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Simple Summary: The dairy system is facing many environmentally related issues, such as green-
house gas emissions (GHG), as well as an increased demand for milk by the growing world population.
Dairy cow farming must evolve towards more efficient and sustainable ways of production. Strategies
to reduce ruminal methane emissions must be considered, due both to methane’s direct involvement
in global warming and its negative relationship with productivity. Besides being the most important
GHG arising from dairy cows, methane is also correlated with a loss of energy and a reduction in
production efficiency that further worsen the environmental impact. The use of natural extracts, such
as essential oils, bioflavonoids, and tannins may be useful to reduce methane production and to
modulate the ruminal microbiota toward more efficient fermentation, increased feed efficiency and
improved overall productivity.

Abstract: Two trials were performed to evaluate the efficacy of a blend of essential oils, bioflavonoids
and tannins on methane (CH4) emissions (in vitro) and on the production efficiency of dairy cows
(in vivo). The in vitro trial tested the production of total gas and CH4 at 16, 20 and 24 h of incubation,
and volatile fatty acids (VFA) at 16 and 24 h, through biochemical methane potential (BMP) assays.
In the in vivo trial, milk yield, dry matter intake (DMI), feed conversion rate (FCR), milk quality
and apparent total tract digestibility (aTTD) were evaluated in 140 lactating Holstein Friesian cows.
Animals were allocated into two groups: (i) Control, standard diet; (ii) Treatment, standard diet plus
10 g/head/d of a powder with a 10% concentration of a blend of essential oils, bioflavonoids and
tannins. Statistical analysis was performed using the mixed procedure of SAS either for single or
repeated measures. For all the parameters a p-value ≤ 0.05 was considered statistically significant. The
blend significantly reduced the in vitro total gas and CH4 emissions at 16, 20 and 24 h of incubation
(p < 0.001). In addition, acetic acid was reduced (p < 0.001), while propionic acid concentration was
increased (p < 0.001) at 16 h and 24 h. In the in vivo trial, the Treatment group showed significantly
raised milk yield, DMI, FCR (p < 0.001), and of the aTTD of cellulose and starch (p ≤ 0.002), while the
milk quality traits were not affected. Overall, the results from the study indicated that the blend of
essential oils, bioflavonoids, and tannins significantly reduced in vitro total gas and CH4 production
and improved the production efficiency of lactating dairy cows in vivo.

Keywords: sustainability; methanogenesis; natural alternatives; efficiency; dairy cows

1. Introduction

The livestock system is constantly criticized in various respects related to environmen-
tal sustainability, such as deforestation, water and land use, pollution, and consumption of
human-edible resources, while the demand for animal-derived foods is continuously in-
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creasing. Greenhouse gas (GHGs) emissions are one of the main focal points, with livestock
emissions accounting for 14.5% of the total [1–3].

Among food-producing animals, cattle are often the most discussed for their high
contribution to the sector’s GHG emissions (35% and 32% of the total for beef and dairy,
respectively), especially of methane (CH4) [4,5].

In response to these concerns, more efficient and sustainable dairy production systems
need to be developed. Strategies to directly reduce ruminal CH4 production must be
considered. Indeed, almost 71% of the total CH4 produced originates inside the rumen [3].
Specifically, digestion and fermentation of forages are related to a higher production of
metabolic hydrogen (H2) in the rumen, which is subsequently converted to CH4 as a
protective mechanism [6]. In addition to being a cause of environmental impacts, CH4
production is also an energy loss, that reduces nutrient utilization efficiency by 2 to 12%,
and, in consequence, potential productivity [6,7], resulting in a negative environmental
impact due to a lower yield of final products in relation to the GHGs produced [2].

Current strategies include changes in diet formulation, increasing the amount of
lipids and including compounds with antimicrobial abilities, such as bacteriocins or
ionophores [6–9]. Although these strategies can have a direct impact on methanogen-
esis, they each come with limitations with respect to animal efficiency, diet digestibility
and the need to reduce antimicrobial use [6]. Antimicrobials, such as monensin sodium,
an ionophore effective in the reduction of methanogenesis, have been banned for non-
therapeutic purposes in the European Union from 2006 [10,11]. In this context, safer
compounds with anti-methanogenic properties are needed.

One of the novel alternatives that has shown promise is the use of natural additives,
such as essential oils, bioflavonoids, and tannins [8]. Bioflavonoids and tannins are natural
polyphenolic compounds widely present in plants which are used in animal nutrition due
to their antioxidant, anti-inflammatory and antimicrobial properties [12–14]. Essential oils
are plant metabolites consisting of phenylpropenes and terpenes with proved antioxidant
properties and strong antimicrobial capacity toward different categories of microorganisms
and bacteria and are currently being studied in relation to animal nutrition [15].

In ruminants, essential oils and other natural compounds are being investigated as
potential modifiers of ruminal fermentation to improve nutrient utilization efficiency and
to reduce methane production [7,8,16]. Although the effects and mode of action are variable
depending on their molecular characteristics, they have shown an inhibitory effect on
Gram-positive bacteria and consequently on H2 production and methanogenesis [17,18].
Different studies, conducted either in vitro or in vivo, have demonstrated the efficacy of
essential oils in reducing CH4 production while increasing the production of volatile fatty
acids and digestion efficiency [19–25].

