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SUPG-STABILIZED VIRTUAL ELEMENTS FOR DIFFUSION-CONVECTION
PROBLEMS: A ROBUSTNESS ANALYSIS

LOURENCO BEIRAO DA VEIGA'?, FRANCO Dassr', CARLO LOVADINA® AND
GIUSEPPE VACCA!

Abstract. The objective of this contribution is to develop a convergence analysis for SUPG-stabilized
Virtual Element Methods in diffusion-convection problems that is robust also in the convection dom-
inated regime. For the original method introduced in [Benedetto et al., CMAME 2016] we are able
to show an “almost uniform” error bound (in the sense that the unique term that depends in an un-
favourable way on the parameters is damped by a higher order mesh-size multiplicative factor). We
also introduce a novel discretization of the convection term that allows us to develop error estimates
that are fully robust in the convection dominated cases. We finally present some numerical result.
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1. INTRODUCTION

The Virtual Element Method (VEM) was introduced in [7,8] as a generalization of the Finite Element Method
(FEM) to general polygonal and polyhedral meshes. Since its introduction, the VEM enjoyed a wide success
in the Numerical Analysis and Engineering communities, both due to the encouraging results and the natural
construction.

The possibility of using general polytopal meshes makes VEM suitable for diffusion problems, for instance, by
making it much easier to adapt to complex geometries (such as in basin and reservoir simulations) and to irregu-
larities of the solution. The VEM literature on the diffusion-reaction-convection problem is indeed very wide, cov-
ering primal and mixed methods, conforming and non-conforming schemes, ranging from foundation/theoretical
contributions to more applicative articles; a very short representative list being [5,9-11,13,14,16,20,24,26,30,31].
Some examples of other numerical methods for the diffusion-reaction-convection problem that can handle poly-
topal meshes are [3,4,21,22,27,28]. On the other hand, the majority of the VEM contributions assume a dominant
diffusion and do not address the significant case of convection dominated problems. Indeed, as it happens for
standard FEM, unless some ad-hoc modification is introduced, also the VEM is expected to suffer in convection
dominated regimes, leading to very large errors unless the mesh is extremely fine. To the best of the authors’
knowledge, only in the papers [15,17] such issue is addressed; in these articles a SUPG-stabilized Virtual Element
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scheme for conforming and non-conforming VEM is proposed, and analyzed both theoretically and numerically.
However, the stability and convergence analysis in [15,17] is not uniform in the diffusion/convection parame-
ters, and therefore it cannot be used to theoretically justify the method behaviour in the convection dominated
regime. Moreover, a sufficiently small mesh size h is required to carry out the analysis. The main difficulty
in deriving uniform error estimates for SUPG-stabilized VEM is handling a variable convection coefficient in
the presence of projection operators (which are needed in the VEM construction), that partially disrupt the
structure of the convection term.

The aim of the present paper is to address, in the conforming case, this challenging theoretical aspect, thus
deriving convergence estimates for a slight modification of the SUPG VEM scheme of [15] that are robust
in the involved parameters and do not require a sufficiently small h condition. We think that, in addition
to filling an important theoretical gap, having this deeper understanding is fundamental in order to develop
SUPG stabilizations in more complex settings, such as fluid-dynamics problems. For instance, deriving the
aforementioned proofs inspired us to propose also a novel (alternative) approach for the discretization of the
convective term, in addition to the original one. For the (slightly modified) discrete convection form introduced
in [15], we are able to show an error estimate that is “almost uniform” in the involved parameters, in the
sense that the unique term that depends in an unfavourable way on the parameters is damped by a higher
order multiplicative factor in h. For the novel form here proposed, we are able to show full robustness in the
parameters. Finally, for the sake of completeness we also present a few numerical results, the main objective
being to make a practical comparison among some different discretization options described in the previous
section.

The present paper is organized as follows. In Section 2 we present the continuous problem and in Section 3
we introduce some preliminaries and notation. Afterwards, in Section 4 we review the SUPG-stabilized Virtual
Element Method under analysis, also introducing the novel convective term option. The main contribution of
this article is Section 5, where we develop the aforementioned convergence analysis. The numerical tests are
shown in Section 6.

Throughout the paper, we will follow the usual notation for Sobolev spaces and norms [1]. Hence, for an open
bounded domain w, the norms in the spaces W (w) and LP(w) are denoted by [|||lws (w) and ||||»(w) respectively.
Norm and seminorm in H®(w) are denoted respectively by ||-||s, and |-|s, while (-,-), and || - ||, denote the
L2-inner product and the L?-norm (the subscript w may be omitted when w is the whole computational domain

2. CONTINUOUS PROBLEM

Let Q C R? be the computational domain and let ¢ > 0 represent the diffusive coefficient (assumed to be
constant), while B € [L>°(2)]? with div@ = 0, is the transport advective field, and f € L?(2) is the volume
source term. Then, our linear steady advection-diffusion model problem reads

find u € V s.t.
{ (2.1)
ea(u,v) + b(u,v) = (f,v) forallveV,
where V = H{ () and the bilinear forms a(-,-): V x V — R and b(-,-): V x V — R are
a(u,v) = / Vu - VodQ2 for all u,v €V, (2.2)
Q
b(u,v) := / B VuvdQ for all u,v e V. (2.3)
Q

By a direct computation, being div@ = 0, it is easy to see that the bilinear form b(-,-) is skew symmetric, i.e.,

b(u,v) = =b(v,u) for all u,v € V.
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Therefore, the bilinear form b(-,-) is equal to its skew-symmetric part, defined as:
S 1
bW (y, v) = i(b(u, v) — b(v, u)) for all u,v € V. (2.4)

However, at the discrete level b(-,-) and b<¢¥(-,-) will lead to different bilinear forms, in general.

It is well known that discretizing problem (2.1) leads to instabilities when the convective term ||B||{z ()2 is
dominant with respect to the diffusive term e (see for instance [33]). In such situations a stabilized form of the
problem is required in order to prevent spurious oscillations that can completely spoil the numerical solution. In
the following sections we propose a virtual elements version of the classical Streamline Upwind Petrov Galerkin
(SUPG) approach [29,32]. From now on, we assume that the material parameters are scaled so that it holds:

(A.0) Problem scaling. ||B||[L~(o)> = 1.

We finally remark that the proposed approach can be easily extended to more general situations such as
reaction-convection-diffusion problems, non-constant diffusive coefficients and different boundary conditions (the
main theoretical difficulties being already present in the model proposed above). Moreover, also the analysis of
the three dimensional case could be developed with very similar arguments.

