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1 Introduction

In recent years the richness of the geometry of surfaces in 4-dimensional
manifolds has attracted the attention of many authors. In particular, start-
ing from the pioneering work of Calabi, [9], and Chern, [12], the research
has been focusing on minimal surfaces and culminated with the result of
Bryant, [8], on the possibility of conformally and minimally immerse com-
pact surfaces in S4, and with the fundamental achievements of Eschenburg,
Guadalupe and Tribuzy, [19], on the geometry of minimal surfaces in CP2.
Later, Eells and Salamon, [14], introduced twistorial methods to study the
case of an arbitrary 4-dimensional target N and, making a clear distinction
between harmonicity and conformality of the map f :M → N , they were
able to reinterpret, extend and complete in a well geometrically organized
picture, practically, all of the previous research. (For a complete survey
on the subject we refer to [13].)

The harmonicity condition, or at least the fact that the surface had
parallel mean curvature vector, played a fundamental role in a number of
results and in particular on the existence of Abelian differentials intimately
related to geometrical properties. Different authors have been developing
a number of techniques to better understand and simplify to its roots the
basic phenomenon (see [26, 27, 38, 21, 18, 1, 2, 3]). Thus Eschenburg
and Tribuzy, [20], generalized a result of Chern, [11], and showed, with
a number of applications, that the harmonicity assumption, expressed by
the vanishing of the tension field τ(f), can be relaxed to appropriate,
geometrically significant, inequalities.

One of the aims of this paper is to give a number of further appli-
cations of the Eschenburg-Tribuzy technique to obtain topological-type
restrictions on the geometry of the surface and to identify a class of them,
that we call Codazzi surfaces, whose behavior parallels that of the generic
surface in a 4-space form. The notion of Codazzi surface is intimately
related to the Gauss lift γf associated to the immersion and more pre-
cisely to the Ruh-Vilms property as introduced and studied in [40] (see
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also [31]). We say that a class of isometric immersions f : M → N has
the Ruh-Vilms property if, for every immersion f in such class, γf is har-
monic if and only if f has parallel mean curvature. Ruh and Vilms [37]
first observed that this equivalence holds for the class of immersions in
Euclidean spaces N = Rn. In this way, for instance, we produce harmonic
maps starting from weaker properties of f .

The following results are a sample of those that we obtain in the paper.
For terminology and notation the reader is referred to section 2.

Theorem 1.1. Let f : M → N be a smooth map between Riemann sur-
faces satisfying |τ(f)| ≤ γmin{e′(f), e′′(f)} on M . Then f is weakly
conformal if and only if is either holomorphic of anti-holomorphic.

As a consequence of Theorem 3.11 in section 3 we generalize a result,
basically already in [14] and further improved by Salamon (see [13]), to
the following

Theorem 1.2. Let f : M → S4 be an isometrically immersed compact
surface, isotropic with negative spin and such that

|∇H(1,0)| ≤ γ(|H|2 −K + 1) = γK⊥ .

Then f is totally umbilical if and only if χ(TM⊥) = 0. Otherwise

χ(TM⊥) = 2χ(M) +m

where m is the total number of umbilical points counted with multiplicities.

Here and in the sequel χ( ) denotes the Euler characteristic. Theorem
4.6 of section 4 immediately gives

Theorem 1.3. Let f : M → CP2 be an isometrically immmersed surface
with constant Kähler angle and neither holomorphic nor anti-holomorphic.
Then there exists a metric on the total space G2(TCP2) of the Grassmann
bundle of 2-planes over CP2 such that the following properties are equiva-
lent:
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i) f is a Codazzi surface

ii) f is totally real (or, in alternative terminology, Lagrangian)

iii) The Gauss lift γf :M → G2(TCP2) is harmonic if and only if f has
parallel mean curvature vector.

The paper is divided in three sections as follows. In section 2 we recall
some basic formulas and results to be used in the sequel. Section 3 is
devoted to finding topological restrictions on the geometry of the surface
once appropriate differential inequalities are satisfied. Finally, section 4
deals with the case of parallel mean curvature vector.

The Einstein summation convention over repeated indexes is in force
unless otherwise specified.

2 Generalities

In this paper we will adopt both the complex variable notation and the
moving frame technique. Let (M, g) be a connected Riemann surface with
a specified metric g in its conformal class. If z : U ⊆ M → C is a local
holomorphic coordinate, then the real and imaginary part of z = x + iy

yield a pair of real coordinates (x, y) : U → R2 in which respect the metric
g and the volume form dA of M are given by

g = λ2((dx)2 + (dy)2) , dA = λ2 dx ∧ dy . (2.1)

for a smooth positive function λ. Hereafter, for any 1-forms ω, ψ and for
any integer n ≥ 1 we adopt the notations

ωn = ω ⊗ · · · ⊗ ω︸ ︷︷ ︸
n times

, ωψ =
1

2
(ω⊗ψ+ψ⊗ω) , ω∧ψ = ω⊗ψ−ψ⊗ω .

Conversely, if (M, g) is an oriented Riemannian manifold of dimension
2 then for every p ∈ M it is possible to find a chart (x, y) : U ⊆ M → R2

in a neighbourhood U of p such that (2.1) holds for some smooth positive
function λ. Such (x, y) are called isothermal coordinates and λ is called
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the corresponding conformal factor. If (x′, y′) : U ′ → R2 is another pair of
isothermal coordinates with corresponding conformal factor λ′ defined in
a neighbourhood U ′ of p, then the functions x′ = x′(x, y) and y′ = y′(x, y)

satisfy Cauchy-Riemann equations

∂x′

∂x
=
∂y′

∂y
,

∂x′

∂y
= −∂y

′

∂x

and therefore the transition function z′ = z′(z) between the complex charts
z = x + iy : U → C and z′ = x′ + iy′ : U ′ → C is holomorphic. In
other words, the existence of an atlas for (M, g) given by a collection
of isothermal coordinate charts endows M with a structure of Riemann
surface, independent of the chosen atlas.

More generally, for every p ∈M it is possible to find a couple {θ1, θ2}
of 1-forms defined in a neighbourhood U ⊆M of p such that

g = (θ1)2 + (θ2)2 , dA = θ1 ∧ θ2 .

The ordered pair {θ1, θ2} is called a local oriented orthonormal coframe
for M . For any choice of local isothermal coordinates (x, y) : U → R2

with corresponding conformal factor λ, the ordered pair (λ dx, λdy) is a
local oriented orthonormal coframe that we say to be induced by (x, y).
Not every local oriented orthonormal coframe arises in this way. Indeed,
if (x, y) : U → R2 are local isothermal coordinates then for every smooth
function β : U → R the pair {θ1, θ2} given by

θ1 = λ cosβ dx+ λ sinβ dy

θ2 = −λ sinβ dx+ λ cosβ dy

is a local oriented orthonormal coframe. Conversely, any local oriented
orthonormal coframe {θ1, θ2} on a contractible neighbourhood U of a point
p ∈M can be expressed in this way for a unique (up to additive constants)
univalent smooth function β : U → R, but it is induced by local isothermal
coordinates (x′, y′) : U → R2 if and only if ∆β = 0.
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Given a local holomorphic coordinate z = x + iy : U → C we set as
usual

∂

∂z
=

1

2

(
∂

∂x
− i

∂

∂y

)
,

∂

∂z̄
=

1

2

(
∂

∂x
+ i

∂

∂y

)
and

dz = dx+ idy , dz̄ = dx− idy .

The pairs { ∂
∂z ,

∂
∂z̄} and {dz,dz̄} are local C-frames (that is, pairs of C-

linearly independent local sections) for the complexified tangent and cotan-
gent bundles TMC = TM ⊗ C and T ∗MC = T ∗M ⊗ C, respectively. The
Levi-Civita connection ∇ of M extends complex linearly to both bundles.
In particular, we have

∇ ∂

∂z
=
∂ log λ2

∂z
dz ⊗ ∂

∂z
, ∇ ∂

∂z̄
=
∂ log λ2

∂z̄
dz̄ ⊗ ∂

∂z̄
(2.2)

and

∇dz = −∂ log λ
2

∂z
dz ⊗ dz , ∇dz̄ = −∂ log λ

2

∂z̄
dz̄ ⊗ dz̄ . (2.3)

The complex cotangent bundle splits as the direct sum T ∗M (1,0)⊕T ∗M (0,1)

of the subbundles of 1-forms of type (1, 0) and (0, 1), respectively. If z is
a local holomorphic coordinate, then sections s of T ∗M (1,0) (respectively,
T ∗M (0,1)) are the differential forms that admit a local expression

s = sUdz (resp., s = sUdz̄)

with sU any complex valued function. If instead we are working with a
local oriented orthonormal coframe {θ1, θ2} on M , then the forms of type
(1, 0) are the complex multiples of

φ = θ1 + iθ2

and the forms of type (0, 1) are the multiples of φ̄ = θ1− iθ2. Denoting by
{e1, e2} the local frame dual to {θ1, θ2}, we can associate to it the Levi-
Civita connection forms {θij}1≤i,j≤2, that is, a collection of 1-forms such
that

∇ej = θij ⊗ ei .
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Orthonormality of the frame implies that θ11 = θ22 = 0 while θ12 = −θ21 and
we have

∇φ = iθ12 ⊗ φ , ∇φ̄ = −iθ12 ⊗ φ̄ = iθ21 ⊗ φ̄ .

