archive.com/.

https://www.isic-archive.com/
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2. Circular Mask (CM) draws a circle at the middle of images. Here, we evaluate
if removing the corners of the images and inspecting only its central part
retains model performance.

3. Full Mask (M) reveals only the lesions and a fraction of the surrounding skin.
It is used to reveal whether completely removing the skin surrounding a lesion
improves prediction performance.

4. Finally, a rectangular cropping (CR) of the image is applied, which removes
the image borders and increases the quantity of information passed to the
classifiers.

In the rest of this paper, we conduct experiments on three popular skin lesion
image datasets (ISIC 2016, ISIC 2018, and MedNode), each evaluated through
a 10-fold cross validation approach to reduce biases by randomization. All the
maskings were implemented using a dedicated U-NET (de-)convolutional neural
network, following the procedure described in [14].

With the standardization roadmap for artificial intelligence, a comprehensive
analysis of the current state of and need for international standards and spec-
ifications has been published [22]. Data bias and the bias of classifiers is a key
factor. As a result of our experiments, we suggest to crop images during dataset
construction or before the learning step, towards a process to standardize image
preprocessing in CNN contexts.

Section 2 gives an overview of related work and on the importance of masking
to avoid biases. Section 3 describes the method used to train and test the data
material. Section 4 describes the experiments measuring the difference in per-
formances among different masking conditions. Section 5 reports on the analysis
of our results with the help of saliency extraction (visual explanation). Section 6
discusses the results, and Sect. 7 concludes the paper.

2 Related Work

The classification of skin lesions through the use of CNNs has increased in
popularity since the publication of Esteva et al. [8]. Their CNN-based model
matched the performance of experienced dermatologists. To this end, all perfor-
mant neural-network-based solutions for skin lesion classification are based on a
transfer learning approach [21]: a baseline deep CNN is pre-trained for example
on the ImageNet dataset [7], and the transfer-learning steps consists of substitut-
ing the final fully-connect layers of the network with a few randomly initialized
ones, then to continue training the model on skin lesion images. In our work, we
perform transfer learning using pre-trained versions of VGG16 [20].

Rather than focusing on benchmarks [10], our goal in this contribution to
investigate the change of performance between using plain images and segmented
or normalized ones for the classification task. To train our reference classifier,
we rely on three publicly available datasets: ISIC 2016 [12], ISIC 2018 [4], and
MedNode [9]. All of them were used to train several models, each on a number
masking methods, as later explained in Sect. 3.
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original RM CM (mask) M CR

Fig. 1. Masking examples, from left to right: the original full image (ISIC 0024307),
rectangular mask (RM), circular mask (CM), the segmentation mask, the segmented
image (M), the image cropped on the mask bounding box (CR).

Burdick et al. [3] performed a systematic study on the importance of masking
images used for training CNN models. They compared the performance of the
CNN model using the full images compared to applying the masks on several
levels: from fully masking out the surrounding skin to exposing some portion
of the skin surrounding the lesion. Tests show best results when only a limited
portion of the surrounding skin is kept for training. The hypothesis is that mask-
ing the healthy skin helps in classification while showing all the healthy skin in
the image “confuses” the network, that is, it becomes more probable that the
network learns image artefacts. Following the results in Burdick et al. [3], for
each image, we also extend the lesion mask from segmentation to 110% of its
original area, in order to expose a bit more of the surrounding skin areas during
training than the original mask shows.

Binary masking of an image defines a black/white area within it, whereas
white is associated with the pixels of interest, and black is associated with non-
interesting or the confounding part of the image to be discarded in subsequent
processing steps. This segmentation techniques have been significantly improved
by the use of deep learning models. Ronneberger et al. [17] first proposed the
application of the convolution-deconvolution network (U-Net) for medical image
segmentation. The U-Net architecture applies stacks of convolutional layers with
downsampling to extract latent image features and deconvolutional layers with
upsampling within the network. This method of segmentation has been very
successfully applied to medical image segmentation.

Variants of this model have shown to be very effective in the ISIC segmen-
tation challenge in the past, with a Jaccard index score of 0.765 and 0.802 in
the ISIC2017 and ISIC2018 editions, respectively, see [1,16]. In this paper, we
implement a transparent segmentation model to show the effects of masking in
melanoma images by using the approach described in [14] and using the data
provided for Task 1 of the ISIC 2018 challenge [4].

3 Method Overview

Figure 2 illustrates the method we follow to test the effectiveness of the different
masking conditions on prediction performance. The method is composed of three
phases: preparation of the segmentation model, masked images construction, and
training of the classification models. They are discussed in more detail in the
following.
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Fig. 2. Methodology overview. The top blocks depict the training of the segmentation
model. The middle blocks are related to the preparation of the masked images, and
the bottom blocks represents the training of the classification models.

3.1 Segmentation Model

We utilize the images from Task 1 of the ISIC 2018 to train a masking model
based on the U-Net architecture [17]. This dataset comprised of 2594 RGB skin
lesion images, and for each sample, the ground truth is a binary mask in the
same resolution as the input image.

Figure 3 shows the U-Net architecture together with a sample input and
output (binary mask). The architecture is composed of 9 convolution blocks,
where each of them is a pair of 2D same convolution with a kernel size of 3 ×
3 × 3. Downsamplig is the result of a max-pooling with size 2 × 2. Upsampling
is the result of a 2 × 2 transposed 2D same convolution. After each upsampling
step, the convolution is performed on the concatenation of the upsampling result
and the output of the downsampling with corresponding resolution. The initial
number of filters (32) doubles at each downsampling. For this work, we used an
input/output resolution of 160 × 160 pixels.

3.2 Masked Image Datasets

The segmentation model described above is used to extract masks for Melanoma
and Nevus images of the ISIC 2018 Task 3 [4], ISIC 2016 [12], and MedNode [9]
datasets. From ISIC 2018 Task 3, we selected only nevus (NV) and melanoma
(MEL) classes because these are the exactly the same classes which used as ground
truth for the masks in Task 1. After an initial visual inspection, we realized that
applying the mask prediction to any of the other 6 classes of the Task 3 dataset
often leads to erroneous results due to the very different nature of the lesions.
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Fig. 3. The U-Net architecture used for lesion segmentation. The input image is 3-
channel RGB, while the output image is 1-channel gray-scale with the same resolution.

In total we define five sets of pre-processed images: A (the full image, con-
taining all of the pixels), and the four types already described in the introduction
RM, CM, M, and CR. See Fig. 1.

The M and CR datasets are obtained through the composition between the
original images and the extracted masks. For the M dataset, the mask is first
scaled around its center by a factor of 1.1 to reveal a portion of the surrounding
skin (as suggested by [3]). The composition setting converts all pixels outside
the lesion mask to black. For the CR dataset, the mask is utilized to identify a
rectangular cropping region containing the lesions contour.

The CR datasets contains a few less samples than the others, because an ini-
tial inspection revealed that the masks of samples with a thin lesion–foreground
pixel variation result in very small (mostly inaccurate) lesion blobs. Hence, we
automatically filtered these defective images from our samples based on an auto-
mated comparison between the area of the masks and the total image size. Images
whose mask areas was less than 1

8 of the picture were discarded.

3.3 Binary Classifiers

For each of the 3 datasets and 5 masking conditions, we trained 10 binary classi-
fication models using a 10-fold splitting strategy. Each fold was composed using
10% of the dataset for testing and another random 10% for validation. While
splitting, we ensured to preserve the proportion between classes. In the rest of
this paper, we report the mean and the standard deviation among the 10 folds.

The performance of the binary classifiers in discriminating nevi from
melanomas are reported in terms of accuracy, specificity, sensitivity, and ROC
AUC (Receiver Operating Curve - Area Under the Curve) on the test set, where
the positive case is associated with the malignant melanoma.
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1 _________________________________________________________________
2 Layer (type) Output Shape Param #
3 =================================================================
4 input_1 (InputLayer) (None , 227, 227, 3) 0
5 _________________________________________________________________
6 block1_conv1 (Conv2D) (None , 227, 227, 64) 1792
7 _________________________________________________________________
8 block1_conv2 (Conv2D) (None , 227, 227, 64) 36928
9 _________________________________________________________________

10 block1_pool (MaxPooling2D) (None , 113, 113, 64) 0
11 _________________________________________________________________
12 [... 13 more layers ...]
13 _________________________________________________________________
14 block5_conv3 (Conv2D) (None , 14, 14, 512) 2359808
15 _________________________________________________________________
16 block5_pool (MaxPooling2D) (None , 7, 7, 512) 0
17 _________________________________________________________________
18 flatten (Flatten) (None , 25088) 0
19 _________________________________________________________________
20 fc1 (Dense) (None , 4096) 102764544
21 _________________________________________________________________
22 dropout_1 (Dropout) (None , 4096) 0
23 _________________________________________________________________
24 fc2 (Dense) (None , 4096) 16781312
25 _________________________________________________________________
26 dropout_2 (Dropout) (None , 4096) 0
27 _________________________________________________________________
28 predictions (Dense) (None , 3047) 12483559
29 =================================================================
30 Total params: 146 ,744 ,103
31 Trainable params: 146 ,744 ,103
32 Non -trainable params: 0
33 _________________________________________________________________

Listing 1.1. An excerpt of the VGG16 architecture used for the binary classification
task.

As already successfully employed in previous research (e.g., [8]), all of the
binary classifiers are based on the transfer learning approach [21] with CNNs.
The base CNN model is the VGG16 [20] architecture pre-trained on ImageNet
[11]. We then substituted the original three final fully connected layers with a
sequence of two fully connected layers, each followed by a dropout of 0.5, and
a final 2-class discrimination softmax layer. Listing 1.1 shows an excerpt of the
architecture.

Each model was trained for a maximum of 100 epochs and optimized for
accuracy. Input images were fed to the network with an 8× augmentation factor,
where each image was horizontally flipped and rotated by 0, 90, 180, and 270
degrees. To avoid the generation of black bands, images were rotated after scaling
to the CNN input resolution. Class imbalance was taken into account using a
compensation factor in the loss-function (parameter class weight in the fit
method of the Keras framework). For each model, we also report what epoch
returned the most accurate model.



264 F. Nunnari et al.

All training was performed on Linux workstations using our toolkit for Inter-
active Machine Learning (TIML)2, which uses the Keras3 (v2.2.4) framework
with Tensorflow4 (v1.13.1) as backend. Our reference Hardware is an 8-core
Intel 9th-gen i7 CPU with 64 GB RAM and an NVIDIA RTX Titan 24 GB
GPU.

4 Experiments

The following three sections report details on the analysis performed on the three
datasets: ISIC2016, MedNode, and ISIC2018. For each dataset, the metrics of
the binary classification are reported for each of the five masking conditions
described before: A, RM, CM, M, and CR. The analysis focuses on determining
a potential bias from the border of the images.

4.1 ISIC2018

Table 1 shows the distribution of the samples in the ISIC2018 dataset. Training a
full model (6256 samples, 100 epochs) takes about 9 h on our reference hardware.
Table 2 show the results of the tests.

Table 1. Distribution of the 7818 images from the ISIC2018 dataset.

conditions samples MEL NV train val test

A, RM, CM, M 7818 1113 (14.2%) 6705 (85.8%) 6256 781 781

CR 7645 1099 (14.3%) 6546 (85.9%) 6119 763 763

In order to measure the statistical significance of the metric among condi-
tions, we run a set of t-tests for independent samples between the no-mask con-
dition (A) against all the others. The results of the test are reported in Table 3.
The tests compare the results across the 10 folds (N = 10). The table reports the
compared conditions, followed by the different statistic metrics, their absolute
and relative difference, and the significance code for the p-value (+: p < .1; *:
p < .05; **: p < .01; ***: p < 0.001).

When applying a rectangular mask, the results show a significant reduction
on almost all metrics. For example, accuracy drops by 2.99%. Also circular masks
and full masking decrease accuracy by 2.85% and 4.37%, respectively. Only crop-
ping shows some improvewd accuracy values. Although not significant, we report
a positive tendency of 4.73% increase in sensitivity.

This results suggest that there is indeed a bias in the surrounding skin; the
other explanation is that exposing a large portion of the surrounding skin helps
2 https://github.com/DFKI-Interactive-Machine-Learning/TIML.
3 https://keras.io/.
4 https://www.tensorflow.org/.

https://github.com/DFKI-Interactive-Machine-Learning/TIML
https://keras.io/
https://www.tensorflow.org/


The Effects of Masking in Melanoma Image Classification with CNNs 265

Table 2. Results of the test on the ISIC2018 dataset.

set testacc testspec testsens testauc epch

A .909 (.014) .933 (.017) .763 (.062) .948 (.010) 90.3 (6.7)

RM .882 (.011) .899 (.018) .781 (.059) .937 (.011) 41.8 (3.9)

CM .883 (.017) .899 (.021) .789 (.066) .938 (.012) 41.5 (6.1)

M .870 (.013) .884 (.014) .785 (.034) .930 (.011) 39.0 (10.7)

CR .911 (.014) .929 (.017) .799 (.057) .955 (.010) 40.7 (7.8)

Table 3. Significant differences between masking conditions in the ISIC2018 dataset.

Condition Metric Difference Diff. pct Signif.

A vs RM ACC −0.027 −2.99% ***

A vs RM SPEC −0.035 −3.73% ***

A vs RM AUC −0.011 −1.21% *

A vs RM EPOCH −48.5 −53.71% ***

A vs CM ACC −0.026 −2.85% **

A vs CM AUC −0.1 −1.11% +

A vs CM EPOCH −48.8 −54.04% ***

A vs M ACC −0.04 −4.37% ***

A vs M SPEC −0.05 −5.33% ***

A vs M AUC −0.018 −1.90% **

A vs M EPOCH −51.3 −56.81% ***

A vs CR SENS 0.036 4.73% 0.2152

A vs CR EPOCH −49.6 −54.93% ***

in the classification to some extent. For the cropping condition, such deficiency
might be compensated by higher quantity of information passed to the neural
network. In fact, when the image is cropped, almost all of the 277 × 277 pixels
of the image are covered by the lesion–hence increasing the quantity of detail
attributed to the skin.

A common aspect across all our comparisons is the significant and consistent
drop (more than 50%) of the number of epochs needed to train the model.

4.2 MedNode

Table 4 shows the distribution of the samples in the MedNode dataset. Training
one fold of the full dataset (ca. 136 samples, 100 epochs) takes about 15 minutes
on our reference hardware. Table 5 show the results.

In comparison to A, we observed a considerable decrease in the performance
when applying a rectangular mask, e.g., accuracy −0.053 (−6.58%), and mild
loss in performance for all other conditions. However, none of the differences is
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Table 4. Distribution of the 170 images of the MedNode dataset.

conditions samples MEL NV train val test

A, RM, CM, M 170 70 (41.2%) 100 (58.8%) 136 17 17

CR 169 70 (41.4%) 99 (58.6%) 137 16 16

Table 5. Results of the test on the MedNode dataset.

set testacc testspec testsens testauc epch

A .806 (.123) .870 (.100) .714 (.181) .869 (.131) 34.1 (12.9)

RM .753 (.094) .800 (.118) .686 (.189) .860 (.073) 36.1 (23.5)

CM .818 (.140) .830 (.135) .800 (.194) .890 (.114) 40.5 (21.3)

M .806 (.112) .830 (.090) .771 (.214) .880 (.111) 43.6 (24.7)

CR .768 (.144) .820 (.087) .700 (.328) .843 (.120) 55.9 (32.2)

significant according to our t-tests, likely because of the high variance in the
measurements among the 10 folds from the limited number of samples.

4.3 ISIC 2016

Table 6 shows the distribution of the samples in the ISIC2016 dataset. Training
one fold of the full dataset (722 samples, 100 epochs) takes about 1 h 30 m on
our reference hardware. Table 7 show the results.

Table 6. Distribution of the 900 images of the ISIC2016 dataset. In the right columns,
the mean of the number of samples among the 10 folds used for validation (standard
deviation is ≤0.6).

conditions samples MEL NV train val test

A, RM, CM, M 900 173 (19.2%) 727 (80.8%) 722 89 89

CR 884 173 (19.6%) 711 (80.4%) 708 88 88

The only statistically significant difference stems from the specificity between
the A and CM conditions (−0.026, −2.92%, p < 0.1). We can also observe a
noticeable drop in sensitivity between A and CR conditions (−0,092, −22.18%),
but it is not significant for our tests (p = 0.2352).

As for the MedNode dataset, the reduced number of samples led to a high
variance during the cross-fold validation, making it thus impossible to validate
the differences among conditions using our statistical method.



The Effects of Masking in Melanoma Image Classification with CNNs 267

Table 7. Results of the on the ISIC2016 dataset.

set testacc testspec testsens testauc epch

A .806 (.028) .898 (.031) .416 (.163) .773 (.074) 45.1 (38.4)

RM .794 (.037) .878 (.069) .445 (.146) .756 (.063) 49.2 (36.2)

CM .788 (.026) .872 (.030) .432 (.151) .790 (.059) 52.7 (26.9)

M .784 (.035) .866 (.065) .445 (.181) .774 (.066) 57.7 (28.7)

CR .805 (.044) .923 (.045) .324 (.155) .755 (.078) 46.3 (35.1)

5 Visual Inspection

In order to visually explain the characteristics that influenced model predic-
tions, we leveraged the Grad-CAM method [18] to generate the saliency maps
of attention. Figure 4 shows a nevus and a melanoma images from ISIC2018
and their relative attention maps on all masking conditions. All the saliency
maps were extracted from the last convolutional layer of the VGG16 architec-
ture (block5 conv3).

Two contrasting patterns emerge, thus giving additional details about the
model’s discrimination strategy. The saliency is higher on the skin lesion pixels
(focused towards the center) for images correctly predicted as melanoma. In
contrast, the saliency is higher on the skin pixels (towards the borders) in pictures
correctly classified as nevus. The opposite happens when images are wrongly
classified, with the attention for wrongly classified nevus towards the center and
the attention for wrongly classified melanomas towards the border.

It is worth pointing out that the attention of the CNN moves towards the
border regardless of the kind of masking strategy used. To systematically quan-
tify this behaviour, we recorded the occurrence of this pattern in relation to the
classification results, categorizing images according to whether the salient pixels
are accumulated towards the (B)order or towards the (C) enter. The discrimina-
tion was made by a processing routine in terms of a pixel-level analysis. When
the activation value for the pixel along the image borders (left, top, bottom,
right) is very low (<0.1), then the image saliency map is considered as centered.
For opposite cases, that is, when high activation values are present along the
borders, an image-centred square patch covering 1

16 th of the total image size is
evaluated to confirm border images. As a result, when the patch is dominated by
low activation values, a border case is recorded for the image, while a centered
image is recorded for the opposite characteristic.

Table 8 shows the results on the ISIC2018 dataset. The observed behaviour
(saliency is at the center for correct melanoma and wrong nevus, otherwise at
the border) is prominent in the A, CM, and RM masking conditions, but less
prominent for the M and CR conditions.
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Fig. 4. ISIC 2018: colored saliency maps (aka heatmaps) extracted by Grad-CAM
from the last convolution layer of the VGG16 model. The heatmaps are relative to
one melanoma (top) and one nevus (bottom), both correctly classified. For each of
the five masking conditions we show both the input image and its composition with
the heatmap. Notice that for melanoma the heatmaps concentrate towards the center,
while for nevus the model focuses on the border, regardless of the mask type.



The Effects of Masking in Melanoma Image Classification with CNNs 269

Table 8. Results of the automatized saliency map inspection: counts of images with
saliency map concentration at (B) order or (C), divided for Melanoma (MEL) and
Nevus (NV), further split in (C)orrectly or (W)rongly classified.

ISIC 2018

Mask Concentration MEL-C MEL-W NV-C NV-W

A B 54 258 5430 20

C 795 6 830 425

CM B 0 235 5974 0

C 878 54 0 677

RM B 0 244 6024 0

C 869 0 2 679

M B 163 219 2986 71

C 711 20 2938 710

CR B 325 185 3599 162

C 554 36 2483 302

6 Discussion

Here we summarize our observations on the use of the different masking condi-
tions arising from the classification results and from the visual inspections. As
the low number of samples does not lead to statistically significant results for the
MedNode and ISIC2016 datasets, we focus our analyses on the results obtained
on the ISIC 2018 dataset.

From the classification results (Sect. 4.1) it is clear that masking the images
affects the overall performance, likely because this eliminates any biases of the
image borders. Moreover, we can notice a slight improvement in the sensitivity
for images cropped to contain their lesions (hence, somehow zoomed), likely
because of a increased quantity of details passed to the CNN model. We thus
propose CR as the preferred condition which takes away potential biases in the
data and forces the model to learn more from salient details (lesion area). We
expect the models trained on CR to generalize better to unseen data and deviate
from the learning process of models with high bias in data. This way, we can
potentially improve data quality and reduce overfitting, although this means a
slight drop in performance on the closed world test set.

It is worth noting that with all masking conditions, the number of epochs
needed to converge to the best predicting model, decreases by over 50%. This
happens not only when blackening out significant parts of the image, thus pro-
viding the CNN with flat-valued uniform color areas, but also when zooming
into the image and maximizing the number of pixels belonging to lesions. This
suggest that the network is indeed learning faster thanks to the high quantity
of meaningful, focused, information.
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From the visual inspection of the saliency maps (Sect. 5), it appears that
when images are classified as melanoma, the network concentrates most of its
“attention” in the central part of the image, as a human practitioner would
do. In contrast, when images are classified as nevus, the saliency map is more
spread towards the border. This last phenomenon is less regular in the M and CR
conditions, where most of the healthy skin is absent, suggesting that the CNN
(when classifiyng a nevus) tends to activate on the small areas of skin around
the lesion. Notably, this happens regardless of the correctness of the prediction,
showing that in fact the CNN learned to search for the features characterizing
the positive case (melanoma) within the lesion area.

However, it seems that in absence of visual elements characterizing a
melanoma, the network has the tendency to find a “reason” for the compet-
ing class (nevus) elsewhere in the image, either on blacked-out areas, which are
surely non-discriminating, but also on healthy skin areas. This might in part
question and refute the conclusions of Burdick et al. [3], who stated that extend-
ing the masks of a lesion allows us to take advantage of the contrast between the
lesioned and healthy skin. Differently, it seems that CNNs really need an “area
of alternative attention”, which we could define as the portions of the image on
which the CNN needs to concentrates the activation of its layers when predicting
a negative case (nevus).

7 Conclusions

In this paper, we presented a comprehensive investigation on the effect of mask-
ing on the binary classification of skin lesions between nevus and melanoma
towards international standards for image preprocessing to reduce bias and
increase data quality.

We performed our analyses on three datasets (ISIC 2018, MedNode, and
ISIC 2016) using a 10-fold cross validation procedure. Then, in order to discard
shallow conclusions due to the intrinsic randomness of CNN training procedures,
we considered only those differences that have been confirmed as significant
through statistical tests.

Inspired by the work of Bisotto et al. [2], who discovered the possibility of
classifying skin lesions still after covering 70% of the internal surface of the
images, we verified that prediction power indeed diminishes when removing 30%
around the border, thus confirming the existence of some kind of bias.

Further experiments, with other types of masking, confirmed the bias at the
border, and also showed that the best non-biased performances can be achieved
through automated cropping.

The cropping condition also leads to 50% shorter training times, suggesting
that the presence of healthy skin is noisy information that slows the convergence
of the training process.

Finally, an automated analysis of the saliency maps extracted from the CNN
classifier via Grad-CAM led us to formulate an hypothesis of area of alternative
attention. In fact, the analysis leads to the following informal argument: while



The Effects of Masking in Melanoma Image Classification with CNNs 271

it is true that one should better maximize the area of the image with visual
features able to identify a (positive) class, at the same time some of the pixels
should be left free for the network to “justify” the complementary (negative)
class. Future work, with more fine-tuned masking along the border of the lesion,
and on other datasets, should be conducted to confirm this hypothesis.