3. DEFINITIONS AND PRELIMINARIES

3.1. SUPG stabilizing form

From now on, we will denote with F a general polygon, e will denote a general edge of E, moreover |E| and
hg will denote the area and the diameter of E respectively, whereas n” will denote the unit outward normal
vector to OE. Let { Qy, },, be a sequence of decompositions of 2 into general polygons E, where h = supgcq, he.
We suppose that { €, }, fulfils the following assumption:

(A.1) Mesh assumption. There exists a positive constant ¢ such that for any £ € {Q },

— F is star-shaped with respect to a ball Bg of radius > ohg;
— any edge e of F has length > ohg.

We remark that the hypotheses above, though not too restrictive in many practical cases, could possibly be
further relaxed, combining the present analysis with the studies in [6,12,19,25].

We now briefly review the construction of the SUPG stabilization [29,32] for the advection-dominated prob-
lem (2.1). First of all, we decompose the bilinear forms a(-,-) and b***¥(-, -) into local contributions, by defining

a(u,v) =: Z a®(u,v), bV (1, v) =: Z bk E (y v).

EcQy, EcQy,
Let us introduce the bilinear form jﬁlpg(, -), defined for all sufficiently regular functions by:
.Zglpg(u, v) == e a®(u,v) + 65 F (u,v) + BE (u,v) + L (u,v), (3.1)
where
BE (u,v) :== 75 [E B-Vu(B-Vv)dE (3.2)
L (u,v) =75 /E —cAu(B-Vv)dE, (3.3)

and the SUPG parameter 75 > 0 has to be chosen. The corresponding stabilized right-hand side ]?SE is

upg(')
defined by
fﬁpg(v) = / fvdE—I—TE/ fB-VudE. (3.4)
E E
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The global approximated bilinear form ﬂsupg(-, -) and the global right-hand side are defined by simply summing
the local contributions:

-’ZSUPg(UvU) = Z "Z(SEupg(u7v) (3.5)
EEQ;L

-%supg(v) = Z ‘%slipg(v)' (3.6)
EeQy,

Since the exact solution u of equation (2.1) satisfies —e Au+3-Vu = f € L*(Q2), then .Zsupg (u,v) is well defined
for all v € V' and u solves the stabilized problem

find u € V s.t.
A T (3.7)
Asupg (U, v) = Faupg(v) forallv e V.

The aim of the following sections is to derive a VEM discretization of the stabilized problem (3.7). In the
following the symbol < will denote a bound up to a generic positive constant, independent of the mesh size h,
of the SUPG parameter 75, of the diffusive coefficient € and of the transport advective field 3, but which may
depend on (2, on the “polynomial” order of the method k£ and on the regularity constant appearing in the mesh
assumption (A.1).

3.2. Projections and polynomial approximation properties

In the present subsection we introduce some basic tools and notations useful in the construction and the
theoretical analysis of Virtual Element Methods.
Using standard VEM notations, for n € N, m € Nand p =1,...,00, and for any E € €y, let us introduce
the spaces:
— P, (w): the set of polynomials on w of degree < n (with P_;(w) = {0}),
— P.(Q) :={q€ L*(Q) st qlp €P,(E) foral Ec Q},
- W Q) == {v e L*(Q) st v|lg € W(E) forall E€Q} equipped with the broken norm and semi-
norm

HUHZ;V;n(Qh) = Z ||UH€VPm(E)a |U|€V;n(gh) = Z |U|€V;"(E)’ if 1 <p<oo,
EecQyp EcQy,
lollwy ) = max [vllw &), [vlwye @) = max [olwp e, i p = oo,

and the following polynomial projections:
~ the L2-projection I1%%: L?(E) — P,(E), given by

/ (v —T%E0)dE =0  for all v € L*(E) and ¢, € P, (E), (3.8)
E

with obvious extension for vector functions TI%¥ : [L2(E)]? — [P, (E)]%;
— the H'-seminorm projection IIY-*: H'(E) — P, (E), defined by

/ Vg, V(v—TIYFEv)dE=0 forallve HY(E) and ¢, € P,(E),
E

(3.9)
/ (v— TIYFv)ds =0,
OF
with global counterparts 119 : L2(Q2) — P,,(Q,) and IIY : HY(Q) — P, (£2,) defined by
(T20) | = TI% Py, (MY v)|p =Y Po,  for all E € Q. (3.10)

We finally mention two classical results for polynomials on star-shaped domains (see for instance [18]).
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Lemma 3.1 (Bramble-Hilbert). Under the assumption (A.1), for any E € Qp and for any smooth enough
function ¢ defined on E, it holds

lp = Y ollwm ) S b ™ lelws () s;meN, m<s<n+1,pée(l+od]

lo =T Fllm.e < b ™ lels. ssmeN,m<s<n+l s>l

Lemma 3.2 (Inverse estimate). Let, for any E € Qp, vg denote the smallest positive constant such that for
any p,, € [P,(E)]?, it holds

|divp,,| (2))E < 'VEhE‘2||pn||(2),E'

Then, under assumption (A.1), there exists v € RY such that yg <~ for all E € {Qp}n.

4. VIRTUAL ELEMENT DISCRETIZATION

4.1. Virtual element spaces

Let k£ > 1 be the “polynomial” order of the method. For any E € 0} we consider the local “enhanced” virtual
element space [2] given by

Vi(E) = {v, € HY(E)NC°(OE) s.t. wple € Pre) for all e € OF,

N N (4.1)
Avy € Pi(E), (v — IT) oy, pr) =0 for all B, € Pr(E)/Pr_o(E)}.
We here summarize the main properties of the space V;,(E) (we refer to [2] for a deeper analysis).
(P.1) Polynomial inclusion: Py (E) C V,,(E);
(P.2) Degrees of freedom: the following linear operators Dy constitute a set of DoF's for V},(E):
Dvy1 the values of vj, at the vertexes of the polygon E,
Dv2 the values of v, at k — 1 distinct points of every edge e € OF,
D+ 3 the moments up to order k — 2 of v, in E:
i [ vnmidE
T Vp My )
Bl JE
where {m;}; is a polynomial basis of Py_o(E) s.t. |[m;||z(g) = 1;
(P.3) Polynomial projections: the DoFs Dy allow us to compute the following linear operators:
Y P Vy(BE) - P(E),  II)P:Vi(E) = Pu(E),  HYP:VV,(E) - [Py(E)%
The global virtual element space is obtained by gluing such local spaces, i.e.,
Vh(Qh) = {’Uh eV s.t. UhlE S Vh(E) for all E € Qh} (4.2)

with the associated set of degrees of freedom.
We finally recall from [19,23] the optimal approximation property for the space Vj,(Qp,).

