
ESAIM: M2AN 55 (2021) 2233–2258 ESAIM: Mathematical Modelling and Numerical Analysis
https://doi.org/10.1051/m2an/2021050 www.esaim-m2an.org

SUPG-STABILIZED VIRTUAL ELEMENTS FOR DIFFUSION-CONVECTION
PROBLEMS: A ROBUSTNESS ANALYSIS

Lourenco Beirão da Veiga1,2, Franco Dassi1, Carlo Lovadina3 and
Giuseppe Vacca1

Abstract. The objective of this contribution is to develop a convergence analysis for SUPG-stabilized
Virtual Element Methods in diffusion-convection problems that is robust also in the convection dom-
inated regime. For the original method introduced in [Benedetto et al., CMAME 2016] we are able
to show an “almost uniform” error bound (in the sense that the unique term that depends in an un-
favourable way on the parameters is damped by a higher order mesh-size multiplicative factor). We
also introduce a novel discretization of the convection term that allows us to develop error estimates
that are fully robust in the convection dominated cases. We finally present some numerical result.
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1. Introduction

The Virtual Element Method (VEM) was introduced in [7,8] as a generalization of the Finite Element Method
(FEM) to general polygonal and polyhedral meshes. Since its introduction, the VEM enjoyed a wide success
in the Numerical Analysis and Engineering communities, both due to the encouraging results and the natural
construction.

The possibility of using general polytopal meshes makes VEM suitable for diffusion problems, for instance, by
making it much easier to adapt to complex geometries (such as in basin and reservoir simulations) and to irregu-
larities of the solution. The VEM literature on the diffusion-reaction-convection problem is indeed very wide, cov-
ering primal and mixed methods, conforming and non-conforming schemes, ranging from foundation/theoretical
contributions to more applicative articles; a very short representative list being [5,9–11,13,14,16,20,24,26,30,31].
Some examples of other numerical methods for the diffusion-reaction-convection problem that can handle poly-
topal meshes are [3,4,21,22,27,28]. On the other hand, the majority of the VEM contributions assume a dominant
diffusion and do not address the significant case of convection dominated problems. Indeed, as it happens for
standard FEM, unless some ad-hoc modification is introduced, also the VEM is expected to suffer in convection
dominated regimes, leading to very large errors unless the mesh is extremely fine. To the best of the authors’
knowledge, only in the papers [15,17] such issue is addressed; in these articles a SUPG-stabilized Virtual Element
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scheme for conforming and non-conforming VEM is proposed, and analyzed both theoretically and numerically.
However, the stability and convergence analysis in [15, 17] is not uniform in the diffusion/convection parame-
ters, and therefore it cannot be used to theoretically justify the method behaviour in the convection dominated
regime. Moreover, a sufficiently small mesh size ℎ is required to carry out the analysis. The main difficulty
in deriving uniform error estimates for SUPG-stabilized VEM is handling a variable convection coefficient in
the presence of projection operators (which are needed in the VEM construction), that partially disrupt the
structure of the convection term.

The aim of the present paper is to address, in the conforming case, this challenging theoretical aspect, thus
deriving convergence estimates for a slight modification of the SUPG VEM scheme of [15] that are robust
in the involved parameters and do not require a sufficiently small ℎ condition. We think that, in addition
to filling an important theoretical gap, having this deeper understanding is fundamental in order to develop
SUPG stabilizations in more complex settings, such as fluid-dynamics problems. For instance, deriving the
aforementioned proofs inspired us to propose also a novel (alternative) approach for the discretization of the
convective term, in addition to the original one. For the (slightly modified) discrete convection form introduced
in [15], we are able to show an error estimate that is “almost uniform” in the involved parameters, in the
sense that the unique term that depends in an unfavourable way on the parameters is damped by a higher
order multiplicative factor in ℎ. For the novel form here proposed, we are able to show full robustness in the
parameters. Finally, for the sake of completeness we also present a few numerical results, the main objective
being to make a practical comparison among some different discretization options described in the previous
section.

The present paper is organized as follows. In Section 2 we present the continuous problem and in Section 3
we introduce some preliminaries and notation. Afterwards, in Section 4 we review the SUPG-stabilized Virtual
Element Method under analysis, also introducing the novel convective term option. The main contribution of
this article is Section 5, where we develop the aforementioned convergence analysis. The numerical tests are
shown in Section 6.