For any pair of non-negative integers p, q we let

T ∗M (p,q) = (T ∗M (1,0))⊗p ⊗ (T ∗M (0,1))⊗q

be the bundle of (p + q)-covariant tensor fields of type (p, q). With the
notation introduced by Calabi, [9], we have a splitting ∇ = ∇′+∇′′ of the
Levi-Civita connection induced on T ∗M (p,q) as a sum of two connections

∇′ : T ∗M (p,q) → T ∗M (p+1,q) , ∇′′ : T ∗M (p,q) → T ∗M (p,q+1) .

In particular, we have ∇′dz̄ = 0 and ∇′′dz = 0.
The same construction generalizes to linear connections on complex

vector bundles as follows. For any complex vector bundle E and for
any pair of non-negative integers p, q we can consider the complex bundle
T ∗M (p,q) ⊗ E of E-valued tensor fields of type (p, q). Setting k = rankE,
if {E1, . . . , Ek} is a local frame for E defined on an open set U ⊆ M and
z : U → C is a holomorphic coordinate then the sections s of T ∗M (p,q)⊗E
are the tensor fields that admit a local expression

s =

k∑
a=1

saU (dz)
p ⊗ (dz̄)q ⊗ Ea (2.4)

with saU , a = 1, . . . , k, complex valued functions on U . Equivalently, if
{θ1, θ2} is local oriented orthonormal coframe on M then the sections of
T ∗M (p,q) ⊗ E are locally expressed as

s =

k∑
a=1

s̃aUφ
p ⊗ φ̄q ⊗ Ea

with s̃aU : U → C for a = 1, . . . , k. The bundle T ∗M ⊗ E of E-valued
1-forms splits as the direct sum

T ∗M ⊗ E = (T ∗M (1,0) ⊗ E)⊕ (T ∗M (0,1) ⊗ E) . (2.5)
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If E∇ is a linear connection onE, then its canonical extension to T ∗M (p,q)⊗
E that we still denote by E∇ can be splitted as the direct sum of two con-
nections

E∇′ : T ∗M (p,q) ⊗ E → T ∗M (p+1,q) ⊗ E ,

E∇′′ : T ∗M (p,q) ⊗ E → T ∗M (p,q+1) ⊗ E .

We briefly describe locally their action on a section s of T ∗M (p,q) ⊗ E.
To any local frame {E1, . . . , Ek} for E defined on an open set U ⊆M we
can associate a collection of 1-forms {EΘa

b}1≤a,b≤k, that we call connection
forms, so that

E∇Eb = EΘa
b ⊗ Ea .

If z : U → C is a holomorphic coordinate then locally we can express s as
in (2.4) and split EΘa

b into its (1, 0) and (0, 1) parts as

EΘa
b =

EΓabz dz +
EΓabz̄ dz̄ .

Then

E∇′s =
k∑
a=1

(
∂saU
∂z

− p
∂ log λ2

∂z
saU + EΓabzs

b
U

)
(dz)p+1 ⊗ (dz̄)q ⊗ ea (2.6)

E∇′′s =

k∑
a=1

(
∂saU
∂z̄

− q
∂ log λ2

∂z̄
saU + EΓabz̄s

b
U

)
(dz)p ⊗ (dz̄)q+1 ⊗ ea (2.7)

and
E∇s = E∇′s+ E∇′′s .

We also remark that if {θ1, θ2} is a local oriented orthonormal coframe on
U and s is given as

s =
k∑
a=1

s̃aUφ
p ⊗ φ̄q ⊗ Ea

then we have

∇s =
(
ds̃aU + i(p− q)s̃aUθ

1
2 + s̃bU

EΘa
b

)
⊗ φp ⊗ φ̄q ⊗ Ea .
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Let (M, g) be a connected Riemann surface with a specified metric g in
its conformal class and let (N, ⟨ , ⟩) be an oriented Riemannian manifold
that we tacitely assume to be 4-dimensional unless otherwise stated. For a
given smooth map f :M → N we consider the differential df as a section
of the bundle T ∗M ⊗ f−1TN . Thus indicating its Hilbert-Schmidt norm
with |df |, the energy of f , on the compact domain D ⊂M , is given by

ED(f) =
1

2

∫
D
|df |2dA (2.8)

where dA is the area element of the metric g on M . The function e(f) =
1
2 |df |

2 is referred to as the energy density of the map. Critical points of
the energy functional (2.8) are called harmonic maps and are characterized
by the vanishing of the tension field τ(f), a section of f−1TN , defined by

τ(f) = Trg∇df (2.9)

where with ∇ we indicate the canonical connections on TM , f−1TN and
all related and pertinent bundles in the subsequent discussion.

In case N is Kählerian, that is, it carries an orthogonal (1, 1)-tensor
field J with ∇J = 0 and J2 = − id, we can split the complexified tangent
bundle TN ⊗ C as the direct sum

TN ⊗ C = TN (1,0) ⊕ TN (0,1) (2.10)

of the complex subbundles of vector fields of type (1, 0) and (0, 1), re-
spectively. They are defined as the eigendistributions, corresponding to
eigenvalues i and −i, of the C-linear extension JC : TN ⊗ C → TN ⊗ C
of J . TN ⊗ C is naturally isomorphic to the complex tangent bundle
of the underlying complex manifold N , with TN (1,0) and TN (0,1) corre-
sponding to the holomorphic and antiholomorphic tangent bundles. If
{wa}na=1 = {ua + iva} : V ⊆ N → Cn is a holomorphic chart, with 2n the
dimension of N as a real manifold, and we set

∂

∂wa
=

1

2

(
∂

∂ua
− i

∂

∂va

)
,

∂

∂w̄a
=

1

2

(
∂

∂ua
+ i

∂

∂va

)
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then { ∂
∂wa } and { ∂

∂w̄a } are local C-frames for TN (1,0) and TN (0,1), respec-
tively. The complexified cotangent bundle also splits as the direct sum

T ∗N ⊗ C = T ∗N (1,0) ⊕ T ∗N (0,1)

of the subbundles of holomorphic and antiholomorphic 1-forms, for which
local frames are given by the collections {dwa} and {dw̄a}, where

dwa = dua + idva , dw̄a = dua − idva .

We still denote as ⟨ , ⟩ the C-bilinear extension to (TN ⊗C)× (TN ⊗
C) of the original (real) Riemannian metric on TN . An operation of
complex conjugation can be defined on the bundle TN⊗C as the involutive
transformation

(·) : TN ⊗ C → TN ⊗ C

whose action on decomposable tensors λv ≡ v ⊗ λ ∈ TN ⊗ C is given
by λv = λ̄v. We have TN (1,0) = TN (0,1). In particular, for any local
holomorphic chart it holds ∂

∂wa = ∂
∂w̄a for a = 1, . . . , n. With this notion

of complex conjugation, the sesquilinear form h : (TN⊗C)×(TN⊗C) → C
given by

h(X,Y ) = ⟨X,Y ⟩ (2.11)

is a Hermitian product. For any X ∈ TN ⊗ C we set |X| = |X|h =√
h(X,X). We remark that the subbundles TN (1,0) and TN (0,1) are or-

thogonal to each other with respect to h.
In this setting, the C-linear extension

dCf : TM ⊗ C → TN ⊗ C

of df : TM → TN can be splitted as the direct sum of four maps (we
stick to the notation in [17, pages 221-222])

∂f : TM (1,0) → TN (1,0) ∂̄f : TM (0,1) → TN (1,0)

∂f̄ : TM (1,0) → TN (0,1) ∂̄f̄ : TM (0,1) → TN (0,1) .
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The map f is holomorphic if and only if ∂̄f = 0, and antiholomorphic if
and only if ∂f = 0. The third and fourth maps in the above decomposition
are complex conjugate to the first and second,

∂f̄ = ∂̄f , ∂̄f̄ = ∂f

in the following sense: if z is a local holomorphic coordinate on M , then

∂f̄(∂z) = ∂̄f(∂z̄) , ∂̄f̄(∂z̄) = ∂f(∂z) , (2.12)

where we are writing for short ∂z = ∂
∂z and ∂z̄ = ∂

∂z̄ . Thus, the energy
density of f decomposes as the sum e(f) = e′(f) + e′′(f) of

e′(f) = |∂f |2 ≡ |∂̄f̄ |2 , e′′(f) = |∂̄f |2 ≡ |∂f̄ |2 , (2.13)

where | · | denotes the Hilbert-Schmidt norm. Explicitely, if we write the
metric ofM as g = λ2 dz dz̄ ≡ λ2

2 (dz⊗dz̄+dz̄⊗dz) for a suitable conformal
factor λ > 0 then |∂z| = |∂z̄| = λ√

2
and

e′(f) =
2

λ2
⟨∂f(∂z), ∂f(∂z)⟩ ≡

2

λ2
⟨∂̄f̄(∂z̄), ∂̄f̄(∂z̄)⟩ ,

e′′(f) =
2

λ2
⟨∂̄f(∂z̄), ∂̄f(∂z̄)⟩ ≡

2

λ2
⟨∂f̄(∂z), ∂f̄(∂z)⟩ .