Lemma 4.1 (Approximation using virtual element functions). Under the assumption (A.1) for any v € V N
HTY(Qp) there exists vr € Vi (Q,) such that for all E € Qy, it holds

v —vzllo,g + hellV( —vn)llo.e S h T vlsg1,m

where 0 < s < k.
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4.2. Virtual element forms

__The next step in the construction of our method is to define a discrete versions of the stabilized SUPG form
Asupg (-, -) in (3.1). Tt is clear that for an arbitrary pair (up,vn) € Vi(E) X Vi (E), the quantity AL (up, vp) is
not computable since u, and vy, are not known in closed form. Therefore, following the usual procedure in the
VEM setting, we need to construct a computable discrete bilinear form.
In the following, in accordance with definition (3.1), we define a discrete counterpart of each term composing
At
Exploiting property (P.3), let af(-,-): Vj,(E) x Vi,(E) — R be a computable approximation of the continuous

form af(-,-), defined for all up, v, € V,,(E) by
A (up, vp) = / 05V, - IOE Vo, dE + SZ((1 — 117 E)un, (I — 1Y E)uy). (4.3)
B

Here, the stabilizing bilinear form SZ(-,-): V,,(E) x V,,(E) — R satisfies
aylonll g < ST vy, vp) < o*|opli g for all v, € Ker(Hkv’E) (4.4)

for two positive uniform constants a, and a*. The condition above essentially requires the stabilizing term
SE(vp,v) to scale as |vh|iE. For instance, the standard choices for the stabilization are the dofi-dofi stabi-
lization [7] and the D-recipe stabilization introduced in [11].

Concerning the approximation of the convective term b¥(-, ), we here propose two possible choices: recalling
property (P.3), let us define for all uy,, v, € V3 (E) the following computable bilinear forms

bf,h(uh,vh) = / 8- Hg’EVuh H,S’Evh dE, (4.5)
E

baE,h(uhzvh) = / B'VH;S’E% U;S’Evth+/ (ﬁ-nE)(I—H,S’E)uh H,S’Evh ds. (4.6)
E OF

The form (4.5) follows a more standard “approximation by projection” VEM approach (see for instance [15])
and is based on a higher order projection of the gradient. The novel form (4.6) encompasses a boundary integral
term and is amenable to the development of an improved theoretical result (cf. Propositions 5.3 and 5.4). In
the following bZ(-,-): Vi,(E) x V4 (E) — R will denote indifferently one of the aforementioned forms and, in
accordance with (2.4), for all uy, v, € V,(F) we define

kew,E
bz ew (

uh,vh) = (bf(uh,vh) - bf(vh,uh)). (47)

1
2

Exploiting again property (P.3), the stabilized forms BZ(-,-) in (3.2) and £LZ(-,-) in (3.3) are discretized as
follows

BE (up,vpn) = 7E /E B-I)F Vuy, 8- IV Vo, dE + 15858 (T — 11 P yup, (I — TP )up) (4.8)
LE (up,,vp) =78 /E —edivIT)" Vuy, 8- ITY" Vo, dE (4.9)
where g := ||B||[z (g2 and the parameter 7z > 0 has to be chosen.
In accordance with (3.1), the VEM stabilized form AZ, . (-,-): Vi(E) x Vi,(E) — R is defined by
AL e (un, vn) == e ay; (up, vp) + B E (upy o) + BE (uny on) + LF (un, vp) (4.10)

for all uy, vy, € Vh(E).
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The global approximated bilinear form Agupg(-,-): Va(Q2s) x Vi(Qn) — R is thus defined by summing the
local contributions, i.e.,

Asupg (0, v) 1= Z Aipg(uh,vh) for all up, v, € Vi (Qp). (4.11)
Ee€Qn

The corresponding computable VEM version of the SUPG right-hand side in (3.4) reads as
FE () = / I v, dE + 7 / 8- )"V, dE (4.12)
E E

and its global counterpart is

Feupg (V1) Z Supg (vp) for all v, € Vi, (Qp). (4.13)
EeQy,

4.3. Virtual element SUPG problem

Referring to the discrete space (4.2), the discrete bilinear form (4.11) and the approximated right-hand side
(4.13), the virtual element SUPG approximation of the advection-dominated diffusion equation (2.1) is

find e V,(Q t.
{ nd un € V(@) 5 (4.14)

Asupg (Uh; V) = Foupg(Vh) for all vy, € Vi(Q4).

5. THEORETICAL ANALYSIS

In this section we analyze the stabilization method defined in (4.14). In particular, we assess the stability
property of problem (4.14) and we provide the convergence error estimate for the discrete solution obtained
with both discrete convective forms defined in (4.5) and (4.6). All estimates clearly display the dependence on
the mesh size h, on the parameter 75 and the problem data € and 3.

5.1. Stability
Let us start with the stability analysis for the proposed VEM SUPG method. First of all we define the VEM
SUPG norm

E V.E
on)2upe iz = € IVORIIE & + 7 18 - T2 N un 1§ g + 76 8% IV (I = I P Yun 1§ (5.1)

with global counterpart

||Uh||supg Z thHsupg, (52)

EeQy,
Proposition 5.1 (Coercivity). Under the assumption (A.1) if the parameters Ty satisfy

2
< B yEeq, (5.3)
EVE

where vg is the constant appearing in the inverse estimate of Lemma 3.2, the bilinear form A satisfies

for all vy, € Vi (E) the coerciveness inequality

supg( )

||’UhH§upg,E 5 Agxpg(“’u /Uh)'
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Proof. We simply consider all the terms in the sum (4.10). For the first three terms by definitions (4.3), (4.7)
and (4.8) and stability estimate (4.4) we get

eay, (vn )>5||Hk 1vvh||0E+5O‘*HVUh—VHVEUhHOE
bskew E(v}“ Uh) — (54)
2 2 V.E, |2
B (vp,vn) > 7 (|18 - H vUhHO,E + 78 B ax [|[Von, = VI Zuillp g
whereas for the last term we infer
L (vp,0n) = 78 /E —edivITy" Vo, 8- )"V, dE
> -7 Hsdlvﬂ Vvh||o ellB- Hz EIVvhHO B (Cauchy-Schwarz)
1
> —57E e2||divITY” Voullg 2 — TE Hﬁ ) VvhHO ) (arith.-geom. mean) (5.5)
1
> ~3TEVE hg2e?|| )" Vvh||0 B— TE 18- )" Voullg & (Lemma 3.2)
1
> —§€HHOEV7}}LHOE TE I3 - HOEVvhHOE (bound (5.3))
Moreover, by definition of L2-orthogonal projection (3.8), being VH,CV’EU;L € [Px_1(E)]?, it holds
IVon = VI Fonll§ o > Vo = T Vou | 5. (5.6)
Collecting the previous bound, (5.4) and (5.5) we obtain
1
AsEupg(v}“Uh) *6 HHk 1VUhH0 gt 57E 18- HO v vUh”o jous
+ e ||Vop — Hk71vvh||0,E + . TE B IV — H}?’E)Uh”?),};
.1 2
Z min 55 Oy HU}L”supg,E'
O