Throughout the paper, we will follow the usual notation for Sobolev spaces and norms [1]. Hence, for an open
bounded domain 𝜔, the norms in the spaces 𝑊 𝑠

𝑝 (𝜔) and 𝐿𝑝(𝜔) are denoted by ‖·‖𝑊 𝑠
𝑝 (𝜔) and ‖·‖𝐿𝑝(𝜔) respectively.

Norm and seminorm in 𝐻𝑠(𝜔) are denoted respectively by ‖·‖𝑠,𝜔 and |·|𝑠,𝜔, while (·, ·)𝜔 and ‖ · ‖𝜔 denote the
𝐿2-inner product and the 𝐿2-norm (the subscript 𝜔 may be omitted when 𝜔 is the whole computational domain
Ω).

2. Continuous problem

Let Ω ⊂ R2 be the computational domain and let 𝜀 > 0 represent the diffusive coefficient (assumed to be
constant), while 𝛽 ∈ [𝐿∞(Ω)]2 with div𝛽 = 0, is the transport advective field, and 𝑓 ∈ 𝐿2(Ω) is the volume
source term. Then, our linear steady advection-diffusion model problem reads{︂

find 𝑢 ∈ 𝑉 s.t.
𝜀𝑎(𝑢, 𝑣) + 𝑏(𝑢, 𝑣) = (𝑓, 𝑣) for all 𝑣 ∈ 𝑉 ,

(2.1)

where 𝑉 = 𝐻1
0 (Ω) and the bilinear forms 𝑎(·, ·) : 𝑉 × 𝑉 → R and 𝑏(·, ·) : 𝑉 × 𝑉 → R are

𝑎(𝑢, 𝑣) :=
∫︁

Ω

∇𝑢 · ∇𝑣 dΩ for all 𝑢, 𝑣 ∈ 𝑉 , (2.2)

𝑏(𝑢, 𝑣) :=
∫︁

Ω

𝛽 · ∇𝑢 𝑣 dΩ for all 𝑢, 𝑣 ∈ 𝑉 . (2.3)

By a direct computation, being div𝛽 = 0, it is easy to see that the bilinear form 𝑏(·, ·) is skew symmetric, i.e.,

𝑏(𝑢, 𝑣) = −𝑏(𝑣, 𝑢) for all 𝑢, 𝑣 ∈ 𝑉 .
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Therefore, the bilinear form 𝑏(·, ·) is equal to its skew-symmetric part, defined as:

𝑏skew(𝑢, 𝑣) :=
1
2
(︀
𝑏(𝑢, 𝑣)− 𝑏(𝑣, 𝑢)

)︀
for all 𝑢, 𝑣 ∈ 𝑉 . (2.4)

However, at the discrete level 𝑏(·, ·) and 𝑏skew(·, ·) will lead to different bilinear forms, in general.
It is well known that discretizing problem (2.1) leads to instabilities when the convective term ‖𝛽‖[𝐿∞(𝛺)]2 is

dominant with respect to the diffusive term 𝜀 (see for instance [33]). In such situations a stabilized form of the
problem is required in order to prevent spurious oscillations that can completely spoil the numerical solution. In
the following sections we propose a virtual elements version of the classical Streamline Upwind Petrov Galerkin
(SUPG) approach [29,32]. From now on, we assume that the material parameters are scaled so that it holds:
(A.0) Problem scaling. ‖𝛽‖[𝐿∞(𝛺)]2 = 1.

We finally remark that the proposed approach can be easily extended to more general situations such as
reaction-convection-diffusion problems, non-constant diffusive coefficients and different boundary conditions (the
main theoretical difficulties being already present in the model proposed above). Moreover, also the analysis of
the three dimensional case could be developed with very similar arguments.

3. Definitions and preliminaries

3.1. SUPG stabilizing form

From now on, we will denote with 𝐸 a general polygon, 𝑒 will denote a general edge of 𝐸, moreover |𝐸| and
ℎ𝐸 will denote the area and the diameter of 𝐸 respectively, whereas 𝑛𝐸 will denote the unit outward normal
vector to 𝜕𝐸. Let {Ωℎ }ℎ be a sequence of decompositions of Ω into general polygons 𝐸, where ℎ = sup𝐸∈Ωℎ

ℎ𝐸 .
We suppose that {Ωℎ }ℎ fulfils the following assumption:

(A.1) Mesh assumption. There exists a positive constant 𝜚 such that for any 𝐸 ∈ {Ωℎ }ℎ

– 𝐸 is star-shaped with respect to a ball 𝐵𝐸 of radius ≥ 𝜚 ℎ𝐸 ;
– any edge 𝑒 of 𝐸 has length ≥ 𝜚 ℎ𝐸 .