(2.14)

By also defining

ρ =
2

λ2
⟨∂f(∂z), ∂̄f(∂z̄)⟩ (2.15)

we have
f∗⟨ , ⟩ = e(f)g + ρλ2(dz)2 + ρ̄λ2(dz̄)2 (2.16)

where f∗⟨ , ⟩ = ⟨dCf · ,dCf · ⟩ denotes the pull-back via dC of the sym-
metric C-bilinear extension to TN ⊗ C of the Riemannian metric of N .
(2.16) can be easily checked writing dCf = ∂f + ∂f̄ + ∂̄f + ∂̄f̄ and then
using (2.12) and orthogonality of TN (1,0) and TN (0,1) with respect to h.
From (2.16) we see that conformality of f , in case f is an immersion, is
equivalent to the vanishing of ρ. If N is a Riemann surface then the latter
happens if and only if at every point in M at least one among e′(f) or
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e′′(f) is zero. Indeed, in this case ∂f(∂z) and ∂̄f(∂z̄) are always C-linearly
dependent since TN (1,0) has rank one, so it follows from (2.14)-(2.15) that

ρρ̄ = e′(f)e′′(f) . (2.17)

Setting E = f−1(TN ⊗ C), the linear maps

∂f + ∂f̄ : TM (1,0) → TN ⊗ C ,

∂̄f + ∂̄f̄ : TM (0,1) → TN ⊗ C

can be regarded as sections of the complex bundles T ∗M (1,0) ⊗ E and
T ∗M (0,1) ⊗E, respectively. If z is a (local) holomorphic coordinate on M
then we can write

∂f + ∂f̄ =
∂f

∂z
⊗ dz , ∂̄f + ∂̄f̄ =

∂f

∂z̄
⊗ dz̄

with ∂f
∂z ,

∂f
∂z̄ sections of E, so that

dCf =
∂f

∂z
⊗ dz +

∂f

∂z̄
⊗ dz̄ . (2.18)

We also set

∂f

∂z
⊗ dz = df (1,0) ,

∂f

∂z̄
⊗ dz̄ = df (0,1)

to highlight that (2.18) gives the decomposition of dCf , as a section of
T ∗M ⊗E, according to the direct sum in (2.5). Notice that in this setting
the tension field (2.9) can be expressed as

τ(f) =
4

λ2
∇ ∂

∂z

∂f

∂z̄
=

4

λ2
∇ ∂

∂z̄

∂f

∂z
. (2.19)

For f : M → N an isometric immersion with N Kählerian, another
invariant, the Kähler angle α : M → [0, π], plays an important role. α is
invariantly defined by

f∗k = cosα dA (2.20)

where k is the Kähler form of N . Geometrically, given an orthonormal
oriented basis e1, e2 of TpM , p ∈ M , and indicating with the same letter
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J the pull-back of the almost complex structure, α measures the angle
between e1 and Je2. Observe that f is holomorphic or anti-holomorphic,
for short ± holomorphic, respectively when cosα = ±1 everywhere on M ,
that is, J(TM) = TM . In case cosα ≡ 0 on M , that is, J(TM) = TM⊥,
the normal bundle of the immersion, f is called totally real or, with an
alternative terminology, a Lagrangian surface.

In the study of the geometry of an isometric immersion f : M → N

we systematically use the notion of isotropy with positive or negative spin,
± spin for short. Following [14], one way to introduce this concept is by
considering the twistor space Z over N and the twistor lifts φ± canonically
associated to f . On Z there exists a natural almost complex structure J1
(integrable in favourable circumstances according to the Atiyah-Hitchin-
Singer’s theorem, [4]) with respect to which the twistor lifts φ± :M → Z

are holomorphic if and only if f is isotropic with ± spin, respectively. Here
we avoid direct use of φ+ and φ− by equivalently formulating isotropy via
the vanishing of appropriate contact invariants, s±, on M that we define
as follows (for the equivalence and further details the reader is referred to
[30]).

Let e = {ea}, 1 ≤ a ≤ 4, be a (local) Darboux frame along f , so that
{e1, e2} is a (local) oriented orthonormal basis of TM and {e3, e4} of TM⊥

considered oriented coherently with the orientations of M and N . From
now on we fix the index ranges

1 ≤ a, b, c, · · · ≤ 4 , 1 ≤ i, j, k, · · · ≤ 2 , 3 ≤ α, β, γ, · · · ≤ 4 .

For {θi} orthonormal forms dual to {ei} on M , the second fundamental
tensor, II = ∇df , expresses as

II = hαij θ
i ⊗ θj ⊗ eα . (2.21)

Since f is an isometry the mean curvature vector H is 1
2τ(f) so that

minimality and harmonicity of f coincide and the (1, 0) forms on M are
exactly the multiples of φ = θ1 + iθ2. We consider now the complexified
normal bundle TM⊥⊗C and split it into two complementary line bundles

TM⊥(1,0) = C{e3 − ie4} , TM⊥(0,1) = C{e3 + ie4} (2.22)
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which are globally well defined. Notice that TM⊥(1,0) ≃ TM⊥ with the
correct orientation. Indicating with Lα the Hopf’s transform of the sym-
metric matrix (hαij), that is,

Lα =
1

2
(hα11 − hα22)− ihα12 ,

we can split II according to form type as

II =
1

2
Lαφ2 ⊗ eα + g ⊗H+

1

2
Lαφ̄2 ⊗ eα (2.23)

and we obtain two global sections Σ+ and Σ− respectively of T ∗M (1,0) ⊗
T ∗M (1,0) ⊗ T ∗M⊥(1,0) and T ∗M (1,0) ⊗ T ∗M (1,0) ⊗ T ∗M⊥(0,1) by setting

Σ± =
1√
2
(L3 ± iL4)φ2 ⊗ (e3 ∓ ie4) . (2.24)

Thus the (2, 0) part of II is given by

II(2,0) =
1

2
Lαφ2 ⊗ eα =

1

2
√
2
(Σ+ +Σ−)

and the scalar quantities

s± =
1

2
√
2
|Σ±| (2.25)

define two global contact invariants with smooth squares. Their geomet-
rical significance is expressed by the following relations with curvatures
obtained via Gauss and Ricci equations:s2+ + s2− = |H|2 −K +R1212

s2+ − s2− = K⊥ −R1234 .
(2.26)

Here K, K⊥ are respectively the Gaussian curvature and the normal cur-
vature of f : M → N , while R1212, R1234 are the pull-backs of the cor-
respondent components of the curvature tensor of N under the Darboux
frame e. (Thus in particular they are well defined contact invariants.)
Setting

u = s2+ + s2− =
∑
α

|Lα|2 (2.27)

the zeros of u are precisely the umbilical points of f , as one can see by
(2.23).
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Proof of (2.26). Gauss and Ricci equations read as

K = R1212 + hα11h
α
22 − hα12h

α
12 , K⊥ = R1234 + h31kh

4
2k − h32kh

4
1k

hence (2.26) is equivalent tos2+ + s2− = |H|2 − hα11h
α
22 + hα12h

α
12

s2+ − s2− = h31kh
4
2k − h32kh

4
1k

and a direct computation yields (note that |φ| = |e3 ± ie4| =
√
2)

s2+ =
1

2
|L3 + iL4|2 = 1

2

[(
1

2
(h311 − h322) + h412

)2

+

(
1

2
(h411 − h422)− h312

)2
]

=
1

2

(
|H|2 − hα12h

α
12 + hα11h

α
22 + h31kh

4
2k − h32kh

4
1k

)
,

s2− =
1

2
|L3 − iL4|2 = 1

2

[(
1

2
(h311 − h322)− h412

)2

+

(
1

2
(h411 − h422) + h312

)2
]

=
1

2

(
|H|2 − hα12h

α
12 + hα11h

α
22 − h31kh

4
2k + h32kh

4
1k

)
.

(2.28)

Definition 2.1. At a point p, f is isotropic with positive (respectively,
negative) spin if s+(p) = 0 (respectively s−(p) = 0). It is isotropic with
positive (negative) spin if it has the respective property at every point of
M . We will simply say that f is isotropic when at least one of the two
possibilities occurs.

Remark 2.2. This definition follows that of Bryant, [8], for minimal sur-
faces in S4, Calabi, [9], called isotropic minimal surfaces in S4 pseudo-
holomorphic curves. Our notion of isotropy corresponds to real isotropy
of Eells and Wood, [17], and Chern, [12]. Observe that in our setting an
isotropic f need not to be minimal.