Remark 5.1. Notice that the norm || - ||supg, £ is slightly different from the usual norm introduced in standard
SUPG theory [29,32], i.e
lon |5, & == € IVOR IG5 + 72 18 - Voull§ -

However we observe that the “classical norm” is controlled by the “VEM norm” || - ||supg, - Indeed,

recalling (5.6), for any v, € H(E) it holds

(-

0,E 0,E
18- Vonlls s <2018 T2 Vorlly g + 26511 — I 7)) Vou |3 5
E E
< 2||B- )5 Voull§ 5 + 26851V (1 = 11 )on 1§ -
5.2. Error estimates

The aim of the present section is to derive the rate of convergence for the proposed SUPG virtual element
scheme (4.14) in terms of the mesh size h, the SUPG parameter 75, the diffusive coefficient £ and transport
advective field 3. The hidden constants may depend on €2, on k, on the regularity constant appearing in the
mesh assumption (A.1) and on the stability constants a, and a* (¢f. (4.4)).

Let w € V and up, € V() be the solutions of problems (3.7) and (4.14), respectively, and let us define the
following error functions

er ‘= u — ur, er ::u—Hkvu, en = Up — Uz,
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where uz € V() is the interpolant function of u defined in Lemma 4.1, and Hkvu € Pr(2y) is the piecewise
polynomial defined in (3.10). We introduce the analysis with the following abstract error estimation.

Proposition 5.2. Let u € V and up, € Vi,(Qp,) be the solutions of problems (3.7) and (4.14), respectively. Then
under assumption (A.1) if the parameters Ty satisfy (5.3), it holds that

lu = unlZups S lezlldupe + D (F +n0¥ +n5 + 08 +nf) (5.7)
EeQy

where

7753”- = fsgpg(eh) - fs?lpg(eh)7

nE = ecaP(u,epn) —eal (uz,en),
nE = bk E () — bzkew’E(uL en),
ng = gE(u, en) — BE (uz,en),
nk = ENE(u, en) — LE (uz,ep).
Proof. Simple computations yield
llenl|Zupe S Asupg(€ns €n) = Asupg (un — uz, €n) (Propostion 5.1)
< Faups(€n) — Foupg(en) + Asups (U, €1) — Asupg (U7, €1) (using (3.7) and (4.14))
SO F+nl +af + 08 +nf) (def. (3.6), (4.13), (3.5), (4.11))
Beqy,
The thesis now follows by the triangular inequality. (I

The next step in the analysis consists in estimating all the terms in the bound (5.7). We make the following
assumption:

(A.2) Data assumption. The solution u, the advective field 8 and the load f in (3.7) satisfy:
ue HMN(Qy), feH T (Q), Be Wi (),

for some 0 < s < k.
Note that in the following lemmas it is not restrictive to assume Sg > 0 since S = 0 implies B|g = 0 and thus
the corresponding terms vanish.

2

supg can be bounded as

Lemma 5.1 (Estimate of ||ez||supg). Under assumptions (A.1) and (A.2), the term |ez||

follows (for 0 < s <k)

||eI||§upg S (E + TEﬁ%) h?‘u|§+1,E'

EeQy

Proof. Applying the definition of the norm | - ||supg, &, of the L?-orthogonal projection H%ﬂ (¢f. (3.8)), of the
H'-orthogonal projection H,CV’E (cf. (3.9)), and the interpolation estimate of Lemma 4.1, we easily obtain
0,E V.E
lez3upe, e = ellVezll§, & + 7ellB - % Ver§ o + e85V (I — I ez |§ 5
< el|Vezll§ g + Te82lIVezld g + TeBEIVezli & S (e + 76%) IVezll§ &

N (5 + TEﬁJQE) h%s|“|§+1E

The thesis now follows by summing the local contributions. O
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Lemma 5.2 (Estimate of nf(ey)). Under the assumptions (A.1) and (A.2), the term n& can be bounded as
follows (for 0 < s <k)

EA

s 1/2
nE < (AEh;ﬂﬂsH,E +ryf2

fgnfns,E) T —

where for any E € Q,

N 1
E = 1min W,ﬁ .

Proof. Applying the definitions (3.4), (4.12) and the definition of L?-orthogonal projection we obtain

77% - ‘F.slapg(eh) - fipg(eh)
= (f7 €n — H]?Eeh)O’E +7TE (f7 ﬁ : (veh - HzLElveh))O’E

(=1 ")f, (I =1 )en) p +78(fB, (I — IE)Ven), (5.8)
= (I =IO f, (T =T F)en) o+ 7 ((T— TE) 18, (T - ITE)Vey)
= 0F 1 +F

Using a scaled Poincaré inequality we infer
0,E V.E 0,E V.,E
n7a S NI =) fllosll = 11 P)enllo.e S hell( = I7) flo.elIVT — 11 )en]lo,k-

Recalling the definition of the norm || - [|supg, = and the stability of H,CV’E with respect to the H'-seminorm, from
Lemma 3.1 we get

1

77?1 < min o 1/20 12 h%+2\f|s+1,EHeh”supg,E- (5.9)
ﬁETE €

Regarding the second term 77%2, from (5.6) and Lemma 3.1 we obtain

(I = %) fBlloe

[
Ny < eI — V) fBlloel(I — IYE)Verlor S ° o llenllsupg, &
(5.10)
. 18w, ()2
<o Bl e <2 VPN o s
OE 1635
Now the thesis follows from (5.8), (5.9) and (5.10). O

Remark 5.2. The term ||B/ws (zy2/Be = |1B/BE||jws ()2 represents a locally scaled regularity term for 3.
Roughly speaking, it is related to the local variations of 3 and not to its amplitude.