We remark that the hypotheses above, though not too restrictive in many practical cases, could possibly be
further relaxed, combining the present analysis with the studies in [6, 12,19,25].

We now briefly review the construction of the SUPG stabilization [29,32] for the advection-dominated prob-
lem (2.1). First of all, we decompose the bilinear forms 𝑎(·, ·) and 𝑏skew(·, ·) into local contributions, by defining

𝑎(𝑢, 𝑣) =:
∑︁

𝐸∈Ωℎ

𝑎𝐸(𝑢, 𝑣), 𝑏skew(𝑢, 𝑣) =:
∑︁

𝐸∈Ωℎ

𝑏skew,𝐸(𝑢, 𝑣).

Let us introduce the bilinear form ̃︀𝒜𝐸
supg(·, ·), defined for all sufficiently regular functions by:

̃︀𝒜𝐸
supg(𝑢, 𝑣) := 𝜀 𝑎𝐸(𝑢, 𝑣) + 𝑏skew,𝐸(𝑢, 𝑣) + ̃︀ℬ𝐸(𝑢, 𝑣) + ̃︀ℒ𝐸(𝑢, 𝑣), (3.1)

where

̃︀ℬ𝐸(𝑢, 𝑣) := 𝜏𝐸

∫︁
𝐸

𝛽 · ∇𝑢 (𝛽 · ∇𝑣) d𝐸 (3.2)

̃︀ℒ𝐸(𝑢, 𝑣) := 𝜏𝐸

∫︁
𝐸

−𝜀 ∆𝑢 (𝛽 · ∇𝑣) d𝐸, (3.3)

and the SUPG parameter 𝜏𝐸 > 0 has to be chosen. The corresponding stabilized right-hand side ̃︀ℱ𝐸
supg(·) is

defined by ̃︀ℱ𝐸
supg(𝑣) :=

∫︁
𝐸

𝑓 𝑣 d𝐸 + 𝜏𝐸

∫︁
𝐸

𝑓 𝛽 · ∇𝑣 d𝐸. (3.4)
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The global approximated bilinear form ̃︀𝒜supg(·, ·) and the global right-hand side are defined by simply summing
the local contributions: ̃︀𝒜supg(𝑢, 𝑣) :=

∑︁
𝐸∈Ωℎ

̃︀𝒜𝐸
supg(𝑢, 𝑣) (3.5)

̃︀ℱsupg(𝑣) :=
∑︁

𝐸∈Ωℎ

̃︀ℱ𝐸
supg(𝑣). (3.6)

Since the exact solution 𝑢 of equation (2.1) satisfies −𝜀 ∆𝑢+𝛽 ·∇𝑢 = 𝑓 ∈ 𝐿2(Ω), then ̃︀𝒜supg(𝑢, 𝑣) is well defined
for all 𝑣 ∈ 𝑉 and 𝑢 solves the stabilized problem{︃

find 𝑢 ∈ 𝑉 s.t.̃︀𝒜supg(𝑢, 𝑣) = ̃︀ℱsupg(𝑣) for all 𝑣 ∈ 𝑉 .
(3.7)

The aim of the following sections is to derive a VEM discretization of the stabilized problem (3.7). In the
following the symbol . will denote a bound up to a generic positive constant, independent of the mesh size ℎ,
of the SUPG parameter 𝜏𝐸 , of the diffusive coefficient 𝜀 and of the transport advective field 𝛽, but which may
depend on Ω, on the “polynomial” order of the method 𝑘 and on the regularity constant appearing in the mesh
assumption (A.1).

3.2. Projections and polynomial approximation properties

In the present subsection we introduce some basic tools and notations useful in the construction and the
theoretical analysis of Virtual Element Methods.