Even if some of our results can be extended to more general situations,
we will focus our attention on a special class of surfaces that we call Codazzi
surfaces.
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Definition 2.3. Let f :M → N be an isometric immersion of a Riemann
surface (M, g) into a Riemannian manifold (N, ⟨ , ⟩). We say that M is
a Codazzi surface if its second fundamental form II satisfies the Codazzi
equation

(∇XII)(Y,Z) = (∇Y II)(X,Z) (2.29)

for all vector fields X,Y, Z ∈ X(M).

The terminology comes from the characterizing property of having a
symmetric covariant derivative of the second fundamental tensor. In other
words, according to standard terminology, see for instance [6], II is a Co-
dazzi tensor. Due to the fact that M is 2-dimensional, this latter property
is expressed by the vanishing of the tensor

Ric⊥(f) = Rαkikθ
i ⊗ eα = Rαiθ

i ⊗ eα (2.30)

which first appeared in the study of the Gauss lift γf into G2(TN), the
Grassmann bundle of oriented 2-planes over N , of an isometric immersion
f in the work of C. M. Wood, [40], and [31]. Indeed we will show that
isotropy and the Codazzi property are strictly related to the Ruh-Vilms
property that we state as

γf is harmonic if and only if f has parallel mean curvature. (RV)

It is perhaps well known that for a Codazzi surface conditions ∇H = 0

and ∇′′II(2,0) = 0 are equivalent. This is true considering ambient mani-
folds N of any dimension ≥ 3, and in case dimN = 3 it amounts to saying
that a Codazzi surface f : M → N has constant mean curvature if and
only if the Hopf differential L3φ2 is holomorphic.

We provide a short proof of the above statement by moving frame
technique along the lines of the original argument by Hopf, [26, 27], for
N = R3. The coefficients of the covariant derivative of II

∇II = hαij,k θ
k ⊗ θi ⊗ θj ⊗ eα

are given by
hαij,k θ

k = dhαij − hαkj θ
k
i − hαik θ

k
j + hβij θ

α
β
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and they satisfy Codazzi equations

hαij,k − hαik,j = −Rαijk .

In particular

hα11,2 − hα12,1 = Rα2 , hα22,1 − hα21,2 = Rα1 . (2.31)

We write the covariant derivative of H as ∇H = Hα
k θ

k ⊗ eα and we have

Hα
k =

1

2
(hα11,k + hα22,k) . (2.32)

Lastly, the covariant derivative of the tensor field II(2,0) = 1
2L

αφ2eα is
given by

2∇II(2,0) = (dLα + Lβθαβ + 2iLαθ12)⊗ φ2 ⊗ eα

and it is easy to check that

dLα + Lβθαβ + 2iLαθ12 =
1

2
(hα11,k − hα22,k)θ

k − ihα12,kθ
k .

Using θ1 = 1
2(φ+ φ̄) and θ2 = − i

2(φ− φ̄) we infer that

2∇′II(2,0) =

(
1

4
hα11,1 −

1

4
hα22,1 −

i

2
hα12,1 −

i

4
hα11,2 +

i

4
hα22,2 −

1

2
hα12,2

)
φ3⊗eα

2∇′′II(2,0) =

(
1

4
hα11,1 −

1

4
hα22,1 +

i

4
hα11,2 −

i

4
hα22,2 −

i

2
hα12,1 +

1

2
hα12,2

)
φ2⊗φ̄⊗eα

and after a little manipulation using (2.31) and (2.32) we get

2∇′′II(2,0) =

(
1

2
(Hα

1 −Rα1 )−
i

2
(Hα

2 −Rα2 )

)
φ2 ⊗ φ̄⊗ eα .

In local notation we can restate this as

(dLα + Lβθαβ + 2iLαθ12) ∧ φ+∇Hα ∧ φ̄ =
1

2
(Rα1 − iRα2 )φ ∧ φ̄ . (2.33)

If f is Codazzi, that is, Rαi = 0, then we have ∇′′II(2,0) = 0 if and only if
∇′H = 0, that in turn amounts to ∇H = 0 since H is a real section of the
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normal bundle. Note that if all of these conditions are satisfied, namely
Rαi = Hα

i = 0, then

hα12,1 = hα11,2 = −hα22,2 and hα12,2 = hα22,1 = −hα11,1

hence from the above expressions for ∇′II(2,0)

dLα + Lβθαβ + 2iLαθ12 = (hα11,1 + ihα22,2)φ . (2.34)

From (2.33) it is also apparent that ∇′′Σ+ = 0 (respectively, ∇′′Σ− = 0)
if and only if ∇′H(1,0) = 0 (resp., ∇′H(0,1) = 0).

It is clear that the Codazzi property generally depends on f , even so
it is automatically satisfied when N has constant sectional curvature. A
second large class of Codazzi surfaces is given by those for which ∇II = 0.
For N the Euclidean space these latter have been classified by Ferus, [23].
We give here a further example that will be repeatedly used in the sequel.

Let N be Kähler and with constant holomorphic sectional curvature c.
The Riemann curvature tensor of N can be expressed in the form

⟨R(X,Y )Z,W ⟩ = c

4
(⟨X,W ⟩⟨Y,Z⟩ − ⟨X,Z⟩⟨Y,W ⟩

+ ⟨X, JW ⟩⟨Y, JZ⟩ − ⟨X, JZ⟩⟨Y, JW ⟩

− 2⟨X, JY ⟩⟨Z, JW ⟩)

(2.35)

for X,Y, Z,W vector fields on N . Indicate with ( , ) the Hermitian inner
product on N defined by

(X,Y ) = ⟨X,Y ⟩+ i⟨X, JY ⟩ . (2.36)

For e a Darboux frame along the isometry f :M → N we let {Ei} be
the special unitary frame defined in [19], page 590, and related to e via
the equationse1 = uE1 + v̄E2 , e2 = i(uE1 − v̄E2)

e3 = −v̄E1 + uE2 , e4 = i(v̄E1 + uE2)
(2.37)
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where u, v are smooth (locally defined) functions of M such that

|u| = cos
α

2
, |v| = sin

α

2

α the Kähler angle defined in (2.20). Set u = eiθ cos α2 , v = eiψ sin α
2 .

Using (2.35), (2.36), (2.37) it is immediate to obtain

R3
121 =

3

8
c sin(2α) cos(θ + ψ) , R3

212 = −3

8
c sin(2α) sin(θ + ψ)

R4
212 =

3

8
c sin(2α) sin(θ + ψ) , R4

212 =
3

8
c sin(2α) cos(θ + ψ) .

We therefore verify that

f is Codazzi if and only if either f is ± holomorphic or f is totally real.
(2.38)

Remark 2.4. This fact is also known to A. Elghanmi.

A final essential ingredient in our investigation is given by a substantial
generalization due to Eschenburg and Tribuzy [20] of a result dating back
to Bers [5] and Chern [10, 11]. By their method we have been able to
generalize part of our results to the present form and feel that more can
be obtained. We report here the essential point to our subsequent analysis.
Let E →M be a complex vector bundle. A smooth section s of E is called
of holomorphic type if near any zero p of s we have

s(z) = zks0(z) (2.39)

for some positive integer k, some continuous section s0 with s0(p) ̸= 0 and
any holomorphic coordinate z centered in p. Observe that when E is a
line bundle, s is not the zero section and M is compact, index(s), that is,
the sum of the finitely many zeros of s counted with multiplicities, is the
first Chern number, c(E) = χ(E), of E. In particular for line bundles we
will use the properties

c(E1⊗E2) = c(E1)+c(E2) , c(E∗) = −c(E) , c(ψ−1E) = deg(ψ)c(E)

with deg(ψ) indicating the degree of the map ψ.
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Definition 2.5. A differentiable section s of a complex vector bundle
E →M is said to satisfy a Cauchy-Riemann inequality on an open subset
U ⊆M if for some p > 2 there exists γ ∈ Lploc(U) such that

|∇′′s| ≤ γ|s| on U .

If z : U ⊆M → C is a local holomorphic coordinate and {E1, . . . , Ek},
k = rankE, is a C1 local frame for E →M defined on u, then by (2.7) we
see that a section s of E expressed in local notation as

s =
k∑
a=1

saUEa

satisfies a Cauchy-Riemann inequality on U if and only if the function

sU = (s1U , . . . , s
k
U ) : U → Ck

satisfies ∣∣∣∣∂sU∂z̄
∣∣∣∣ ≤ γ̃|sU | on U (2.40)

for some γ̃ ∈ Lploc(U), p > 2. In case k = 1, U ⊆ C and γ̃ ∈ L∞(U), Bers
[5, Section 1.6, final Remark] showed that functions satisfying (2.40) must
either vanish or have isolated zeros of finite orders in U , and he called them
approximately analytic. His proof was later generalized by Chern [11] to
encompass the case of Ck-valued functions, then the result was sharpened
by Eschenburg and Tribuzy [20] who proved the following

Proposition 2.6 ([20]). If a smooth section s of a complex vector bundle
E → M satisfies a Cauchy-Riemann inequality on M , it is either identi-
cally zero or of holomorphic type.