Lemma 5.3 (Estimate of nZ). Under the assumptions (A.1) and (A.2), the term nE can be bounded as follows
(for0 < s<k)

775 S 51/2h8E|U|s+1,E||ehHsupg,E~
Proof. The consistency and the continuity of the form a(-,-), Lemmas 3.1 and 4.1 easily imply

nE = caP(u, en) — cal (uz, en) = ea®(u — I Pu, ep) + cal (1Y Pu — uz, ep)

<e(|Verlloe + (1 +a*)|VUITY Fu — uz)]

Se(IVezllo.e + I Vexllo,e) | Venllo.e S €/2h|ulsi1,ellen]lsupg.i-

0.2)IVenllo,.e
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Lemma 5.4 (Estimate of n§). Under the assumptions (A.1) and (A.2), the term nf can be bounded as follows
(for0 < s<k)

2
g <l B W lulsr1.5len s £

Proof. Using the definition of L2-projection, simple computations yield

g =7e(8 - Vu,B-Ver) , —7e(8- I Vur, - T\ Vey) o
— ST (I — I P )uz, (I — 117 )en)
=75(8-Vu—B- I} Vur, B Hgflveh)w +75(8-Vu,8- (I - Hg’ﬂ)Veh)OyE
— meBESE((I — I P )uz, (I — 117 F)en)
=75(8-Vu—B- I Vuz, B Hgﬂveh)w
+75((1 = I5) BB Vu, (I - ITE)Ven),
— 1eB8P (I — 1) P yug, (I = IT)F)e)

E E E
=MB1 T 182 T 153

(5.11)

We analyse separately each term in the sum. The term 775,1 is bounded using (5.6) and the continuity of IT 2,_151
with respect to the L?-norm, Lemmas 3.1 and 4.1:

g1 < 7elB- Vu— 8- I)E Vuz|o g8 - 5 Venlor
<732 8p|Vu — IYE Vuzllo gllen|supe, 2
< 1/2 I HO,E v HO,E v (5 12)
<77 Be(I(I — I)E)Vullo.p + [[TTE V (w — uz)lo,2) len lsups, 2 ~

1/2
< 15288 (IIVexllo.z + IVezllo,)llenlsups, 2

1/2
S TE/ ﬁEhSE|U|s+1,E||ehHsupg,E :

For the second term 77572 using again (5.6) and Lemma 3.1 we infer

g, < 1ell(I — IYE)BB Vullo,p||(I — ") Ve o5
(I — ") BB Vo g

oy |
< 74/*Be 5 llenllsups, 2 (5.13)
T 2
2 BB Vuls,p 12, 1Blwe =y
S 800 P2 e € 78 s el
E E

Finally for the last term in (5.11), employing (4.4), the stability of the H!-seminorm projection with respect to
the H'-seminorm, Lemma 3.1 and 4.1 we get
775,3 = —TeBpSP((I - Hkv’E)UL (I - HZ’E)eh)
< a* ||V (I = I P )uzlo,s V(I = 1T P)enlo,i

(5.14)
< a*1y/*B5(|Vezllo,z + | Ven]

0.8) llenllsupg, 2

1/2
< 142 Behi ulsi1, 5llen | supg, 5

The thesis now follows by collecting (5.12), (5.13) and (5.14) in (5.11). O
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Lemma 5.5 (Estimate of n%). Under the assumptions (A.1) and (A.2), the term nE can be bounded as follows
(for0 < s<k)

||,8|| max {s—1,0}
LE: < TE/QE [Woo W (B)]? hl;ax {S*l’O}HUH

s+1,E |l en|lsupg, B-

Proof. By definition of L2-orthogonal projection we infer
ng :TEa(diVHZ’_EquI, 8- Hg’_}iVeh)mE - TEE(Au, 8- Veh)OVE

—rpe (div(IT) 5, Vur — Vu), 8- )5 Vey) o — 7ee(Au, B+ (1 — IIYE)Ver),
- . 0,E 0,E 0,E 0,E (5’15)

7TEs(d1v(Hk_1VuI —Vu),B- Hk_1Veh)0,E - TE€((I — I~ ) Aup, (I - Hk_l)Veh)O,E

:”75,1 "‘77,]/;5,2'
The term nf’l, employing Lemmas 3.2, 3.1, and 4.1 is estimated as follows

ey < meelldiv(Va — I Vuz) o518 - IT}5 Ver|o,s

< 72| div(Vu — IT%F Vug)|

0.5/lenllsupe, 2
< /e (ldiv(Vu — IYE V) o,p + v (Vu = Vuz) o,z ) lenlloupg. o (5.16)
<% (I = ) Vulys +hg' v 1Vezlo.s ) len s,

< 78 e Y ulsi1, mllen | supg, 5

The second term in (5.15), recalling (5.6), can be easily bounded as follows

(7 — IT7) Aupllo,s
M2 < 7ol = 5 AuBllo.s|l(1 = 5 Venllo.s < 7/ *e e lenlsups. 2

(5.17)

172 |AuBly B 172 1Bllwe (g2
S il e =g P hpllenllowe, 5 S 75T g= = pllullss1,llenloups. -

where ¥ = max {s — 1,0}. Collecting (5.16) and (5.17) in (5.15) we get the thesis. O

The last and most challenging step in the analysis consists in estimating the term nZ in (5.7) for both bf h
and bg 5 (that we denote respectively by nfo and nfa)7 see also Remark 5.3.

Lemma 5.6 (Estimate of nfo). Let bﬁh(-, ) be the bilinear form in (4.5). Then wunder assump-
tions (A.1) and (A.2), the term nfo can be bounded as follows (for 0 < s <k)

18lwss ey 1 .
i, S (o O a1+ s 1Bl w (el 2 ) llen laups 2+
P c (5.18)

+ |/6|[W§O+1(E)]2h2ES+1|U|S+I,E||eh lo,5 +/ (8-n")ezey, ds
OF

where for any B € Qp

. ) Be 1
op = min {61/2, ﬁ = Bg)E. (5.19)
E
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Proof. By the definition of the skew symmetric forms (2.4) and (4.7) we need to estimate the terms

szA = (B-Vu,ep)p — (B ﬂg’EVUI,H;S’Eeh)E,

neg = (I uz, B ) Vep) g — (0,8 Ver) k.