Using standard VEM notations, for 𝑛 ∈ N, 𝑚 ∈ N and 𝑝 = 1, . . . ,∞, and for any 𝐸 ∈ Ωℎ, let us introduce
the spaces:

– P𝑛(𝜔): the set of polynomials on 𝜔 of degree ≤ 𝑛 (with P−1(𝜔) = {0}),
– P𝑛(Ωℎ) := {𝑞 ∈ 𝐿2(Ω) s.t 𝑞|𝐸 ∈ P𝑛(𝐸) for all 𝐸 ∈ Ωℎ},
– 𝑊𝑚

𝑝 (Ωℎ) := {𝑣 ∈ 𝐿2(Ω) s.t 𝑣|𝐸 ∈ 𝑊𝑚
𝑝 (𝐸) for all 𝐸 ∈ Ωℎ} equipped with the broken norm and semi-

norm
‖𝑣‖𝑝

𝑊 𝑚
𝑝 (Ωℎ) :=

∑︁
𝐸∈Ωℎ

‖𝑣‖𝑝
𝑊 𝑚

𝑝 (𝐸), |𝑣|𝑝𝑊 𝑚
𝑝 (Ωℎ) :=

∑︁
𝐸∈Ωℎ

|𝑣|𝑝𝑊 𝑚
𝑝 (𝐸), if 1 ≤ 𝑝 < ∞,

‖𝑣‖𝑊 𝑚
𝑝 (Ωℎ) := max

𝐸∈Ωℎ

‖𝑣‖𝑊 𝑚
𝑝 (𝐸), |𝑣|𝑊 𝑚

𝑝 (Ωℎ) := max
𝐸∈Ωℎ

|𝑣|𝑊 𝑚
𝑝 (𝐸), if 𝑝 = ∞,

and the following polynomial projections:

– the 𝐿2-projection Π0,𝐸
𝑛 : 𝐿2(𝐸) → P𝑛(𝐸), given by∫︁

𝐸

𝑞𝑛(𝑣 − Π0,𝐸
𝑛 𝑣) d𝐸 = 0 for all 𝑣 ∈ 𝐿2(𝐸) and 𝑞𝑛 ∈ P𝑛(𝐸), (3.8)

with obvious extension for vector functions Π0,𝐸
𝑛 : [𝐿2(𝐸)]2 → [P𝑛(𝐸)]2;

– the 𝐻1-seminorm projection Π∇,𝐸
𝑛 : 𝐻1(𝐸) → P𝑛(𝐸), defined by⎧⎪⎪⎨⎪⎪⎩

∫︁
𝐸

∇ 𝑞𝑛 · ∇(𝑣 − Π∇,𝐸
𝑛 𝑣) d𝐸 = 0 for all 𝑣 ∈ 𝐻1(𝐸) and 𝑞𝑛 ∈ P𝑛(𝐸),∫︁

𝜕𝐸

(𝑣 − Π∇,𝐸
𝑛 𝑣) d𝑠 = 0 ,

(3.9)

with global counterparts Π0
𝑛 : 𝐿2(Ω) → P𝑛(Ωℎ) and Π∇𝑛 : 𝐻1(Ωℎ) → P𝑛(Ωℎ) defined by

(Π0
𝑛𝑣)|𝐸 = Π0,𝐸

𝑛 𝑣, (Π∇𝑛 𝑣)|𝐸 = Π∇,𝐸
𝑛 𝑣, for all 𝐸 ∈ Ωℎ. (3.10)

We finally mention two classical results for polynomials on star-shaped domains (see for instance [18]).



SUPG-STABILIZED VIRTUAL ELEMENTS FOR DIFFUSION-CONVECTION PROBLEMS 2237

Lemma 3.1 (Bramble-Hilbert). Under the assumption (A.1), for any 𝐸 ∈ Ωℎ and for any smooth enough
function 𝜙 defined on 𝐸, it holds

‖𝜙−Π0,𝐸
𝑛 𝜙‖𝑊 𝑚

𝑝 (𝐸) . ℎ𝑠−𝑚
𝐸 |𝜙|𝑊 𝑠

𝑝 (𝐸) 𝑠, 𝑚 ∈ N, 𝑚 ≤ 𝑠 ≤ 𝑛 + 1, 𝑝 ∈ [1 +∞]

‖𝜙−Π∇,𝐸
𝑛 𝜙‖𝑚,𝐸 . ℎ𝑠−𝑚

𝐸 |𝜙|𝑠,𝐸 𝑠, 𝑚 ∈ N, 𝑚 ≤ 𝑠 ≤ 𝑛 + 1, 𝑠 ≥ 1.