In fact, it is worth noticing that most of the research in image classification
has been conducted on databases of images where the objects of interests occupy
only a relatively small portion of an image. Consequently, visual explanation
methods like GradCAM [18] and RISE [15] have been developed and tested
with the goal of identifying the relatively small subset of pixels justifying a
classification. Differently, in the domain of skin cancer detection very often the
majority of the pixels of an image are associated to a single entity, and this case
has been so far received very little attention.

In general, the outcome of this investigation supports the idea that the cre-
ation of systems for skin lesion classification should go through a cropping pro-
cess, either automated or manual, for both the creation of training data and
for samples classification. This would both increase prediction performances (at
least on sensitivity) and would significantly reduce the computational power
needed for training—towards a process to standardize image preprocessing in
CNN contexts [22].
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Abstract. The automated in vitro segmentation of axonal phase-
contrast images to allow axonal tracing over time is highly desirable
to understand axonal biology in the context of health and disease. While
deep learning has become a powerful tool in biomedical image analysis
for semantic segmentation tasks, segmentation performance has been
limited so far since axons are long and thin objects that are sensi-
tive to under- and/or over-segmentation. We here propose the use of
an ensemble-based convolutional neural network (CNN) framework for
the segmentation of axons on phase-contrast microscopic images. The
mean ResNet-50 ensemble performed better than the max u-net ensem-
ble on the axon segmentation task. We estimated an upper limit for
the expected improvement using an oracle-machine. Additionally, we
introduced a soft version of the Dice coefficient that describes the visu-
ally perceived quality of axon segmentation better than the standard
Dice. Importantly, the mean ResNet-50 ensemble reached the perfor-
mance level of human experts. Taken together, we developed a CNN
to robustly segment axons in phase-contrast microscopy that will foster
further investigations of axonal biology in health and disease.

Keywords: Axon segmentation · Microscopy · Ensembles · ResNet-50

1 Introduction

Axons are wire-like extensions from neuronal cell bodies that ensure the commu-
nication to neighboring neurons by building connections among them. Axonal
morphology is highly complex, with varying lengths, diameters, and degrees of
arborization [3] and studying the role of axons in health and disease is a major
emphasis of current research [10].
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In cell culture, individual axonal structures can be followed over longer peri-
ods of time by time-lapse microscopy. The respective data analysis, however,
requires dedicated software tools that allow for the precise identification of axonal
structures. At the same time, these software tools need to cope with the large
amount of data available from imaging where manual inspection is time consum-
ing, prone to error, and impractical [1,12].

Over the past two decades, many software packages such as NeuronMetrics,
NeuriteIQ, NeuriteTracer, and NeurphologyJ have been developed to trace
axons [7,12]. All of these tools are able to trace axonal structures only semi-
automatically and require high-contrast images that are only available in fluo-
rescence and not in phase-contrast microscopy. Apart from bleaching issues, fluo-
rescence imaging requires either fixation of the cells, which limits the observation
to a single time point, or genetic modulation, which is less efficient in primary
cells and may alter the behavior of the cells. Another tool, NeuronGrowth, is
able to analyze live-cell imaging recordings, but also needs user intervention to
select the starting point of the axonal structures to be traced [5]. Thus, auto-
mated software that allows for axonal tracing over time, based on phase-contrast
images – as it is well-established for in vitro cell tracking [16] – is highly desirable
and will greatly enhance our understanding of axonal function and morphology
in health and disease.

Many approaches to automatically segment axons are based on traditional
image processing algorithms, including global thresholding, Laplacian or Gaus-
sian filters, and morphological operations [13]. These approaches come with a
number of drawbacks: i) They are static and do not react robustly to changes in
data collection or the hardware used, ii) most of these procedures are adapted to
a particular application scenario and it is unlikely that they generalize well across
a wide range of experimental setups and questions, and iii) they are therefore
semi-autonomous, i.e., user interaction is required before the data can be col-
lected and automatically evaluated. As axons display morphological variability,
the complete segmentation of such an object is a highly demanding task.

In recent years, deep learning has expanded horizons in the field of
image processing, ranging from image classification [8] to more intricate tasks
such as detection or semantic segmentation with fully convolutional networks
(FCNs) [11]. Especially in biomedical image analysis, a very common FCN archi-
tecture for segmentation tasks is the u-net [17]. In many cases, the segmentation
performance of a network can be further increased using transfer learning [9],
i.e., employing deeper architectures such as ResNets [6] that were previously
trained on a demanding dataset, e.g., Imagenet [4].

There are few studies that have applied CNNs on axon segmentation in
2D [14,15,18] and 3D [20]. However, to our knowledge, there are no works on
2D phase-contrast microscopy images that enable the automated segmentation
of axonal morphology over time.

In this work, we used CNNs to robustly and reliably segment axons on mark-
erfree phase-contrast microscopic images in an automated manner. We employed
an ensemble approach to improve the quality of the output and estimated an
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upper limit for the expected improvement using an oracle-machine. We intro-
duced a soft version of the Dice coefficient that describes the visually perceived
quality of axon segmentation better than the standard Dice. Finally, we demon-
strate that our best model already reaches the performance level of human
experts.

2 Data and Methods

Data. We used microfluidic devices to separate neuronal cell bodies from their
axons [2]. We isolated murine primary cortical neurons from embryonic day
14.5 from Crl:CD1 (ICR) Swiss outbred mice (Charles River) as previously
described [21] (under the prospective contingent animal license number 2017-
07-06 Zille approved by the Schleswig-Holstein Ministry for Energy Transition,
Agriculture, Environment, Nature and Digitalization). We seeded the cells to one
compartment of the device, which extended their axons through the microgrooves
to the other compartment due to the volume difference of the two compartments.
We captured grayscale images of the axonal compartment using an Olympus IX2
inverted microscope from which 42 images were manually labeled using GIMP
v.2.10.14 (GNU Image Manipulation Program, RRID:SCR 003182). Each image
had a size of 1200 × 1000 pixels on average. Figure 1 shows an example of the
data.

Fig. 1. Original image and binary label image: The left picture shows a pre-processed
section of the original data, i.e., microscopic images of axons. The corresponding (man-
ually drawn) binary mask can be seen on the right image, which denotes all pixels that
are part of an axon in the left image.

Network Training and Ensembles. We compared two architectures: a stan-
dard u-net [17] and a u-net with a ResNet-50 encoder [6]. For each architecture,
we trained 8 networks on 10 splits. For each split, we separated the dataset into
31 training images and tested on 11 images. Both architectures were trained for
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90 epochs with stochastic gradient descent, a momentum of 0.9 and a learning
rate of 0.1. Every 30 epochs, we decreased the learning rate by a factor of 10.
We used a batch size of 4. For data augmentation, images were cropped ran-
domly with an input size of 512 × 512 pixels. Different input sizes did not alter
the performance and the size of 512 pixels exceeds the receptive field of both
networks.

By training 8 networks per split, we generated 8 output maps for each test
image. We compared the pixel-wise mean with the pixel-wise maximum and the
best single model of each split (mean-ensemble, max-ensemble, best model).

Oracle Machine. To investigate the impact of different ensemble strategies, we
used an oracle-machine. The max-ensemble achieved a much better recall than
the mean-ensemble (0.900 versus 0.799 for ResNet-50). Therefore, we defined a
max-mean-oracle for the two critical cases when both, max- and mean-ensemble
disagreed in their decision: If the max-ensemble recognized an axon but the
mean-ensemble did not (false negatives for the mean-ensemble) and - vice versa
- if the max-ensemble was wrong (false positives for the mean-ensemble). As
the oracle-machine can perfectly distinguish both cases, we used this oracle to
estimate an upper limit on how good the performance would be when combining
the information from both ensemble strategies.

ε-Dice Score. We based our evaluation on the standard Dice score. But even if
the prediction-label pairs looked reasonable on visual inspection, the Dice score
can be low. To test whether areas were just missed or simply not detected at all,
we used a soft version of the Dice score, called ε-Dice: If a ground truth pixel
was within the proximity of a false positive prediction (i.e., in a neighborhood
of ε pixels), we defined this false positive as an over-segmented true positive.
Thus, axon predictions that were slightly thicker than the ground truth mask
were not counted as errors. False negatives were defined as under-segmented true
positives, if there was another true positive in the given neighborhood.

Note that the ε-Dice requires explicit knowledge of the ground truth and
thus did not improve the accuracy of the segmentation in any way. Rather, we
used this measure to estimate how much of the error occurred in the imme-
diate vicinity of the axons or whether there were completely undetected axon
segments.

Comparison to Human Performance. To further test our assumption that
a perfect Dice score is almost impossible to accomplish on this dataset, we com-
pared it to the human performance level on this task using 7 images labeled by
three experts, which we compared to each other and to our best model.

3 Results

The Mean ResNet-50 Ensemble Outperformed the U-Net Ensemble
and All Single Networks. To identify the best performing CNN, we compared
the mean- and max-ensembles as well as the best single models of each split for
both u-net and ResNet-50 (see Table 1). We observed that the ResNet-50 was
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superior to the u-net with the mean ResNet-50 giving the best results (Dice =
0.827). To estimate the influence of the pixels for which max- and mean-ensemble
would vote differently, we defined an oracle-ensemble, which would always make
the right decision in these cases. The oracle improved the Dice score for both
u-net and ResNet-50 by about 20 %.

Table 1. Dice score for 10 train and test splits with the u-net and ResNet-50. bestmodel
was the best of the 8 single networks. max always used the highest output from the
ensemble. mean was rated based on the average ensemble rating. With different ratings
of max and mean, oracle always made the correct decision. The results are shown for
u-net and ResNet-50 using normal Dice score (ε = 0) and a soft Dice (ε = 1).

Method u-net ResNet-50 (ε = 0) ResNet-50 (ε = 1)

mean std mean std mean std

bestmodel 0.757 0.042 0.815 0.023 0.939 0.018

max 0.784 0.034 0.805 0.029 0.927 0.028

mean 0.754 0.046 0.827 0.021 0.942 0.016

oracle 0.852 0.028 0.887 0.014 0.965 0.011

Segmentation Errors Occurred on the Object Border. Comparing
the original mask (ground truth) and the resulting masks from the different
approaches, the potential errors occurred at the edges of the object. Upon closer
examination, we revealed that the critical pixels were located more or less ran-
domly at the object edges (Fig. 2) and it was hardly ever the case that a whole
section of an axon was not segmented (Fig. 3). We did not find any further
scheme that was able to distinguish over- or under-segmentation here.

The ε-Dice Described Best the Visually Perceived Quality of Axon
Segmentation. To test whether the observed segmentation error can be
attributed to cumulative individual errors, we used the ε-Dice score that also
includes the surrounding pixels in the evaluation. We observed that the ε-Dice
exceeded 90% for all examined approaches, with the ResNet-50 mean-ensemble
achieving the best result with 94% (Table 1). Also noteworthy is the reduc-
tion in the distance between our ensemble approach and the oracle to only 2%,
indicating that many of the critical pixels were located close to uncritical axon
structures.

The Recall-Precision Trade-Off Can Be Altered by Linear Classifica-
tion. We observed that the max-ensemble achieved a better recall than the mean-
ensemble (0.900 vs. 0.799). Therefore, we investigated if combining the max-
recall with the mean resulted in a better segmentation. When both approaches
made the same decision, the performance did not improve. However, two cases are
critical (Fig. 4): If the max-ensemble recognized an axon but the mean-ensemble
did not (mean false negatives, case a) and - vice versa - if the max-ensemble is
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Fig. 2. Comparison of the mean- and max-ensemble and the oracle (best viewed in
color). Black pixels show true positives correctly segmented by all approaches. Green
and red pixels show false positives and false negatives of all approaches, respectively.
The critical pixels that can further improve the result are shown in blue. Here, the
max-ensemble yielded a true positive prediction, while the mean-ensemble predicted a
false negative. However, the output of the max-ensemble increased the number of false
positives (pink pixels). (Color figure online)

wrong (max false positives, case b). The distribution for case a) indicated that
for many pixels, the max score was close to 1.0, the mean score was close to
0.5 but did not exceed it. In case b), however, the mean score was rather small
(< 0.2) and the max-score was only slightly above 0.5.

Thus, we defined a 2-dimensional linear classifier that re-determined the out-
put of the ensemble for those relevant pixels (Fig. 4). We evaluated the results
for three linear classifiers, where each separating line was orthogonal to the man-
ually determined line spanned between p0 = (0.05, 0.5)T and p1 = (0.5, 1.0)T .
The three classifiers had the same normal vector n = (p1 − p0)/‖p1 − p0‖2,
but differed in their bias value b ∈ {0.3, 0.5, 0.7}. Note that b can be seen as
the percentage of the distance between p0 and p1. The decision is reached as
follows:

f(x) =

{
1 if (x − p0)(n) ≥ b

0 else
. (1)

The first two approaches achieved a better recall than the mean-ensemble, but
since the precision decreased similarly, the overall Dice-score did not change
(Fig. 5). The third approach was almost identical to the mean-ensemble, and
again, the quality of the segmentation did not improve.
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Fig. 3. Ground truth and error images of the different approaches and metrics: In
all images except the ground truth image, a black pixel indicates a deviation from
the label. The two images on the bottom middle and bottom right show the counted
error pixels of the mean-ensemble when the ε-Dice score was used. Although, the max-
ensemble increased the recall, a strong over-segmentation decreased the precision. The
oracle further detected the few axon pixels that were correctly predicted by the max-
ensemble but were neglected by the mean-ensemble. The ε-Dice images show that the
majority of errors was due to over- and under-segmentation and only scarcely, small
isolated regions were misclassified.

The Mean ResNet-50 Ensemble Reached Human Expert Performance.
Finally, in addition to the expert that labeled the entire data set, we asked two
more experts to re-label some of the images used here to examine the variance in
their ratings (Table 2). Thus, we had the opinions of three experts for evaluation
and the test segmentation results of a ResNet-50 ensemble. These experts among
themselves hardly achieved a better result than the mean ResNet-50 ensemble.
On the contrary, none of the other experts came as close to the masks of the
author of the training data (Expert 02) as the CNN ensemble (Dice = 0.793,
0.766, and 0.833 for 01, 03, and mean ResNet-50 vs. 02). This highlights that
our approach can sensitively and specifically segment axons on phase-contrast
microscopic images at a level similar to manual labeling by experts and is thus
suitable for further application.
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(a) mean false negatives (b) max false positives

Fig. 4. Distribution of critical pixels on mean- and max-ensembles (darker shades indi-
cating a higher point density). All pixels that were rated differently by the mean- and
max-ensemble were considered critical. There were two cases: (a) the pixels that the
mean-ensemble did not recognize as axons (mean false negatives) and (b) those that
the max-ensemble incorrectly recognized as axons (max false positive).

Fig. 5. Scores for different line values. For three different configurations, a linear clas-
sifier for the critical points was chosen and decided after its voting. The critical data
was mixed and consequently, either recall or precision improved for each of the settings,
but without improving the Dice score significantly.

Table 2. Dice score comparison of different human annotators and our best approach
(mean ResNet-50). Note that 02 annotated the training data for the network.

Name 01 02 03 mean ResNet-50

01 1.000 ± 0.000 0.793 ± 0.016 0.773 ± 0.035 0.794 ± 0.026

02 0.793 ± 0.016 1.000 ± 0.000 0.766 ± 0.040 0.833 ± 0.033

03 0.773 ± 0.035 0.766 ± 0.040 1.000 ± 0.000 0.750 ± 0.043

mean ResNet-50 0.794 ± 0.026 0.833 ± 0.033 0.75 ± 0.043 1.000 ± 0.000
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4 Discussion

We here present an ensemble-based CNN framework for the automatic segmen-
tation of axons on phase-contrast microscopic images. We demonstrate that the
ResNet-50 is superior to the u-net and that an ensemble can further improve
the results. Importantly, our approach reaches the performance level of human
experts.

As axons are thin and highly branched objects, segmentation is difficult and
thus we needed to use a very deep network (ResNet-50) to reach the best perfor-
mance. The ResNet-50 outperformed the u-net because i) ImageNet pretraining
leads to better features and a better starting point in parameter space, ii.) deeper
architectures generalize better, and iii) residual connections enable the learning
of identity mappings [6,11].

Interestingly, even with an ensemble of multiple ResNets, we achieved a Dice
score of about only 83%, despite the fact that visually inspected results looked
very convincing. While the Dice score is a widely used measure to evaluate
segmentation results, here, the cumulative errors in the very close proximity of
the axons induced a strong bias. Therefore, we proposed the soft Dice score and
were able to demonstrate that 94% of the ground truth within a 1-pixel radius
were actually recognized by our ensemble, which we think better reflects the
visually perceived performance.

We further demonstrated with the help of an oracle what perfect ensem-
ble recombination can achieve. It would theoretically be possible to reach a
Dice score of almost 89% by combining max- and mean-ensemble. However, in
practice and as demonstrated by the linear regression model, this seems almost
impossible to achieve as we did not identify an approach to combine the knowl-
edge of both ensembles in a usable way. Finally, a comparison with human
experts revealed that our ResNet-50 ensemble can very well reach human per-
formance level in the task of axon segmentation.

The dataset used here is relatively small due to the remarkably high labeling
cost for these delicate structures, but the size is comparable to similar datasets
such as the IOSTAR retina vessel segmentation set [19]. This further strength-
ens the contribution of our approach as using a network with a performance
comparable to an expert can aid in labeling more images.

Taken together, the proposed ensemble CNN allows for the automated
axon segmentation at a near-human performance level that makes the high-
throughput analysis of the markerfree in vitro detection of axonal morphology,
growth, and degeneration in health and disease a feasible task.
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Abstract. Many research articles used Machine Learning (ML) for early
detection of Alzheimer’s Disease (AD) especially based on Magnetic Res-
onance Imaging (MRI). Most ML algorithms depend on a large num-
ber of hyperparameters. Those hyperparameters have a strong influence
on the model performance and thus choosing good hyperparameters is
important in ML. In this article, Bayesian Optimization (BO) was used
to time-efficiently find good hyperparameters for Random Forest (RF)
and eXtreme Gradient Boosting (XGBoost) models, which are based on
four and seven hyperparameters and promise good classification results.
Those models are applied to distinguish if mild cognitive impaired (MCI)
subjects from the Alzheimer’s disease neuroimaging initiative (ADNI)
dataset will prospectively convert to AD. The results showed compa-
rable cross-validation (CV) classification accuracies for models trained
using BO and grid-search, whereas BO has been less time-consuming.
The initial combinations for BO were set using Latin Hypercube Design
(LHD) and via Random Initialization (RI). Furthermore, many models
trained using BO achieved better classification results for the indepen-
dent test dataset than the model based on the grid-search. The best
model achieved an accuracy of 73.43% for the independent test dataset.
This model was an XGBoost model trained with BO and RI.

Keywords: Bayesian optimization · Computer-aided diagnosis · Early
Alzheimer’s Disease diagnosis · eXtreme Gradient Boosting · Random
Forests

1 Introduction

Alzheimer’s Disease (AD) is a neurodegenerative disease [2] and the most fre-
quent cause of dementia. The early identification of subjects at risk to develop
AD is important to recruit and monitor subjects for therapy studies, as there cur-
rently is no causal therapy [2]. Subjects with Mild Cognitive Impairment (MCI)
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have a higher risk to develop AD [8] than cognitively normal (CN) controls.
Thus, the prediction of future conversion to AD is important for MCI subjects.
There have been many articles that used Machine Learning (ML) to improve the
identification of those subjects. Most of them use models with a large number
of hyperparameters.

Finding good hyperparameters is one of the key problems in ML. Hyperpa-
rameter tuning can improve model performance and prevent overfitting. For
real-world problems, like the prediction of AD, good hyperparameters often
depend on the data [34, p. 305]. Thus, parameter tuning is a complex and time-
consuming task. One possibility to find good hyperparameters are optimization
methods, which have the advantage to time-efficiently find robust parameters.

1.1 Prior Work

Many articles used ML models with a large number of hyperparameters to
predict different AD stages. Some approaches used the default hyperparame-
ters [4,20] to reduce the complexity of this problem. However, neither good
performance nor high generalizability can be guaranteed. Other articles used
grid-search [5,19,27], which is time-consuming for models with many hyperpa-
rameters. Some articles had no documentation about the hyperparameters at all.
Only a few approaches used methods for time-efficient and stable hyperparame-
ter optimization. In [18], Bayesian Optimization (BO) with Random Initializa-
tion (RI) was used to predict MCI conversion within three years. The hyper-
parameters of different ML models like Support Vector Machines (SVMs) [12]
and Random Forests (RFs) [6] were tuned for 353 subjects with stable MCI
(sMCI) and 193 with progressive MCI (pMCI) from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) [29] cohort. The feature set included sociode-
mographic and clinical characteristics, neuropsychological tests, and the baseline
(BL) MCI type. The final ensemble model achieved an Area Under the Receiver
Operating Characteristic (AUROC) of 0.88.

BO with RI has been also used in [28] to optimize the hyperparameters of a
Deep Neural Network (DNN). Two datasets, which are available online (https://
github.com/ChihyunPark/DNN for ADprediction. Last accessed 8 Aug 2020),
were used. The first one included large-scale gene expressions from 257 CN and
439 AD subjects and the second one contained Deoxyribonucleic Acid (DNA)
methylation data of 68 CN and 74 AD subjects. The final model achieved an
accuracy of 82.3% for the test dataset.

[32] used BO with RI to tune the parameters of a radial-basis SVM and
classifies 17 subjects with Subjective Cognitive Impairment (SCI) vs. 53 MCI
vs. 50 AD. The dataset was not publicly available. The feature set included
neuropsychological tests and the results of a reaction test. Accuracies of 80.6%
and 65.0% were reached for MCI vs. AD and SCI vs. MCI vs. AD classification.

This article aims to efficiently tune the parameters of RFs and eXtreme
Gradient Boosting (XGBoost) models for early AD diagnosis. In addition to the
previous articles, a Latin Hypercube Design (LHD) [25] was used to initialize
the BO. The results of this method were compared to a RI, a grid-search and

https://github.com/ChihyunPark/DNN_for_ADprediction
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Table 1. ADNI demographics at BL. p-values are calculated using Mann-Whitney-U-
test for continuous variables and χ2-test for frequency variables.

sMCI pMCI Σ p-value

n 401 319 720

Age in years (mean ± sd) 73.2 ± 7.5 74.0 ± 7.1 73.5 ± 7.3 0.1156

Gender (proportion of
males)

59.6% 59.9% 59.7% 1.000

MMSE (mean ± sd) 27.8 ± 1.8 27.0 ± 1.7 27.4 ± 1.8 <0.0001

CDR (mean ± sd) 0.5 ± 0.0 0.5 ± 0.0 0.5 ± 0.0 0.2634

ApoEε4 (count of ApoEε4
alleles): 0

56.9% 34.2% 46.8% <0.0001

ApoEε4: 1 33.9% 49.5% 40.8%

ApoEε4: 2 9.2% 16.3% 12.4%

Time to final diagnosis in
months (mean ± sd)

47.1 ± 32.4 30.6 ± 24.7 39.8 ± 30.4 <0.0001

the default parameters. Section 2 presents the dataset and methods. The ML
workflow is described in Sect. 3. The experimental results are demonstrated in
Section 4 and finally discussed in Sect. 5.

2 Materials and Methods

2.1 Dataset

Data used in the preparation of this article were obtained from the ADNI [29]
cohort. 720 subjects of the study phases ADNI-1 (354 subjects), ADNIGO
(92 subjects) and ADNI-2 (274 subjects) were selected. All subjects had a BL
diagnosis of MCI and were classified as sMCI if all subsequent diagnoses cor-
respond to MCI and as pMCI if they converted to AD at any visit and AD
was the diagnosis for all subsequent visits. Subjects who reverted to CN or
MCI were excluded from this study. The demographic data are summarized in
Table 1. The time between the BL and the final diagnosis ranged between 4.7
and 156.2 months.