As remarked in [20] condition (2.40) does not guarantee any higher
order regularity of s0 appearing in (2.39), beside continuity. Anyway we
underline the fact that the nature of Proposition 2.6 is of a very local
character.
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3 Topological restrictions

Lemma 3.1. Let f : M → N be a smooth map and N a 2n-dimensional
Kähler manifold. Assume that |τ(f)|2 ≤ γe′(f). Then df (1,0) is of holo-
morphic type. In particular either f is antiholomorphic or the zeroes of
e′(f) are isolated.

Proof. Let z be a (local) holomorphic coordinate so that g = λ2 dz dz̄,
λ > 0. From (2.3) we have

∇ ∂
∂z̄
dz = 0 , (3.1)

then using (2.18) and (2.19) we compute

∇ ∂
∂z̄
df (1,0) =

(
∇ ∂

∂z̄

∂f

∂z

)
⊗ dz +

∂f

∂z
⊗∇ ∂

∂z̄
dz =

λ2

4
τ(f)⊗ dz .

Since from (2.13)

|df (1,0)|2 = 2e′(f)

under the assumption of the lemma we conclude∣∣∣∇ ∂
∂z̄
df (1,0)

∣∣∣ ≤ γ|df (1,0)|

and Proposition 2.6 completes the proof.

Clearly an analogous result holds when considering df (0,1). In partic-
ular

Proposition 3.2. Let f : M → N be a smooth map and N a 2n-
dimensional Kähler manifold. Assume that

|τ(f)| ≤ γmin{e′(f), e′′(f)} . (3.2)

Then either f is constant or the zeroes of the energy density e(f) are
isolated.
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Observe that in the assumptions of Proposition 3.2 from (2.16) we
deduce that f is weakly conformal, in fact a branched immersion in the
sense of [24], if and only if ρ ≡ 0. In case N is a Riemann surface we
already observed in (2.17) that

ρρ̄ = e′(f)e′′(f) .

As a consequence of Lemma 3.1, assuming (3.2) we have that e′(f)e′′(f) ≡
0 on M if and only if e′(f) ≡ 0 or e′′(f) ≡ 0. Thus, we have

Theorem 3.3. Let f : M → N be a smooth map between Riemann sur-
faces satisfying (3.2). Then f is weakly conformal if and only if f is ±
holomorphic.

The next theorem generalizes a result of Eells and Wood, [16].

Theorem 3.4. Let f : M → N be a smooth map between compact Rie-
mann surfaces satisfying (3.2). If χ(M) + | deg(f)χ(N)| > 0 then f is ±
holomorphic.

Here and in the sequel χ( ) denotes the Euler characteristic. The proof
parallels that of Eells and Wood’s theorem, that we restate here for later
convenience.

Theorem 3.5 ([16]). Let f :M → N be a harmonic map between compact
Riemann surfaces. If χ(M)+ |deg(f)χ(N)| > 0 then f is ± holomorphic.

Proof of Theorem 3.4. Assume that f is not ± holomorphic. Since N is
a Riemann surface ∂f and ∂f̄ are sections of the line bundles T ∗M (1,0) ⊗
f−1TN (1,0) and T ∗M (1,0) ⊗ f−1TN (0,1), respectively. To fix ideas let us
consider ∂f . Then, from Lemma 3.1 and compactness of M , ∂f is of
holomorphic type and has only finitely many zeroes in M , therefore we
get

0 ≤ index(∂f) = c(T ∗M (1,0) ⊗ f−1TN (1,0)) = c(T ∗M (1,0)) + c(f−1TN (1,0))

= c(T ∗M) + deg(f)c(TN) = −χ(M) + deg(f)χ(N)
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that is,

index(∂f) = −χ(M) + deg(f)χ(N) ≥ 0 (3.3)

and analogously

index(∂f̄) = −χ(M)− deg(f)χ(N) ≥ 0 (3.4)

so that

| deg(f)χ(N)| ≤ −χ(M) (3.5)

contradicting the assumptions of the theorem.

Corollary 3.6. Let f : M → N be a smooth map between compact Rie-
mann surfaces satisfying (3.2). Let g(M) and g(N) denote the genera of
M and N , respectively.

i) If g(M) = 0 then f is ± holomorphic.

ii) If g(N) = 0 and |deg(f)| ≥ g(M) then f is ± holomorphic.

iii) If g(N) = 1 then either g(M) ≥ 1 or f is constant.

Proof. By Theorem 3.4, under the assumptions of the corollary f is ±
holomorphic whenever condition

χ(M) + | deg(f)χ(N)| > 0 (3.6)

is satisfied. Then i) and ii) directly follow from Theorem 3.4 together with
relations χ(M) = 2− 2g(M) and χ(N) = 2− 2g(N).

To prove iii) let us assume g(N) = 1, g(M) = 0, so that (3.6) is
satisfied and f is ± holomorphic, and suppose by contradiction that f is
not constant. To fix ideas, assume that f is holomorphic. Then ∂f is
a nonzero section of T ∗M (1,0) ⊗ f−1TN (1,0) of holomorphic type and by
(3.3) it must be χ(M) ≤ 0, contradiction. If instead we assume that f
is anti-holomorphic then we reach the same contradiction by considering
(3.4).
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Remark 3.7. If f :M → N is a smooth non-constant map between com-
pact Riemann surfaces and g(N) ≥ 2 then condition χ(M)+|deg(f)χ(N)| >
0 is never satisfied, since a theorem of Kneser, [33], see also [16, p. 264],
ensures that in this setting it must be

χ(M) ≤ |deg(f)|χ(N) = −|deg(f)χ(N)| .

In fact, Kneser’s theorem is of purely topological nature and holds for not
null-homotopic continuous maps f :M → N between oriented topological
surfaces when χ(N) < 0. Nevertheless, in [16] the authors proved that
Kneser’s theorem can be deduced from Theorem 3.5 by a contradiction
argument (suppose that χ(N) < 0 and that there exists a continuous,
not null-homotopic map f ′ : M → N such that χ(M) + | deg(f ′)χ(N)| >
0; endow M and N with smooth metrics so that N has negative cur-
vature, then consider a harmonic map f : M → N homotopic to f ′,
which exists by [15]; then f is non-constant with deg(f) = deg(f ′), thus
χ(M) + |deg(f)χ(N)| > 0 and f is ± holomorphic, but then either (3.3)
or (3.4) imply χ(M) ≤ −|deg(f)χ(N)|, contradiction).

We now consider an isometric immersion f : M → N and a Darboux
frame {eα} along f . Given the mean curvature vector field H = Hαeα

according to the splitting (2.22) of TM⊥ ⊗ C we can consider its (1, 0)

part given by

H(1,0) =
1

2
(H3 + iH4)(e3 − ie4) .

To simplify notation we set

b = H3 + iH4 (3.7)

and letting θαβ = ⟨∇eβ, eα⟩, with ∇ the covariant derivative in TM⊥, we
have

dHα +Hβθαβ = ∇Hα = Hα
i θ

i . (3.8)

Theorem 3.8. Let f : M → N be an isometrically immersed surface
satisfying

|∇H(1,0)| ≤ γ|H(1,0)| , H ̸≡ 0 .
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If γ = 0 a. e. then the normal bundle is flat. Otherwise if γ ̸= 0 a. e. H(1,0)

is of holomorphic type and, for M compact, index(H(1,0)) = χ(TM⊥).

Proof. From (3.8) we have

∂b

∂z̄
= iθ34

(
∂

∂z̄

)
b+∇ ∂

∂z̄
b . (3.9)

It is not hard to verify that the assumption |∇H(1,0)| ≤ γ|H(1,0)| implies
|∇ ∂

∂z̄
b| ≤ γ̃|b|, where generally γ̃ ̸= γ a. e. If γ = 0 a. e. then the normal

bundle has a nonzero parallel section so that it is flat. Otherwise for γ ̸= 0

a. e. applying Proposition 2.6 we obtain that H(1,0) is of holomorphic type.
Since it is a section of TM⊥(1,0) and H ̸≡ 0, compactness of M implies
index(H(1,0)) = χ(TM⊥).

Corollary 3.9. Let f : M → N be an isometrically immersed compact
surface satisfying |∇H(1,0)| ≤ γ|H(1,0)| and χ(TM⊥) < 0. Then f is
minimal.

Remark 3.10. An analogous version of Theorem 3.8 and Corollary 3.9
can be given by considering H(0,1) instead of H(1,0).

The next result generalizes Proposition 2.3 from [30] and a result of
Salamon reported in [13, page 7.14].

Theorem 3.11. Let f : M → N be an isometrically immersed, compact,
Codazzi surface, isotropic with negative (respectively, positive) spin such
that

|∇H(1,0)| ≤ γs+ (resp. , |∇H(1,0)| ≤ γs− )

Then either f is totally umbilical or

χ(TM⊥) = 2χ(M) +m (resp. , χ(TM⊥) = −2χ(M)−m) (3.10)

where m is the total number of umbilical points counted with multiplicities.