Lemma 3.2 (Inverse estimate). Let, for any 𝐸 ∈ Ωℎ, 𝛾𝐸 denote the smallest positive constant such that for
any 𝑝𝑛 ∈ [P𝑛(𝐸)]2, it holds

‖div𝑝𝑛‖20,𝐸 ≤ 𝛾𝐸ℎ−2
𝐸 ‖𝑝𝑛‖20,𝐸 .

Then, under assumption (A.1), there exists 𝛾 ∈ R+ such that 𝛾𝐸 ≤ 𝛾 for all 𝐸 ∈ {Ωℎ}ℎ.

4. Virtual element discretization

4.1. Virtual element spaces

Let 𝑘 ≥ 1 be the “polynomial” order of the method. For any 𝐸 ∈ Ωℎ we consider the local “enhanced” virtual
element space [2] given by

𝑉ℎ(𝐸) =
{︀
𝑣ℎ ∈ 𝐻1(𝐸)∩𝐶0(𝜕𝐸) s.t. 𝑣ℎ|𝑒 ∈ P𝑘(𝑒) for all 𝑒 ∈ 𝜕𝐸,

∆𝑣ℎ ∈ P𝑘(𝐸), (𝑣ℎ −𝛱∇,𝐸
𝑘 𝑣ℎ, ̂︀𝑝𝑘) = 0 for all ̂︀𝑝𝑘 ∈ P𝑘(𝐸)/P𝑘−2(𝐸)

}︀
.

(4.1)

We here summarize the main properties of the space 𝑉ℎ(𝐸) (we refer to [2] for a deeper analysis).

(P.1) Polynomial inclusion: P𝑘(𝐸) ⊆ 𝑉ℎ(𝐸);
(P.2) Degrees of freedom: the following linear operators DV constitute a set of DoFs for 𝑉ℎ(𝐸):
DV1 the values of 𝑣ℎ at the vertexes of the polygon 𝐸,
DV2 the values of 𝑣ℎ at 𝑘 − 1 distinct points of every edge 𝑒 ∈ 𝜕𝐸,
DV3 the moments up to order 𝑘 − 2 of 𝑣ℎ in 𝐸:

1
|𝐸|

∫︁
𝐸

𝑣ℎ 𝑚𝑖 d𝐸,

where {𝑚𝑖}𝑖 is a polynomial basis of P𝑘−2(𝐸) s.t. ‖𝑚𝑖‖𝐿∞(𝐸) = 1;
(P.3) Polynomial projections: the DoFs DV allow us to compute the following linear operators:

𝛱∇,𝐸
𝑘 : 𝑉ℎ(𝐸) → P𝑘(𝐸), 𝛱0,𝐸

𝑘 : 𝑉ℎ(𝐸) → P𝑘(𝐸), 𝛱0,𝐸
𝑘 : ∇𝑉ℎ(𝐸) → [P𝑘(𝐸)]2.

The global virtual element space is obtained by gluing such local spaces, i.e.,

𝑉ℎ(Ωℎ) = {𝑣ℎ ∈ 𝑉 s.t. 𝑣ℎ|𝐸 ∈ 𝑉ℎ(𝐸) for all 𝐸 ∈ Ωℎ} (4.2)

with the associated set of degrees of freedom.
We finally recall from [19,23] the optimal approximation property for the space 𝑉ℎ(Ωℎ).

Lemma 4.1 (Approximation using virtual element functions). Under the assumption (A.1) for any 𝑣 ∈ 𝑉 ∩
𝐻𝑠+1(Ωℎ) there exists 𝑣ℐ ∈ 𝑉ℎ(Ωℎ) such that for all 𝐸 ∈ Ωℎ it holds

‖𝑣 − 𝑣ℐ‖0,𝐸 + ℎ𝐸‖∇(𝑣 − 𝑣ℐ)‖0,𝐸 . ℎ𝑠+1
𝐸 |𝑣|𝑠+1,𝐸

where 0 < 𝑠 ≤ 𝑘.
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4.2. Virtual element forms

The next step in the construction of our method is to define a discrete versions of the stabilized SUPG form̃︀𝒜supg(·, ·) in (3.1). It is clear that for an arbitrary pair (𝑢ℎ, 𝑣ℎ) ∈ 𝑉ℎ(𝐸)× 𝑉ℎ(𝐸), the quantity ̃︀𝒜𝐸
supg(𝑢ℎ, 𝑣ℎ) is

not computable since 𝑢ℎ and 𝑣ℎ are not known in closed form. Therefore, following the usual procedure in the
VEM setting, we need to construct a computable discrete bilinear form.