Coriander oil has been reported to potentially modulate in vitro digestibility and CH4
production [26]. Eugenol (4-allyl-2-methoxyphenol), a phenolic monoterpene present in
high quantities in clove (Syzygium aromaticum) bud, and cinnamon (Cinnamomum cassia),
has demonstrated antimicrobial activity against Gram-positive and Gram-negative bacte-
ria [27,28]. In addition, Geranium essential oils, produced by steam distillation of leaves of
various Pelargonium species, have been reported to have antibacterial effects [29]. Previous
experiments performed with a combination of coriander and eugenol essential oils, and
geranyl acetate, both in vitro and in vivo on dairy cows, have highlighted positive results
on CH4 production, milk yield and quality, and feed conversion rate, depending on the
dosage and duration of administration [8,18,19,21,30]. However, in vivo results in dairy
cows are highly variable, probably due to the different classes of essential oils, dosage, and
duration of administration [8,16,25].

The aim of the present study was to evaluate the efficacy of a coated blend of coriander
seed oil, eugenol and geranyl acetate essential oils, combined with bioflavonoids and
tannins, in reducing CH4 production in vitro and in improving the production performance
and apparent total tract digestibility of the diet in vivo using lactating Holstein dairy cows.
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2. Materials and Methods

Two different trials were set up to evaluate the efficacy of a coated blend of essential
oils (EO), mainly from cloves (Syzygium aromaticum), coriander seed (Coriandrum sativum),
and geranium (Pelargonium cucullatum), tannins (CT) from chestnuts (Castanea sativa) and
bioflavonoids (BF) from olives (Olea europea) (Anavrin, Vetos Europe SAGL, via delle
Industrie 18, 6593—Cadenazzo, Switzerland). The relative concentrations of the active
principles in the product were: EO:CT:BF = 1:2.5:0.1. The blend was tested in vitro to
evaluate its potential activity in reducing CH4 production under standardized conditions.
Then, the blend was tested in vivo using lactating dairy cows to evaluate its effects on milk
production and the apparent total tract digestibility of the diet.

2.1. Trial I: Study of the Effect of the Blend of Essential Oils, Bioflavonoids and Tannins on In Vitro
CH4 Production

In vitro CH4 production was evaluated using the biochemical methane potential (BMP)
assay methodology, following the official guidelines, as reported in ISO 15985 (2004), ISO
14853 (1998), UNI/TS 11703 (2018) Hollinger et al. [31] and Agelidaki et al. [32]. The total gas
(CH4; carbon dioxide—CO2; hydrogen sulphide—H2S; trace nitrogen; carbon monoxide—
CO) concentrations were evaluated after 16, 20 and 24 h, using a water displacement
method, as reported by Sarker et al. [33]. Quantification of CH4 was conducted through
gas chromatography.

Two separate assays were set up to test the effect of a blend of essential oils, bioflavonoids
and tannins, in different forms (powder and liquid), in different concentrations, at different
time points and in comparison to monensin sodium.

2.1.1. Common Methodology

A total of 10 close reactors, maintained in anaerobic conditions at constant temperature
(37 ◦C) for the entire testing period of each assay, were used in each assay.

Anaerobic mud, taken from an anaerobic digester of cattle slurry, was used as an
inoculum to provide the microbial population as well as the main nutrients [31]. The
anaerobic mud was preventatively acclimatized at 35 ◦C for 48 h.

Anhydrous glucose was used as a substrate due to its standardized and well-known
potential for CH4 production [31,32]. The total quantities added (glucose plus the blend)
were defined with reference to the reactor final volume (759 mL), glucose concentration in
the reactor (2.7 g/L), and the ratio between glucose and the inoculum (0.25), that needed
to be considered for preparation of the reactor. The required dosage of glucose, equal to
2000 mg for all the tests, was administered by adding in each reactor 20 mL of a solution at
10% of anhydrous glucose.

The blend was added to the glucose in different percentages, as reported in Tables 1 and 2.
The quantities were lower in the second assay due to a higher concentration of the blend in the
liquid form. Considering the small quantities of the blend, diluted solutions were prepared.

Table 1. Experimental protocol for assay 1 (powder form blend with 10% concentration).

Parameter Control Test 1 Test 2 Test 3 Test 4 Test 5

Glucose, mg 2000 2000 2000 2000 2000

Blend, mg
(% DMglucose) - 0.10

(0.005)
1.00

(0.050)
5.00

(0.250)
10.00

(0.500)
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Table 2. Experimental protocol for assay 2 (liquid pure form blend).

Parameter Control Test 1 Test 2 Test 3 Test 4 Test 5

Glucose, mg 2000 2000 2000 2000 2000

Blend, mg
(% DMglucose) - - 0.05

(0.0025)
0.10

(0.005)
0.50

(0.025)

Monensin sodium,
mg (% DMglucose) - 0.12

(0.006) - - -

At each timing (16, 20 and 24 h), the total gas production was evaluated using acidified
water to reduce CO2 solubility [33]. The total gas production was expressed as normal cubic
meters (Nm3) per ton of substrate. The gas was then evaluated using gas chromatography
to determine CH4 production, expressed in normal cubic meters (Nm3) of CH4 per ton of
substrate, and as the percentage of total gas [34].