For each subject, one fully preprocessed [21] BL 1.5 T or 3 T T1-weighted
Magnetization-Prepared Rapid Gradient-Echo (MP-RAGE) Magnetic Reso-
nance Imaging (MRI) scan was selected. FreeSurfer v6.0 [15] extracted volumes
of 34 cortical Regions of Interest (ROIs) per hemisphere, defined in Desikan-
Killiany atlas [13], 34 subcortical ROIs [16], and the estimated Total Intracranial
Volume (eTIV). The resulting 103 MRI features were normalized by eTIV [33].

Two different datasets were used for model training. Dataset 1 included 106
features - MRI-features, age, gender and count of Apolipoprotein E ε4 (ApoEε4)
alleles. Dataset 2 added Mini-Mental State Examination (MMSE), a logical long-
term (LDEL) and short-term memory test (LIMM) resulting in 109 features.
Clinical Dementia Rating (CDR) was excluded due to small variance.
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2.2 eXtreme Gradient Boosting

Boosting algorithms assume that the iterative combination of multiple weak clas-
sifiers leads to a strong classifier. Gradient boosting [17] meets this assumption
by training the first classifier to learn the independent variable and the subse-
quent classifiers to learn the gradients of the previous classifiers. The gradients
l(yi, ŷ

(t−1)
i ) are defined as the deviation between the additive classification ŷ

(t−1)
i

of the previous iteration (t− 1) and the correct classification yi of observation i.
The loss function L(t) at iteration t using n observations corresponds to Eq. 1.
Here, ft represents the weak classifier at iteration t and Ω(ft) is a regularization
term which controls the complexity of the classifier.

L(t) =
n∑

i=1

l
(
yi, ŷ

(t−1)
i + ft(xi)

)
+ Ω(ft) (1)

The additive combination of all weak classifiers fk determines the final classifi-
cation ŷi for observation i, as can be seen in Eq. 2.

ŷi =
K∑

k=1

fk(xi) (2)

eXtreme Gradient Boosting (XGBoost) [10] is an open-source software library
and an implementation of gradient boosting with a high focus on scalability, par-
allelization and distributed execution. XGBoost with Classification and regres-
sion trees (CARTs) [7] as weak classifier depends on seven hyperparameters,
summarized in Table 2. nrounds (n) determines the number of iterations in the
training process. The learning rate eta (η) controls the influence of each weak
classifier on the final model and thus prevents overfitting. The hyperparameter
gamma (γ) determines the minimum loss reduction required to specialize leaf
nodes. High values lead to preserving models. max depth (dmax) specifies the
maximum depth of a tree. Deep models are more complex and prone to over-
fitting. The parameter min child weights (wmin) sets the minimum number of
weighted observations in a child node. High values for min child weights achieve
more conservative models. subsample (s) sets the ratio of training instances
randomly selected in each iteration. Small values prevent overfitting. colsam-
ple bytree (c) is the ratio of randomly subsampled features in each iteration.
Small values lead to robust models, but values near zero lead to poor results.

2.3 Random Forest

Random Forests (RFs) [6] are based on multiple CARTs and the majority voting
is used to robustly predict an unknown observation. Table 3 summarizes the
hyperparameters for the RF. ntree sets the number of trees in the RF. Training
only a few trees often leads to less accurate results. For each tree, a bootstrap
sample [14] of the dataset is generated and for each split, a subset of mtry (mtry)
features are randomly chosen to train the models. The higher mtry, the higher
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Table 2. XGBoost parameters and intervals. The grid is a grid-search of length five.

Name Minimum Maximum Grid

nrounds (n) 1 500 {1.00, 125.00, 250.00, 375.00, 500.00}
eta (η) 0 1 {0.00, 0.25, 0.50, 0.75, 1.00}
gamma (γ) 0 20 {0.00, 5.00, 10.00, 15.00, 20.00}
max depth (dmax) 1 20 {1.00, 5.00, 10.00, 15.00, 20.00}
min child weights (wmin) 1 30 {1.00, 8.25, 15.50, 22.75, 30.00}
subsample (s) 0 1 {0.00, 0.25, 0.50, 0.75, 1.00}
colsample bytree (c) 0 1 {0.00, 0.25, 0.50, 0.75, 1.00}

Table 3. RF parameters and intervals. The grid refers to a grid-search of length five.

Name Minimum Maximum Grid

mtry (for dataset 1 ) (mtry) 2 109 {2, 28, 55, 82, 109}
mtry (for dataset 2 ) (mtry) 2 112 {2, 29, 57, 84, 112}
ntree (ntree) 250 1250 {250, 500, 750, 1000, 1250}
nodesize (smin) 1 20 {1, 5, 10, 15, 20}
maxnodes (ndmax) 50 100 {50, 62, 75, 87, 100}

is the risk of overfitting. nodesize (smin) sets the minimum size of terminal
nodes for each tree. The smaller nodesize, the less robust the trained models are.
Hyperparameter maxnodes (ndmax) specifies the maximum number of terminal
nodes for each tree. Trees with many terminal nodes tend to overfit the dataset.

2.4 Latin Hypercube Design

Latin hypercube design (LHD) [25] is a method to generate a nearly random
sample based on a multi-dimensional distribution. The objective is to select p
samples from a q-dimensional space. To generate an LHD each dimension is
split into p equidistant intervals. One value is randomly selected per interval,
resulting in p parameters for each dimension. The parameters of the individual
dimensions are randomly merged to p samples with q dimensions. LHD ensures
complete coverage of the range for each variable.

2.5 Bayesian Optimization

Bayesian Optimization (BO) [26] is a global optimization method for black-box
functions. In this research, hyperparameter tuning has been considered as the
optimization of a black-box function. The model performance was maximized
dependently on the hyperparameters. First, a set of initial parameter combina-
tions were arranged. In this article, LHD and RI were used for this purpose. The
models were evaluated for each combination to estimate their performance. A
Gaussian Process (GP) was fitted to model the relationship between parame-
ter combinations and model performances. This GP was optimized to find the
next promising parameter combination. The optimization considered exploration
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and exploitation using an acquisition function, which depends on the expected
model performance μ̂Θ and the covariance Σ̂Θ at parameter combination Θ. The
covariance Σ̂Θ was smaller the closer previously examined parameter combina-
tions were. In this work, the upper confidence bounds (UCB) [1,22], given in
Eq. 3, was used as the acquisition function. The parameter κ determines, the
proportion between exploitation and exploration. For higher values of κ, explo-
ration is preferred, whereas lower values favour exploitation.

UCB(Θ) = μ̂Θ + κ · Σ̂Θ (3)

The performance of the ML model was evaluated using the new parame-
ter combination and added to the GP model. This process was repeated until
previously determined criteria, e.g. a maximum number of iterations, were met.

3 Machine Learning Workflow

In this article, an ML workflow was implemented, using the programming lan-
guage R v3.5.3 [30], to distinguish sMCI and pMCI subjects. Figure 1 gives an
overview of the workflow. Subject selection and image processing are described
in Sect. 2.1. The subjects of each diagnosis group were randomly split into a
training and an independent test dataset. The test dataset contained 20% of the
original dataset and the remaining 80% were used to train the model and tune
the hyperparameters. LHD, implemented using the R package SPOT v2.0.3 [3],
and RI were used to generate ten initial parameter combinations for the BO.
After training the initial BO model, promising parameter combinations were
successively determined and evaluated. 25 parameter combinations were gen-
erated by BO to tune the hyperparameters of RF and XGBoost models. BO,
XGBoost and RF were implemented using the R packages rBayesianOptimiza-
tion v1.1.0 [35], xgboost v0.82.1 [11] and randomForest v4.6-14 [24]. 10 × 10-
fold Cross-Validation (CV) [31] was used as a resampling strategy and was
implemented using the R package caret v6.0-82 [23], by splitting the training
dataset into ten distinct folds. Ten iterations were performed with a different
fold used as validation dataset in each iteration and the remaining nine folds
were used to train the model. This procedure was repeated ten times, whereas
the data was shuffled and stratified in each repetition. CV-accuracy was used as
the metric for BO. The best parameters were selected to train the final model.
The preprocessing, nested in the tuning workflow, included centering, scaling and
median imputation. Synthetic Minority Over-sampling Technique (SMOTE) [9]
compensated class imbalances during the parameter tuning. The final model was
evaluated for the independent test dataset.

As a comparison, a grid-search was implemented using the R package caret
v6.0-82 [23]. The grid contained the cartesian product with five values per param-
eter, which results in 57 = 78125 XGBoost and 54 = 525 RF combinations.
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Fig. 1. Machine learning workflow.

4 Results

In the experiments, BO has been applied to optimize four hyperparameters of
an RF classifier (Sect. 4.1) and seven hyperparameters of an XGBoost model
(Sect. 4.2). This optimization has been demonstrated on two previously described
AD datasets. Dataset 1 included volumetric MRI features, demographics, and
ApoEε4, and dataset 2 added cognitive test results to dataset 1.

The experiments, that used BO, included ten initial parameter combinations
and 25 combinations during optimization, resulting in 35 evaluations. The grid-
search models used five values per hyperparameter m, resulting in 5m and thus
54 = 625 RF and 57 = 78125 XGBoost grid combinations. Thus, the number
of grid-search evaluations increased exponentially with the number of hyperpa-
rameters, while the number of evaluations was constant for BO. BO was applied
using five different values for the parameter κ (κ ∈ {0.5, 1.0, 2.0, 5.0, 10.0}).

4.1 Bayesian Optimization for Random Forest Classifiers

Dataset 1. Table 4 summarizes the RF results for the different hyperparameter
tuning methods on dataset 1. The best CV-results were 69.76% and achieved
using BO with RI and κ = 2.0. The grid-search model performed 0.30% worse
than the best model. The default parameter model reached the worst accuracy of
68.20%. The LHD BO models obtained CV-accuracies between those values. BO
with RI outperformed the LHD initialization for this dataset and CV-results.

The best accuracy for the independent test dataset was 67.83%, achieved by
the grid-search and the BO model with LHD initialization and κ = 2.0. All LHD
BO models except the model with κ = 2.0 selected the same hyperparameters
and thus obtained equal results. The worst accuracy for the independent test set
was 62.94%, reached by the BO model with RI and κ = 5.0. The performances
for the independent test dataset differed by 4.89% between the tuning methods.

The boxplots in Fig. 2 show the relations between grid-search parameters and
the mean CV-accuracies. The best performances for the hyperparameter mtry
were obtained for a value of 28. Consistently, all BO models selected mtry values
between 25 and 35. Increasing values of ntree led to better model performances.
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Table 4. Classification results and RF hyperparameters achieved for dataset 1. Com-
parison of default parameters, grid-search and BO with RI and LHD initialization for
parameter tuning. The best results are highlighted in bold.

Hyperparameter
optimization

mtry ntree smin ndmax CV-accuracy
(mean ± sd)
in %

Test
accuracy
in %

Default parameters 10 500 1 max 68.20 ± 6.47 65.73

Grid-search 28 1000 15 50 69.46 ± 6.53 67.83

BO RI κ = 0.5 25 1107 8 50 69.26 ± 6.30 66.43

BO RI κ = 1.0 30 615 8 50 69.28 ± 6.34 67.13

BO RI κ = 2.0 35 464 1 56 69.76 ± 6.35 65.73

BO RI κ = 5.0 30 1216 1 50 69.28 ± 6.54 62.94

BO RI κ = 10.0 33 647 3 81 69.10 ± 6.48 67.13

BO LHD κ ∈
{0.5, 1.0, 5.0, 10.0}

27 808 16 96 68.79 ± 5.99 65.73

BO LHD κ = 2.0 29 1250 3 68 68.96 ± 6.16 67.83

Fig. 2. Boxplots summarizing the mean CV-accuracies for RF grid-search hyperpa-
rameters and dataset 1.

A slight decrease was detected on the mean CV-accuracy for increasing values
of nodesize. The hyperparameter maxnodes obtained better results for a value
of 50 and the performance decreased for higher values. The observations were
mainly reflected in the BO model with LHD initialization and κ = 2.0 and all
RI models except for κ = 10.0. The other models selected deviating parameters.

Dataset 2. Dataset 2 supplemented cognitive test results to dataset 1. How-
ever, the experiments executed on the datasets do not differ and the results are
summarized in Table 5. CV-results of the RF models trained on dataset 2 were
between 70.01%, achieved by the default parameter model and 70.68% and thus
differ by 0.67%. The BO model with LHD initialization and κ = 2.0 obtained the
best results. The CV-results on dataset 2 outperformed the results for dataset 1.
The grid-search model reached a CV-accuracy of 70.61%.

The results for the independent test dataset were similar to the CV-results.
The worst result of 67.13% for the independent test dataset was achieved for
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Table 5. Classification results and RF hyperparameters achieved for dataset 2. Com-
parison of default parameters, grid-search and BO with RI and LHD initialization for
parameter tuning. The best results are highlighted in bold.

Hyperparameter
optimization

mtry ntree smin ndmax CV-accuracy
(mean ± sd)
in %

Test accuracy
in %

Default parameters 10 500 1 max 70.01 ± 6.41 69.23

Grid-search 29 1000 10 100 70.61 ± 6.53 69.93

BO RI κ = 0.5 11 959 9 60 70.52 ± 5.93 69.23

BO RI κ = 1.0 21 1250 16 72 70.61 ± 5.78 70.63

BO RI κ = 2.0 13 756 5 74 70.42 ± 6.10 69.23

BO RI κ = 5.0 18 1250 1 95 70.42 ± 5.91 69.23

BO RI κ = 10.0 39 1250 1 100 70.19 ± 6.13 71.33

BO LHD κ = 0.5 13 1250 16 92 70.48 ± 5.92 69.23

BO LHD κ = 1.0 16 757 20 62 70.23 ± 5.80 68.53

BO LHD κ = 2.0 20 1250 11 85 70.68 ± 6.01 67.13

BO LHD κ = 5.0 16 808 16 96 70.21 ± 6.32 67.83

BO LHD κ = 10.0 23 1250 1 82 70.49 ± 6.02 71.33

Fig. 3. Boxplots summarizing the mean CV-accuracies for RF grid-search hyperpa-
rameters and dataset 2.

the BO model with LHD initialization and κ = 2.0. This model achieved the
best CV-results. The best accuracy for the independent test dataset of 71.33%
has been reached for the BO models with κ = 10.0 and both LHD and RI. The
grid-search model reached an accuracy of 69.93%.

The boxplots in Fig. 3 illustrate the mean CV-accuracies depending on the
grid-search hyperparameters. The hyperparameters mtry and ntree showed sim-
ilar relations as those observed for dataset 1. All BOs, except the model with RI
and κ = 10.0, selected values between 11 and 23 for the mtry parameter. BO
preferred high values for ntree. nodesize showed slightly worse results for a value
of 20 in the boxplots, however, BO with LHD initialization and κ = 1.0 selected
this value. maxnodes showed slightly increasing results for higher values. All BO
models selected values higher than 62.
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Table 6. Classification results and XGBoost hyperparameters for dataset 1. Using
default parameters, grid-search and BO with RI and LHD initialization for parameter
tuning. CV-accuracies are given as mean ± sd. The best results are highlighted in bold.

Hyperparameter

optimization

n dmax η γ c wmin s CV-accuracy

in %

Test

accuracy in

%

Default parameters 100 6 0.300 0.000 1.000 1.000 1.000 65.29 ± 6.81 68.53

Grid-search 250 20 0.250 10.000 0.750 1.000 1.000 66.64 ± 6.46 60.84

BO RI κ = 0.5 490 7 0.020 10.263 0.190 2.580 0.924 66.26 ± 5.56 64.34

BO RI κ = 1.0 484 16 0.186 7.477 0.071 2.847 0.363 64.55 ± 5.67 62.24

BO RI κ = 2.0 483 14 0.095 19.642 0.283 17.813 0.200 66.44 ± 5.68 65.03

BO RI κ = 5.0 110 20 0.163 1.526 0.525 1.000 0.612 66.09 ± 5.69 71.33

BO RI κ = 10.0 500 20 0.200 0.000 0.439 1.000 0.935 65.57 ± 5.60 73.43

BO LHD κ = 0.5 149 6 0.010 11.364 0.781 8.062 0.817 66.59 ± 5.24 60.84

BO LHD κ = 1.0 452 2 0.085 20.000 1.000 1.000 1.000 66.75 ± 4.97 63.64

BO LHD κ = 2.0 426 1 0.120 0.371 0.349 17.080 0.746 65.14 ± 5.80 67.83

BO LHD κ = 5.0 50 1 0.171 20.000 0.994 19.490 0.654 66.54 ± 5.05 60.14

BO LHD κ = 10.0 193 1 0.045 0.000 1.000 29.822 1.000 66.66 ± 5.38 64.34

4.2 Bayesian Optimization for XGBoost Classifiers

Dataset 1. Table 6 summarizes the XGBoost results for dataset 1. Seven hyper-
parameters were tuned in these experiments. All models achieved similar CV-
accuracies. The best CV-accuracy was 66.75% for the BO with LHD initialization
and κ = 1.0. The worst CV-accuracy of 64.55% was reached by the same model
but RI. The grid-search CV-accuracy was 66.64%.

The best result of 73.43% for the independent test dataset was achieved using
BO with RI and κ = 10.0. The accuracy for the independent test set exceeds the
mean CV-accuracy of this model which was 65.57%. The XGBoost results for
the independent test dataset differed more than the RF results. The grid-search
model achieved a worse performance of 60.84% for the independent test dataset.
The BO model with κ = 5.0 reached the worst accuracy of 60.14%.

The boxplots in Fig. 4 summarize the relations between the grid-search hyper-
parameters and the mean CV-accuracies. All 28125 observations with a value of
0.00 for eta or subsample were excluded because a learning rate of 0.00 means
that there is no learning effect and a subsampling of 0.00% led to a model train-
ing without any subjects. All excluded results achieved mean CV-accuracies less
than 45.00%, which would distort the interpretability of the figure. All boxplots
had a large number of outliers below the box. Small values for eta were associated
with better results. Consistently, all BO models selected values between 0.010
and 0.200. The minimum value of 0.000 for hyperparameters gamma and col-
sample bytree and 1 for nrounds, showed stronger variations in the results than
the remaining values. Using only one boosting iteration led to worse results.
Small differences were detected between using 125 and 500 boosting iterations.
The BO selected values between 50 and 500 for this parameter.
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Fig. 4. Boxplots summarizing the mean CV-accuracies for XGBoost grid-search hyper-
parameters and dataset 1. All combinations with eta or subsample = 0.00 were
excluded.

Fig. 5. Boxplots summarizing the mean CV-accuracies for XGBoost grid-search hyper-
parameters and dataset 2. All combinations with eta or subsample=0.00 were excluded.

Dataset 2. Table 7 shows the results achieved by training an XGBoost model
with dataset 2. The achieved CV-accuracies exceed the results of dataset 1. The
best CV-accuracy was 69.14% ± 5.48%, reached by the BO model with RI and
κ = 1.0. The grid-search model achieved a CV-accuracy of 68.95% ± 6.25% and
the default parameter model a CV-accuracy of 68.08% ± 6.61%.

The results for the independent test dataset were between 65.03%, for the
BO with RI and κ = 2.0 and 71.33%, for the default parameter model and the
BO model with LHD initialiation and κ = 5.0. The grid-search model achieved
an accuracy of 69.93% for the independent test dataset.

The boxplots in Fig. 5 show the effects of the grid-search hyperparameters on
the mean CV-results. Consistently with Fig. 4, all examinations with an eta or
subsample value of 0.00 were excluded, as they represent random models. For the
parameter eta, small values performed better than large ones. This observation
is consistent with the BO parameter selection. The hyperparameters gamma,
colsample bytree and min child weight showed slightly better results the higher
the parameter values. BO showed no clear focus for these parameters. However,
all BO models with RI, except the model with κ = 5.0 selected values higher
than 0.929 for colsample bytree. The BO and the boxplots show, that using only
one boosting iteration has a negative effect on the mean CV-accuracy.
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Table 7. Classification results and XGBoost hyperparameters for dataset 2. Using
default parameters, grid-search and BO with RI and LHD initialization for parameter
tuning. CV-accuracies are given as mean ± sd. The best results are highlighted in bold.

Hyperparameter

optimization

n dmax η γ c wmin s CV-accuracy

in %

Test accuracy

in %

Default parameters 100 6 0.300 0.000 1.000 1.000 1.000 68.08 ± 6.61 71.33

Grid-search 250 20 0.250 20.000 0.250 30.000 0.250 68.95 ± 6.25 69.93

BO RI κ = 0.5 127 8 0.143 20.000 1.000 20.442 0.326 68.30 ± 5.42 67.83

BO RI κ = 1.0 359 14 0.146 3.037 1.000 30.000 0.174 69.14 ± 5.48 69.93

BO RI κ = 2.0 481 10 0.102 14.519 0.961 13.497 0.321 68.68 ± 5.53 65.03

BO RI κ = 5.0 418 3 0.134 14.849 0.280 23.008 0.316 68.20 ± 5.12 69.23

BO RI κ = 10.0 452 20 0.138 19.556 0.929 25.000 0.834 67.63 ± 5.55 65.73

BO LHD κ = 0.5 357 11 0.077 12.699 0.298 28.618 0.480 68.14 ± 5.32 70.63

BO LHD κ = 1.0 323 4 0.026 0.000 0.372 8.693 0.847 68.08 ± 6.04 69.23

BO LHD κ = 2.0 259 19 0.088 9.922 0.696 19.255 0.595 68.21 ± 5.92 67.83

BO LHD κ = 5.0 447 5 0.104 6.379 0.718 1.938 0.441 67.56 ± 5.95 71.33

BO LHD κ = 10.0 300 14 0.002 7.291 0.475 10.290 0.683 68.18 ± 6.03 66.43

5 Conclusions

In this article, BO has been used to time-efficiently find hyperparameters for
MCI-conversion prediction based on MRI volumetrics, demographics, ApoEε4
features and cognitive test results. As a comparison, a time-consuming grid-
search has been implemented. The XGBoost and RF models were evaluated using
10 × 10-fold-CV, a robust resampling method, and an additional evaluation for
an independent test dataset. The outcomes showed that BO was able to find
parameters which can keep up with the time-efficient grid-search and is thus
most interesting for models with many hyperparameters. Some tendencies for
good hyperparameter choices which were detected considering the grid-search
models can be also recognized for the BO parameter selection. Thus, BO offered
a trade-off between the time-efficiency and robust, reproducible models.