In the following, in accordance with definition (3.1), we define a discrete counterpart of each term composing̃︀𝒜𝐸
supg.
Exploiting property (P.3), let 𝑎𝐸

ℎ (·, ·) : 𝑉ℎ(𝐸)×𝑉ℎ(𝐸) → R be a computable approximation of the continuous
form 𝑎𝐸(·, ·), defined for all 𝑢ℎ, 𝑣ℎ ∈ 𝑉ℎ(𝐸) by

𝑎𝐸
ℎ (𝑢ℎ, 𝑣ℎ) :=

∫︁
𝐸

𝛱0,𝐸
𝑘−1∇𝑢ℎ ·𝛱0,𝐸

𝑘−1∇𝑣ℎ d𝐸 + 𝒮𝐸((𝐼 −𝛱∇,𝐸
𝑘 )𝑢ℎ, (𝐼 −𝛱∇,𝐸

𝑘 )𝑣ℎ). (4.3)

Here, the stabilizing bilinear form 𝒮𝐸(·, ·) : 𝑉ℎ(𝐸)× 𝑉ℎ(𝐸) → R satisfies

𝛼*|𝑣ℎ|21,𝐸 ≤ 𝒮𝐸(𝑣ℎ, 𝑣ℎ) ≤ 𝛼*|𝑣ℎ|21,𝐸 for all 𝑣ℎ ∈ Ker(𝛱∇,𝐸
𝑘 ) (4.4)

for two positive uniform constants 𝛼* and 𝛼*. The condition above essentially requires the stabilizing term
𝒮𝐸(𝑣ℎ, 𝑣ℎ) to scale as |𝑣ℎ|21,𝐸 . For instance, the standard choices for the stabilization are the dofi-dofi stabi-
lization [7] and the D-recipe stabilization introduced in [11].

Concerning the approximation of the convective term 𝑏𝐸(·, ·), we here propose two possible choices: recalling
property (P.3), let us define for all 𝑢ℎ, 𝑣ℎ ∈ 𝑉ℎ(𝐸) the following computable bilinear forms

𝑏𝐸
𝑜,ℎ(𝑢ℎ, 𝑣ℎ) :=

∫︁
𝐸

𝛽 ·𝛱0,𝐸
𝑘 ∇𝑢ℎ 𝛱0,𝐸

𝑘 𝑣ℎ d𝐸, (4.5)

𝑏𝐸
𝜕,ℎ(𝑢ℎ, 𝑣ℎ) :=

∫︁
𝐸

𝛽 · ∇𝛱0,𝐸
𝑘 𝑢ℎ 𝛱0,𝐸

𝑘 𝑣ℎ d𝐸 +
∫︁

𝜕𝐸

(𝛽 · 𝑛𝐸)(𝐼 −𝛱0,𝐸
𝑘 )𝑢ℎ 𝛱0,𝐸

𝑘 𝑣ℎ d𝑠. (4.6)

The form (4.5) follows a more standard “approximation by projection” VEM approach (see for instance [15])
and is based on a higher order projection of the gradient. The novel form (4.6) encompasses a boundary integral
term and is amenable to the development of an improved theoretical result (cf. Propositions 5.3 and 5.4). In
the following 𝑏𝐸

ℎ (·, ·) : 𝑉ℎ(𝐸) × 𝑉ℎ(𝐸) → R will denote indifferently one of the aforementioned forms and, in
accordance with (2.4), for all 𝑢ℎ, 𝑣ℎ ∈ 𝑉ℎ(𝐸) we define

𝑏skew,𝐸
ℎ (𝑢ℎ, 𝑣ℎ) :=

1
2
(︀
𝑏𝐸
ℎ (𝑢ℎ, 𝑣ℎ)− 𝑏𝐸

ℎ (𝑣ℎ, 𝑢ℎ)
)︀
. (4.7)

Exploiting again property (P.3), the stabilized forms ̃︀ℬ𝐸(·, ·) in (3.2) and ̃︀ℒ𝐸(·, ·) in (3.3) are discretized as
follows