2.1.2. Specificity of the Two Assays

In the first assay, the blend was in powder form, with a concentration of 10%. The
assay consisted of five different tests, performed in replicates (as reported in Table 1), one
without any addition of the blend (Control Test 1), and the others (Tests 2 to 5) with four
different percentages of inclusion on a substrate dry matter (DM) basis. The total gas and
CH4 production were evaluated after 20 h of incubation.

In the second assay, the blend was pure and in liquid form. The assay consisted of five
different tests, performed in replicates, as reported in Table 2, one without any addition
(Control Test 1), a second with the addition of monensin sodium with a concentration of 20%
of the active ingredient (Test 2), and the others (Tests 3 to 5) with different concentrations
of the blend on a substrate DM basis. The total gas and CH4 production were evaluated
after 16 h and 24 h of incubation. Samples of the digestate were collected to analyse the
concentrations of volatile fatty acids (VFA) using mass gas chromatography (MP 58C/2018
rev. 0).

2.2. Trial II: In Vivo Study of the Effect of a Blend of Essential Oils, Bioflavonoids and Tannins on
Dairy Cow Performance
2.2.1. Animals, Groups and Animal Care

The study was performed in an intensive dairy farm, the Del Santo farm (Castel-
gerundo, Lodi, Italy). A total of 140 lactating Holstein Friesian cows were randomly
allotted to two groups blocked per days of lactation and number of lactations and followed
for 100 days: (i) Control (n = 70; days of lactation 53.85 ± 25.36; lactation 2.30 ± 0.68);
(ii) Treatment (n = 70; days of lactation 51.33 ± 24.37; lactation 2.30 ± 0.67). The animals
were reared under the same environmental conditions, in the same free housing barn on
a concrete floor with straw-bedded cubicles. Cows were milked twice a day (morning
07:00 a.m.; evening 05:00 p.m.) in a herringbone milking parlor (8 + 8).

2.2.2. Diets and Feeding Management

The two groups received the same diet (Table 3), formulated to satisfy the requirements
for all nutrients, as reported by the NASEM (National Academies of Sciences, Engineering,
and Medicine) [35]. The diet was administered ad libitum in the form of total mixed
ration (TMR). The two groups differed with respect to inclusion in the mineral mix, in the
Treatment group, of 10 g/head/d of a powder containing 10% of the blend of essential oils,
bioflavonoids and tannins, and 90% of wheat bran, to guarantee 0.04 g/head/day of the
pure blend per kg DM of the diet. In the mineral mix of the Control group, 10 g/head/d of
wheat bran were included as placebo. A mixer wagon (Sgariboldi Grizly 71.26/2, capacity
26 m3 mixing system with two vertical augers), equipped with a balance designed to
weigh both the individual ingredients and the unloaded TMR, was used to distribute the
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TMR once per day during the morning. Animals had free access to water for the entire
experimental period.

Table 3. Nutritional composition and values of the total mixed ration (TMR) used for in vivo study
(predicted by Plurimix 1, a ration balancing software package).

Feed kg/head/day, as Fed

Corn silage 18.0
Alfalfa hay 3.0
Raygrass hay 1.6
Wheat silage 8.0
Corn meal 6.4
Soybean meal 44% CP 2 4.6
Min vit supplement 0.5

kg/head/d

As fed, kg 42.10
DM 3, kg 23.88

Analysis, % of DM in the TMR

DM, % 43.30
Energy, Mcal/kg DM 1.61
UFL 4/kg DM 0.95
CP 16.27
CF 5 2.69
NDF 6 33.27
ADF 7 22.65
ADL 8 4.51
Starch 27.56
Ca 9 0.77
P 10 0.34

1 Plurimix = Fabermatica, Piazza Bruno Pari, 3 GPS: 45.22305 10.25275, 26032 Ostiano (CR); 2 CP = crude protein;
3 DM = dry matter; 4 UFL = feed units for lactation; 5 CF = crude fats; 6 NDF = neutral detergent fiber; 7 ADF = acid
detergent fiber; 8 ADL = acid detergent lignin; 9 Ca = calcium; 10 P = phosphorus.

2.2.3. Parameters Recorded
Production Performance: Milk Yield, Feed Intake, Feed Conversion Rate, Milk Quality

The milk yield (kg/head/d) was recorded daily during milking procedures. The
group average daily dry matter intake (DMI) was assessed by weighing the administered
feed and refusal in the manger after 24 h, correcting for the dry matter of the diet. The
feed conversion ratio (FCR) was calculated based on DMI and milk yield data. The milk
quality was evaluated monthly for protein, fat, lactose, urea and somatic cell counts by
the Lombardy Regional Breeders Association (ARAL) laboratory, using the Milkoscan
TM FT 6500 Plus instrument (Foss, Hillerød, Denmark), employing the Fourier transform
infrared spectroscopy (FTIR) measuring principle. Milk urea levels were determined using
a colorimetric kit following the manufacturer’s instructions (Urea Assay Kit Rapid—K-
URAMR—Megazyme—Astori Tecnica s.n.c. Poncarale (BS) 25020). The energy-corrected
milk (ECM) was calculated comparing the values of protein, fat and average milk produc-
tion of the same week. The ECM was obtained according to the Tyrrel and Reid (1965)
equation as follows [36]:

ECM = 0.327 × Milk yield (kg) + 12.95 × Fat yield (kg) + 7.2 × Protein yield (kg)

The health status of animals was monitored daily by the farm veterinary staff.
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Characteristics of the Diet, Feces and Apparent Total Tract Digestibility

Experimental diets and feces were analyzed twice per month, at the beginning and
end of each month, by portable near-infrared spectroscopy (NIR) equipment (Polispec, IT
Photonics, Italy).