The approach was applied for two different AD datasets of the ADNI cohort.
Dataset 1 included MRI volumetric, demographic and ApoEε4 features and
dataset 2 additionally included BL cognitive test results. The results of the RF
models showed better accuracies for models trained on dataset 2. The best result
for the independent test dataset was achieved for dataset 1 and an XGBoost
model. The outcomes showed promising results for the models trained using BO
for hyperparameter optimization. For both datasets and both ML techniques,
the best CV-accuracies were achieved using BO. This observation could also be
confirmed for the independent test dataset except for the RF models trained on
dataset 1. In this case, BO and grid-search achieved the same accuracy. Compar-
ing CV-accuracies of the XGBoost and RF models, better results were achieved
by the RF models. The results for the independent test dataset showed a differ-
ent observation because two XGBoost models achieved outstanding results. No
major differences were detected between randomly initialized BO and BO with
LHD initialization. Some of the model errors for pMCI subjects can be traced
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back to a large distance in time between BL diagnosis and conversion diagno-
sis. For these subjects, a classifier depending on longitudinal input data might
be more expedient. Future studies should validate the results for different AD
cohorts. Both classifiers in this article were tree-based models. Thus, it should be
investigated in future research, how BO and LHD initialization works for differ-
ent ML models. The use of alternative optimization methods such as Sequential
Parameter Optimization (SPO) [3] might be another promising research app-
roach.
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Abstract. Coronary Artery heart Disease (CAD) is the leading cause of mortal-
ity in the world. It is a complex and multifactorial disease resulting in several
acute coronary syndromes and lead to death. In healthcare, an accurate clinical
decision support system (CDSS) for CAD prediction has become increasingly
important for making granted decisions at premature stage. Intensive research has
been conducted on improving classification performance using machine learning
techniques and metaheuristics algorithms. But most of these studies introduced
the “classic risk factors” for CAD diagnosis i.e., demographic and clinical data. In
this study, we present a novel CDSS based on ensemble learning for CAD predic-
tion and we emphasize on adding other medical markers i.e., therapy data, some
genetic polymorphisms along with classical factors. The new framework exploits
the potential of three base classifiers including Support Vector Machines, Naïve
Bayes and Decision Tree C4.5 to improve the prediction performance. Six exper-
imental data used to build the proposed framework: the first one is collected from
a Tunisian biotechnology center and the five other datasets from the University
of California at Irvine repository. The analysis of the results shows that the pro-
posed CDSS has the highest rate on classification accuracy, precision, recall and
F1-measure when compared with CSGA Bagging and Adaptive boosting on the
different datasets and proves that some medications and genetic polymorphisms
such as Antivitamin K, Dose Beta Blocker, Proton pump inhibitor, CYP2C19*17,
Clopidogrel active metabolite have an impact in CAD diagnosis.
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1 Introduction

According to the World health organization report of 2017 [1], Coronary heart disease
(CHD) represents the highest death rate among non-infectious diseases in the world.
Various forms of cardiovascular disease exist such as stroke, rheumatic fever/rheumatic
heart disease, high blood pressure, valvular heart disease and coronary heart disease
on which our paper is focused. A blood clot resulting in a heart attack is typically the
main cause of a sudden blockage of a coronary artery which leads to the reduction of
blood and oxygen supply to the heart and to the coronary artery disease (CAD) [2].
Moreover, the atherosclerotic plaque growth model combines information from genetic
and biological data of the patients. Therefore, it is essential to study the effect of certain
genetic polymorphisms in the genes of patients with biological markers for CAD diag-
nosis. To the best of our knowledge, previous studies have used mainly different factors
to diagnose CAD such as demographic, clinical, Electrocardiogram (ECG), symptoms
and physical examination features [3, 4, 5]. Only a few of studies utilized some genetic
polymorphisms in CAD diagnosis. Hence, it is still an active research in finding indica-
tors for CAD diagnosis. However, Various techniques are used in CAD diagnosis such as
ECG, Echocardiogram, Stress test, Cardiac catheterization and angiogram, Heart scan
[3, 5] etc. But unfortunately, all these methods are expensive, protracted, and invasive.
Moreover, the treatment cost for CAD is very expensive (estimated to US $ 14 billion
per year) in the USA [6]. Therefore, new alternatives based on data mining (artificial
neural networks, boosting, SVM) and soft computing (fuzzy logic, genetic algorithms)
have been proposed to overcome time complexity, high diagnosis and treatment costs
and adverse effects issues. Y. Niranjana Devi and S. Auto [7] used the decision tree
algorithm to select significant attributes and then extract crisp if-then rules to constitute
the fuzzy rule base for the fuzzy system. Finally, they applied genetic algorithm GA
to optimize the fuzzy membership function. The results showed the performance of the
system was significantly better than other systems. Next, Wiga Maulana Baihaqi et al.
[8] examined the combination of datamining techniques (C4.5, CART, and RIPPER)
and the fuzzy expert system to generate fuzzy rules to diagnose CAD. As a result, C4.5
and the fuzzy expert system outperforms studied classifiers with an accuracy of 81.82%.
A recent research carried out by Kathleen H, Miao et al. [9] proposed for CAD diag-
nosis. An advanced ensemble machine learning model based on adaptative boosting
(AdaBoost) algorithm was applied on four cardiac open datasets. The results indicated
that the proposed ensemble achieves accuracy of 80.14% for Cleveland data, 89.12% for
Hungarian data, 77.78% for Long beach data, and 96.72% for Switzerland data and out-
performs existing models. Further, A new diagnosis model for CAD was introduced by
N. Samadiani and S. Moameri [10]. The studied factors are extracted from SPECT heart
disease images. Then a feature selection step was performed using Cuckoo Search CS
andGeneticAlgorithmGA to find themost significant features for CADdiagnosis. Then,
the results are classified using the bagging classifier. The results of the proposed model
(77,19%) are significantly better than GA or CS with a bagging classifier. Additionally,
Kai Lei et al. [11] applied a weighted Naïve Bayes model on attribute relevancy for CAD
diagnosis. The studied risk factors incorporated in this study are CAD symptoms. The
improvedNaïve Bayesmodel outperforms standardNaïve Bayes because of the studying
of attributes relevance. While most of previous research yielded successful results for
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the diagnosis of CAD using single classifiers, ensemble classifiers also showed expected
excellent results in CAD classification [9]. Therefore, research on using ensemble model
for CAD diagnosis is still active. Even though several CDSS have been introduced for
CAD diagnosis, most of them have incorporated specific risk factors with the studied
population such as American, Indian, Indonesian, Chinese etc. But environmental fac-
tors, lifestyle, diet habits aren’t the same. On the other hand, it might be other factors that
may help to assess CAD disease in another community. The existing CDSSs are not able
to incorporate new risk factors. These limitations are handled in this research by taking
into consideration more heterogeneous factors (72 biomarkers) including four genetic
features such as CYP2C19*2, CYP2C19*17, CYP2C9*2 (rs1799853) and CYP2C9*3
(rs1057910) polymorphisms and some medications plus demographic and clinical fea-
tures to build a newCDSS for CAD diagnosis. The proposed framework aims to improve
the prediction accuracy. This paper is organized as follows: Sect. 2 introduces the tech-
niques used to build the proposed framework. Section 3 covers the experiment datasets,
finding and a discussion of the results. Finally, Sect. 4 concludes this paper.

2 Materials and Methods

2.1 Design of the Proposed CDSS

The proposed CDSS for CAD diagnosis is presented in the following flowchart given in
Fig. 1. It consists of three main phases detailed below: preprocessing, classification and
prediction and evaluation.

Fig. 1. General design of the proposed CDSS

2.2 Data Pre-processing Phase

A data preprocessing phase consists of three main steps: scale normalization, sampling,
and feature selection, detailed below:
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Normalization Using Min-Max Technique
Using data with different measurement units may have effect on the analysis and leads to
different results. For example, using meters to measure the height instead of inches will
lead to giving greater importance to the attributes with greater weight [12]. Therefore,
normalization represents an essential step in preprocessing in order to give all attributes
equal importance (weights). It aims to transform an original range of data to a new range.
Also, it may be helpful to maintain the large variation in prediction or forecasting [13].
Min-max technique is widely used in the literature and known as a very simple method
that provides a linear mapping of data from an unstructured range to new values of data.
It also insures keeping relationship among original data values [14, 15]. Normalization
is calculated using the following formula:

X ′ = X − Xmin

Xmax − Xmin
∗ (newmax − newmin) + newmin, (1)

where X
′
is the new value, Xmin is the minimum value and Xmax is the maximum

value in the attribute.
In the present study, the original data are mapping in the range [0, 1] (where newmin

= 0 and newmax = 1) and the simplified following formula is used:

X ′ = X − Xmin

Xmax − Xmin
, (2)

Sampling Using Smote Technique
Class imbalance ratio is high specifically in genomic dataset where the number of
instances from one class is higher than the other class. The class having the higher
number is called majority class, while the other one is known as minority class. Gen-
erally, classifiers are more sensitive to select majority class and less sensitive to detect
minority class. Therefore, it may lead to a biased classification output. Hence, a combina-
tion between a classification algorithm and a sampling technique becomes mandatory.
In this study, an oversampling technique known by synthetic minority oversampling
technique (SMOTE) [16] is selected to handle this issue while the studied datasets are
small. It has an ability to generate synthetically observations from the minority class
samples to over-sample the minority distribution by joining any/all the k minority class
nearest neighbors [17, 18]. It aims to balance a dataset with a binary target variable.
Figure 2 below explains the process of this technique.

Fast Correlation-Based Feature Selection
A multivariate subset search technique called fast correlation-based filter selection
(FCBF) [19] is used to select the subset of the most relevant and irredundant features
among the full set of features. The attributes are ranked using an evaluation criterion
called symmetric uncertainty (SU) [20]. Then, a threshold value of this latter is fixed
and the attributes with values above this threshold (have highest dependency on the out-
put variable) are selected to construct the model and the rest of attributes with values
below the threshold (have low dependency) are removed. However, this technique has
the ability of capturing non-linear correlation between features and modeling feature
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Fig. 2. Oversampling process using SMOTE technique

dependencies. Besides, it helps to reduce overfitting problem and time complexity and
to improve the learner’s performance [21]. The formula for calculating the SU measure
is given below:

SU (X |Y ) = 2

[
IG(X |Y )

H (X ) + H (Y )

]
(3)

Where IG(X|Y ) [22] is the information gain and represents the amount of the decrease
of entropy of X provided as additional information by Y and calculating by the formula
as follows:

IG(X |Y ) = H (X ) − H (X |Y ) (4)

With H(X) represents the uncertainty of a random variable X known by the entropy
and is defined as:

H (X ) = −
∑

i
P(xi)log2(P(xi)) (5)

With P(xi) is the probability of xi and H(X|Y) is the entropy of X after seeing values
of Y and is calculated using (6) given by:

H (X |Y ) = −
∑

j
P(yj)

∑
i
P(xi|yj)log2(P(xi|yj)) (6)

With P(yj) is the probability of yj and P(xi|yj ) is the conditional probability of xj
given that yj has occurred.

P(xi|yj) = P
(
xi ∩ yj

)
P
(
yj

) (7)
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2.3 Classification Phase: Proposed Ensemble Learning Model

Ensemble Learning
Ensemble learning is a new concept that combines more than one model to predict a
target output with more efficiency and accurate decisions than single model [23]. Thus,
it leads to excellent classification results superior to those of a single classifier in many
fields including cardiac arrhythmia [24], DNA microarray classification [25], and dif-
ferent heart diseases [26]. Diversity of ensemble members and different classification
properties are required in ensemble learning in order to achieve high classification per-
formance [27] with a good management of bias-variance errors [28]. A good ensemble
strategy is ensured by the complementarity between its classifiers where the diversity
between classifiers could be ensured by establishing sample techniques or training the
classifiers by different training sets [27]. In this work, three techniques SVM, NB and
DT are selected to build the ensemble learning, they will be discussed in the follow-
ing subsections. The results of the analysis carried out by the discussed techniques are
combined using a combination technique that will be explained below:

Support Vector Machines
As the sample studied in this review is a small dataset, support vector machines (SVM)
is selected as a base classifier to be used in this study. It is recommended in the liter-
ature as an efficient classification technique for small-sample data [29]. Moreover, this
classification model has been widely used to classify genomic datasets and yielded to
excellent results. SVM is a supervised learning algorithm introduced by Vapnik (1998).
It is a two-class classifier. It aims to design a N dimensional hyperplane that classify
all training vectors (target variable/class label and feature variables) into two classes
and leaves the maximum margin from both classes [30]. To maximize the margin, we
have to solve a quadratic (nonlinear) optimization problem in order to maximummargin
hyperplane as illustrated in Fig. 3 below:

Fig. 3. Support Vector Machines
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Naïve Bayes
Naive Bayes (NB) is a probability-based classification technique. It applies Bayes ‘the-
orem with considering the independence assumption between all features [31]. The NB
classifier calculates the probability that a given instance X belongs to a class label y.
Given an instance X, characterized by a set of attributes (x1, x2, ...,xn), and a class output
y, the Bayes theorem consists of calculating the posterior probability P(y/X) using the
following formula:

P(y/X ) = P(y)P(X /y)

P(X )
(8)

Moreover, NB classifier yields generally to excellent classification results and sur-
prisingly outperforms more sophisticated algorithms in classification even without
considering the independence assumption [32].

Decision Tree C4.5
Decision trees have become one of the most powerful and popular classification
approaches used in the literature. They havemany advantages, such as being comprehen-
sible, easy and they require low computational effort [33]. In this paper, we emphasize
the study on C4.5 decision tree algorithm as it is one of the most popular algorithms
which is widely used for genomic dataset analysis [34, 35]. C4.5 is a top-down tree
growth algorithm proposed by Ross Quinlan in 1993 [36], and its algorithm starts by
calculating entropy and equivalent information gain to measure the importance of the
attributes. Feature with the highest information gain tends to be selected as the most
influential attribute in the classification process. The set of examples will be splitted
according to the possible values of the selected feature. This process will be repeated
iteratively until the decision tree learns from the set of the training examples. The for-
mula for measuring information gain IG and entropy H are described above in Eqs. (4)
and (5) respectively.

Weighted Majority Voting
Weighted Majority Voting represents one of the simplest methods for combining several
classifiers. Let f is is the decision function of the ith model where i ∈ n and n represents
the number of classifiers in the ensemble models and C is the class label Cj = {j = 1,
2, …, C). However, the final decision fem(x) of the ensemble models is calculated as
follow:

fem(x) = argmaxC
∑

i
wiδ(C, fi(x)) (9)

With wi is the weight for the prediction model and δ(C, fi(x)) is the probability for
each instance of the class C label according to the classifier i.
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2.4 Performance Evaluation Measurement

To evaluate the proposed CDSS performance with other models, we used the basic
metrics such as precision, recall, classification accuracy and F-measure [37]. The main
formulations of these metrics are:

Precision = Tp
Tp + Fp

(10)

Recall = Tp
Tp + FN

(11)

Accuracy = TN + Tp
Tp + TN + FN + Fp

(12)

Fmeasure = 2 ∗ Precision ∗Recall
Precision + Recall

, (13)

With TP = True Positive, TN = True Negative, FN = False Negative, FP = False
Positive. Indeed, accuracy represents the percentage of a correct CAD prediction (test is
true) and a non-CAD prediction (test is false). Recall (sensitivity) is the true positive rate
of CADwhile precision is the positive predicted value of CAD. F-measure represents the
weighted harmonic mean of precision and recall. In addition, a ten-fold cross validation
(CV) has been successfully used for evaluating the performance of a machine learning
algorithm(s) as it offers reliable approximates for the classification accuracy on each
classification task [38]. Moreover, it is able to reduce the variability but increases the
selection bias in case of feature selection or model parameters ‘tuning. Thus, an external
cross validation [39] is needed by holdout a testing set (30% of the sample) and applied
10-fold CV on the training (70%) and then evaluate model accuracy using the hold out
testing set. This technique helps to reduce the selection bias and therefore guarantee the
tradeoff between the bias and the variance.

3 Experimental Results and Discussion

3.1 Datasets

Based on a recent study of the National Public Health Institute 2018, heart diseases
are the primary risk of death in Tunisia rather than infectious diseases. The studied
population (see Table 1) consists of 213 patients from the south of Tunisia. The patients
were admitted in the biotechnological Center in Sfax Tunisia for coronary artery disease
diagnosis. The period of the study extends from January 1, 2010 to April 30, 2013. The
dataset contains 72 categorical and numerical features considered for the prediction. The
diagnosis result as the target variable. The studied features (see Table 2) represent clinical
characteristics, genetic polymorphisms, and some medications for example. The target
variable has a binary CAD diagnosis (1: diseased, 0: healthy). To ensure efficiency of the
proposed CDSS, four majors most widely used cardiac databases from UCI repository
are studied. They are Cleveland, Hungarian, Switzerland, and Long Beach [39]. These
datasets consist of 76 attributes, but 14 of them are the mainly used. Furthermore, a
cardiac Single Proton Emission Computed Tomography (SPECT) images dataset is
studied for a comparison purpose. It is composed of 267 patient SPECT image records
and 23 extracted binary features.
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Table 1. Description of the experiment datasets

Dataset Number of
attributes

Number of
classes

Number of
positive cases

Number of
negative cases

Total number
of cases

Studied
population

72 2 150 63 213

Cleveland 14 2 139 164 303

Hungarian 14 2 106 188 294

Switzerland 14 2 155 8 123

Long Beach 14 2 149 51 200

SPECT 23 2 212 55 267

Table 2. Description of the studied features in the Tunisian dataset

Variables Description

Genetic polymorphisms CYP2C19*2, CYP2C19*17, CYP2C9*2 (rs1799853), YP2C9*3
(rs1057910)

Biomarkers Time of collection (Hours), Number of dilated arteries, Systolic
blood pressure, Dyastolic blood pressure, Glycemia, Creatinine,
Urea, CPK (creatine phosphokinase), Triglyceride, Cholesterol total,
Na (sodium), CL (chlorine), K (potassium), Leukocytes,
Hemoglobin, Platelets, Number of stents, Coronarography results,
Event time (month), Event, Diagnosis (angina effort, SCA ST−,
SCA ST+), INDICATION (TTT, PAC, ATL), Type of artery 1, Age,
Sex, Non-insulinodependant diabetes, Insulin-dependent diabetes,
Smoking, Dyslipidemia, HyperCT, HyperTG, Mixed dyslipidemia,
Family history of CAD, Renal failure, Previous MI, Previous PCI,
Previous CABG, Previous stroke, Alcohol

Medications Clopidogrel loading dose, Clopidogrel maintenance dose,
Clopidogrel treatment duration, Clopidogrel carboxylic acid (ng/ml),
Clopidogrel (pg/ml), Clopidogrel acyl glucuronide (ng/ml),
Clopidogrel active metabolite, Statins, Dose statins, Aspirin, Aspirin
loading dose, AVK (Antivitamin K), ACE inhibitor, DOSE IEC,
Angiotensin II receptor antagonist, Beta blockers, DOSE BB,
Calcium channel blocker, Diuretic, DIURETIQ ARAII, proton pump
inhibitor, Dose ipp, Nitrated derivatives, AGRASTAT, Reopro

3.2 Hyperparameters Setting

Hyperparameters represent parameters of the classifier that must be tuned before training
to guarantee good classification results. In our case, SVM has two main parameters to
optimize i.e., gamma, the coefficient C and the kernel, while DT has other parameters
to tune such as number of features in each split, the minimum number of samples that
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must be in the leaf node, the minimum number of samples required in an internal node.
Grid search algorithm (GS) is used in this study. It is a heuristic technique that aims to
find the optimal parameters of a model among a given subset of hyperparameters space
[40]. This algorithm is the most widely used algorithm because of its simplicity. The
principle of this algorithm is tominimize a loss function using a combination of a tuple of
parameters among the defined space. However, the grid search results must be evaluated
using cross validation/boosting or hold-out test on the performance metrics to estimate
the generalization performance. In this work, a ten-fold cross validation technique is
used with grid search algorithm.

3.3 Results and Discussion

We applied the proposed CDSS to a Tunisian population dataset and four benchmark
cardiac datasets to prove its Dataset Number of attributes Number of classes Number
of positive cases Number of negative cases Total number of cases Studied population
72 2 150 63 213 Cleveland 14 2 139 164 303 Hungarian 14 2 106 188 294 Switzer-
land 14 2 155 8 123 Long Beach 14 2 149 51 200 SPECT 23 2 212 55 267 Vari-
ables Description Genetic polymorphisms CYP2C19*2, CYP2C19*17, CYP2C9*2
(rs1799853), CYP2C9*3 (rs1057910) Biomarkers Time of collection (Hours), Num-
ber of dilated arteries, Systolic blood pressure, Dyastolic blood pressure, Glycemia,
Creatinine, Urea, CPK (creatine phosphokinase), Triglyceride, Cholesterol total, Na
(sodium), CL (chlorine), K (potassium), Leukocytes, Hemoglobin, Platelets, Number
of stents, Coronarography results, Event time (month), Event, Diagnosis (angina effort,
SCA ST−, SCA ST+), INDICATION (TTT, PAC, ATL), Type of artery 1, Age, Sex,
Non-insulinodependant diabetes, Insulin-dependent diabetes, Smoking, Dyslipidemia,
HyperCT, HyperTG, Mixed dyslipidemia, Family history of CAD, Renal failure, Pre-
vious MI, Previous PCI, Previous CABG, Previous stroke, Alcohol Medications Clopi-
dogrel loading dose, Clopidogrel maintenance dose, Clopidogrel treatment duration,
Clopidogrel carboxylic acid (ng/ml), Clopidogrel (pg/ml), Clopidogrel acyl glucuronide
(ng/ml), Clopidogrel active metabolite, Statins, Dose statins, Aspirin, Aspirin loading
dose, AVK (vitamin K), ACE inhibitor, DOSE IEC, Angiotensin II receptor antagonist,
Beta blockers, DOSE BB, Calcium channel blocker, Diuretic, DIURETIQ ARAII, pro-
ton pump inhibitor, Dose ipp, Nitrated derivatives, AGRASTAT, Reopro efficacity. The
experiments conducted for evaluating the performance of the proposed ensemble learn-
ers and all the studied classifiers are performed using 10-fold CV strategy to alleviate
the insufficiency of small studied samples. The proposed CDSS is implemented using
70% of a training set and testing splitting on 10-fold CV and a validation set of 30%
and running on 100 different seeds to validate the results with the mean accuracy value.
As described in Table 1 below, the skewed Tunisian dataset is composed of 163 CAD
patients (as majority class) and 63 non-CAD patients as minority class. After applying
SMOTE technique, a balanced dataset (BD) is generated with equal class sizes. Indeed,
Table 3 compares results of DT classifier using 10-fold cross validation and grid search
techniques before and after oversampling the data using different performance evalua-
tion metrics. The results obtained when the data is imbalanced show that the positive
class CAD has effective prediction results with high rates in precision 81%, recall 94%
and F1-measure 87% while the negative class No CAD has low rates in precision 9%,
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recall 3% and F1 measure 4. However, after balancing the dataset we can see an increas-
ingly prediction improvement for the negative class with 78% precision, 72% recall and
75% F1-measure. The sampling process is repeated for the four benchmark datasets
while they have also imbalanced class distribution. Next, the numerical attributes of the
balanced data are normalized using min_max normalization technique to avoid large
variation in the prediction results and improve the prediction accuracy. Using the same
classifier (DT) on the same data shows an improvement from 75,72% to 76,58% on
accuracy rate and from 76% to 77% for other metrics.

Table 3. Performance evaluation before and after balancing the Tunisian dataset

Imbalanced data Balanced data

Metrics/Class CAD No CAD Metrics/Class CAD

Precision 81% 9% Precision 81%

Recall 94% 3% Recall 94%

F1-measure 87% 4% F1-measure 87%

Accuracy 77% 75,72%

Then, this study has investigated the determination of CAD factors and emphasized
on studying the impact of some genetic polymorphisms and medications which may
help in the diagnosis of CAD. However, we performed a feature selection process using
FCBF model to select the most significant attributes independently of the classifier.
Then, we applied C4.5 algorithm to test the select features subset on prediction accuracy
improvement as DT is simple and widely used in biology. Based on the results obtained
in Table 4, we consider that the best subset of medical markers is sufficient to predict
CAD with a high accuracy and provides less computational time than using all the
features set. For example, the eight selected significant features from the Tunisian dataset
represent one genetic feature (CYP2C19*17) among the four studied ones and five
drugs (Antivitamins K (AVK), Dose Beta blockers, Proton pump inhibitor, Clopidogrel
active metabolite) among all the studied medications and three other clinical markers
(Event time/month, Previous stroke,Obesity).Hence, these results prove that the selected
genetic factors and drugs are important indicators to diagnose CAD.