ℬ𝐸(𝑢ℎ, 𝑣ℎ) := 𝜏𝐸

∫︁
𝐸

𝛽 ·𝛱0,𝐸
𝑘−1∇𝑢ℎ 𝛽 ·𝛱0,𝐸

𝑘−1∇𝑣ℎ d𝐸 + 𝜏𝐸𝛽2
𝐸𝒮𝐸((𝐼 −𝛱∇,𝐸

𝑘 )𝑢ℎ, (𝐼 −𝛱∇,𝐸
𝑘 )𝑣ℎ) (4.8)

ℒ𝐸(𝑢ℎ, 𝑣ℎ) := 𝜏𝐸

∫︁
𝐸

−𝜀 div𝛱0,𝐸
𝑘−1∇𝑢ℎ 𝛽 ·𝛱0,𝐸

𝑘−1∇𝑣ℎ d𝐸 (4.9)

where 𝛽𝐸 := ‖𝛽‖[𝐿∞(𝐸)]2 and the parameter 𝜏𝐸 > 0 has to be chosen.
In accordance with (3.1), the VEM stabilized form 𝒜𝐸

supg(·, ·) : 𝑉ℎ(𝐸)× 𝑉ℎ(𝐸) → R is defined by

𝒜𝐸
supg(𝑢ℎ, 𝑣ℎ) := 𝜀 𝑎𝐸

ℎ (𝑢ℎ, 𝑣ℎ) + 𝑏skew,𝐸
ℎ (𝑢ℎ, 𝑣ℎ) + ℬ𝐸(𝑢ℎ, 𝑣ℎ) + ℒ𝐸(𝑢ℎ, 𝑣ℎ) (4.10)

for all 𝑢ℎ, 𝑣ℎ ∈ 𝑉ℎ(𝐸).
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The global approximated bilinear form 𝒜supg(·, ·) : 𝑉ℎ(Ωℎ) × 𝑉ℎ(Ωℎ) → R is thus defined by summing the
local contributions, i.e.,

𝒜supg(𝑢, 𝑣) :=
∑︁

𝐸∈Ωℎ

𝒜𝐸
supg(𝑢ℎ, 𝑣ℎ) for all 𝑢ℎ, 𝑣ℎ ∈ 𝑉ℎ(Ωℎ). (4.11)

The corresponding computable VEM version of the SUPG right-hand side in (3.4) reads as

ℱ𝐸
supg(𝑣ℎ) :=

∫︁
𝐸

𝑓 𝛱0,𝐸
𝑘 𝑣ℎ d𝐸 + 𝜏𝐸

∫︁
𝐸

𝑓 𝛽 ·𝛱0,𝐸
𝑘−1∇𝑣ℎ d𝐸 (4.12)

and its global counterpart is

ℱsupg(𝑣ℎ) :=
∑︁

𝐸∈Ωℎ

ℱ𝐸
supg(𝑣ℎ) for all 𝑣ℎ ∈ 𝑉ℎ(Ωℎ). (4.13)

4.3. Virtual element SUPG problem

Referring to the discrete space (4.2), the discrete bilinear form (4.11) and the approximated right-hand side
(4.13), the virtual element SUPG approximation of the advection-dominated diffusion equation (2.1) is{︂

find 𝑢ℎ ∈ 𝑉ℎ(Ωℎ) s.t.
𝒜supg(𝑢ℎ, 𝑣ℎ) = ℱsupg(𝑣ℎ) for all 𝑣ℎ ∈ 𝑉ℎ(Ωℎ).

(4.14)

5. Theoretical analysis

In this section we analyze the stabilization method defined in (4.14). In particular, we assess the stability
property of problem (4.14) and we provide the convergence error estimate for the discrete solution obtained
with both discrete convective forms defined in (4.5) and (4.6). All estimates clearly display the dependence on
the mesh size ℎ, on the parameter 𝜏𝐸 and the problem data 𝜀 and 𝛽.

5.1. Stability

Let us start with the stability analysis for the proposed VEM SUPG method. First of all we define the VEM
SUPG norm

‖𝑣ℎ‖2supg,𝐸 := 𝜀 ‖∇𝑣ℎ‖20,𝐸 + 𝜏𝐸 ‖𝛽 ·𝛱0,𝐸
𝑘−1∇𝑣ℎ‖20,𝐸 + 𝜏𝐸 𝛽2

𝐸 ‖∇(𝐼 −𝛱∇,𝐸
𝑘 )𝑣ℎ‖20,𝐸 (5.1)

with global counterpart
‖𝑣ℎ‖2supg :=

∑︁
𝐸∈Ωℎ

‖𝑣ℎ‖2supg,𝐸 . (5.2)