Using usual computations we infer

(8- Vuen) ;= (8- I Vuz, [T} en)

(B-Vu,en), — (B Vug, I} Fen) , + (B (I — )7 )Vuz, I1)ey)
=(B-V(u—uz),en),+ (8- Vuzr,I —II)")ey) , + (I — ITyP)Vuz, BIT) Pey)
(B-Ver,en), + (I — I)T)B - Vuz, (I — IT)")en) .+

+ (I = 1))z, BUT) e, — 15 Fen)) , + (I — )P )Vuz, BlIy Fey)

= 77151 + 7752 + 7753 + U£47
7753 = (HO EuI,,B HO EVeh) (u,ﬁ : Veh)E
(UOEuZ—u 8- HOEVeh) (u,ﬂ~(ﬂ2’E—I)V6h)E
= (I} Puz —u,B- I)PVey) , + (I — I)F)Bu, (IT)F — I)Vey)

_..E E
=115 T M6

yielding the following expression for nf Y

2o = Ty + o2 + s + Mya + 5 + - (5.20)
We now analyse each term nfi fori=1,...,6 in the sum above.
- nflz using an integration by parts, bound (5.6) and the definition of || - ||supg, £ We infer

ny1 = (B-Ver,en)p =—(e,B-Ven)p +/ (B-n")ezen ds
0B

/ (B-nP)ezen ds
OE

(||ﬁ YE Vepllo.g + Be| V(I - Ukv’E)ehHo,E) +/ (8-n")ezen ds (5.21)
o
. 1
< min {672, 1/2} lezllo,zllenlsups, e + / (8- n")ezends
€ TH OFE

ssmm?wmﬂﬂwmw%E+/<ﬂwﬁwwmw
oOF
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— 7752: a scaled Poincaré inequality and the definition of L?-projection imply

(T = 11278 Vuz, (T~ 11 F)en)
(1~ 105)B - Vu, (1 fn°vE>eh>E (I~ IPF)B Ve, (I~ 11 P)er)
< (It - £) I = 1 P)enllo.e

E V.E
s(uu—n,‘: ) ,)H(I—Hk Jenllo,

E
OE

, 1 [—I)")B-Vu Ve
< min { B } hE<||< )8 Vulop 18- Verlos ),

1/2° 1/
€
g

Be BE

~

< R <IB ) Z§|€E

18w, (22 s
SoE <[ﬂ;()] +1 hE+1Hu”s-i-l,E”eh”sup&E'

. |u|s+1,E) B enllsupe. 5

— 7753: from the definition of L2-projection, the Poincaré inequality and Lemma 3.1, we infer

(I — II)")Vuz, BUL) P e, — 11 Pey))

(I - I ")Vuz, (B - Tg " B)(IT) P en — Ty Pen))

(I = ") Vuzllo gl (T = TI57)Bl| 1< (1" = TI0F)en o,
(I — 115 Vuzlo, (I — TG P) Bl 1< || (T — 1107 )en|o,m

he
W(HVGIHO,E +11Verllo.) (T = TI5F)B] Lo llenl|supg &

N

1
542
7&_1/2‘IB|[W(§O(E)]2hE [uls+1,Ellen [lsupg, -
— nf,: using similar computations of the previous item we obtain

ney = ((I = I)P)Vuz, BIg Pey)
=((I — II)")Vuz, (B — OB Pey) ,
<||I(1 - ") (I = TI5") B g 110 F
< (IVezllo.e + IVexllo.z) I(1 = TI5") Bl L~ llen o,k

S |ﬁ|[W;+1(E)]2h2ES+1|U|s+17E|

— 7755: exploiting the property of L2-projection and bound (5.6) we get

1755 = (Hg’Euz —u,3- HZ’EVeh)E
= (I Puz —u, B- )5 Vey) , + (1) Puz —u, B - ()7 — IT)F)Vey)
< 1110 Puz = ullo.s (18- HYE Venllo.s + Bsll (Y = IYE)Ven]lo.x)

< (I = 1"

) BE 0.E
Smm{ el S (e = e T
Tg

S ophy  ulsg,ellen]lsupe, B-

) (18- Y Venllo,s + 8ol V(I — 1Y )enllor )

(5.22)

(5.23)

(5.24)

(5.25)



SUPG-STABILIZED VIRTUAL ELEMENTS FOR DIFFUSION-CONVECTION PROBLEMS 2247
— 7756: using similar computations of the previous item we have

= ((I = I)")Bu, ()" — I)Vey)
< I - 1P Bullo,p|(ITF — DVepllos < |1 — IY7)Bullo ||V (I — 1T 7)

) BE II( — I1;,")Bullo.r
< mm{l/z, 172 ; HehHSupg,E
€ TE E (5.26)

Bu 1,E ;s
< opPULE oy

~ BE
1Bllwer 2, 4
S o= ull s el -
Be
The thesis now follows gathering (5.21)—(5.26) in (5.20). O

Lemma 5.7 (Estimate of nf,). Let b5, (--) be the bilinear form in (4.6). Then under assump-
tions (A.1) and (A.2), the term nfa can be bounded as follows

18] Wi (E))2
o Sopm L s e+ [ (8- nP)ezen ds
225}

where o is defined in (5.19).
Proof. Recalling definition (4.6) we need to estimate the terms

nbA = (8 -Vu,ep)g — (B Vﬁk uI,HOEeh (I — UOE)UIHO e, ds,

E

/e
nf (HO Euz, 8- VHO en)g — (u,B-Vep E—|—/ HO E)ehH uz ds.
OFE

By integration by parts we have

an = (ﬁ : Vua (I - H]87E)eh) (ﬁ V(U - Hk: UI) H]S’Eeh)E
- / (8- nBYI — )P Yyur I ey ds
OF
= (ﬁ -Vu, (I — H,S’E)eh)E — (u - H,S’Euz,ﬁ . VU,S’Eeh)E
+ / (B-nP)(u— uI)Hg’Eeh ds
OF
(I — "B Vu, (I — 11)F)er) , + (1) Puz —u, B VIT Pep)
+ / (8- nE)eIH,S’Eeh ds
OF

E E E
=M1 T Mp2 T M3
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M = (1) uz = w, B VI en) p = (u, BV (1 = I )en)
+ / (B-nP)(I - H,S’E ehﬂo Buzds
oF

)
= (1) ur —u,B-VII) ey) . + (8- Vu, (I — ) )es)
)

E E

)
+/ (B 0PI — )P )en(IT) Puz — u) ds
oF
)

o (I = 1)P)B - Vu, (I — I )en) .