The characteristics of the TMR were evaluated on the fresh feed, measuring three
different sections along the length of the feed bunk (beginning, middle and end). Feces
composition was assessed on a pool of fecal material per group collected the day after each
TMR analysis. Feces of 20 cows per group were sampled from the rectal ampulla. Fecal
samples from each group were pooled and mixed prior to analysis. NIR was used to mea-
sure the content of dry matter (DM), crude protein (CP), crude fats (CF), neutral detergent
fiber (NDF), acid detergent fiber (ADF), acid detergent lignin (ADL), ash and starch. The
cellulose content was obtained by subtracting ADF from ADL, and hemicelluloses was
calculated by subtracting NDF from ADF. Sugars and pectin were obtained according to
the following formula: 100 − (ash + CF + CP + NDF + starch). The apparent total tract
digestibility (aTTD) was then calculated as follows, excluding the digestibility of CP, since
urine data were not provided by nitrogen balance trial:

aTTD % =

(
Xd

ADLd

)
−

(
Xf

ADLf

)
(

Xd
ADLd

) × 100

where:

X = each analytical parameter considered (%)
ADL = acid detergent lignin (%)
d = diet
f = feces.

2.3. Statistical Analysis

Statistical analysis was performed using SAS software (SAS 9.4, SAS Institute, Cary,
NC, USA). Normal distribution (data distribution and homogeneity of variances) of the
obtained data was evaluated using PROC UNIVARIATE. Considering the in vitro trial,
data from the first assay were evaluated using the mixed procedure of SAS. The model
used included the different tests as the main effect and the reactor as a random effect.
Data from the second assay were evaluated using a mixed model for repeated measures
that accounted for the fixed effects of the different tests, the time of measurement, their
interaction and the random effects of the reactor within treatment period.

Considering the in vivo trial, zootechnical performance (milk yield, feed intake, feed
conversion rate, milk quality) was evaluated using a mixed model (PROC MIXED) includ-
ing the fixed effects of treatment and time. The aTTD was assessed with PROC MIXED
including the effect of treatment, sampling day, their interaction (treatment × sampling
day) and the random effect of animals within the treatment period. Each animal was
considered as experimental unit.

For all the parameters a p-value ≤ 0.05 was considered statistically significant.

3. Results
3.1. Trial I: Study of the Effect of the Blend of Essential Oils, Bioflavonoids and Tannins on In Vitro
CH4 Production
3.1.1. Results of the First Assay

Data regarding the CH4 and total gas production after 20 h of incubation, are reported
in Table 4.
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Table 4. Production of methane and total gas at 20 h incubation. Different letters in the same column
denote significant differences (a,b,c,d p ≤ 0.05).

Test CH4
1 Total Gas 2 % CH4

3

Control Test 1 188.9 a ± 1.41 304.3 a ± 1.00 62.1 a,b ± 1.00
Test 2 162.2 b,c ± 1.62 250.0 d ± 1.00 64.8 a,b ± 1.00
Test 3 151.1 c ± 1.86 245.6 d ± 1.00 61.5 a,b ± 1.00
Test 4 155.6 c ± 2.10 262.2 b ± 1.00 59.3 b ± 1.00
Test 5 171.1 b ± 2.36 256.5 c ± 1.00 66.7 a ± 1.00

Data are presented as least squared means ± standard error of the means (SEM). 1 CH4 expressed in Nm3CH4
tTQ

−1 = normal cubic meters of methane per ton of the substrate total mass; 2 total gas production expressed in
Nm3 tTQ

−1 = normal cubic meters of total biogas per ton of the substrate total mass; 3 % of total gas production.

Overall, the inclusion of the blend of essential oils, bioflavonoids and tannins reduced
the production of CH4 (p = 0.0017) and total gas (p ≤ 0.001) compared to the Control Test 1.
Specifically, CH4 production was reduced by the blend, compared to the Control Test 1,
with percentages variable from −9.41 in Test 5 (p ≤ 0.05) to −20.00 in Test 3 (p ≤ 0.05).

Total gas production was reduced compared to the Control Test 1 in all the tests, with
percentages variable from −13.84 in the Test 4 to −19.28 in Test 3 (p ≤ 0.001).

CH4, as percentage of total gas, was similar in each test when compared to the Control
Test, but was different between Test 4 and Test 5 (p ≤ 0.05).

3.1.2. Results of the Second Assay

Data regarding CH4 and total gas production after 16 h and 24 of incubation are
reported in Table 5.

Table 5. Production of methane and total gas at 16 and 24 h. Different letters in the same column
denote significant differences (a,b,c,d,e p ≤ 0.05).