Furthermore, a classification stage is performed using the novel ensemble learners
based on a weighted majority voting technique to aggregate the prediction results. The
model weights are estimated according to their prediction accuracy (the model with
the highest accuracy rate has the highest weight and so on). The proposed CDSS is
examined on five different populations to prove its generalization ability and it yielded
successful results. Table 5 lists the existing ensemble models including adaptive boost-
ing (AdaBoost) [9] and CSGA Boosting [10] in the comparison. The results (Table 5)
show that the new system achieved the best classification accuracies when comparing
with the two existing ensembles. Indeed, comparing with AdaBoost on the five studied
data, the new system yielded the highest prediction accuracies on the five studied popu-
lations i.e., Tunisian, Cleveland, Hungarian, Switzerland, and Long Beach respectively
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Table 4. Performance evaluation before and after feature selection

Data Attributes Number Selected Features DT
Accuracy

Execution Time (s)

Tunisian 72 All the features 75,72% 3.73

Tunisian 8 Event time, AVK, Dose Beta Blockers, Proton pump inhibitor,
Previous stroke, CYP2C19*17, Clopidogrel active
metabolite, Obesity

78,85% 3.30

Cleveland 14 All 74,08% 3.44

Cleveland 8 Sex, cp, restecg, thalach, exang, old peak, ca, thal 78,66% 3.11

Hungarian 14 All 77,13% 3.61

Hungarian 8 Sex, cp, chol, fbs, exang, oldpeak, slope, thal 81,14% 3.04

Switzerland 14 All 86,09% 3.35

Switzerland 4 Sex, cp, fbs, exang 95,22% 3,12

Long beach 14 All 73,82% 3.541

Long beach 5 Age, sex, cp, exang, oldpeak 77.52% 3.28

with 79.41%, 82.27%, 89.48% and 97.45% compared with AdaBoost 71.15%, 80.14%,
89.12%and96.72%andwithCSGABagging 69.18%, 81,11%, 88,78%, 93,4%, 76,13%.
Furthermore, Table 5 shows that the new framework achieved the highest accuracy rate
of 79.72% on SPECT dataset while AdaBoost 76.41% and CSGA+ Bagging 77.19%. In
conclusion, the proposed framework contributes efficiently to the prediction performance
improvement due to its complementarity and diversity. However, the complementarity
is ensured between the three used classifiers (SVM, DT and NB) by complementing the
weaknesses between them and maximally improving the classification accuracy of the
ensemble. Whereas the diversity is ensured by their different natures like probabilistic
nature of NB and the complex nature of SVM and the tree-based nature of DT.

Table 5. Comparison of performance between the proposed CDSS and existing models

Dataset Proposed ensemble Adaptive boosting [9] CSGA + Bagging [10]

Tunisian 79.41% 71.15% 69.18%

Cleveland 82.27% 80.14% 81,11%

Hungarian 89.48% 89.12% 88.78%

Switzerland 97.45% 96.72% 93.4%

Long beach 79.91% 77.78% 76.13%

SPECT 79.72% 76.41% 77.19%

4 Conclusion and Perspectives

In this study, we propose a new ensemble learning system based on three base classifiers
SVM, NB and C4.5 DT in order to improve the prediction performance for CAD as a
classification problem. The performance of the proposed CDSS is tested with 10-fold
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cross validation on different cardiac datasets fromdifferent populations such as Tunisian,
Hungarian, Switzerland, etc. The original datasets have an uneven distribution which
may affect the classification performance and lead to an overfitting. Hence, a SMOTE
technique has been applied to balance the class distribution. Then, we applied a fea-
ture selection technique called FCBF in order to determine the most effective features
needed in the diagnosis of CAD and reduce the classification time complexity. Further,
it may eventually help to reduce the cost of CAD diagnosis by limiting clinical markers
needed and administrate some specific medications for CAD. However, the results of
this process prove that some medications and genetic polymorphisms such as Antivita-
min K, Dose Beta Blockers, Proton pump inhibitor, CYP2C19*17, Clopidogrel active
metabolite have an impact in CAD diagnosis. Finally, the reduced data are classified
using the new proposed ensemble learning model and, as a result, we found that the
proposed CDSS has the highest prediction rates comparing with the two existing ensem-
ble models CSGA+ Bagging and Adaptive boosting on the different datasets. These
results demonstrate the effectiveness of ensemble learning models in improving classi-
fication performance. For future work, several directions must be considered. First, we
will examine the significance of the studied variables by using other feature selection
techniques. Then, a fuzzification approach may be introduced to envisage information
vagueness and decision-making uncertainty in engineering problems. Finally, we will
focus to find way to reduce the computation time problem of the proposed system.
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Abstract. The use of contrast agents in CT angiography examinations
holds a potential health risk for the patient. Despite this, often unin-
tentionally an excessive contrast agent dose is administered. Our goal is
to provide a support system for the medical practitioner that advises to
adjust an individually adapted dose. We propose a comparison between
different means of feature encoding techniques to gain a higher accu-
racy when recommending the dose adjustment. We apply advanced deep
learning approaches and standard methods like principle component
analysis to encode high dimensional parameter vectors in a low dimen-
sional feature space. Our experiments showed that features encoded by
a regression neural network provided the best results. Especially with a
focus on the 90% precision for the “excessive dose” class meaning that if
our system classified a case as “excessive dose” the ground truth is most
likely accordingly. With that in mind a recommendation for a lower dose
could be administered without the risk of insufficient contrast and there-
fore a repetition of the CT angiography examination. In conclusion we
showed that Deep-Learning-based feature encoding on clinical param-
eters is advantageous for our aim to prevent excessive contrast agent
doses.

Keywords: Feature encoding · Deep Learning · Case-based
reasoning · Contrast agent

1 Introduction

Feature encoding is a preprocessing step used in many machine learning applica-
tions to reduce the dimension of the input feature vectors. The process of feature
encoding removes redundant data so more meaningful or relevant features can
be derived from the raw inputs. This can yield a higher accuracy of the given
task.
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A well-known feature encoding technique is the principle component analysis
(PCA) which represents the data as a linear combination of features with the
greatest variance. In [14] the PCA is used to encode high dimensional genome
expressions to predict the clinical outcome of breast cancer. Advancing to non-
linear encoding techniques Deep Learning methods came in to focus. In [11] the
authors implemented an autoencoder to encode surface meshes of segmented hip-
pocampi to subsequently classify whether the patient suffers from Alzheimer’s
disease. This area of non-linear feature encoding also includes the variational
autoencoder. The authors of [12] used this approach to extract features for the
detection of pathologies while the authors of [10] trained a variational autoen-
coder to reduce the dimension of single tumor cells for differentiating between
tumor subpopulations.

In this paper we propose a comparison between different means of feature
encoding applied to clinical parameters for a classification task (Fig. 1). In this
way a recommendation to reduce the standard dose can be made which is a
part of the primary objective to adjust the dose of contrast agent (CA) used in
CT angiographies (CTA) for each patient individually. This is based on the fact
that CAs often contain in iodine that can cause harmful side effects including
anaphylactic reactions and thyrotoxicosis [1,2]. It poses a risk especially to the
renal system with contrast-induced renal nephropathy being the third leading
cause of hospital acquired acute renal failure [9]. Unnecessarily high CA doses
should therefore be avoided in order to minimize the health risk of the patient as
well as saving expenses for CA. However, often a standard dose is administered
in clinical practice. A previous method uses the body weight and a weight factor
to compute an individualized CA dose [5]. Another approach tested a weight-
based protocol incorporated with the tube potential selection to lower the CA
dose [13].

In contrast, we considered a greater set of clinical parameters in addition
to the body weight with the goal to give the medical practitioner an improved
dose adjustment recommendation with respect to a standard dose. We compared
different methods of Deep-Learning-based feature encoding including amongst
others a variational autoencoder (VAE) and a regression neural network (RNN).
As an already established feature encoding method we implemented a principal
component analysis (PCA) to compare with the advanced techniques. For the
evaluation of the influence of the encoded features on the dose prediction quality
we used a k-Nearest-Neighbour (kNN) classification on the raw input features.
Each method is used as a preprocessing step for kNN-based classification in one
of two classes: 1) Non-excessive image contrast, 2) Excessive image contrast.

The determination of the classes and therefore the image contrast were pre-
viously executed. Based on Regions of Interest (ROI) set in CTA volumes a
rule-based assessment was implemented. This assessment acts as the ground
truth for the feature encoding classification.
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Fig. 1. Clinical parameters were encoded using the following methods: principle com-
ponent analysis (PCA), regression neural network (RNN), autoencoder (AE) and
variational autoencoder (VAE). The classification was implemented with k-Nearest-
Neighbour (kNN). As a base comparison the kNN was used on the raw features.

2 Data

The clinical parameters and the corresponding CTA volumes were sourced from
the radiology department of the UKSH Lübeck. All 76 CTA examinations were
limited to the aorta area. The patients received a CA dose of 100 mL of the CA
Imeron 300. Additionally, 20 clinical parameters were collected including body
weight, height and blood pressure at rest among others.

To build the ground truth for the classification through feature encoding
a quality assessment of the image contrast was executed. An overview of the
assessment is displayed in Fig. 2. Experts placed three ROIs at predefined loca-
tions in axial CTA slices. The ROIs were defined to lie equally spaced across
the CTA volume in order to encompass the entire contrast-enhanced area. Tak-
ing the mean HU values of each ROIs rules were applied resulting in the two
aforementioned contrast classes.

Fig. 2. ROIs are placed in axial slices of a CTA volume. Through a rule-based classi-
fication the image contrast class is determined.
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3 Methods

3.1 Autoencoders

Autoencoders (AEs) [7] are neural networks, that consist of two parts: an encoder
Q(X), which maps the input X to a latent vector z ∈ Rm and a decoder P (z)
that tries to reconstruct the input X given only z. To ensure X ≈ P (Q(X))
a reconstruction loss is applied, e.g. L1-loss. The latent space mapping makes
autoencoders suitable for feature encoding, since the latent representation z is
assumed to contain all the important information about the input. The feature
encoding can be established by directly inputting an unseen vector in the trained
encoder and considering its latent encoding.

3.2 Variational Autoencoders

Variational autoencoders (VAEs) [7] are an extension of conventional autoen-
coders assuming a prior distribution of the latent space. Typically a normal
distribution z ∼ N (0, 1) is enforced by using an additional loss function DKL

(Kullback-Leibler Divergence), which measures the distance between the pre-
dicted latent space distribution and the chosen a-priori distribution. To assure
a normal distribution, the encoder predicts a mean μ and a standard deviation
σ and the latent vector is calculated z = μ + εσ, where ε ∼ N (0, 1).

3.3 Regression Neural Network

Regression or classification neural networks are frequently used as feature extrac-
tors by considering the outputs of intermediate layers [8]. While AEs and prin-
ciple component analysis generate rather general features describing the most
important properties of an input, the intermediate outputs of networks solving
particular tasks rather concentrate on features that are problem-specific. In order
to generate features that describe the probability of a particular set of clinical
parameters to fit in a certain class, in this work, we consider regression to the
mean values of the three ROIs (Fig. 2) [6]. The last hidden layer is then used as
feature extractor.

3.4 Implementation Details

The neural networks are implemented using PyTorch in a fully-connected man-
ner. The autoencoders contain three encoding and two decoding layers and map
the input vectors of length 20 to a latent vector of length 5. In our experiments
this length turned out to be optimal, while choosing lengths between 12 (number
of modes in PCA) and 5 delivered worse results. The regression neural network
features 4 fully-connected layers, whereas the last hidden layer maps the input
to a feature length of 5 in a similar manner. An important detail is the aug-
mentation of the inputs and regressed values by adding noise sampled from a
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normal distribution with standard deviation 0.3. Also, the input parameter vec-
tors were standardized for all experiments. For linear feature encoding principle
component analysis is also applied as reference method and to compare it with
Deep-Learning-based feature encoding methods (Fig. 3).

Fig. 3. Architectures of the neural networks. From left to right: VAE, AE, regression
network. z denotes the feature encoding layer. For details see the legend on the bottom.

3.5 PCA

In this work, inspired by statistical shape models (SSMs) [3], principal compo-
nent analysis (PCA) is used for dimensionality reduction and feature encoding
of the clinical parameters. PCA is typically applied on discrete shape represen-
tations X1 . . . Xn of a training dataset, where each representation consists of
landmark positions. However, here every Xi is represented by a vector of clin-
ical parameters. The main steps for the feature encoding are the following: 1)
Compute the mean vector over all shapes Xµ = 1/n

∑n
i=1 Xi. 2) Apply PCA:

Build a covariance matrix C = 1/n
∑n

i=1(Xi − Xµ)(Xi − Xµ)T and compute
its eigenvectors up and corresponding eigenvalues λp: Xup = λpup. Since the
eigenvectors corresponding to the largest eigenvalues describe the main varia-
tion in the data, only the first m eigenvectors are used in the following and the
rest is omitted. Here, m is chosen to cover 95% of the variability of the training
dataset resulting in 12 modes. New forms can now be described using this model
as follows Xnew = Xµ + Uc, where U = [u1 . . . um], c = [c1 . . . cm]T and cj are
coefficients for each eigenvector that can be varied. However, to reconstruct an
unseen form X ′ using X ′ = Xµ + Uc′, a coefficient vector c′ = UT (X ′ − Xµ)
needs to be found. Since those coefficients describe the input vector in an unam-
biguous dimensionality-reduced manner, they can be used as feature encodings
of the clinical parameters.
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3.6 KNN Contrast Classification

For the classification of the individual contrast class for CA dose adjustment
recommendations the kNN classification was used. The k-Nearest-Neighbour
method [4] is an intuitive way to classify previously unseen data. kNN is con-
sidered as an instance-based learning algorithm as its learning consist of storing
the training data in the feature space. The algorithm assumes that samples of
the same classes lie in close proximity of each other. To classify an unseen sam-
ple a distance to all stored data is computed. Different distance measures are
applicable for example the Euclidean distance. The class of the new instance is
determined as the most frequent class among the k nearest data. k should be
neither too low or too high as the algorithm becomes susceptible to outliers or
neglects classes with a small number of data points respectively. In this work,
kNN is used for the classification of the following computed features and also
directly on the input data. In our experience, for the feature encoding scenario
kNN with k = 5 and an Euclidean distance delivered best classification results,
however for using the kNN on the raw features k = 3 with a correlation distance
measure was chosen.

4 Results

The results for the classification are shown in Table 1. All experiments are con-
ducted in a leave-one-out manner and the values are averaged over the different
training sets. For evaluation different values are calculated, that take into account
the number of true positive (TP), false positive (FP), false negative (FN) and
true negative (TN) classifications per class (excessive vs. non-excessive contrast
agent).

Precision = TP
TP +FP

Recall = TP
TP +FN

Accuracy = TP +TN
TP +TN +FP +FN

F1-Score = 2Precision×Recall
Precision+Recall

Note that the accuracy measure is the only one considering true negative
values (patients are correctly classified as not class-related). For this reason the
values for the accuracy might be high even if the precision and recall are con-
siderably poor, e.g. PCA, AE and VAE feature encoding (Table 1). The best
feature-encoding results are achieved with the regression method, since this
method is more task-related, compared to the autoencoding methods. Interest-
ingly, when using the regression-based features for classification better accuracy
and F1-score are achieved compared to applying the rule-based classification to
the regressed values. This is due to the fact, that features contain more abstract
information and are less affected by noise or other small artifacts and errors.
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Overall, the regression-based feature encoding delivers high accuracy and recall
with an accent especially on the precision for class 2 (excessive contrast). With a
precision of 0.9 the system is in a large proportion of cases capable to rightfully
assign class 2, meaning that a recommendation to lower the CA dose can be
given without risking a repeated scan due to insufficient image contrast.

Table 1. Comparison of classification results using different feature encoding tech-
niques. From top to bottom: raw data - kNN directly on the raw input data vectors;
PCA - kNN on PCA-extracted features; Reg-Features - kNN on features extracted
with a regression network; Reg-Class - classification of HU values predicted by a
regression network; AE -kNN on features extracted from the z-space of an autoen-
coder; VAE - kNN on features extracted from the z-space if a variational autoencoder.
The measurements are calculated per class (class 1: non-excessive contrast; class 2:
excessive contrast).

Method Accuracy Precision Recall F1-score

Class 1 Class 2 Class 1 Class 2 Class 1 Class 2 Class 1 Class 2

Raw data 0.78 0.78 1 0.77 0.15 1 0.26 0.86

PCA 0.73 0.73 0 0.73 0 1 0 0.84

Reg-Features 0.89 0.89 0.87 0.90 0.72 0.96 0.79 0.93

Reg-Class 0.88 0.88 0.92 0.87 0.61 0.98 0.73 0.92

AE 0.73 0.73 0.5 0.75 0.17 0.94 0.30 0.82

VAE 0.70 0.70 0 0.72 0 0.96 0 0.84

5 Discussion and Conclusion

In this work, we aim to establish a case-based reasoning for CTA contrast agent
dose based on sets of clinical parameters. We presented different machine learn-
ing methods for feature encoding from clinical parameters. Encoded features are
used in a kNN-based classification for determining whether a recommendation
for using less contrast agent than the standard dose should be made. The feature
encoding methods feature (variational) autoencoders a regression neural network
and a PCA compared to directly classifying the raw data. Since the regression-
based feature encoding is task-based, it delivers the best accuracy (0.89). Autoen-
coding and PCA-based methods deliver more general features, that cannot be
classified with such high accuracy. Even though the used approaches are rather
naive, a reliable recommendation can be made based on the regression method.
However, the methods of this work will be adapted and improved in future work
to enhance the result even more. We will consider a variety of architectural deci-
sions and also a more sophisticated classification method as well as experiments
with subsequent feature selection techniques. Future work will also include the
exact dose determination based on this first recommendation to adapt the CA
dose.
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1 Introduction

The novel severe acute respiratory syndrome virus 2 (SARS-CoV-2) has caused
a pandemic outbreak of COVID-19 and a worldwide public health emergency.
As of November 2020, the pandemic has led to more than 60 million confirmed
cases and 1.5 million deaths [2]. While most COVID-19 patients have an asymp-
tomatic infection or only suffer mild upper respiratory tract illness, the disease
can progress to severe viral pneumonia with acute respiratory distress, respi-
ratory failure and thromboembolic events that can lead to death [17,25,29].
Currently, few predictors for the transition to severe disease are known. How-
ever, an early identification of patients at-risk of severe outcomes may allow for
faster intervention, improving treatment and therapy success.

The combination of state-of-the-art machine learning (ML) methods with
electronic health records (EHRs) promises to predict patient deterioration with
high precision [11,26]. Due to the scarcity of COVID-19 EHR data in the pub-
lic domain, the majority of previous work has focused on statistical analyses
or classical ML algorithms. Initial reports noted that factors such as age and
underlying comorbidities can have an adverse effect on disease progression [7].
Zhou et al. used logistic regression on data of 191 COVID-19 positive patients
to explore the risk factors for acute respiratory distress syndrome [31]. Simi-
larly, Xie et al. applied logistic regression to the data of 299 COVID-19 positive
patients to predict mortality [27]. Yan et al. [28] utilised XGBoost and EHR
data of 375 COVID-19 patients in Wuhan, China to predict deterioration to a
critical condition. While such studies provide insights into potential risk factors
for severe COVID-19, most were conducted with limited patient numbers and
data taken from both the patient’s historical record and from throughout the
current hospital admission [16,20,31]. The latter impairs an application to early
patient triaging since, at the time of hospital presentation, the full EHR is rarely
available. This problem is addressed by Jiang et al. [15] who applied ML methods
to data available at the point of admission to hospital. However, with a sample
size of just 53 patients the power of this study was limited.

Already prior to the COVID-19 pandemic, traditional risk scores were widely
used in clinical practise to assess patient deterioration. Jones et al. explored
the use of the sequential organ failure assessment (SOFA) score in combination
with ML methods to forecast poor patient outcomes [16]. Using data collected
from 248 patients over 2 years, they were able to predict in-hospital mortal-
ity by applying logistic regression to SOFA scores. Similarly, Scott et al. [21]
have adopted the national early warning score (NEWS2) to predict the clinical
outcome of patients. Yet, it remains unclear whether SOFA, NEWS2 or other
similar clinical risk scores can be applied to COVID-19 patients.

A major obstacle to early patient triaging is the minimum number of clinical
variables and, hence physiological tests, required to assess whether a patient is at
risk. Feature selection methods, routinely applied in ML model development [4],
can provide such a reduced feature set, retaining only the most informative clini-
cal variables. Guyon and Elisseeff [12] introduce a number of methods which can
be used to retain relevant information in a data set while reducing the number
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of features. These methods can be split into filter, wrapper and embedded meth-
ods. Both filter and wrapper methods were previously used by Pourhomayoun
and Shakibi [20] when predicting mortality in COVID-19 patients. In addition,
Yan et al. used simple feature importance metrics to perform feature selection
for predicting deterioration to a critical condition in COVID-19 patients [28].

We propose to use feed-forward neural networks to extract non-linear inter-
actions between clinical variables and predict whether patients will deteriorate
to severe COVID-19. We define deterioration to severe COVID-19 by three end-
points: admission to an adult intensive care unit (AICU), a need for mechanical
ventilation, and in-hospital mortality. We perform feature selection to identify
a minimal subset of clinical features that allows patient stratification and com-
pare these subsets between endpoints. To facilitate early risk assessment, we
focus our analysis on data available during a patient’s emergency department
(ED) visit at a hospital. Hence, the main contributions of this work are three–
fold: 1. Early prediction of COVID-19 patients’ risk to deteriorate to one of three
clinical endpoints using neural networks; 2. evaluation of prediction performance
over classical clinical risk scores; and 3. exploration of the minimal set of clinical
features required for accurate patient stratification.

2 Methods

2.1 Data

Anonymised patient EHRs have been collected from a two-site NHS Trust hospi-
tal in London between January 1st and April 23rd 2020. All data were supplied
according to internal information governance review, NHS Trust information
governance approval, and General Data Protection Regulation (GDPR) proce-
dures outlined under the Strategic Research Agreement (SRA) and relative Data
Sharing Agreements (DSAs) signed by the NHS Trust and ourselves on 25th July
2018.

We analysed data from adult patients aged 18 to 100 and confirmed SARS-
CoV-2 positive, as determined by quantitative reverse-transcription PCR (qRT-
PCR). A total of 96 clinical features have been collected in the study, including
patient demographics, vital signs, laboratory measurements and clinical obser-
vations. Of these 96 features, those with a coverage of at least 5% were retained.
These 64 features are listed in the appendix in Table 3. Observations with multi-
ple values were aggregated using the minimum, maximum, mean and last obser-
vation values to avoid biasing models on the number of test results. However, for
blood test results typically only a single measurement is available within the ED
stay of a patient, such that there is no distinction between the four aggregated
values.

2.2 Cohort Definition

Study parameters included EHRs of 3229 patients. The data were filtered to
include patients with confirmed SARS-CoV-2 infection (1158 patients), recorded
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emergency department admission and subsequent ward stay, and their latest
hospital admission being in 2020.

The patients were assigned in three cohorts (see Table 1): Cohort A was used
to predict AICU admission. This cohort was divided into target patients who
were admitted to an AICU at any time during their hospital stay, and control
patients who were not. In the mechanical ventilation Cohort B, patients with-
out clear information on oxygen supply were excluded; target patients required
invasive mechanical ventilation, while control patients are those who required
no or only minimal breathing assistance. For the mortality Cohort C, patients
deceased during hospitalisation were considered target and discharged patients
are included in the control group. Patients still hospitalised at the moment of
study or deceased after hospitalisation were not considered.

Table 1. Patient numbers in study cohorts.