(H,S’Euj —u,3- VH,S’Eeh
+ / (B-nP)I — II)P)en(IT) P uz — u) ds
OF

=: 7752 + 771?,1 + 77547
yielding the following expression for 7753
200 = 20051 + 2.2 + M5 + - (5.27)

We now analyse each term nfi for i =1,...,4 in the sum above.
. 7751: using the same computations in (5.22) we infer

181w ey
ity = (1= 1758 Vu, (1= I F)er) S o= — =20

— 1ly: exploiting the computation in (5.25) we obtain

i s+, ellenlsupe, £ (5.28)

nf2 = (H,S’Euz —u,3- VH,S’Eeh)E
= (1) Puz —u, B- )5 Vey) p + () Puz —u, B (VII) Pey, — I Vey))
< 1 Puz = o (18- I35 Venlo.s + B TILE (Ver = VI en)o.x )

< (I = 1P )ullo.s + llezllo.s) (18- HYE Venllo.e + BeIV (T~ TY ) Venlor) (5:29)
. ) Be 1 ,
< min {51/2 —7z ¢ (10 =10 P)ullo.5 + lezllo.e ) llenloups, 2
T

S UEhs+1|u|s+1 E”ehHsupg E-

nb 3 +nb 4+ We use a scaled trace inequality [18] making use of the scaled norm |||v|H1 B = |lv||%. 12(F) +hZ|v|2 (B
for all v € H'(E). We obtain

7753 + 771?4 = /6E(5 : nE)GIH;S’Eeh ds + /E)E(ﬁ (I - H;S’E)eh(H;S’EUI —u)ds

_ E 0,E 0,E E

= / (B-n")IT;" — Dep(er +u— I, uz)ds+/ (B-n")ezepds

oF oF
< Be(llezllzzom) + v — I Puzl|r20m)) (= I P)enl L2 om) + / (B-n")ezen ds
oF (5.30)

< Behg (lezlly g + llu — 11 Puzlly g) 1T = 117 )enllo. s + /BE(,@ -n¥)ezey ds
< B (llezly g+ lu — TPl )1V — 117 P)enllo.s + /8 (B-nP)ezen ds

< ophi ules,llenllaps,z + /a (8- nP)erer ds.
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The thesis now follows gathering (5.28), (5.29) and (5.30) in (5.27). O

Remark 5.3. The main difficulty in proving Lemmas 5.6 and 5.7 lays in handling a variable coeflicient 8 in
the presence of projection operators, without paying a price for small values of €. For form (4.5), we are able
to obtain a “damped” dependence on e: in estimate (5.18) the term 5_1/2‘,6|[W;O(E)]2h?5'+2|u|s+l,E blows up as
€ — 0, but at the same time it is of higher order with respect to hg. Instead, for the new form (4.6) we are able
to obtain full independence from e.

We are now ready to prove the convergence results for the proposed VEM SUPG scheme. The error estimates
in Lemmas 5.1-5.7 are explicit in the parameters of interest: the mesh size h, the diffusive coefficient &, the
advective field # and the SUPG parameter 7. In order to simplify the final estimate and to make clearer the

implications of the convergence results, in the following propositions we include the Sobolev regularity terms

. HBH[WW(E)P .
for u, f and the normalized norms —5, — in the constant.

Proposition 5.3. Under the assumptions (A.1) and (A.2), let u € V be the solution of equation (2.1) and
up € V() be the solution of equation (4.14) obtained with the bilinear form bY, (-,-) in (4.5). Then it holds
that

|lw — uthupg < Z @OE (hQES(a + TE@% +7E) + )\QEh2E(S+2) + /\%ﬁ%h%s+1)_~_
EeQy,

. h2 2(s+2) p2(2s+1)
+7R €2h2( Dy B2 —E B + ﬂ%ig )

1Bl 4
where the constant OF depends on ||ulls+1,2, || flls+1.2, ‘[WE‘#

Proof. The proof is a direct consequence of Proposition 5.2, Lemmas 5.1, 5.3, 5.4, 5.5, and 5.6, making use of
o = frAp and estimating the last two terms in (5.18) as follows.
The penultimate term is bounded using the Poincaré inequality on the domain €2

Z|/3| S 2h2s+1|u|s+1EH€hHOE

EcQy,
1/2 1/2
2(254+1
( > BEIB/BE et iyl E> (Z ||eh|3,E>
EeQy, EeQy,
1/2
2(25+1)
(Z /BE ’ | |s+1 E) lenllo.e
EeQy
1/2
2(25+1)
(z S |) |
EeQy
(25+1) 1/2
( Z ﬁE |u‘s+1 E) llenlsupg-
EeQy,

For the last term, noticing that ez, e, € V, it holds that

Z / Eyeren ds = 0. (5.31)

EecQy
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Proposition 5.4. Under the assumptions (A.1) and (A.2), let u € V be the solution of equation (2.1) and
up, € Vi(Qn) be the solution of equation (4.14) obtained with the bilinear form b%,(-,-) in (4.6). Then it holds
that

lu—unli2ups S Y OF (WE (e + oAt +78) + AR + BEALRETY 4+ mpetni* )

EeQy,
B 61y s+ )2
where the constant O depends on [|ulls11,e, || flls+1,8, — 5

Proof. The proof follows from Proposition 5.2, Lemmas 5.1, 5.3, 5.4, 5.5, 5.7 and equation (5.31), also recalling
that op = fEN%. O

It is well known that in order to obtain a stable and optimal convergent method both in the convective and
in the diffusion dominated regime the SUPG parameter 7 has to be chosen in accordance with

Tp~minqg —,—= 5.
Be €
Let us analyse the asymptotic order of convergence for the two versions of VEM scheme in both regimes (where

we recall g <1 for all E € Q, due to the scaling choice (A.0).
— convection dominated regime ¢ < hpfg: T = BglhE, A\ = Bglh;;,

— form bgh(-, )

lw—wnlfupe S Y (5T (Bm + B5") + B hE T +eh + Bp'e*h ™
EcQy,

+ﬁ%5_1h%5+2) —&—ﬁ%e_lh%@sﬂ)) -0 (h23+1(1 +5_1h3)) :
— form bgh(-, )
lu—wnll2upe S D (W5 (Be + B5") + 85" w5 + e + B5'ehE ") = O(h*H);
EeQy,

— diffusion dominated regime Bphp < & 7 = hie ', N\ =1

— form bgh(, )
e = wnlupg S D= ek + Bpe hi™"D 4+ e ") = O(en™);
EeQy,
— form bgh(~, )
e —un e S (sfﬁ; + BRe R o 5_1h2E(S+2)) = O(ch?).
EeQy,

We conclude that in the diffusion dominated regime both schemes yield the optimal rate of convergence. In
the convection dominated regime only the scheme derived from the bilinear forms bg 5 (-, ) has the optimal rate
of convergence. For the scheme derived from bf 5 (- ) the error is polluted by e~!. Nevertheless, we stress that
such a factor appears in front of the “higher” order term h3, therefore the influence of the diffusion coefficient
is strongly reduced.