Test CH4
1 Total Gas 2 % CH4

3

h 16 24 16 24 16 24

Control Test 1 142.7 a ± 1.00 228.9 a ± 1.00 236.5 a ± 1.00 368.9 a ± 1.00 60.3 c ± 0.15 62.0 b ± 0.15
Test 2 131.3 b ± 1.00 155.6 c ± 1.00 206.8 c ± 1.00 255.6 d ± 1.00 63.5 a ± 0.15 60.8 c ± 0.15
Test 3 138.2 a ± 1.00 210.5 b ± 1.00 224.b ± 1.00 330.1 b ± 1.00 61.6 b ± 0.15 63.7 a ± 0.15
Test 4 130.3 b ± 1.00 177.7 c ± 1.00 210.6 c ± 1.00 280.2 c ± 1.00 61.8 b ± 0.15 63.4 a ± 0.15
Test 5 129.6 b ± 1.00 149.1 d ± 1.00 208.3 c ± 1.00 246.2 e ± 1.00 62.2 b ± 0.15 60.5 c ±0.15

Data are presented as least squared means ± standard error of the means (SEM). 1 CH4 expressed in Nm3CH4
tTQ

−1 = normal cubic meters of methane per ton of the substrate total mass; 2 total gas production expressed in
Nm3 tTQ

−1 = normal cubic meters of total biogas per ton of the substrate total mass; 3 % of total gas production.

Compared to the Control Test 1, monensin sodium (Test 2), after 16 h and 24 h
incubation, reduced CH4 production by 7.99% and 32.02%, respectively (p ≤ 0.001). Total
gas production was reduced by monensin sodium by 12.56% and 30.71%, respectively, after
16 h and 24 h of incubation (p ≤ 0.001). Furthermore, CH4, expressed as the percentage
of total gas, was higher after 16 h of incubation (+5.2%; p ≤ 0.05), and lower after 24 h
(−1.17%; p ≤ 0.05) in Test 2 compared to the Control Test 1.

The inclusion of the blend of essential oils, bioflavonoids and tannins reduced CH4
production compared to the Control Test 1, with percentages variable from −5.24 in the
Test 3 (p ≤ 0.05) to −11.92 in Test 5 (p ≤ 0.001) at 16 h, and from −10.52% in Test 3 (p ≤ 0.001)
to −33.26% in Test 5 (p ≤ 0.001) at 24 h. Total gas production was reduced by the blend
compared to Control Test 1, with percentages variable from −3.15% in Test 3 (p ≤ 0.05) to
−9.18% in Test 5 (p ≤ 0.001) after 16 h, and from −8.03% in Test 3 (p ≤ 0.001) to −34.86% in
Test 5 (p ≤ 0.001) after 24 h. Compared to Control Test 1, CH4 expressed as the percentage
of total gas, was higher in Test 3 (p ≤ 0.05) and Test 5 (p ≤ 0.05) at 16 h of incubation, and
in Test 3 and 4 (p ≤ 0.05) at 24 h, but lower in Test 5 (p ≤ 0.05).
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Compared to monensin sodium, CH4 production was higher in Test 3 at 16 h (+5.3%;
p ≤ 0.05) and 24 h (+35.3; p ≤ 0.001) and in Test 4 at 24 h (+14.2%; p ≤ 0.001), while it was
lower in Test 5 after 24 h of incubation (−4.2%; p ≤ 0.05).

Compared to monensin sodium, the total gas production was higher in Test 3 at 16 h
(+8.4%; p ≤ 0.001) and 24 h (+29.1%; p ≤ 0.001) and in Test 4 at 24 h (+9.5%; p ≤ 0.001),
while it was lower in Test 5 at 24 h (−5.2%; p ≤ 0.05).

Compared to monensin sodium, the percentage of CH4 on total gas was lower in
Test 3 (−2.9%; p ≤ 0.05), Test 4 (−2.6%; p ≤ 0.05) and Test 5 (−2.0%; p ≤ 0.05) after 16 h
of incubation, and higher in Test 3 (+4.7%; p ≤ 0.001) and Test 4 (+4.2%; p ≤ 0.001) at 24 h
of incubation.

Regarding volatile fatty acids (VFA) (Table 6), acetic and propionic acids were detected
in all five tests, while the other acids were absent or present in concentrations lower than
the detection limit of 50 mg/L. The inclusion of the blend reduced the production of acetic
acid compared to the Control Test 1, with percentages variable from −7.45% in Test 3
(p ≤ 0.05), to −72.8% in Test 5 (p ≤ 0.001) at 16 h, and from −6.18% in Test 3 to −79.8% in
Test 5 (p ≤ 0.001) at 24 h. Propionic acid production was increased compared to the Control
Test 1 in Test 3 and Test 4 after 16 h (+4.44 and +8.33%; p ≤ 0.05 and p ≤ 0.001, respectively)
and 24 h (+5.15 and +14.43, p ≤ 0.05 and p ≤ 0.001, respectively), while it was reduced in
Test 5 at both 16 h and 24 h (−50.00% and −65.5%, respectively, p ≤ 0.001).

Table 6. Volatile fatty acid concentrations at 16 and 24 h of incubation (in brackets the percentage
difference compared to the Control test 1 are reported). Different letters in the same column denote
significant differences (a,b,c,d,e p ≤ 0.05).