Cohort A (AICU) Cohort B (ventilation) Cohort C (mortality)

Patients 819 818 508

Target 126 (15%) 62 (8%) 170 (33%)

Control 693 (85%) 756 (92%) 338 (67%)

2.3 Prediction Algorithms

EHR data from ED visits were used as inputs to a feed-forward neural network to
predict patient outcomes. Hyper-parameter optimisation was carried out using
Bayesian optimisation with Gaussian process as surrogate model using Keras
Tuner [19]. Optimisation parameters included the number of fully connected
hidden layers (nlayers ∈ [0, 5]) with ReLU activation functions containing a
number of neurons per layer (nneurons ∈ [2, 96]), before a single-neuron out-
put layer with sigmoid activation. Batch normalisation with a batch size of six
and dropout rate (d ∈ [0, 0.5]) were used after each hidden layer. Training used
an Adam optimiser with binary cross-entropy loss and optimised learning rate
(nlr ∈ [1e−4, 1e−2]), for 100 epochs with early stopping. Optimisation was per-
formed using the loss on the validation set from a nested stratified 80%/20%
training/validation split derived from the training set of a 3-fold cross validation
and the mean configuration was chosen (Table 4).

Prior to model training, features with less than 5% coverage were removed,
missing values were imputed with a fixed value of −1 and the data were nor-
malised using standard normalisation. Due to the large class imbalance, the
minority class was oversampled using SMOTE [5].

The performance of ML algorithms was measured against the performance
of the SOFA [18,23] and NEWS2 [1] scores, which are commonly used in clinical
practice. The SOFA score was developed to evaluate morbidity in relation to
organ dysfunction in critically ill patients [18,22]. Successive analyses have shown
that SOFA scores are good indicators of prognosis [9,23]. The NEWS2 score
aims to be a valid indicator of the patient’s well-being at an early stage of their
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hospitalisation. Less frequently it is used as predictor of patient outcome [8].
In our analysis we use the maximum SOFA and NEWS2 score for each patient
while in the Emergency Department. Where data are missing, zero points are
added to each score.

2.4 Model Validation

Stratified 3-fold cross validation was used in the training and evaluation of the
neural network models. Performance of the models is reported as area under
the curve (AUC) of the receiver operating characteristic (ROC). The variability
across folds provides a measure of model stability. Since the SOFA and NEWS2
scores are deterministic, 3-fold cross validation was not carried out. For these
models we measure performance by the AUC-ROC.

2.5 Feature Selection

Due to the large number of features, such as laboratory results, we expect a
large amount of redundant information. We therefore apply feature selection
methods to find the minimal subset of clinical features that reliably predicts
each endpoint. This feature subset allows accurate predictions and easy applica-
tion in real-world settings where data may be sparse. Dimensionality reduction
techniques similar to Principal Components Analysis were not implemented.
Although these methods would create a smaller set of features, measurements
from all parameters would still be required and therefore these techniques are
not beneficial in practice.

Two feature selection methods were considered [12]. First, we applied uni-
variate selection, a filter method in which the number of features to keep is
specified. The dependency between each feature and the target output was cal-
culated using mutual information [3]. The most important features according to
mutual information were retained. We also considered recursive feature elimina-
tion (RFE), a wrapper method which starts with all of the features and repeats
a process of eliminating the least informative features until only a set number of
features remains [13]. A neural network was trained on each data set and per-
mutation feature importances were used to determine which features to discard
in each round [10].

Feature selection was performed on the training set of each of the cross
validation folds in order to obtain a feature list containing a specified number
of features. For each feature selection method a grid-search was carried out to
determine the optimal number of features to keep within the folds. The feature
list was then used to train a model and make predictions. The feature lists
presented in the appendix in Table 5 contain the union of the three feature lists
obtained from each cross validation fold. Optimality was determined by AUC of
ROC curve of the models obtained from the three cross validation folds for each
endpoint.
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3 Results

In the following, we first present baseline model performance when predicting
three clinical endpoints for COVID-19 patients. The minimal subset of features
for each endpoint is shown in the appendix (Table 5).

3.1 Neural Network Performance

Figure 1 and Table 2 show that the neural network with no feature selection out-
performs both the SOFA and NEWS2 scores by a large margin when predicting
AICU admission and mechanical ventilation. This is expected as the network is
able to model complex relationships between multiple features and non-linear
interactions. The difference in performance between our neural network and
traditional scores is most pronounced when predicting a need for mechanical
ventilation. In predicting mortality, the SOFA score performance shows a sig-
nificant increase, while that of the neural network does not. Since the SOFA
score was developed to evaluate morbidity this is to be expected [23]. The neu-
ral network model reaches an AUC of 0.73 when predicting mortality. While the
model outperforms the NEWS2 score, it is not able to achieve a better result
than prediction based on SOFA, which has an AUC of 0.75.

(a) AICU Admission (b) Mechanical Ventilation (c) Mortality

Fig. 1. Prediction performance for clinical endpoints. ROC curves of the neural
network without (NN) and with feature elimination (NN RFE/NN US) and for SOFA
and NEWS2. Solid lines and shaded areas indicate the mean and standard deviation
across cross-validation folds, respectively. Dashed line indicates a random classifier.

3.2 Performance with Feature Selection

Next, we use feature selection to identify the minimal subset of clinical variables
required for accurate predictions. Overall, univariate feature selection performs
best for predicting AICU admission, while RFE is best for predicting a need for
mechanical ventilation and in-hospital mortality (see Table 2). Figure 2 shows
the model performance over successively reduced feature sets, using univariate
selection for AICU admission and RFE for the other two endpoints.

When predicting AICU admission the optimal number of features to keep is
10 in each cross validation fold (see Fig. 2a); the list of retained features across
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Table 2. Predictive performance (AUC) for all endpoints. NN, neural network; US, uni-
variate selection; RFE, recursive feature elimination. Standard deviation across cross
validation folds is shown in brackets for NN models.

Cohort A (AICU) Cohort B (ventilation) Cohort C (mortality)

SOFA 0.50 0.50 0.75

NEWS2 0.68 0.64 0.66

NN 0.77 (0.060) 0.86 (0.056) 0.73 (0.057)

NN + US 0.82 (0.032) 0.84 (0.047) 0.77 (0.035)

NN + RFE 0.78 (0.053) 0.87 (0.054) 0.78 (0.035)

(a) AICU Admission (b) Mechanical Ventilation (c) Mortality

Fig. 2. Prediction performance for feature sets of varying size. Boxes indicate
AUC-ROC over cross-validation folds using univariate selection (a) and RFE (b, c),
with the median marked by the orange lines and interquartile range by box edges.

all folds is included in the appendix in Table 5. By using univariate selection we
achieve a significant increase in AUC of 5%.

As can be seen in Fig. 2b, for Cohort B the best performance is achieved by
RFE using 15 features in each cross validation fold. The features used across all
folds are listed in Table 5. This model achieves an AUC of 0.87, an improvement
of just 1% over the neural network with no feature selection, potentially due to
the baseline performance without feature selection already being high for this
endpoint.

For prediction of in-hospital mortality, predictive performance of 0.78 AUC
is attained using RFE with 5 features in each fold. The features used across all
folds for predicting in-hospital mortality are shown in Table 5. The ROC curve
for this model (Fig. 1c) shows an improvement in the AUC of 5%. This increase
in performance allows the neural network with RFE to outperform the SOFA
score by 3%.

The number of features in the optimal feature subset varies across the end-
points. When predicting AICU admission a large improvement in performance
is gained by using a small feature list of just 10 features in each cross validation
fold (25 unique features across all folds). Using 15 features per fold (36 over-
all) when predicting a need for mechanical ventilation leads to an improvement
in predictive performance of just 1%. An improvement of 5% is also achieved
through the retention of just 5 features per fold (10 overall) for predicting
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in-hospital mortality. This improvement is especially significant as it enables
the neural network model to outperform the SOFA score.

For all endpoints the overall feature list includes age and respiratory rate
(Table 5). Markers of ethnicity are present for the prediction of a need for
mechanical ventilation and in-hospital mortality. Vital sign measurements con-
cerning temperature and fraction of inspired oxygen (FiO2) are present for
prediction of AICU admission and mechanical ventilation, while heart rate is
retained for mechanical ventilation and in-hospital mortality. Although most
of these features have very high coverage (both temperature and heart rate are
above 99%), they are not consistently retained for all endpoints. A feature which
has 100% coverage but is surprisingly discarded for prediction of AICU admission
is sex.

As well as demographic and vital features, all overall feature lists include
laboratory test results (Table 5). For the prediction of in-hospital mortality just
30% of features are laboratory tests, while for AICU admission and mechanical
ventilation this figure is 72% and 61% respectively. We therefore see that the
prediction of in-hospital mortality relies less on laboratory test results than the
other two endpoints. While all overall feature lists contain a number of labora-
tory tests, there is a high degree of variability and only one test is present in
all three feature lists - blood amylase. Various other laboratory tests are present
for prediction of both AICU admission and mechanical ventilation; bicarbonate,
creatinine, blood lactate, oxygen partial pressure, blood potassium and differ-
ent forms of haemoglobin. Some of these laboratory tests, such as bicarbonate,
oxygen partial pressure and blood lactate, have coverage of around 27%, but are
retained over tests such as blood white cells or blood monocyte count, which
have coverage of 84% but are not included in any of the three overall feature
lists.

4 Discussion

This work was motivated by the need to predict whether patients deteriorate to
severe COVID-19 early during their hospital stay and to provide clinicians with
a minimal subset of clinical features which allow risk prediction. To address these
points, we trained neural network models which use EHR data from COVID-19
patients’ ED admissions to predict one of three endpoints: admission to AICU,
need for mechanical ventilation, and in-hospital mortality. We have shown that
feed-forward neural networks can achieve better predictive performance on the
first two endpoints than traditional risk scores. Neural networks without feature
selection were not able to outperform the SOFA score for predicting in-hospital
mortality, possibly due to the SOFA score being developed to predict morbidity.
Implementing feature selection using univariate selection and RFE enabled us to
identify the minimal subset of clinical features required for early risk assessment
of COVID-19 patients. For AICU admission, need for mechanical ventilation and
in-hospital mortality, performance was improved by 5%, 1% and 5% respectively.
For predicting in-hospital mortality, feature selection allowed us to achieve a
predictive performance 3% higher than that of the SOFA score.
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Aside from an improvement in predictive performance, a model requiring
fewer features is extremely beneficial in its applicability to real-world scenarios.
A significantly reduced set of required inputs means that the model can be
applied in settings where data may be sparse and not all of the original features
are available. Having to collect fewer data points in order to make a prediction
increases the accessibility of the model and allows clinicians to prioritise testing.

The predictive performance achieved by our neural network models is compa-
rable to previous work using an XGBoost model [14]. Feature selection methods
are employed by Pourhomayoun and Shakibi [20] to reduce their feature set from
112 to 42 features, although they do not also present results for models trained
using the entire feature set. Our findings that age and indicators of oxygenation
status always remain in the final feature set are consistent with this work. Age
in particular is consistently found to be an important feature in previous works
[27,31]. Conversely, our finding that sex is not retained for prediction of AICU
admission differs from previous works [24,30].

While laboratory test results are included in the feature list for all endpoints,
there is not a large degree of consensus regarding which tests are most informa-
tive. Our finding that features relating to haemoglobin are retained for two out
of three endpoints are consistent with those of Jiang et al. [15]. A surprising
finding of this work which may invite further analysis is the absence of heart
rate in the overall feature list for prediction of AICU admission, and of FiO2

and temperature for predicting in-hospital mortality. Temperature in particular
is a common indicator for severe viral infection [6].

Taken together, our analysis and previous studies suggest that patient age,
demographic information and measures of oxygenation status, such as respira-
tory rate and FiO2 level, are primary indicators of poor outcomes in COVID-19
patients. Prioritising the measurement and clinical assessment of these variables
may improve early patient triaging.

This work uses EHR data captured during a patient’s ED visit. While this
more accurately reflects the data available in practice, it may well limit the
performance of our models. Augmenting the data set with patients’ medical
history may be beneficial, particularly in predicting mortality where a patient’s
chance of survival may be heavily influenced by their comorbidities and other
medical history. While our data set is comparatively large in relation to previous
COVID-19 studies [27,29], further improvements could be made with access to
more data. Longitudinal data from other hospitals in different locations could
improve the generalisability of our models. A significantly larger data set would
also make it feasible to train more complex, deeper neural networks which may
achieve higher prediction performance. One future approach to overcome data
availability issues is the use of transfer learning on other respiratory diseases or
multi-task learning on several clinical endpoints simultaneously.

In conclusion, our models show that state-of-the-art neural networks can
predict severe COVID-19 accurately from sparse, clinical data. Importantly, we
are able to produce a minimal subset of clinical variables required for early risk
assessment of COVID-19 patients. Models trained on this minimal subset of
features can be used by clinicians with limited data available to them to stratify
patients into risk groups.
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A Clinical Features

Table 3 contains all clinical features with over 5% coverage.

Table 3. All clinical features with at least 5% coverage

Age Blood Glucose

Ethnicity Blood Haematocrit

Sex Blood Haemoglobin

FiO2 level POC Blood Lactate

Heart Rate Blood Lactate Dehydrogenase Level

Respiratory Rate Blood Lymphocyte Count

Temperature Blood Magnesium

Blood Activated Partial Thromboplastin Time Blood Mean Corpuscular Haemoglobin Concentration

Blood Adjusted Calcium Blood Mean Corpuscular Haemoglobin

Blood Alanine Aminotransferase Blood Mean Corpuscular Volume

Blood Albumin Blood Mean Platelet Volume

Blood Alkaline Phosphatase Blood Methaemoglobin

Blood Amylase Blood Monocyte Count

Blood Anion Gap Blood Neutrophil Count

Blood Base Excess Blood Nucleated Red Blood Cell Count

Blood Basophil Count Blood Oxygen PO2 Partial Pressure

Blood Bicarbonate Blood Oxyhaemoglobin

Blood Bilirubin Total Blood pH

Blood C Reactive Protein Blood Phosphate

Blood Calcium Blood Platelet Count

Blood Calcium Ionised Blood Potassium

Blood Carboxyhaemoglobin Blood Prothrombin Time

Blood Chloride Blood Red Blood Cell Count

Blood Cortisol Blood Red Cell Distribution Width

Blood Creatine Kinase Blood Sodium

Blood Creatinine Blood Thyroid Stimulating Hormone

Blood D Dimer Blood Thyroxine T4

Blood Deoxyhaemoglobin Blood Total Protein

Blood Eosinophil Count Blood Troponin T

Blood Ferritin Blood Urea

Blood Fibrinogen Blood White Cells

Blood Globulin Brain Natriuretic Peptide

B Model Hyper-parameters

Table 4 contains the optimal model hyper-parameters for each endpoint.
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Table 4. Optimal model hyper-parameters for each endpoint.

Cohort A (AICU) Cohort B (ventilation) Cohort C (mortality)

Hidden layers 2 3 2

Neurons per layer 31 35 28

Dropout rate 0.12 0.30 0.26

Learning rate 0.002 0.005 0.002

C Feature Lists

Table 5 contains the features retained in the final trained models for predicting
each endpoint. This list is the union of the features retained over the three cross
validation folds for each endpoint.

Table 5. Overall features retained for each endpoint

AICU admission Mechanical ventilation Mortality

Age Age Age

Last alanine aminotransferase Eth black african Eth asian indian

Last amylase Eth black caribbean Eth asian pakistani

Last bicarbonate Eth other chinese Eth black other

Last blood ldh level Eth unknown Max amylase

Last nucleated red blood cell countEth white other Max heart rate

Last oxyhaemoglobin Last amylase Mean blood ferritin

Last respiratory rate Last blood lactate Mean respiratory rate

Max anion gap Last blood potassium Min blood bilirubin total

Max blood ldh level Last blood mean corpuscular haemoglobin mchSex

Max blood phosphate Last deoxyhaemoglobin

Max creatinine Last FiO2 level

Max FiO2 level Last haemoglobin

Max oxygen partial pressure Last MCHC

Max red blood cell width Last mean platelet volume

Max respiratory rate Last respiratory rate

Max temperature Max amylase

Mean alanine aminotransferase Max carboxyhaemoglobin

Mean blood lactate Max FiO2 level

Mean blood ldh level Max mean platelet volume

Mean blood potassium Max respiratory rate

Mean fibrinogen Max temperature

Mean FiO2 level Mean blood magnesium

Mean respiratory rate Mean blood urea

Min blood ldh level Mean blood total protein

Mean FiO2 level

Mean lymphocyte count

Mean MCHC

Min bicarbonate

Min creatinine

Min deoxyhaemoglobin

Min haemoglobin

Min heart rate

Min mean platelet volume

Min oxygen partial pressure

Sex
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Abstract. Hypertension is one of the most common health conditions
in modern society. Accurate blood pressure monitoring in free-living
conditions is important for the precise diagnosis and management of
hypertension. In tandem with the advances in wearable and ubiquitous
technologies, a medical-grade wearable blood pressure monitor–Omron
HeartGuideTM wristwatch–has recently entered the consumer market.
It uses the same mechanism as the upper arm blood pressure monitors
and has been calibrated in laboratory settings. Nevertheless, its accuracy
“in the wild” has not been investigated. This study aims to investigate
the accuracy of the HeartGuideTM against a medical-grade upper arm
blood pressure monitor HEM-1022 in free-living environments. Analysis
results suggest that the HeartGuideTM significantly underestimated sys-
tolic pressure and diastolic pressure by an average of 16 mmHg and 6
mmHg respectively. Lower discrepancy between the two devices on dias-
tolic pressure was observed when diastolic pressure increased. In addi-
tion, the two devices agreed well on heart rate readings. We also found
that device accuracy was related to systolic pressure, heart rate, body
temperature and ambient temperature, but was not related salivary cor-
tisol level, diastolic pressure, ambient humidity and air pressure.

Keywords: Personal informatics · Consumer wearables · Blood
pressure · Quantified self

1 Introduction

Hypertension is the biggest risk factor for cardiovascular diseases and other
health conditions from kidney problems to respiratory disorders [1,2]. The rate
of hypertension rose substantially in the past three decades and deaths asso-
ciated with hypertension also increased [3]. The American Heart Association
recommends self-monitoring for all people with high blood pressure. Previ-
ous meta-analyses have shown that self-monitoring can improve blood pressure
control and is an increasing common part of hypertension management [4,5].
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Such monitoring can help the healthcare provider determine the effectiveness of
treatment and can be accompanied by additional support from doctors [6].

Self-monitoring on blood pressure can also enable more precise diagnosis
of hypertension. Blood pressure fluctuate during the course of a day [7]. Office
blood pressure–the one blood pressure measurement when people visit a clinic–is
a snapshot that only tells the blood pressure at the moment of the measurement.
Such snapshots may lead to false positive (e.g., “white coat hypertension” [8])
and false negative (e.g., “masked hypertension” [9]) in diagnosis. On the flip side,
a record of readings taken over time provides a “time-lapse” picture of blood pres-
sure fluctuations. Such information, with clinical accuracy, can generate powerful
insights into heart health, help predict the onset of cardiovascular diseases and
guide proper medication on hypertension [10,11]. Hence, the 2015 U.S. Pre-
ventive Services Task Force (USPSTF) report recommended around-the-clock
blood pressure monitoring as the preferred method for screening hypertension
and predicting cardiovascular disease risk [12].

To this end, accurate monitoring of blood pressure in free-living environment
is critical for hypertension diagnosis and management. Many digital home blood
pressure monitors have been developed in recent years. These devices leverage
the oscillometric method for measuring systolic and diastolic blood pressure,
and can be either worn on wrist or upper arm. Despite of their affordability and
convenience, the portability of these devices is still limited. For example, a user
will not be able to measure blood pressure using her home digital upper arm
monitor when she is in workplace or during outdoor activities. It was not until
last year the first medical-grade wearable blood pressure monitor–the Omron
HeartGuideTM wristwatch–entered the consumer market. The HeartGuideTM

combines oscillometric method and wearable technology to achieve both accuracy
and convenience.

The HeartGuideTM has been validated in laboratory settings and achieved
good agreement with sphygmomanometer (deviation within ±5 mmHg). Never-
theless, its accuracy in free-living environment is yet unclear. Previous validation
studies on consumer wearable wristbands indicate that device accuracy is often
compromised in free-living environment where users operation on the device
is unconstrained. Therefore, the objective of this study is to investigate the
accuracy of the HeartGuideTM against medical-grade upper arm blood pressure
monitor. We also explore what factors may be associated to device accuracy.

2 Related Work

2.1 Blood Pressure Monitoring

Blood pressure refers to the pressure of circulating blood against the walls of
the large arteries and is usually expressed in the terms of the systolic pres-
sure over diastolic pressure. Blood pressure can vary throughout a day and nor-
mally shows a circadian rhythm over a 24-h period [7]. Blood pressure also
changes in response to stress, diet, exercise, changes in posture, and smoking [7].
Hypertension occurs when the force against blood vessel walls becomes too high.
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High blood pressure may come with no perceivable symptoms and is thus called
“the silent killer”. However, in the long run, chronic hypertension may can lead
to serious health problems like heart attack and stroke [1,13,14]. In addition,
blood pressure variability also has prognostic significance for cardiovascular com-
plications [10,11].

Conventional blood pressure measurement in clinical settings uses a sphyg-
momanometer. A cuff fits over the upper arm and inflates, constricting the arter-
ies. When the air is released, the first sound detected with a stethoscope is the
systolic pressure. The silence that follows marks the diastolic pressure. Blood
pressure readings obtained in clinics or hospitals are called office blood pressure.
These readings only represent snapshots of blood pressure at the time of the
clinic visits and are not sufficient to provide a holistic view of how blood pres-
sure may fluctuate at different time of a day. For example, morning hypertension
may not be diagnosed using office blood pressure. Moreover, in some cases high
office blood pressure may not be pathological but rather due to nervousness dur-
ing clinic visits. The likelihood of false positive and false negative of office blood
pressure demands alternative ambulatory blood pressure measuring technologies
that can be used in free-living environment.

Many portable and affordable consumer blood pressure monitors have been
developed for home use. These devices largely fall into two categories: upper
arm monitors and wrist monitors. An upper arm blood pressure monitor usually
consists of a pre-formed cuffs and a digital screen. The measurement process is
automated and users only need to press a start button. The advantage of upper
arm type is that the cuff naturally rests at the same level as heart, saving the
trouble of adjusting device placement and the posture during measuring. Wrist
blood pressure monitors are devices that worn on the wrist. Wrist monitors are
less bulk and more portable, and they are also ideal for people with arm mobility
limitations. Many of these devices use the oscillometric method for simplicity and
reliability, but motion artifact is considered a major drawback of this method
[15,16].

2.2 Quantified Self and Consumer Wearables

The Quantified Self has become a popular everyday practice where people use
digital devices and smartphone apps to gather real-time physiological, behav-
ioral and emotional data from themselves [26]. The purpose of the self-tracking
practices ranges from obtaining self-knowledge [17,18], improving productivity
[19], preventing diseases [20], to managing health condition [21].

The Quantified Self phenomenon has attracted burgeoning interdisciplinary
research interest. An extensive range of digital devices and apps have been devel-
oped to support self-tracking on physical fitness (e.g., Fitbit activity tracker),
mental status (e.g., MUSE medication headband, Happify app), sleep (e.g., Neu-
roon eye mask, SleepAsAndroid app) and other dimensions of their bodies and
lives. A growing body of research has investigated the accuracy of self-tracking
technologies [22,23], how people interact with these technologies [24], and how
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people make sense of their data [18], and the obstacles for self-tracking technolo-
gies to make real-world impact [25].