6. NUMERICAL EXPERIMENTS

In this section we numerically validate the proposed methods by means of the following model problem.
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quad tria

FI1GURE 1. Example of meshes used for the present test case.

Model problem

We consider a family of problems in the unit square 2 = (0, 1)2, one per each choice of the parameter . We
select the advection term as
|27 sin(w (z 4+ 2y))
Blz, y) = msin(w (x + 2y)) |-

We choose the boundary conditions and the source term (which turns out to depend on €) in such a way that
the analytical solution is always the function

u(z, y) := sin(7 ) sin(7 y).
Guided by the definition of the || - ||supg norm (cf. (5.1) and (5.2)), by the error estimates of Propositions 5.3~
5.4, and noticing that the discrete solution up, € V3 (£25) is not explicitly point-wise available, the following error

quantities will be considered.

— H!'—seminorm error

eyt 1= Z HV(ufHkvuh)Hz’E;
EeT,
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SUPG
Hl : C .
semi norm error onvective norm error
100 T
i 107
102
O(hl 5) b
103 F
o e
1074
| O(h2%)
10°F
1 108
O(h35)
107 =
1072
NONE
Hl . C .
semi norm error onvective norm error
102 g ; 102 ;

O(h“) O(h“)

102 107" 102 107"

—=-k=1quad —H-k=2quad —B-k=3quad -+-k=1tria -+-k=2tria -+-k=3tria
—&-k =1voro ==k =2voro —o-k=3voro =-x-k=1rand =-%-k=2rand =-%-k=3rand

FIGURE 2. Effect of the SUPG term on the convergence histories: the case ¢ = 1073,

— convective norm error

€c = Z 9

E€T,,

2 2

V(u— Y up) + 7|8 V(u— 1Y up)

0,E

0,E

As far as the mesh types are concerned, we take the following:

— quad: a mesh composed by structured quadrilaterals;
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SUPG
H' semi norm error

NONE

108 T

om3) -

102 10"

104

Convective norm error

Convective norm error

102 107"

—=-k=1quad —8-k=2quad —8-k=3quad
—&-k =1voro —e-k=2voro —g-k=3voro

-4=-k=1tria -4-k=2tria -+4-k=3tria
-¥-k=1rand =-%-k=2rand -x-k=3rand

FIGURE 3. Effect of the SUPG term on the convergence histories: the case ¢ = 1076,

— tria: a Delaunay triangulation of the unit square;

2253

— voro: a centroidal Voronoi tessellation of the unit square where the cell shapes are optimized via a Lloyd

algorithm

— rand: a Voronoi tessellation of the unit square where the cell shapes are not optimized.

In Figure 1 we show an example of such meshes, and we also remark that the former two types can be used in
connection with a standard finite element procedure, contrary to the latter two.
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tria
H' semi norm error Convective norm error
10° \ 10° w
107 1
107" E E
102 O(') 1
102} E
= SRl 1
S: < 10 )
O(hz'”)
1073 ¢ E
1074 E E
Oh3.5
1074 ¢ £ *)
105 E
10 : 108 |
107 107"
h h
rand
mi norm error nvective norm error
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Moreover, since we are interested in a robustness analysis with respect to the diffusion parameter, for each mesh
sequence we take

e =103 and 1075.

We recall that, for the stabilized scheme here proposed, in the presence of a regular solution the expected
convergence rate in the convective norm is, in the convection dominated regime and for practical mesh ranges,
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FIGURE 5. Convergence lines for the case ¢ = 1075, mesh types tria and rand.

O(hk“/ 2). This justifies the slope lines plotted in the relevant figures. For the H! norm, we instead plot standard
O(h*) slopes, which is the best one can expect from the interpolation estimates.

Effect of the SUPG stabilization

Before assessing the convergence properties of the proposed methods, we check the effect of inserting the
SUPG term in the variational formulation of the problem. Here we focus on the first choice for the convective
bi-linear form, without the algebraical skew-symmetrization; namely we here use form (4.5).
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TaBLE 1. Diffference between the stiffness matrices considering bg n(y ) or bg n(se)

k \ voro
1 | 1.1221e-15 | 1.7536e-17
2 | 9.2636e-16 | 2.3161e-17

In Figures 2 and 3 we show the convergence graphs for different approximation degrees k and for each type of
the meshes. The cases with and without the SUPG term are labelled as SUPG and NONE, respectively. As expected,
dropping the SUPG term clearly deteriorates the quality of the discrete solutions for all approximation degree k,
the degeneration being heavier for smaller e. We do not report the results for “large” ¢, but we have experienced
that, of course, both the SUPG and the NONE approaches give similar outcomes, attaining the correct convergence
rate.

Incidentally, we remark that Figures 2 and 3 also display the robustness of the present SUPG virtual element
approach with respect to element shape and distortion. In fact, given an approximation degree k, the convergence
histories are rather similar for all the mesh types, even though the rand meshes are less structured and contain
edges that are very small with respect to the element diameter.

Different discrete convective bi-linear forms

We now present the numerical results for different variants of the convective term approximation. More pre-
cisely, we consider four types of (local) discrete convective terms: bg » () and bg » (), and their skew-symmetric
counterparts, see (4.5), (4.6) and (4.7). We refer to such approximations as orig and boun, respectively, while
we label their skew-symmetric counterparts as origSkew and bounSkew (the ones covered by the theoretical
analysis developed in Sect. 5).

To avoid instabilities in the convection dominated regime, in what follows we always take advantage of the
SUPG stabilization.

In Figures 4 and 5 we collect the results with the diffusion coefficients ¢ = 1073 and ¢ = 1075, respectively.
We here show the results only for the mesh types tria and rand since the results obtained with the other types
are very similar. We notice that the convergence rate of both error norms ec and ep: are the expected ones,
and they are robust in the parameter e. When we consider the H!-seminorm error ey, we observe that the
origSkew behaves slightly worst than the other three discrete forms, especially for the approximation degrees
k = 2,3, and independently of the values of €.

We conclude the section by noticing that bg n () and bf’ 4 (-, +) coincide for a constant convection term 3 (the
proof can be easily performed by a direct computation). To have a numerical evidence about this fact, we have
considered a problem with constant vector field 3 and compared the stiffness matrices provided by bf (e, -) and
bg 5 (-5 +), respectively. For every mesh and every approximation degree, we have found that they always differ
up to machine precision. Here we show the data (norms of the difference between the stiffness matrices) only
for the finest voro mesh and for k = 1,2, see Table 1.
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