Test Acetic Acid, mg/L Propionic Acid, mg/L

h 16 24 16 24

Control Test 1 228 a ± 1.00 178 a ± 1.00 180 d ± 1.00 194 d ± 1.00
Test 2 191 d ± 1.00 127 d ± 1.00 202 a ± 1.00 228 a ± 1.00
Test 3 211 b ± 1.00 167 b ± 1.00 188 c ± 1.00 204 c ± 1.00
Test 4 205 c ± 1.00 133 c ± 1.00 195 b ± 1.00 222 b ± 1.00
Test 5 62 e ± 1.00 36 e ± 1.00 90 e ± 1.00 67 e ± 1.00

Data are presented as least squared means ± standard error of the means (SEM).

Compared to the Control Test 1, monensin sodium also reduced the production of
acetic acid at 16 h and 24 h (−16.2% and −27.7%, respectively; p ≤ 0.001), while it increased
propionic acid at 16 h and 24 h (12.2% and 17.55%, respectively; p ≤ 0.001).

Compared to monensin sodium, the blend increased the production of acetate in Test 3
and Test 4 after 16 h (+10.5% and +7.3%, respectively; p ≤ 0.001), and 24 h (+31.5% and
+4.7%; p ≤ 0.001 and p < 0.05, respectively), while it was reduced in Test 5 at 16 h and 24 h
(−67.5% and −71.7%, respectively; p ≤ 0.001). Conversely, the production of propionic acid
was lower at 16 h and 24 h in Test 3 (−16.9% and −10.5%, respectively; p ≤ 0.001), Test 4
(−3.5% and −2.6%, respectively; p ≤ 0.05) and Test 5 (−55.4% and −70.6%, respectively;
p ≤ 0.001) compared to monensin sodium.

3.2. Trial II: In Vivo Study of the Effect of the Blend of Essential Oils, Bioflavonoids, and Tannins
on Dairy Cow Performance
3.2.1. Milk Yield, Feed Intake, Feed Conversion Rate, and Milk Quality

Data for weekly milk yield, feed intake and feed conversion rate for both experimental
groups are given in Table 7. The Treatment group showed an increase, during the entire trial,
in milk production by 3.8%, equal to 1.40 kg/head/day (p ≤ 0.001). Moreover, the ECM
was higher in the Treatment group (p ≤ 0.001). As shown in Figure 1A, productivity began
to differ significantly from the third week of the study in the Treatment group compared to
the Control group.



Animals 2022, 12, 728 9 of 15

Table 7. Production performances in the Control and Treatment groups.

Group
p Value

Control Treatment

Production Performance

Milk yield, kg/head/d 36.90 ± 0.23 38.30 ± 0.23 ≤0.001
ECM 1, kg/head/d 38.30 ± 0.52 40.2 ± 0.52 ≤0.001
DMI 2, kg/head/d 24.70 ± 0.08 24.10 ± 0.08 ≤0.001
FCR 3 1.49 ± 0.01 1.58 ± 0.01 ≤0.001

Data are presented as least squared means ± standard error of the means (SEM). 1 ECM = energy corrected milk;
2 DMI = dry matter intake; 3 FCR = feed conversion rate.
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Figure 1. (A) Average weekly milk production (kg/head/d) in Control and Treatment groups
(a = p-value ≤ 0.05; x = p-value ≤ 0.1); (B) Average weekly dry matter intake (kg/head/d) in Control
and Treatment groups (a = p-value ≤ 0.05); (C) Average weekly feed conversion rate (FCR) in Control
and Treatment groups (a = p-value ≤ 0.05).

Feed intake and feed conversion rate were also statistically different in the Treatment
group (p ≤ 0.001). As shown in Figure 1B, dry matter intake was lower in the Treatment
group starting from the 6th week of the study. Feed efficiency, as shown in Figure 1C, was
similar in the first two weeks of the study but started to be higher in the Treatment group
from the third week, resulting in an overall 7.2% improvement in FCR.

Data on milk quality are given in Table 8. Milk fat, proteins, urea and caseins content
were not affected by the Treatment, while somatic cell count was lower in the second month
(p = 0.042) of the study.

Considering health status, all the cows involved in the trial showed good health and
no specific issues were highlighted during the whole trial.
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Table 8. Milk quality parameters in Control and Treatment groups.

Characteristics of Milk, Month of Study

1st Month (August) 2nd Month
(September) 3rd Month (October)

Fat, %

Control 3.74 ± 0.02 3.70 ± 0.02 3.77 ± 0.02
Treatment 3.79 ± 0.02 3.76 ± 0.02 3.80 ± 0.02
p-value 0.185 0.155 0.148

Proteins, %

Control 3.31 ± 0.02 3.35 ± 0.02 3.27 ± 0.02
Treatment 3.33 ± 0.02 3.39 ± 0.02 3.25 ± 0.02
p-value 0.377 0.690 0.635

Urea, mg/dL

Control 21.93 ± 0.23 21.92 ± 0.23 22.28 ± 0.23
Treatment 21.99 ± 0.23 21.83 ± 0.23 22.36 ± 0.23
p-value 0.994 0.792 0.690

Caseins, %

Control 2.80 ± 0.04 2.99 ± 0.04 2.96 ± 0.04
Treatment 2.79 ± 0.04 2.97 ± 0.04 2.95 ± 0.04
p-value 0.821 0.81 0.552

Somatic cells, x.000

Control 135.80 ± 3.45 150.09 ± 3.45 144.60 ± 3.45
Treatment 128.22 ± 3.45 141.75 ± 3.45 136.69 ± 3.45
p-value 0.078 0.042 0.103

Data are presented as least squared means ± standard error of the means (SEM).