A variety of wearable activity and sleep tracking devices have exist in the
consumer market for a while. The development of wearable blood pressure mon-
itor has somewhat lagged behind other types of wearable. It was not until last
year that the first wearable blood pressure monitor–the Omron HeartGuideTM–
entered the consumer market. The HeartGuideTM is a medical-grade blood pres-
sure monitor in the shape of a wristwatch. It miniaturizes the components of
traditional oscillometric measurement and uses an inflatable cuff within the
watch band to take blood pressure readings. HeartGuideTM also has the func-
tions of tracking steps, distance, calories burned and sleep as well as setting
daily reminders and getting notifications, so that it allows users to explore how
lifestyle directly may be associated to heart health. Nevertheless, the device is
more bulky compared to activity tracker that offer the same set of lifestyle track-
ing functions (e.g., Fitbit, Mi Band). Despite of being validated in laboratory
settings, it remains unclear whether the HeartGuideTM can produce accurate
readings in the wild. Hence, this paper set out to validate HeartGuideTM in
free-living environments.

3 Methodology

3.1 Devices

To validate the accuracy of the HeartGuideTM wristwatch, we compare its read-
ings with a medical-grade upper arm blood pressure monitor Omron HEM-1022.
Both devices uses the clinically validated oscillometric method to measure blood
pressure.

The appearance of an HeartGuideTM is depicted in Fig. 1. The major differ-
ence between HeartGuideTM and other smart watches or activity tracker is the
cuff below the wristband. One measurement takes 30 s. After completing the mea-
surement, users can view the latest reading on the display of the HeartGuideTM

watch. The battery lasts for approximately 2 days after a full charge. The device
can store up to 100 blood pressure readings. The HeartGuideTM can be used in
tandem with the HeartAdviser smartphone app. Figure 2 shows two screenshots
HeartAdviser’s dashboard. The blood pressure values are color-coded, with green
and red representing safe and high blood pressure respectively. Users can com-
pare the latest readings with previous readings or observe patterns and trends
in historical data.

3.2 Data Collection Protocol

We measure blood pressure simultaneously using an HeartGuideTM and an upper
arm blood pressure monitor HEM-1022. All devices were made available in par-
ticipants’ homes. Participants were instructed to use both devices correctly.

The HeartGuideTM wristwatch is worn on the left wrist, while the upper
arm blood pressure monitor is used on the right arm. Participants were asked
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Fig. 1. An Omron wearable blood pressure monitor HeartGuideTM. Left: blood pres-
sure and heart rate readings on the display. Right: the wristband contains a cuff that
will be inflated during a measurement.

Fig. 2. Screenshots of the HeartAdviser smartphone app. Left: a weekly history of
blood pressure. Right: a weekly history of heart rate.
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to press the start button of the upper arm monitor first. Immediately following
that, they were asked to press the start button of the HeartGuideTM. They were
required to sit still until both devices finish measuring, since HeartGuideTM

takes more time than the upper arm monitor. In case either device requires
re-measurement, participants were asked to adjust their postures before doing
another round of measurement using both devices. Blood pressure was measured
four times a day: right after waking up, before lunch, before dinner and before
bedtime. Participants just follow their daily routine, and no intervention task
was given.

To explore what factors may be associated to device accuracy, we also col-
lected data on the list of factors summarized in Table 1. These factors include
physiological metrics (i.e., salivary cortisol, blood glucose, systolic pressure, dias-
tolic pressure, heart rate, and body temperature) and ambient conditions (i.e.,
ambient temperature, ambient humidity, and air pressure). Salivary cortisol was
a reliable indicator of stress level. In this study, salivary cortisol was measured
using the real-time SOMA cortisol test kit that only requires 10 min of room
temperature incubation before obtaining measurement readings. Blood glucose
was measured using FreeStyle Libre continuous glucose sensors. The readings of
the upper arm blood monitor HEM-1022 were considered as the ground truth of
systolic pressure, diastolic pressure and heart rate. Body temperature was mea-
sured using a digital body temperature thermometer. Ambience temperature,
humidity and air pressure were measured using a multi-functional barometer.

Table 1. Potential association factors and their measurement methods

Factors Measurement method

Salivary cortisol SOMA cortisol test kita

Blood glucose FreeStyle Libre continous glucose sensorb

Systolic pressure Upper arm continuous pressure monitor HEM-1022

Diastolic pressure The same as above

Heart rate The same as above

Body temperature Digital body temperature thermometer

Ambient temperature Multi-functional barometer

Ambient humidity The same as above

Air pressure The same as above
ahttp://somabioscience.com/.
bhttps://www.freestylelibre.us/.

3.3 Performance Measures

We compared the readings obtained using an HeartGuideTM with the those
obtained using an upper arm blood pressure monitor HEM-1022. The metrics of
our interest include systolic pressure, diastolic pressure and heart rate.

http://somabioscience.com/
https://www.freestylelibre.us/
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We adopted the following performance measures to quantify the agreement
between the two devices.

– Paired sample t-test [29]. This test was used to determine if the means of the
readings from two devices are significantly different from each other.

– Scatter plots and the Pearson’s correlation coefficient [30]. The scatter plot
visualizes the relationship between the two devices. The Pearson’s correlation
coefficient quantifies the linear relationship between the two devices.

– Bland-Altman plots and mean differences (95% confidence interval) [27]. The
Bland-Altman plot visualizes the level off agreement between the two devices.
In clinical settings, if the bias between two devices are not clinically impor-
tant, then the two devices will be considered as equivalent and interchangeable
[28].

We also investigate the associations between the Absolute Percent Error
(APE) and a list of factors summarized in Table 1. The APE of the i -th pair
of measurements is calculated using the equation below, where x̂i and xi denote
the reading of the HeartGuideTM and the upper arm blood pressure monitor
respectively. Pairwise Pearson’s correlation coefficient was calculated between
APE and each factor.

APEi =
|x̂i − xi|

xi
(1)

4 Results

A total of 210 pairs of readings were obtained using both devices. Compared to
the upper arm monitor, HeartGuideTM showed lower value for systolic pressure
(HeartGuideTM: 87± 11 mmHg; upper arm monitor: 104± 12 mmHg; t = 14.83,
p < 0.001), diastolic pressure (HeartGuideTM: 54±9 mmHg; upper arm monitor:
61 ± 8 mmHg; t = 7.80, p < 0.001).

Figure 3 shows the Bland-Altman plot and scatter plot on the readings of
systolic pressure from two devices. The HeartGuide underestimated systolic pres-
sure compared to HEM-1022 by an average of 16 mmHg (95% CI = [15, 18]).
The scatter plot demonstrates positive strong correlation between the readings
of two devices (r = 0.70, p < 0.001). Figure 4 shows the Bland-Altman plot and
scatter plot on the readings of diastolic pressure from two devices. The Heart-
Guide underestimated diastolic pressure compared to HEM-1022 by an average
of 6 mmHg (95% CI = [5, 7]). The Bland-Altman plot for also demonstrated a
trend in device difference as a function of the diastolic pressure: the difference
between the two devices diminishes as the diastolic pressure increases. The scat-
ter plot demonstrates positive strong correlation between the readings of two
devices (r = 0.69, p < 0.001). Figure 5 shows the Bland-Altman plot and scat-
ter plot on the readings of heart rate from two devices. The Bland-Altman plot
indicates good agreement between two devices. The scatter plot demonstrates
positive strong correlation between the readings of two devices (r = 0.85, p <
0.001).
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Fig. 3. Comparison between HeartGuideTM and digital upper arm blood pressure mon-
itor on systolic pressure. Left: Bland-Altman plot demonstrates a systematic bias of 16
mmHg (95% CI = [15, 18]). Right: scatter plot shows a correlation coefficient of 0.70
(p < 0.001).
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Fig. 4. Comparison between HeartGuideTM and digital upper arm blood pressure mon-
itor on diastolic pressure. Left: Bland-Altman plot demonstrates a systematic bias of
6 mmHg (95% CI = [5, 7]), and the level of agreement between two devices increases
with diastolic pressure. Right: scatter plot shows a correlation coefficient of 0.69 (p <
0.001).

Table 2 gives a summary of the Pearson correlation analysis between the
APE of HeartGuideTM and the association factors. First, the APE of systolic
pressure is weakly and positively correlated to the true systolic pressure, and
weakly and negatively correlated to the heart rate and ambient temperature.
Second, the APE of the diastolic pressure is weakly and negatively correlated
to the systolic pressure, body temperature, and ambient temperature, and is
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Fig. 5. Comparison between HeartGuideTM and digital upper arm blood pressure mon-
itor on heart rate. Left: Bland-Altman plot demonstrates good agreement between two
devices on heart rate readings. Right: scatter plot shows a correlation coefficient of 0.85
(p < 0.001).

moderately and negatively correlated to the true heart rate. Last but not the
least, the APE of heart rate is weakly and positively correlated to blood glucose
level, and is weakly and negatively correlated to the heart rate.

5 Discussion

This study has shown a quantitative comparison between the first consumer
wearable blood pressure monitor HeartGuideTM and a medical-grade upper arm
blood pressure monitor. We found that the HeartGuideTM systematically under-
estimated both systolic pressure and diastolic pressure when compared to the
upper arm blood pressure monitor HEM-1022, but both devices agreed well on
heart rate readings. Moreover, the difference between HeartGuideTM and the
upper arm monitor on diastolic pressure diminishes as the diastolic pressure
increased.

In clinical settings, two blood pressure monitoring methods are considered
interchangable if their difference is within 5 mmHg [31]. Based on this crite-
rion, the HeartGuideTM and HEM-1022 can be considered identical in measur-
ing diastolic pressure and heart rate. The deviation of HeartGuideTM on systolic
pressure should not be overlooked. Nevertheless, the mean difference of the two
devices on systolic pressure is comparable to inter-observer differences among
specialists using sphygmomanometer [32]. To this end, the HeartGuideTM is a
plausible alternative to sphygmomanometer and upper arm cuff for ubiquitous
blood pressure monitoring.

There are several factors that may play a role in the measurement accuracy
of the HeartGuideTM. The absolute percent error (APE) of systolic pressure
slightly increases as the true systolic pressure increases, but slightly decreases as
the true heart rate and ambient temperature increases. The APE of the diastolic
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Table 2. Correlation analysis between absolute percent error (APE) and association
factors.

Factors APESP
a APEDP

b APEHR
c

Salivary cortisol 0.09 0.13 0.17

Blood glucose −0.10 −0.14 0.28*d

SP 0.28***e −0.23*** −0.15*

DP −0.02 0.00 −0.14*

HR −0.21** −0.32*** −0.25***

Body temperature −0.02 −0.27*** −0.12

Ambient temperature −0.21** −0.21** −0.14*

Ambient humidity −0.05 −0.09 −0.02

Air pressure 0.16* 0.16* 0.16*

aSystolic pressure.
bDiastolic pressure.
cHeart rate.
dSignificance level: *:p < 0.05; **:p < 0.01; ***:p < 0.001.
eBold font highlights the absolute value of the Pearson’s
correlation coefficient r > 0.20 (indicating at least weak
correlation).

pressure slightly decreases as the true systolic pressure, the true heart rate, body
temperature or ambient temperature goes up. The APE of heart rate slightly
increases as blood glucose increases or heart rate decreases. We also observed
that device placement and arm position during measurement could all affect
measurement accuracy. In contrast, salivary cortisol, the true diastolic pressure,
ambient humidity and air pressure were not related to device accuracy. One
possible way to improve the accuracy of the HeartGuideTM is to consider these
association factors in designing correction algorithms.

6 Conclusion

Compared to the upper arm blood pressure monitor HEM-1022, the Heart-
GuideTM significantly underestimated systolic pressure and diastolic pressure by
an average of 16 mmHg and 6 mmHg respectively. In addition, lower discrep-
ancy between two devices was observed when diastolic pressure increased. The
HeartGuideTM agreed well to HEM-1022 in measuring heart rate. We also found
weak but statistically significant correlations between measurement errors and
physiological or ambient conditions. High systolic pressure, low heart rate and low
ambient temperature were associated to greater measurement errors on systolic
pressure. Low systolic pressure, low body temperature, low ambient temperature
and low heart rate were associated to greater measurement errors on diastolic pres-
sure.Highbloodglucose and lowheart ratewere associated to greatermeasurement
errors on heart rate. These factors should be taken into consideration to design
algorithms for wearable blood pressure monitors in the future.
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Abstract. We present a prototype whereby we enabled a humanoid
robot to be used to assist mental health patients and their families. Our
approach removes the need for Cloud-based automatic speech recogni-
tion systems to address healthcare privacy expectations. Furthermore,
we describe how the robot could be used in a mental health facility by
giving directions from patient selection to metrics for evaluation. Our
overarching goal is to make the robot interaction as natural as possible
to the point where the robot can develop artificial empathy for the human
companion through the interpretation of vocals and facial expressions to
infer emotions.

Keywords: Companion robots · Mental health · Privacy-by-design ·
Automatic speech recognition · Artificial intelligence · Artificial
empathy

1 Introduction

This paper outlines a prototype and methodology to enable a commodity
humanoid robot for use as a non-pharmacological intervention to support care of
individuals with dementia by enhancing the robot with privacy-by-design appli-
cations. Our use case utilizes the ASUS Zenbo (see Fig. 1), an Android-based
humanoid robot with a number of built-in artificial intelligence (AI) functions
that rely on the Cloud by default.

The proposed robot enhancements include the following:

1. Enhance Zenbo with privacy-enabled face expression sensing capabilities to
recognize human emotions of dementia patients, off-line.

E. Pérez Valle worked on this project while at Ontario Tech, supported by a MITACS
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Fig. 1. ASUS’ Zenbo.

2. Enhance Zenbo with privacy-enabled vocals sensing capabilities to recognize
human emotions of dementia patients, off-line.

3. Identify other potential privacy-enabled functions that can be performed by
Zenbo to address the needs of dementia patients and their families, such as
programming individualized messages, provide lighting changes to promote
calm and safe atmosphere, music therapy, reminiscence therapy and motion
tracking to assist in monitoring safety of individuals.

Thus, we propose to enable Zenbo with privacy-preserving capabilities to
infer human emotions by combining facial expression and voice vocals using deep
learning techniques of AI through the means of specialized automatic speech
recognition (ASR) hardware such as Snips [1]. In other words, we are proposing
to address the area of interest involving the use of AI companions for patients and
family members through systems that learn and adapt based on interactions with
a situation through speech, gestures, and physical and physiological measures,
amongst others. In our proposed enhanced robot, Zenbo will be able to respond
when particular emotions are inferred such as sadness, anxiety, anger, etc., and
will act according to clinical guidelines. For example, Zenbo may be programmed
to offer the patient to show photos of the last vacation with his or her kids
to make them feel better, or provide lighting changes to promote calm and
safe atmosphere, offer music therapy, or even engage in a conversation with the
patients.

Contributions. Our contributions are twofold: (1) We provide the technical
details of our prototype privacy-by-design enhancement of ASR in Zenbo. (2)
Furthermore, we describe a proposal to use a private-by-design robot to assist
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mental health patients and their families within the context of an inpatient
mental health facility.

2 Related Work

The use of acoustic clues has been used to identify anxiety manifestations in
patients with dementia (see e.g., [2]). Human-AI interaction is a growing field
of research due to a persistent uncertainty about AI capabilities, and the com-
plexity of AI’s output, among other factors [3,4]. Research indicating potential
benefits of assistive robots includes improving mood, communication and stress
reduction [5–7]. However, many of these studies have focused on the use of robotic
pets and research and functionality of humanoid robots is more limited. In a con-
trolled clinical study [8], therapy using a humanoid robot showed a significant
reduction in apathy of patients with dementia suggesting further research and
development of these devices is likely of benefit to this population. Humanoid
robots can include AI functions that are anticipated to provide additional sup-
port beyond those of robotic pets.

One of these robots, the Android based ASUS Zenbo is a 62 cm tall, round
white body on concealed wheels, long metallic neck, with a 10′′ touch screen
face, no extremities, and rechargeable battery. Zenbo is a commercial humanoid
robot launched in 2016 in Taiwan, marketed as a companion robot. Zenbo runs
the Android operating system, and ships with a number of interactive interfaces
including camera, microphone, speakers, touch sensor, drop sensor to avoid falls,
range sensor to measure forward distance, and an ultrasonic sensor to avoid
obstacles. The Zenbo robot has been alluded in a number of healthcare initiatives
in Ontario (see e.g., [9,10]).

The factory settings of Zenbo include a number of apps, some of the most
interesting ones relying on the Cloud for AI functions such as ASR. Running
Android, Zenbo can be programmed through apps to perform additional func-
tions with great flexibility by using Cloud services. Unfortunately, there has
been a number of concerns regarding privacy of Cloud services, and devices like
Amazon’s Alexa or Google Home aren’t the exception, with a number of privacy
breach incidents making the news [11–14].

Privacy-preserving hardware like Sonos’ Snips [15], a powerful Raspberry
Pi card shipping with built-in specialized ASR software, provide a solution to
privacy concerns of ASR Cloud services as they are capable of performing all
the computations off-line, removing the need for the Cloud. Snips can thus be
trained with intents to create voice assistants that understand spoken languages
(English, French, Spanish, German, Italian, Japanese, and Korean).

Finally, we note that ASR systems are susceptible to a number of attacks
that can seriously hinder the technology. For example, it has been demonstrated
how hidden voice commands can be effectively interpreted by voice recognition
systems while being imperceptible by humans [16,17]. A hidden voice attack,
then, may trigger unwanted and unexpected robot behaviour which could be
found unacceptable within certain contexts.
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3 Prototype Private-By-Design ASR in Zenbo

The prototype in our Human Machine Laboratory uses Snips, which offers
private-by-design ASR, to listen and process voice commands and send them
to Zenbo for execution. The prototype includes commands such as “tell me a
joke” or “how’s the weather?” or “make a happy face”. To achieve this, it was
necessary to (1) configure Snips to interpret voice commands and create a secure
connection with Zenbo, and (2) develop an Android app within Zenbo which can
interpret the commands received from Snips.

3.1 Configuring Snips

There are several platforms where Snips can be installed; our prototype used
Raspberry Pi. The configuration steps can be found in the Snips documenta-
tion [18]. Once Snips is configured for Raspberry Pi, we use the Snips Console
to create different types of assistants which will allow us to create a connection
with Zenbo. Figure 2 depicts an assistant called HelloSnips. Then we can create
apps inside the assistant; we called our app Zenbo, as illustrated in Fig. 3.

Fig. 2. The assistant shown is called HelloSnips.
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Fig. 3. An application called Zenbo within an assistant.

The applications for the Snips assistant are composed of intents and actions,
where for every action there can be one or more intents. Intents are the sentences
that Snips recognizes and can trigger some action on Zenbo. Figure 4 illustrates
some intents.

Within the intent Faces we used 7 examples, as shown in Figure 5. So, when
Snips identifies the intent it will send the appropriate command to Zenbo to
trigger the corresponding action on the robot. The words marked in blue are
called Slots, which are benchmarks used to recognize intents and link them to
the corresponding action. Actions are coded in Python inside Code Snippets, as
illustrated in Fig. 6. In our prototype the action is the establishment of a secure
communication channel with Zenbo where commands are then sent to the robot.

3.2 Android App in Zenbo

In our prototype, Zenbo receives commands via sockets through the WiFi network.
The sockets are established with Zenbo as a server, and Snips as a client. To develop
the Android app in Zenbo, we used Zenbo’s SDK available at [19]. Once the app
is built, it can be seamlessly installed in Zenbo. We leave the underpinnings of the
app outside the scope of this paper but suffice to say that the app receives the text
of the intent from Snips, and then cross-check it against a set of possible actions
(Zenbo commands); and execute the one that matches the intent.
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Fig. 4. Examples of intents used in our prototype.

4 Proposed Enhancements and Methodology for Use in a
Clinical Environment

The prototype described in the previous section proves the viability of a private-
by-design ASR robot. Now we describe two constructs that will make Zenbo a
feasible clinical robot.

4.1 Technical Aspects

One construct involves the technical aspects of training a sufficiently large num-
ber of intents for every action in such a way that Zenbo can understand a large
range of voice commands. Another aspect of this construct is related to vocals
and face expression recognition (FER). The second construct is the effectiveness
in identifying dementia-specific needs and being able to address these with our
technology, and having our solution tested by real patients.
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Fig. 5. Some training examples within the Faces intent.

Vocals and Face Expression Recognition. It’s been generally accepted in
the research community that acoustic profiles of vocals are associated to emo-
tions of anger, fear, happiness, and sadness. The profiling of vocals includes
pitch, intensity, and speed of speech [20]. We will use deep learning to train a
vocals engine to recognize these emotions. And although these vocal profiles are
generally accepted, we are aware that emotions may manifest differently on indi-
viduals, so we will further consider the possibility to customize and refine the
training with the vocals of the dementia patient the robot will serve. As per FER,
different techniques have been proposed in the literature to detect expressions
such as smile, sad, anger, disgust, surprise, and fear [21]. While FER feature
extraction is one of the most difficult challenges of our project, Zenbo comes
with pre-installed basic face recognition features that we hope can be adapted
for our purposes. We plan to complete the vocals recognition and combine that
with FER to infer emotions of the dementia patient. This, combined with the
NLP engine in a privacy-enhanced environment will make of our approach a
powerful tool with great potential to assist dementia patients.
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Fig. 6. Snips code template to develop the commands to execute corresponding actions.

Emotions. We will use a dimensional theory of emotion based on the “PAD
theory” [22] for pleasure (a measure of valence), arousal (a measure of affective
activation), and dominance (a measure of control), termed the valence-arousal
model. This model classifies emotions such as sad, happy, and calm, and is
able to associate intensities to these [23]. We will be particularly interested in
detecting emotions that are deemed as requiring attention of a human caregiver.
For example, after using vocals and FER, our system could trigger an alert to the
floor nurse if unusual sadness emotions are detected. In addition, our system will
be able to pick significantly different vocal features that may be an indication
of pain or any other condition such as skipping medications, or sudden changes
in the patients’ condition.
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4.2 Clinical Trials

The second construct of this proposal is the effective identification of dementia
patients needs that can be addressed with the physical limitations of the Zenbo
robot.

Test Group. The ideal test group would be patients with a primary diagnosis
of dementia and behaviours and psychological symptoms of dementia (BPSD).
BPSD can include agitation, aggression, restlessness, lability, exit seeking, impul-
sivity and sexual disinhibition. A trigger for BPSD can be boredom or social
isolation, therefore supporting activities and increasing non-pharmacological
interventions is critical to stabilizing behaviours in this population. Common
non-pharmacological interventions include the use of robotic pets, doll therapy,
aromatherapy, therapeutic sensory chair, sensory room (Snoezelen room), SPA-
based therapy (e.g., manicure), iPads/iPods, live pet therapy, hand massage,
and group activities.

Patient Identification. To identify patient needs, we will look to partner
with facilities caring for individuals with dementia, conduct focus groups with
frontline staff, as well as individual patients and/or their caregivers. Themes
from these focus groups will be reviewed by the research team for exploration
of the capabilities of Zenbo to support these activities. Upon enhancement of
the Zenbo robot, we will look to pilot the device with a number of dementia
patients, determined by the Test Group assessment described above.

Evaluation. To evaluate the effectiveness of the intervention, baseline measures
for each patient including DSM-V (Diagnostic and Statistical Manual of Mental
Disorders’ Working Group 5) diagnoses, Folstein Mini-Mental state Examination
(MMSE) on admission, Alzheimer’s Disease-related Quality of Life (QoL-AD)
scale on admission, baseline measures on the neuropsychiatric inventory, num-
ber of incidents of aggression/threatening/sexually inappropriate behaviour and
average number of hours slept per night during the week prior to the interven-
tion will be reviewed. Outcome measures will include neuropsychiatric inventory,
number of incidents of aggression/threatening/sexually inappropriate behaviour,
and average number of hours slept per night the week post the intervention, for
comparison. In addition, the QoL-AD will be completed post-intervention as
well.