Here the multiplicity of an umbilical point p is half of the order of zero
at p of the function u defined in (2.27) for which, in the assumption of
the Theorem, is meaningful to define the order of zero. This will clearly
appear throughout the proof.
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Proof. To simplify notation we set S+ = L3 + iL4 where Lα is the Hopf’s
transform of section 2. Then Σ+, section of T ∗M (1,0)⊗T ∗M (1,0)⊗TM⊥(1,0),
is rewritten as Σ+ = 1√

2
S+φ

2 ⊗ (e3 − ie4). As shown in Section 2 Codazzi
equations can be restated as

(dLα + 2iLαθ12 + Lβθαβ ) ∧ φ+∇Hα ∧ φ̄ =
1

2
(Rα1 + iRα2 )φ ∧ φ̄ (3.11)

where θab = ⟨∇eb, ea⟩ (notice that θ12 = ω previously defined) and Rαi are
the coefficients of the tensor Ric⊥(f) defined in (2.30). From (3.11) and
the fact that the surface is Codazzi we obtain

∂S+
∂z̄

= γ̃S+ +∇ ∂
∂z̄
b (3.12)

where b has been defined in (3.7) and γ̃ is some smooth (locally defined)
function. (2.25) and the assumption |∇H(1,0)| ≤ γs+ imply from (3.12)∣∣∣∣∂S+∂z̄

∣∣∣∣ ≤ γ|S+| .

Therefore applying Proposition 2.6, either the zeros of Σ+ are isolated, and
therefore in finite number since M is compact, or Σ+ is identically zero.
Since f is isotropic with negative spin, u = s2+ = 1

8 |Σ+|2 and therefore in
the first case

m = index(Σ+) = −2χ(M) + χ(TM⊥) (3.13)

while in the second case f is totally umbilical.

Remark 3.12. 1. In the assumption of the theorem from (2.26) we have

s2+ = |H|2 −K +R1212 = K⊥ −R1234

2. In the case N = S4 the conclusion can be stated in the stronger
form: “then f is totally umbilical if and only if χ(TM⊥) = 0. Otherwise
(3.10) holds.” To prove this last statement observe that according to the
the above observation 1. and the Gauss-Bonnet-Chern theorem

χ(TM⊥) =
1

2π

∫
M
udA .
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More generally the same conclusion holds when f has negative spin, in case
the contact invariant R1234 is non-positive. Analogously in the positive
spin case. This proves Theorem 1.2 of the introduction.

We give a criterion for isotropy. In case N has constant sectional
curvature ε and H is parallel, this has been given by [21], Theorem 5.2,
where f :M → N(ε) is only assumed to be conformal. Indeed, next result
can be extended to the conformal case too, but for simplicity we have
confined ourselves to the isometric one.

Theorem 3.13. Let f : M → N be an isometrically immersed, compact,
Codazzi surface satisfying

|∇H| ≤ γmin{s+, s−} . (3.14)

Then either f is isotropic or

2χ(M) ≤ −|χ(TM⊥)| .

Proof. In the assumption (3.14) both Σ± are of holomorphic type so that,
if no one of them is identically zero, together with (3.13) we have

index(Σ−) = −2χ(M) ≤ −χ(TM⊥)

and the conclusion follows.

We like to explicitely state the following result contained in Theorem
3.13.

Corollary 3.14. Let f : M → N be an isometrically immersed, Codazzi
surface satisfying (3.14). Then either the umbilical points are isolated or
f has parallel mean curvature.

Another consequence is given in the following:

Corollary 3.15. Let f : M → N be an isometrically immersed Codazzi
surface satisfying (3.14). Suppose that M is conformally equivalent to CP1.
Then f has parallel mean curvature. Moreover, if χ(TM⊥) ̸= 0 then f is
necessarily minimal, while if χ(TM⊥) = 0 then f is totally umbilical.
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Proof. Since in this case χ(M) = 2, from Theorem 3.13 we have that f
is isotropic, therefore (3.14) implies ∇H = 0. If f is not minimal, H

is a nonzero parallel section of TM⊥ so that necessarily χ(TM⊥) = 0.
To prove the last statement, assume that f is not totally umbilical and,
without loss of generality, that s+ ̸≡ 0. Then from (3.13) we have

χ(TM⊥) ≥ 4

contradicting the assumptions of the corollary.

The following result is of a similar nature.

Theorem 3.16. Let f : M → N be an isometrically immersed, Codazzi
surface satisfying

|∇H(1,0)| ≤ γmin{s+, |H|} . (3.15)

Then the globally defined form

Λ = bS+φ
2 (3.16)

is of holomorphic type. Furthermore if M is compact then either f is
isotropic with positive spin or minimal or

2χ(M) = −index(H(1,0))− index(Σ+) .

Remark 3.17. An analogous result holds when we consider the globally
defined form Λ′ = b̄S−φ

2.

Proof. First of all observe that under the assumption (3.15) both H(1,0)

and Σ+ are of holomorphic type. Secondly (3.16) is globally well defined
as one immediately checks for instance using (2.16), (2.17) of [30] (paying
attention to the definition of S± there). From (3.9) and (3.12) we have

∂

∂z̄
(bS+) = S+

∂b

∂z̄
+ b

∂S+
∂z̄

= iθ34

(
∂

∂z̄

)
bS+ + γ̃bS+ + (S+ + b)∇ ∂

∂z̄
b

so that, under the assumption (3.15) and using Proposition 2.6, Λ is of
holomorphic type. Since Λ is a section of T ∗M (1,0)⊗T ∗M (1,0) the remain-
ing part of the theorem follows.



Codazzi surfaces in 4-manifolds 291

An interesting immediate consequence is the following

Corollary 3.18. Let f : M → N be an isometrically immersed, com-
pact, Codazzi surface satisfying |∇H| ≤ γmin{s+, s−, |H|}. If f is neither
isotropic nor minimal then index(Σ−) = index(Σ+).

4 Parallel mean curvature

We relate the notion of Codazzi surface to the Ruh-Vilms property
(RV) from section 3. We need briefly to describe the geometry of the
Grassmann bundle π : G2(TN) → N of orientend tangent 2-planes. For
more details we refer to [31]. An element of G2(TN) is a pair (p, ζ),
p ∈ N and ζ a 2-dimensional oriented subspace of TpN . The projection
π : (p, ζ) → p presents G2(TN) as a fibre bundle over N with standard
fibre SO(4)/SO(2)× SO(2). Letting O(N) be the bundle of orthonormal
frames of N we define a map

µ : O(N) → G2(TN) (4.1)

by setting µ(p, e) 7→ (p, {e1, e2}), where e = {ea} is an orthonormal frame
at p ∈ N and {e1, e2} is the oriented plane in TpN spanned by e1, e2 with
the orientation e1 ∧ e2. This induces the identification

G2(TN) ≃ O(N)/SO(2)×O(2) .

Let {θa}, {θab } be the canonical forms on O(N). For t > 0 we define
the Riemannian metric ht on G2(TN) as that metric characterized by the
property

µ∗ht = Pt

where Pt is the O(2) × O(2) invariant symmetric bilinear form on O(N)

given by

Pt =
∑
a,α,i

(θa)2 + t2(θαi )
2 .
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We will indicate with {εa}, {εαi} the frame on G2(TN) dual to the
orthonormal coframe for the metric ht determined by the pull-back under
a local section of (4.1) of the forms θa, θαi .

From now on G2(TN) will be considered with the (family of) Rieman-
nian metric(s) ht defined above.

Given the isometric immersion f :M → N and a Darboux frame field
e = {ea} along f the Gauss lift γf :M → G2(TN) is defined by

γf : q 7→ (f(q), {e1(q), e2(q)}) .

The tension field of γf has been computed in the general case in [31] and
it is given by

τ(γf ) = t2Rαjikh
α
jiεk + (2Hβ + t2Rαjiβh

α
ji)εβ + t(2Hα

k −Rαiki)εαk . (4.2)

To simplify (4.2) we shall assume some curvature restrictions on N . Recall
that in the 4-dimensional case at any point p ∈ N the Weyl curvature op-
erator W preserves the ±1 eigenspaces of the Hodge operator ∗ on ∧2TpN

and therefore splits into the components

W =W+ +W− .

Consequently the oriented Riemannian manifold N is said to be self-dual
(respectively, anti-selfdual) if at every point of N we have W− = 0 (re-
spectively W+ = 0), [4]. Letting e be an oriented frame locally defined on
N this can be conveniently expressed for our purposes by the vanishing of
the matrix C − s

12I3, where I3 is the identity matrix of order 3, s is the
scalar curvature of N and

C =

C11 C12 C13

C21 C22 C23

C31 C32 C33


is the symmetric matrix defined in Section 3 of [30], whose entries are
given in terms of the coefficients of the Riemann tensor by the following
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expressions (see equation (3.13) of [30])

C11 =
1

2
(R1212 − 2R1234 +R3434)

C22 =
1

2
(R1313 + 2R1324 +R2424)

C33 =
1

2
(R1414 − 2R1423 +R2323)

C12 = C21 =
1

2
(R1312 −R1334 +R2412 −R2434)

C13 = C31 =
1

2
(R1412 −R1434 −R2312 +R2334)

C23 = C32 =
1

2
(R1413 +R1424 −R2313 −R2324) .