3.2.2. Apparent Total Tract Digestibility of the Diet

The average values of chemical characteristics of the diet of the two groups, given
in Supplementary Figure S1, showed a good match between the software projection and
the chemical analysis of TMR. Supplementary Figure S2 shows the average chemical
characteristics of the feces in both Control and Treatment groups. Table 9 shows the
average values of the apparent total tract digestibility of the different nutrients in both
experimental groups. The Treatment group showed an increase of 23.57% and 1.8% in the
aTTD, respectively, of cellulose (p ≤ 0.001) and starch (p = 0.0023).

Table 9. Apparent total tract digestion of the diet in Control and Treatment groups.

Month August September Octorber Average P (g) 1 P (m) 1 P (g*m) 1

Ash, %

Control 61.63 ± 1.87 61.83 ± 1.87 63.27 ± 1.87 62.24 ± 1.53
0.612 0.654 0.5557Treatment 61.73 ± 1.87 65.05 ± 1.87 62.41 ± 1.87 63.06 ± 1.53

p-value 0.971 0.271 0.756 0.612

Crude Fats, %

Control 69.15 ± 1.63 71.91 ± 1.63 72.44 ± 1.63 71.17 ± 0.94
0.818 0.059 0.672Treatment 67.85 ± 1.63 72.50 ± 1.63 74.11 ± 1.63 71.49 ± 0.94

p-value 0.593 0.807 0.496 0.818
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Table 9. Cont.

Month August September Octorber Average P (g) 1 P (m) 1 P (g*m) 1

Cellulose, %

Control 43.14 ± 1.23 39.26 ± 1.23 43.24 ± 1.23 41.88 ± 0.71 ≤0.001 0.031 0.469Treatment 51.21 ± 1.23 49.57 ± 1.23 54.46 ± 1.23 51.74 ± 0.71
p-value 0.003 0.001 0.0007 ≤0.001

Hemicellulose, %

Control 67.66 ± 2.12 67.56 ± 2.12 65.23 ± 2.12 66.81 ± 1.22
0.098 0.672 0.915Treatment 70.19 ± 2.12 70.88 ± 2.12 69.55 ± 2.12 70.21 ± 1.22

p-value 0.433 0.311 0.20 0.098

Starch, %

Control 93.46 ± 0.41 93.09 ± 0.41 93.19 ± 0.41 93.25 ± 0.23
0.0023 0.770 0.397Treatment 94.47 ± 0.41 95.02 ± 0.41 95.33 ± 0.41 94.94 ± 0.23

p-value 0.13 0.015 0.010 0.0023

Sugars and Pectins, %

Control 98.23 ± 0.44 97.92 ± 0.44 98.12 ± 0.44 98.09 ± 0.44
0.0926 0.138 0.314Treatment 98.25 ± 0.44 96.49 ± 0.44 97.11 ± 0.44 97.28 ± 0.44

p-value 0.981 0.062 0.159 0.092

Data are presented as least squared means ± standard error of the means (SEM). 1 g = effect of the treatment;
m = effect of the month; g*m = their interaction.

4. Discussion

Reducing ruminal CH4 emissions is critical for dairy cow producers, both to sat-
isfy the societal pressure regarding the environmental impact of dairy products, and to
improve overall production efficiency, by shifting ruminal fermentation toward more
efficient pathways.

For these purposes, natural compounds such as essential oils, bioflavonoids and
tannins have shown promising results [8,18,19,21,30]. However, the results are highly
variable, both in in vitro and in vivo studies, depending on the natural compounds used,
the dosages and proportions, the duration of the administration and the animals’ character-
istics and management. These factors can influence ruminal microflora and its activity, and,
consequently, treatment efficacy [8,30].

The in vitro assays performed in the present study were conducted on a standardized
anaerobic mud and not on the ruminal fluid that is normally characterized by a highly
variable microbiota. In addition, a substrate with a well-known methanogenic potential
(anhydrous glucose) was used instead of a highly variable substrate, such as the TMR of
dairy cows. Because of these conditions, it is important to emphasize that comparison
with other studies of CH4 production, evaluated either in vitro on ruminal fluids or in vivo
using respiratory chambers, is not strictly feasible.

The results of the present in vitro study showed a significant effect of the investigated
blend of essential oils, bioflavonoids and tannins in reducing both total gas and CH4
production in comparison with the Control Tests; this was in line with previous in vitro
research that has assessed the effect of a similar blend of essential oils but using ruminal
fluids [19]. Moreover, in vivo studies performed with similar natural compounds have
reported an average CH4 reduction of 8%, in agreement with the results obtained in Test 2
and 3 after 20 h and in Test 3 and 4 after 16 and 24 h [8,30].