5 Conclusions and Directions for Future Work

The research study will enable Zenbo with privacy-preserving capabilities to
infer human emotions by combining facial expression and voice vocals using
deep learning techniques of AI. When Zenbo is enabled with these capabilities
they will serve as a meaningful companion for individuals with dementia, thus



360 M. Vargas Martin et al.

improving the quality of life of these individuals. This will also provide an addi-
tional non-pharmacological intervention to support stabilization of BPSD, which
will be transferable across acute care, tertiary care, and community care settings
(e.g., long-term care homes). In addition, confirming the privacy-preserving capa-
bilities will allow for adaptation of this model to potentially meet the needs of
individuals with dementia who continue to live at home. Given the prediction
that in 20 years’ time over 1.5 million Canadians will be living with demen-
tia and the significant economic burden associated with providing meaningful
support and care to these individuals, identifying cost-effective ways to support
independence and quality of life will be crucial.

The Zenbo private-by-design approach also has the potential to combine
several non-pharmacological interventions into one device as through this study
we will be able to investigate incorporation of light therapy, music therapy,
reminiscence therapy and potential safety monitoring which negates the expense
and space requirements of having multiple devices to provide these interventions.

Improvements to our current prototype include training the private-by-design
ASR with sufficiently large number of intents and samples per intent, which will
make Zenbo recognize speech in a more natural way. To this end, we could choose
to use transfer learning [24], making sure to protect against potential backdoor
attacks [25]. Alternatively, the Snips device could be replaced by a fully-fledged
ASR that works locally without Cloud services, although this would require
expensive equipment which may affect the portability of the hardware set.

References

1. Coucke, A., et al.: Snips voice platform: an embedded spoken language understand-
ing system for private-by-design voice interfaces. ArXiv abs/1805.10190 (2018)

2. Hernandez, N., et al.: Prototypical system to detect anxiety manifestations by
acoustic patterns in patients with dementia. PHAT 5(19) (2019)

3. Yang, Q., et al.: Re-examining whether, why, and how Human-AI interaction is
uniquely difficult to design. In: Conference on Human Factors in Computing Sys-
tems (CHI), Honolulu, USA (2020)

4. Long, D., et al.: What is AI literacy? Competencies and design considerations.
In: Conference on Human Factors in Computing Systems (CHI), Honolulu, USA
(2020)

5. Murdoch, E., et al.: Use of social commitment robots in the care of elderly people
with dementia: a literature review. Maturitas 74, 14–20 (2013)

6. Broekens, J., et al.: Assistive social robots in elderly care: a review. Gerontechnol-
ogy 8(2), 94–103 (2009)

7. Bemelmans, R., et al.: Socially assistive robots in elderly care: a systematic review
into effects and effectiveness. JAMDA 13(2), 114–120 (2012)

8. Soler, M.V., et al.: Social robots in advanced dementia. Front. Aging Neurosci.
7(133), 1–12 (2015)

9. Perkins, J.: Toronto charity creates robot to entertain, educate kids who
can’t go to school due to severe illnesses. The Globe and Mail, 31 January
2020. https://www.theglobeandmail.com/canada/toronto/article-toronto-charity-
creates-robot-to-entertain-educate-kids-who-cant-go/. Accessed 23 Nov 2020

https://www.theglobeandmail.com/canada/toronto/article-toronto-charity-creates-robot-to-entertain-educate-kids-who-cant-go/
https://www.theglobeandmail.com/canada/toronto/article-toronto-charity-creates-robot-to-entertain-educate-kids-who-cant-go/


Artificial Empathy for Clinical Companion Robots with Privacy-By-Design 361

10. Students using AI to teach robot how to recognize human emotions. CTV News,
19 August 2019, http://ctv.news/6JsxuKV. Accessed 23 Nov 2020

11. Brown, J.: The Amazon Alexa eavesdropping nightmare came true. Gizmodo.
https://gizmodo.com/the-amazon-alexa-eavesdropping-nightmare-came-true-183-
1231490. Accessed 23 Nov 2020

12. Valinski, J.: Amazon reportedly employs thousands of people to listen to your Alexa
conversations. CNN Business. https://www.cnn.com/2019/04/11/tech/amazon-
alexa-listening/index.html. Accessed 23 Nov 2020

13. Paul, K.: Google workers can listen to what people say to its AI home
devices. The Guardian. https://www.theguardian.com/technology/2019/jul/11/
google-home-assistant-listen-recordings-users-privacy. Accessed 23 Nov 2020

14. Barack, L.: Google Home security breach sends your location to hack-
ers. GearBrain. https://www.gearbrain.com/google-home-location-hack-found-
2579276699.html. Accessed 23 Nov 2020

15. Snips: Using voice to make technology disappear. https://snips.ai/. Accessed 23
Nov 2020

16. Chen, Y., et al.: Devil’s Whisper: a general approach for physical adversarial
attacks against commercial black-box speech recognition devices. In: 29 USENIX
Security Symposium (2020)

17. Abdullah, M., et al.: Practical hidden voice attacks against speech and speaker
recognition systems. In: Network and Distributed System Security Symposium
(NDSS), San Diego, USA (2019)

18. Quick Start Raspberry Pi. https://docs.snips.ai/getting-started/quick-start-
raspberry-pi. Accessed 23 Nov 2020

19. ASUS Developer. https://zenbo.asus.com/developer/tools/. Accessed 23 Nov 2020
20. Juslin, P.N., et al.: Communication of emotion in vocal expression and music per-

formance: different channels, same code? Psychol. Bull. 129, 770–814 (2003)
21. Revina, I.M., et al.: A survey on human face expression recognition techniques.

Psychol. Bull. (2018). https://doi.org/10.1016/j.jksuci.2018.09.002
22. Albert, M., et al.: An Approach to Environmental Psychology. The MIT Press,

Cambridge (1974)
23. Russell, J.A.: A circumplex model of affect. J. Pers. Soc. Psychol. 39(6), 1161–1178

(1980)
24. Hernandez, N., et al.: Literature review on transfer learning for human activity

recognition using mobile and wearable devices with environmental technology. SN
Comput. Sci. 1, 66 (2020)

25. Yao, Y., et al.: Latent backdoor attacks on deep neural networks. In: ACM Con-
ference on Computer and Communications Security, London, UK (2019)

http://ctv.news/6JsxuKV
https://gizmodo.com/the-amazon-alexa-eavesdropping-nightmare-came-true-183-1231490
https://gizmodo.com/the-amazon-alexa-eavesdropping-nightmare-came-true-183-1231490
https://www.cnn.com/2019/04/11/tech/amazon-alexa-listening/index.html
https://www.cnn.com/2019/04/11/tech/amazon-alexa-listening/index.html
https://www.theguardian.com/technology/2019/jul/11/google-home-assistant-listen-recordings-users-privacy
https://www.theguardian.com/technology/2019/jul/11/google-home-assistant-listen-recordings-users-privacy
https://www.gearbrain.com/google-home-location-hack-found-2579276699.html
https://www.gearbrain.com/google-home-location-hack-found-2579276699.html
https://snips.ai/
https://docs.snips.ai/getting-started/quick-start-raspberry-pi
https://docs.snips.ai/getting-started/quick-start-raspberry-pi
https://zenbo.asus.com/developer/tools/
https://doi.org/10.1016/j.jksuci.2018.09.002


Author Index

Abdelhedi, Rania 300
Andreotti, Fernando 323
Asvestas, Panteleimon 52

Bandara, Eranga 208
Barkhausen, Jörg 315
Basteris, Angelo 133
Batalas, Nikolaos 145
Benini, Luca 244
Ben-Zeev, Dror 18
Bischof, Arpad 315
Blankenhagel, Kim Janine 34
Bloch, Louise 285
Bowden, Daniel 208
Brackhagen, Leslie 274
Broderick, Eilish 186
Brunschwiler, Thomas 244

Calle, Andres 227
Campbell, Andrew 18
Chapa-Martell, Mario Alberto 339
Choudhury, Tanzeem 18
Cinelli, Mattia 323

Daudet, Louis 3
De Zoysa, Kasun 208
Diemer, Florian 67
Dimitrakopoulos, Georgios N. 52
Dobson, Simon 116
Dode, Albi 67
Dürichen, Robert 323

Ezema, Abraham 257

Fang, Lei 116
Fleitmann, Marja 315
Fletcher, Robert A. 323
Foytik, Peter 208
Frick, Thomas 244
Friedrich, Christoph M. 285
Fürschke, Alexander 315

Gerlach, Jan 315
Ghedira, Khaled 300

Glüge, Stefan 244
Grüning, Philipp 274

Hall, Crissie 208
Hancock, Anne 323
Handels, Heinz 315
Hasaart, Fleur 145
Hauck, Franz J. 67
Hauser, Marta 18
Heckmann, Lara 274
Heldt, Frank S. 323
Hennig, Lukas 67
Horsburgh, Sheri 351
Hui, Pan 116

Itoh, Asami 89

Kakkos, Ioannis 52
Kane, John 18
Kaptein, Maurits 145
Karanasiou, Irene 52
Karishetti, Supriya 227
Khan, Rabia T. 323
Kharrat, Najla 300
Kouretas, George 227

Lamichhane, Bishal 18
Landt, Svenja Kim 274
Leth, Frederikke Birkeholm 133
Liang, Xueping 208
Liang, Zilu 339
Lipunova, Nadezda 323
Liu, Xiaoli 116

Mahon, David Mc 186
Mamlouk, Amir Madany 274
Matsopoulos, George 52
Mayer, Gwendolyn 34
McCarthy, Alex 323
McLachlan, Lachlan 323
Mehdi, Muntazir 67
Miloulis, Stavros-Theofanis 52
Moran, Kieran 104



364 Author Index

Ng, Wee Keong 208
Nogales, Juncal 186
Nunnari, Fabrizio 257

O’Connor, Noel E. 104
Obuchi, Mikio 18

Palumbo, Alex 274
Peacock, Sophie 323
Pérez Valle, Eduardo 351
Poellabauer, Christian 3, 166
Prabhu, Ghanashyama 104
Pryss, Rüdiger 67

Rahimi, Abbas 244
Ranasinghe, Nalin 208
Reichert, Manfred 67

Sakamoto, Ryota 89
Salah, Kais Ben 300
Sammout, Rawia 300
Sano, Akane 18, 89
Scherer, Emily 18
Schlee, Winfried 67
Schneider, Sandra 3, 166
Schultz, Jobst-Hendrik 34
Shaghaghi, Navid 227
Shetty, Sachin 208
Shimaoka, Motomu 89

Sonntag, Daniel 257
Stroth, Andreas Martin 315
Su, Xiang 116
Sun, Yu 52

Tarkoma, Sasu 116
Templeton, John Michael 166
Tornbjerg, Charlotte Egeskov 133

Uzunova, Hristina 315

Vargas Martin, Miguel 351
Ventouras, Errikos-Chaim 52
Vizcaychipi, Marcela P. 323

Wagh, Tanmay 227
Walsh, Joseph 186
Walsh, Megan 18
Wang, Rui 18
Wang, Weichen 18
Werner, Johannes 34
Wiil, Uffe Kock 133
Willemse, Bas 145

Ye, Juan 116
Yu, Han 89

Zarnekow, Rüdiger 34
Zille, Marietta 274


	Preface
	Conference Organization
	Contents
	Mobile Sensing and Assessment
	Experiences in Designing a Mobile Speech-Based Assessment Tool for Neurological Diseases
	1 Introduction
	2 Related Work
	3 Application Design
	3.1 Overview and Workflow
	3.2 Challenges in Design

	4 Conclusion and Future Work
	References

	Patient-Independent Schizophrenia Relapse Prediction Using Mobile Sensor Based Daily Behavioral Rhythm Changes
	1 Introduction
	2 Related Work
	3 Methods
	3.1 Dataset
	3.2 Relapse Prediction Model
	3.3 Features
	3.4 Classification
	3.5 Evaluation Metric

	4 Results
	5 Discussion
	6 Conclusion
	References

	Understanding E-Mental Health for People with Depression: An Evaluation Study
	1 Introduction
	2 Background
	2.1 SELFPASS
	2.2 Theoretical Background

	3 Method
	3.1 Research Model and Hypotheses
	3.2 Questionnaire Design and Data Collection
	3.3 Statistical Analyses

	4 Results
	4.1 Structural Equation Modelling – Measurement Model
	4.2 Structural Equation Modelling – Structural Model Assessment
	4.3 ANOVA

	5 Discussion
	6 Limitations
	7 Conclusion and Future Work
	References

	Evaluating Memory and Cognition via a Wearable EEG System: A Preliminary Study
	1 Introduction
	2 Materials and Methods
	2.1 Participants
	2.2 Experimental Design
	2.3 Data Acquisition and Pre-processing
	2.4 Estimation of Synchronization Waveforms
	2.5 Statistical Analysis

	3 Results
	4 Discussion and Future Research
	5 Conclusion
	References

	Towards Mobile-Based Preprocessing Pipeline for Electroencephalography (EEG) Analyses: The Case of Tinnitus
	1 Introduction
	2 Related Work
	3 Implementation
	3.1 Preprocessing Pipeline
	3.2 Graphical User Interface (GUI)

	4 Results and Discussions
	4.1 Experimental Setup
	4.2 Results
	4.3 Discussion

	5 Conclusion, Limitations, and Future Work
	References

	Machine Learning in eHealth Applications
	Forecasting Health and Wellbeing for Shift Workers Using Job-Role Based Deep Neural Network
	1 Introduction
	2 Related Work
	3 Methods
	3.1 Data Collection
	3.2 Features
	3.3 Statistical Analysis of Physiological and Behavioral Features Between Nurses and Doctors
	3.4 Job-Role Based Multitask Multilabel Neural Network

	4 Experiments
	4.1 Model Weights Analysis

	5 Results and Discussion
	5.1 Data Statistics
	5.2 Wellbeing Prediction
	5.3 Weight Analysis

	6 Conclusion
	References

	A Deep Learning Model for Exercise-Based Rehabilitation Using Multi-channel Time-Series Data from a Single Wearable Sensor
	1 Introduction 
	2 Proposed Framework 
	3 Methodology 
	3.1 Data Set 
	3.2 Data Processing 
	3.3 A Deep CNN Architecture for Recognition and Repetition Counting 

	4 Experimental Results
	4.1 Exercise Recognition Using CNN Model 
	4.2 Repetition Counting Using the CNN Model 

	5 Discussion
	6 Conclusion
	References

	Bayesian Inference Federated Learning for Heart Rate Prediction
	1 Introduction
	2 Related Work
	2.1 Heart Rate Prediction
	2.2 Federated Learning

	3 Proposed Approach
	3.1 Problem Definition
	3.2 Autoregression with Exogenous Variable Model
	3.3 Federated Learning with Sequential Bayesian Inference
	3.4 Federated Learning with Hierarchical Bayesian Inference

	4 Evaluation and Results
	4.1 Dataset
	4.2 Evaluation Methods
	4.3 Experiment Procedure
	4.4 Results

	5 Conclusion
	A EM Algorithm for Hyperparameter Estimation for Hierarchical Bayesian Regression Model
	References

	Health Telemetry and Platforms
	A Home-Based Self-administered Assessment of Neck Proprioception
	1 Introduction
	2 Methods
	2.1 Task
	2.2 Experimental Protocol
	2.3 Head Tracking Software
	2.4 Data Analysis

	3 Results
	3.1 Test Duration
	3.2 Absolute Error – All Directions
	3.3 Effect of Movement Direction on Absolute Error

	4 Discussion
	4.1 Feasibility of Self Administered Assessment of Neck Proprioception.
	4.2 Test-Retest Reliability of the Proposed Method and Implications for Diagnostic Value
	4.3 Effect of Direction on Average Error and Test-Retest Reliability
	4.4 Limitations of This Study

	5 Conclusions
	References

	Health Telescope: System Design for Longitudinal Data Collection Using Mobile Applications
	1 Introduction
	2 The Health Telescope Software
	2.1 Study Objectives
	2.2 System Architecture
	2.3 Considerations in Developing the System

	3 Implementation of the System
	3.1 Mobile Application
	3.2 Authoring Client

	4 Testing the Software: Use Cases
	4.1 Use Case 1 - Questionnaire
	4.2 Use Case 2 - Intervention

	5 Evaluating the System
	5.1 Pilot Design
	5.2 Pilot Results

	6 Discussion
	6.1 Lessons Taken from Pilot
	6.2 Related Work
	6.3 Design Guidelines
	6.4 Conclusion

	References

	Design of a Mobile-Based Neurological Assessment Tool for Aging Populations
	1 Introduction
	2 Related Work
	2.1 Testing Layout
	2.2 Screen Interactions
	2.3 Testing Instruction
	2.4 Cognitive Interference

	3 Application Design
	3.1 Test Layouts
	3.2 Test Instruction
	3.3 Test Interactions
	3.4 Test Submission

	4 Methods
	4.1 Usability
	4.2 Cognitive Interference

	5 Results
	5.1 User Interface
	5.2 Test Design - Cognitive Interference

	6 Discussion
	6.1 User Interface
	6.2 Test Design

	7 Conclusions and Future Work
	References

	Improving Patient Throughput by Streamlining the Surgical Care-Pathway Process
	1 Introduction
	2 The Problem Domain
	2.1 Interdepartmental Communication and Collaboration
	2.2 The Hierarchical Influence
	2.3 Hospital Information Systems
	2.4 Conventional Forms of Communication
	2.5 Patient Handover and Transfers
	2.6 Patient Security
	2.7 From an Irish Context
	2.8 From a European and American Context

	3 Current Solutions
	3.1 Mobile Based Approaches
	3.2 Data Capture and Information Sharing
	3.3 Data Visualisation
	3.4 Patient Identification and Security

	4 Case Study – The Development of a Bespoke Software Application That Streamlines the Surgical Care-Pathway
	4.1 Case Study Background
	4.2 Solution Methodology Introduction
	4.3 Requirements Gathering and Analysis
	4.4 Application Design - Overview
	4.5 Application Design - Communicating Transfer Requests
	4.6 Application Design – Task Visibility
	4.7 Application Implementation – Software and Architecture
	4.8 Application Implementation - Hardware
	4.9 Application Testing

	5 Results
	5.1 Task Visibility, Communication, Verification and Data Distribution
	5.2 A Time Comparison of the New and Old System from Admission to Surgery Transfer Request
	5.3 A Time Comparison Between the New and Old System from Surgery Transfer Request to Theatre Arrival

	6 Conclusion
	References

	Connect - Blockchain and Self-Sovereign Identity Empowered Contact Tracing Platform
	1 Introduction
	2 Connect Platform
	2.1 Overview
	2.2 Functionality
	2.3 Contact Tracing

	3 Connect Implementation
	4 Performance Evaluation
	4.1 Transaction Throughput
	4.2 Transaction Execution and Validation Time
	4.3 Transaction Scalability
	4.4 Transaction Execution Rate
	4.5 Block Generate Time

	5 Related Work
	6 Conclusions and Future Work
	References

	EAI International Workshop on Medical Artificial Intelligence 2020
	Expanding eVision's Granularity of Influenza Forecasting
	1 Introduction
	2 Related Work
	3 Vector Autoregression (VAR) Model
	3.1 Utilization of the VAR Model for Flu Prediction

	4 Modifications to eVision
	4.1 Selecting States
	4.2 Adding Metropolitan Data

	5 Data Acquisition
	5.1 Google Trends
	5.2 Google Search Keywords
	5.3 Data Acquisition Accommodations Due to COVID-19
	5.4 Python Scraper
	5.5 Data Selection

	6 Results
	6.1 VAR Results
	6.2 LSTM Results

	7 Future Work
	7.1 Google Trends Data Ranges and Adjustments
	7.2 Influenza Strain-Level Predictions
	7.3 Ease of Use

	8 Conclusion
	References

	Explainable Deep Learning for Medical Time Series Data
	1 Introduction
	2 Taxonomy of Explanation Methods for Neural Networks
	2.1 Model Explanations
	2.2 Decision Explanations

	3 Explanation Ground Truth and Quality Metrics
	4 Experiments and Results
	4.1 Datasets
	4.2 Models
	4.3 Explanation Method Experiments
	4.4 Limitations of Explanation Methods

	5 Conclusion
	5.1 Future Work

	References

	The Effects of Masking in Melanoma Image Classification with CNNs Towards International Standards for Image Preprocessing
	1 Introduction
	2 Related Work
	3 Method Overview
	3.1 Segmentation Model
	3.2 Masked Image Datasets
	3.3 Binary Classifiers

	4 Experiments
	4.1 ISIC2018
	4.2 MedNode
	4.3 ISIC 2016

	5 Visual Inspection
	6 Discussion
	7 Conclusions
	References

	Robust and Markerfree in vitro Axon Segmentation with CNNs
	1 Introduction
	2 Data and Methods
	3 Results
	4 Discussion
	References

	Using Bayesian Optimization to Effectively Tune Random Forest and XGBoost Hyperparameters for Early Alzheimer's Disease Diagnosis
	1 Introduction
	1.1 Prior Work

	2 Materials and Methods
	2.1 Dataset
	2.2 eXtreme Gradient Boosting
	2.3 Random Forest
	2.4 Latin Hypercube Design
	2.5 Bayesian Optimization

	3 Machine Learning Workflow
	4 Results
	4.1 Bayesian Optimization for Random Forest Classifiers
	4.2 Bayesian Optimization for XGBoost Classifiers

	5 Conclusions
	References

	A Proposal of Clinical Decision Support System Using Ensemble Learning for Coronary Artery Disease Diagnosis
	1 Introduction
	2 Materials and Methods
	2.1 Design of the Proposed CDSS
	2.2 Data Pre-processing Phase
	2.3 Classification Phase: Proposed Ensemble Learning Model
	2.4 Performance Evaluation Measurement

	3 Experimental Results and Discussion
	3.1 Datasets
	3.2 Hyperparameters Setting
	3.3 Results and Discussion

	4 Conclusion and Perspectives
	References

	Deep-Learning-Based Feature Encoding of Clinical Parameters for Patient Specific CTA Dose Optimization
	1 Introduction
	2 Data
	3 Methods
	3.1 Autoencoders
	3.2 Variational Autoencoders
	3.3 Regression Neural Network
	3.4 Implementation Details
	3.5 PCA
	3.6 KNN Contrast Classification

	4 Results
	5 Discussion and Conclusion
	References

	COVID-19 Patient Outcome Prediction Using Selected Features from Emergency Department Data and Feed-Forward Neural Networks
	1 Introduction
	2 Methods
	2.1 Data
	2.2 Cohort Definition
	2.3 Prediction Algorithms
	2.4 Model Validation
	2.5 Feature Selection

	3 Results
	3.1 Neural Network Performance
	3.2 Performance with Feature Selection

	4 Discussion
	A  Clinical Features
	B  Model Hyper-parameters
	C  Feature Lists
	References

	EAI International Workshop on Digital Healthcare Technologies for the Global South
	Validation of Omron Wearable Blood Pressure Monitor HeartGuideTM in Free-Living Environments
	1 Introduction
	2 Related Work
	2.1 Blood Pressure Monitoring
	2.2 Quantified Self and Consumer Wearables

	3 Methodology
	3.1 Devices
	3.2 Data Collection Protocol
	3.3 Performance Measures

	4 Results
	5 Discussion
	6 Conclusion
	References

	Artificial Empathy for Clinical Companion Robots with Privacy-By-Design
	1 Introduction
	2 Related Work
	3 Prototype Private-By-Design ASR in Zenbo
	3.1 Configuring Snips
	3.2 Android App in Zenbo

	4 Proposed Enhancements and Methodology for Use in a Clinical Environment
	4.1 Technical Aspects
	4.2 Clinical Trials

	5 Conclusions and Directions for Future Work
	References

	Author Index