With this preparation we state

Theorem 4.1. Let f : M → N be an isometrically immersed surface,
isotropic with negative spin and such that the contact invariant R1234 is
constant. Assume that N is self-dual Einstein with scalar curvature s >
6R1234. Then for the choice t2 = 12

s−6R1234
the following are equivalent:

i) the surface is Codazzi

ii) (RV) holds.

Remark 4.2. 1. If R1234 is not constant or s ≤ 6R1234 in the further
assumption that f : M → N is a Codazzi surface we have that γf is
harmonic if and only if f is minimal.

2. An analogous result holds for f isotropic with positive spin and
N anti-selfdual Einstein. Under this latter assumption there is a natural
integrable almost complex structure J+ on G2(TN), see for instance [30],
[39]. Holomorphicity of γf with respect to J+ is equivalent to the fact that
f is totally umbilical. This perfectly resembles the case of the usual Gauss
map for surfaces in R4.

3. For the equivalence, in the general case, of minimality of f and
holomorphicity of γf with respect to an appropriate (never integrable)
almost complex structure J− on G2(TN) see [13], [14].



294 G. Colombo, G. R. Jensen and M. Rigoli

Proof. The proof, using a Darboux frame along f , is by inspection of
formula (4.2). Under the assumptions s− = 0, that is, L3 = iL4, self-
duality, C = s

12I3, and the Einstein property of N , (4.2) reduces to

τ(γf ) = t2Rαjikh
α
jiεk + t(2Hα

k −Rαiki)εαk +
[
t2
(
R1234 −

s

12

)
+ 2

]
Hβεβ .

Since the vectors {εa, εαk} are linearly independent we obtain the desired
conclusion.

When the curvature tensor of N and the isometric immersion f :M →
N are particularly well related the assumption that f is isotropic with
negative spin is not necessary. We will give an example with N = CP2.
To begin with we analyse the notion of isotropy with negative spin in case
N is Kähler. Assume that f is not ± holomorphic and that those points
where df is C-linear are isolated, shortly that the complex tangent planes
are isolated. Remark that for instance, for |H| ≤ γ sinα this is guaranteed
by Theorem 5 in [20]. Then, outside a discrete set of points Z, we can
choose the local unitary frame {E1, E2} of (2.37), whose existence does not
depend on the fact that N has constant holomorphic sectional curvature,
in such a way that u = cos α2 , v = sin α

2 . Let ωij = (∇Ei, Ej), so that in
particular ω11, ω22 are purely imaginary, and let Ψ be the 1-form

Ψ = udv − vdu− uv(ω11 + ω22) . (4.3)

Using [19], see bottom of page 591, we can rewrite, in our notation,

Ψ =
1

2
S−φ+

1

2
b̄φ̄ . (4.4)

Since 2(udv−vdu) = dα is real (α being smooth outside Z), from (4.3)
and (4.4) we have that the Kähler angle α is constant if and only if

S− = −b̄ . (4.5)

In particular in the minimal case we have

Proposition 4.3. Let f : M → N , N Kähler, be a minimal not ± holo-
morphic surface. Then the following are equivalent
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i) f is isotropic with negative spin

ii) α is constant (different from 0, π).

Remark 4.4. 1. From [19], bottom of page 591, we have in our notation

ω12 =
1

2
S+φ+

1

2
bφ̄

so that Lemma 3.2 of [19] can be completed to: “Let f :M → N , N Kähler,
be an isometrically immersed surface with isolated complex tangent planes.
Then, with respect to a special unitary frame {E1, E2}, f is minimal if and
only if ω12 is a (1, 0)-form, while f is isotropic with positive spin if and
only if ω12 is a (0, 1)-form.”

2. Assume that N has constant holomorphic sectional curvature c ≥
0, and let f : M → N be a compact minimal surface which is not ±
holomorphic. Then f is totally real if and only if f is isotropic with
negative spin. Indeed, analogously to what we did in section 2, we compute

R1212 =
c

4
(3 cos2 α+ 1) , R1234 =

c

4
(3 cos2 α− 1) (4.6)

so that from (2.26) we have

2s2− = |H|2 − (K +K⊥) +
3

2
c cos2 α .

Therefore f being isotropic with negative spin and minimal imply K +

K⊥ = 3
2c cos

2 α. Since c > 0 we have K + K⊥ ≥ 0. Thus, as M is
compact and f is not ± holomorphic we conclude, from Theorem 6.2 of
[19], that f is totally real. The converse is already contained in Proposition
4.3. As a consequence in Proposition 4.3, assuming that N has constant
non-negative holomorphic sectional curvature, in either one of the cases i)
or ii) compactness of M is equivalent to α ≡ π

2 .

We recall that, in case f : M → N , N a Kähler manifold, f (for the
sake of simplicity) an isometry, f not ± holomorphic, there is a notion of
complex isotropy introduced by [17]. This (at least for f minimal, N =
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CP2) is defined by the vanishing of the (holomorphic) form (∇df, df)(3,0).
One checks that

|(∇df,df)(3,0)|2 = sin2 α
(
|H|2 +K⊥ −K +R1212 −R1234

)
. (4.7)

On the other hand from (2.26)

2s2+ = |H|2 +K⊥ −K +R1212 −R1234

so that complex isotropy is equivalent to isotropy with positive spin.

Remark 4.5. Condition (4.7), with N of constant holomorphic sectional
curvature, already appears in [20].

We now go back to our purpose of showing that in favourable circum-
stances the assumption f isotropic with negative spin is not necessary in
Theorem 4.1. First of all let N have constant holomorphic sectional cur-
vature c and f :M → N an isometry. Using the framing defined in (2.37)
we compute

R2
323 =

c

4
+ 3c(Re(uv))2 = R1

414

R1
314 = 3c(Re(uv))(Im(uv)) = −R1

424

and therefore assuming α constant, α ̸= 0, α ̸= π, we can in fact consider
a Darboux frame e along f for whichR2

323 =
c
4 + 3c sin2 α = R1

414

R1
314 = 0 = R1

424 .
(4.8)

For such a frame (4.5) holds, so that, together with (4.8) we simplify (4.2)
to the following

τ(γf ) = t2Rαjikh
α
jiεk+t(2H

α
k −Rαiki)εαk+2

[
1− t2

( c
4
+ 3c sin2 α

)]
Hβεβ .

(4.9)
Therefore, recalling characterization (2.38), (4.9) gives
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Theorem 4.6. Let N be a Kähler manifold with constant holomorphic
sectional curvature c and let f : M → N be an isometrically immersed
surface with constant Kähler angle and not ± holomorphic. Consider the
Gauss lift γf : M → G2(TN), if ct2 = 1

13 , the following properties are
equivalent:

i) f is a Codazzi surface

ii) f is totally real

iii) (RV) holds.

Remark 4.7. 1. In the above assumptions, if c ≤ 0 then i) and ii) are of
course equivalent because of (2.38) but iii) is never satisfied.

2. In CP2 the implication ii) ⇒ iii) is known to A. Elghanmi.

Proposition 4.8. Let f : M → N be an isometrically immersed Codazzi
surface with parallel mean curvature vector. Then s±, |H| are either iden-
tically zero or their zero sets are discrete and outside them the following
equations hold:

∆ log s± = 2K ∓K⊥ (4.10)

∆ log |H| = −K⊥ . (4.11)

Remark 4.9. The proof of the proposition is identical to that given in
[21] in case N has constant sectional curvature and therefore will not be
repeated here. Anyway, (4.10) and (4.11) already appeared in the unpub-
lished thesis of the third author.

We rewrite (4.10) in a second form more appropriate to our purpose.

Lemma 4.10. Let f : M → N be an isometrically immersed Codazzi
surface with parallel mean curvature vector. Then

∆s2± = 2s2±(2K ∓K⊥) + 4|∇II|2 ± 4A (4.12)

where, indicating with hαijk the coefficients of ∇II with respect to a Darboux
frame e along f ,

A = h322,2h
4
11,1 − h311,1h

4
22,2 .
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Proof. Put dLα+2iLαθ12+L
βθαβ = ∇Lα. From (2.33) and the assumptions

we deduce in (2.34) that ∇Lα = Lα1φ for Lα1 = hα11,1 + ihα22,2 and that

∇II = hαijkeα ⊗ θi ⊗ θj ⊗ θk =
1

2
Lα1 eα ⊗ φ3 +

1

2
Lα1 eα ⊗ φ̄3 .

Hence |∇II|2 = 1
2

∑
α |Lα1 |2. On the other hand

2ds2+ = (L3 + iL4)∇(L̄3 − iL̄4) + (L̄3 − iL̄4)∇(L3 + iL4)

and therefore

|ds2+|2 = |L3 + iL4|2|L̄3 − iL̄4|2 = 2s2+
(
2|∇II|2 + i(L4

1L̄
3
1 − L3

1L̄
4
1)
)
.