The improvement in the production of propionic acid highlighted in the present
study was in line with the findings of Klop et al. [37] who reported a higher proportion
of propionate and lower proportion of acetate in the ruminal fluid of donor cows after
in vitro incubation using similar natural compounds. The excessive reduction in volatile
fatty acid production observed in the second assay in Test 5 could be attributed to the high
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concentration of the blend used and to the consequent negative effects on all the bacterial
strains, which is consistent with the highest CH4 reduction.

Elcoso et al. [30] reported that the reduction in CH4 production began to be significant
after four weeks of treatment of donor cow ruminal fluid, highlighting that this period may
be necessary to modulate the ruminal microbiota activity. It is recognized in the literature
that diet supplementation aimed at influencing the microbiota and ruminal fermentation
requires a period of at least three weeks to show its effects [21]. In the present study milk
production and feed efficiency started to significantly increase, respectively, three and
six weeks after treatment as a result of modified and improved activity of the ruminal
microbiota after this time frame, confirming that three to six weeks could be considered the
required time to modulate the rumina microbiota. Guash et al. [38], in a study concerning
the inclusion of essential oils in the diet of dairy cows, reported significant effects starting
from the 20th day of administration.

The increase in the milk production of 3.8% highlighted in the present study in the
Treatment group is in line with the findings of Belanche et al. [8], who, in a review regarding
the effects of similar essential oils, reported an increase of 3.6% in milk yield when the
additive was administered for more than four weeks. In contrast, Santos et al. [39], did
not report any effect on milk production when similar essential oils were used for four
weeks. It seems that the results are mainly dependent on the duration of treatment, in
agreement with the previously cited microbiota timing of adaptation [8], and with short-
term studies (<4 weeks) showing either no or small (<2%) improvement in milk production,
and long-term studies (>4 weeks) showing good (>3%) improvement.

The higher milk production recorded in the present study was combined with lower
feed intake and, consequently, with an improved feed conversion rate, as reported also by
Elcoso et al. [30] who observed an improvement in the feed conversion index of 2% in a
study conducted on dairy cows fed with similar essential oils. Several studies showed an
increase in rumen volatile fatty acid production in cattle treated with essential oils, because
of more viable and efficient ruminal microbial activity [40,41].

More viable ruminal microbial activity can also lead to increased digestion effi-
ciency [41,42]. The results observed in the present study in terms of aTTD are in line
with the findings of Matlup et al. [42] who reported a significant improvement in fiber
digestibility in lactating Holstein cows supplemented with coriander essential oil.

This increase in aTTD can be explained by the action exerted by the blend of essential
oils, bioflavonoids and tannins on the ruminal microflora. Several studies based on similar
natural compounds have shown an increase in the main ruminal populations involved in
both structural and nonstructural carbohydrates degradation, such as Ruminococcaceae and
Propionic acid bacteria [20,23,43], with an improvement in propionate production and the
acetate:propionate ratio [24].

Moreover, different bibliographical studies, both in vitro and in vivo, have reported
inhibitory activity of the essential oils tested in the present study on ruminal methanogenic
bacteria, highlighting how this can increase the bioavailability of substrates for other
microbial populations that can lead to a greater production of VFA and, consequently, to
higher productivity [18,20,21,43].

While milk yield was improved by the treatment, no differences were found in milk
quality (protein, fats, caseins, and urea). These results are in line with the findings of
Carrazco et al. [19], and Hart et al. [21] who reported no effects of similar natural products
on milk parameters. Belance et al. [8], in a comprehensive review, highlighted that the
higher milk fat and protein yields reported in some studies were only related to higher
milk production, while milk fat and protein percentages were not affected by the treatment.
However, Santos et al. [39] reported an increase in the milk fat percentage due to changes
in the rumen volatile fatty acid profile induced by essential oil supplementation.

The significant decrease in the milk somatic cell count observed in the present study,
two months after treatment, can be related to the anti-inflammatory and antioxidant
properties of the natural extracts which are able to stimulate the immune defenses of the



Animals 2022, 12, 728 13 of 15

mammary gland, reducing the incidence of subclinical mastitis [44]. This hypothesis is
supported by the results of Hashemzadeh-Cigari et al. [45] who observed a significant
decrease in the somatic cell count and subclinical mastitis in dairy cows supplemented
with natural extracts.

5. Conclusions

The blend of essential oils, bioflavonoids and tannins used in the present study reduced
methane production in the in vitro study from 8 to 22% with optimal concentrations
(0.0025–0.005% DM of the pure product in liquid form) at 24 h, and, in the in vivo study,
improved milk production, diet digestibility and feed conversion rate.

These results highlight the potential efficacy of natural products, such as essential oils,
bioflavonoids and tannins, in improving the production performance of dairy cows and
reducing methane production in vitro, that could lead, if further validated in in vivo trials,
to a reduction in the environmental footprint of lactating dairy cows.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ani12060728/s1, Figure S1: Analysis of the composition of the diet, in both the Control
and the Treatment groups, done with the portable NIR instrument Polispec, during the trial;
Figure S2: Analysis of the composition of the Control and Treatment feces, done with the portable
NIR instrument Polispec, during the trial.
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