Then the first of (4.12) follows from (4.10) because 2A = i(L4
1L̄

3
1 − L3

1L̄
4
1)

and

∆s2+ = s2+∆ log s2+ +
|ds2+|2

s2+
.

The second formula of (4.12) is obtained in a similar way.

To state next result it is worth to recall the following characterization
of isotropy. Given the surface f :M → N , fix a point p ∈M and in TpM
consider the parametrized unit circle

X(σ) = (cosσ)e1 + (sinσ)e2 , 0 ≤ σ ≤ 2π

where e is a Darboux coframe along f . The ellipse of curvature at p is
defined to be the curve in TpM⊥ given parametrically by

Y (σ) = II(X(σ), X(σ)) = H+
1

2
(cos 2σ)(V11 − V22) + (sin 2σ)V12

where Vij = II(ei, ej). Observe that

s+s− =

∣∣∣∣14 |V11 − V22|2 − |V12|2 + i⟨V11 − V22, V12⟩
∣∣∣∣

and thus f is isotropic at p if and only if the ellipse of curvature at p is
a circle (possibly of zero radius). Furthermore, the ellipse of curvature
at p degenerates to a line segment (possibly of zero length) if and only if
V12 ∧ (V11 − V22) = 0 at p, which occurs if and only if R1234 = K⊥ as
immediately checked.
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Theorem 4.11. Let f : M → N be an isometrically immersed, complete
Codazzi surface with parallel mean curvature vector and Gaussian curva-
ture of constant sign. Consider the following two cases:

1) K ≥ 0, supM R1212 < +∞ and

- if R1234 has constant sign, suppose either R1234 ≤ K⊥ ≤ 0 or
0 ≤ K⊥ ≤ R1234

- if the sign of R1234 varies, suppose either that the normal bundle
is flat or that the ellipse of curvature is degenerate at each point

2) K ≤ 0, |H|2 + infM R1212 > 0 and the ellipse of curvature is degen-
erate at each point.

Then in case 1) the surface is either totally umbilical or flat, while in case
2) the surface is flat.

Proof. Suppose 1) holds. Completeness of M and K ≥ 0 imply, by a
result of Huber, [28], that M is either compact or parabolic. K ≥ 0 and
supM R1212 < +∞ imply from (2.26) that u = s2+ + s2− is bounded above.
Each one of the further assumptions implies (R1234 −K⊥)K⊥ ≥ 0. Using
now (2.26) and (4.12) we obtain

∆u = 4uK + 2(R1234 −K⊥)K⊥ + 8|∇II|2 (4.13)

so that u is a subharmonic function on M . By the maximum principle, u
is constant. Hence, either u ≡ 0 and the surface is totally umbilical, or
u ̸= 0 and then K ≡ 0 from (4.13).

Suppose 2) holds. Since the ellipse of curvature is degenerate at each
point we have s+ = s−, hence u = 2s2+. On the other hand by (4.10) we
deduce

∆ log u = 4K . (4.14)

Since K ≤ 0 we have that log u is a superharmonic function, furthermore
from (2.26), K = R1212 + |H|2 − u, and therefore from the assumptions
we conclude that log u is bounded below. We define on M a metric g̃
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conformally equivalent to the induced metric g by setting g̃ =
√
ug. Com-

pleteness of g and the assumptions in 2) (by guaranteeing infM u > 0)
imply completeness of g̃. Moreover its Gaussian curvature K̃ is given by
K̃ = − K√

u
and is therefore non-negative. By the above result of Huber,

(M, g̃) is either compact or parabolic. We deduce that u is constant and
therefore from (4.14), K ≡ 0.

Remark 4.12. 1. Recall, from (4.11) for instance, that if f : M → N

is a Codazzi surface with parallel mean curvature vector but not minimal
then K⊥ ≡ 0. Thus, in this case conditions 1) and 2) of Theorem 4.11
respectively become

1’) K ≥ 0, supM R1212 < +∞

2’) K ≤ 0, |H|2 + infM R1212 > 0, R1234 ≡ 0.

2. Let N be of constant sectional curvature ε. Then 1) and 2) respec-
tively become

1”) K ≥ 0, K⊥ ≡ 0

2”) K ≤ 0, |H|2 + ε > 0, K⊥ ≡ 0.

3. Thus, from points 1. and 2., Theorem 4.11 extends a result of
Hoffman, [25], proved under additional assumptions |H| ≠ 0 and in case
2”) ε ≥ 0. The above proof is modeled on [25] and [32].

As a consequence of Theorem 4.11 we have

Corollary 4.13. Let f : M → CP2 be an isometrically immersed, com-
plete, totally real, minimal surface with non-negative Gaussian curvature.
Then the surface is either flat or totally geodesic.

Proof. From (4.6) and Gauss equation

K = R1212 +
∑
α

det(hαij)
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reality and minimality of f , we have 0 ≤ K ≤ 1. But, from Theorem 3.4
of [19], in case f is minimal, f is totally real if and only if K +K⊥ ≡ 0.
We therefore deduce −1 ≤ K⊥ ≤ 0. Being f totally real it is Codazzi and
as a consequence we are in the assumptions of case 1) of Theorem 4.11,
completing the proof.

Remark 4.14. In the assumptions of the corollary, if M is compact and
not totally geodesic then, up to a rigid motion of CP2, the surface is a
reparametrization of the Clifford torus

T = {[z] ∈ CP2 : z0z̄0 = z1z̄1 = z2z̄2}

as defined in [19] or [34]. This follows from Corollary 3.9 in [19] which clas-
sifies compact, totally real minimal surfaces f : M → CP2 with constant
Gaussian curvature, extending previous results from [34] that characterize
T as the unique compact totally real minimal flat surface in CP2.

Next result is a quantization property for the Gaussian curvature.

Theorem 4.15. Let f : M → N be an isometrically immersed, compact,
non totally umbilical, Codazzi surface with parallel mean curvature vector.
If f is isotropic with ± spin and K ≥ 1

3(|H|2 + R1212 ∓ R1234) then K ≡
1
3(|H|2 +R1212 ∓R1234).

Proof. To fix ideas let f be isotropic with positive spin, that is, s+ ≡ 0.
Then from (2.26) and isotropy we have

K = R1212 − u+ |H|2 , K⊥ = R1234 − u , u = s2− .

Therefore using (4.10) we obtain

1

2
∆ log u = 2K +K⊥ = 2K +R1234 − u+R1212 + |H|2 −R1212 − |H|2

= 3K +R1234 −R1212 − |H|2

= 3

(
K − 1

3
(|H|2 +R1212 −R1234)

)
.

(4.15)
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Since f is not totally umbilical, log u is a subharmonic function with sin-
gularities in a set of (isolated) points where it goes to −∞. Thus it has
a maximum in M and hence is constant by the maximum principle. The
result then follows from (4.15).

Next result complements Corollary 4.13.

Corollary 4.16. Let f : M → N , N Kähler with constant holomorphic
sectional curvature c, be an isometrically immersed, compact, totally real,
Codazzi surface with parallel mean curvature vector. If f is isotropic with
positive spin and K ≥ 1

3(|H|2 + c
2) then either f is totally umbilical, in

which case K ≥ −3c
8 cos2 α, or K ≡ 1

3(|H|2 + c
2).

Proof. A direct application of Theorem 4.15 with (2.26) and (4.6).

Remark 4.17. 1. Other special cases of Theorem 4.15 are, for instance,
in case N is self dual or anti-self dual Einstein. Indeed one respectively
has R1212 − R1234 = s

12 , R1212 + R1234 = s
12 for s the (constant) scalar

curvature of N . In particular if N has constant sectional curvature ε then
the conclusion of the theorem can be restated as

If f is isotropic and K ≥ 1
3(ε + |H|2) then either f is locally

umbilical with K ≥ 0 or K ≡ 1
3(ε+ |H|2).

2. For N = S4 and H = 0 the above result was proved in [29] where
it is extended to higher codimension. Another version of it in CPn, and
always in the minimal case, appears in [7]. A further result in this direc-
tion for f : M → CP2, f holomorphic and (as usual) CP2 with constant
holomorphic sectional curvature 4 is in [36]. Precisely, M compact, K ≥ 2

implies K ≡ 2. Nomizu and Smyth, [35], proved that the same conclu-
sion holds if we assume the reverse inequality, that is, K ≤ 2. While the
first result is extendable to higher codimension, [36], (and even in complex
Grassmannians, [41]) generally the second is not, [36].

3. If N has constant sectional curvature ε > 0, then for f : M → N

an isometrically immersed, compact, isotropic and minimal surface K ≤
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ε
3 implies K ≡ ε

3 . In the general case, for instance assume f Codazzi,
isotropic with positive spin, minimal, the inequality K ≤ 1

3(|H|2+R1212−
R1234) implies that log u is a superharmonic function and to apply the
maximum principle we have to guarantee that u > 0 on M . On the other
hand the same inequality implies, from (2.26), u ≥ 1

3(2R1212 + R1234 −
|H|2) and therefore the desired result holds whenever this latter quantity
is stricly positive.
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