Proposition 5.1 (Coercivity). Under the assumption (A.1) if the parameters 𝜏𝐸 satisfy

𝜏𝐸 ≤ ℎ2
𝐸

𝜀𝛾𝐸
∀𝐸 ∈ Ωℎ (5.3)

where 𝛾𝐸 is the constant appearing in the inverse estimate of Lemma 3.2, the bilinear form 𝒜𝐸
supg(·, ·) satisfies

for all 𝑣ℎ ∈ 𝑉ℎ(𝐸) the coerciveness inequality

‖𝑣ℎ‖2supg,𝐸 . 𝒜𝐸
supg(𝑣ℎ, 𝑣ℎ).
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Proof. We simply consider all the terms in the sum (4.10). For the first three terms by definitions (4.3), (4.7)
and (4.8) and stability estimate (4.4) we get

𝜀 𝑎𝐸
ℎ (𝑣ℎ, 𝑣ℎ) ≥ 𝜀 ‖𝛱0,𝐸

𝑘−1∇𝑣ℎ‖20,𝐸 + 𝜀 𝛼* ‖∇𝑣ℎ −∇𝛱∇,𝐸
𝑘 𝑣ℎ‖20,𝐸

𝑏skew,𝐸
ℎ (𝑣ℎ, 𝑣ℎ) = 0

ℬ𝐸(𝑣ℎ, 𝑣ℎ) ≥ 𝜏𝐸 ‖𝛽 ·𝛱0,𝐸
𝑘−1∇𝑣ℎ‖20,𝐸 + 𝜏𝐸 𝛽2

𝐸 𝛼* ‖∇𝑣ℎ −∇𝛱∇,𝐸
𝑘 𝑣ℎ‖20,𝐸

(5.4)

whereas for the last term we infer

ℒ𝐸(𝑣ℎ, 𝑣ℎ) = 𝜏𝐸

∫︁
𝐸

−𝜀 div𝛱0,𝐸
𝑘−1∇𝑣ℎ 𝛽 ·𝛱0,𝐸

𝑘−1∇𝑣ℎ d𝐸

≥ −𝜏𝐸 ‖𝜀div𝛱0,𝐸
𝑘−1∇𝑣ℎ‖0,𝐸 ‖𝛽 ·𝛱0,𝐸

𝑘−1∇𝑣ℎ‖20,𝐸 (Cauchy-Schwarz)

≥ −1
2
𝜏𝐸 𝜀2‖div𝛱0,𝐸

𝑘−1∇𝑣ℎ‖20,𝐸 −
1
2
𝜏𝐸 ‖𝛽 ·𝛱0,𝐸

𝑘−1∇𝑣ℎ‖20,𝐸 (arith.-geom. mean)

≥ −1
2
𝜏𝐸 𝛾𝐸 ℎ−2

𝐸 𝜀2‖𝛱0,𝐸
𝑘−1∇𝑣ℎ‖20,𝐸 −

1
2
𝜏𝐸 ‖𝛽 ·𝛱0,𝐸

𝑘−1∇𝑣ℎ‖20,𝐸 (Lemma 3.2)

≥ −1
2
𝜀 ‖𝛱0,𝐸

𝑘−1∇𝑣ℎ‖20,𝐸 −
1
2
𝜏𝐸 ‖𝛽 ·𝛱0,𝐸

𝑘−1∇𝑣ℎ‖20,𝐸 . (bound (5.3))

(5.5)

Moreover, by definition of 𝐿2-orthogonal projection (3.8), being ∇𝛱∇,𝐸
𝑘 𝑣ℎ ∈ [P𝑘−1(𝐸)]2, it holds

‖∇𝑣ℎ −∇𝛱∇,𝐸
𝑘 𝑣ℎ‖20,𝐸 ≥ ‖∇𝑣ℎ −𝛱0,𝐸

𝑘−1∇𝑣ℎ‖20,𝐸 . (5.6)

Collecting the previous bound, (5.4) and (5.5) we obtain

𝒜𝐸
supg(𝑣ℎ, 𝑣ℎ) ≥ 1

2
𝜀 ‖𝛱0,𝐸

𝑘−1∇𝑣ℎ‖20,𝐸 +
1
2
𝜏𝐸 ‖𝛽 ·𝛱0,𝐸

𝑘−1∇𝑣ℎ‖20,𝐸+

+ 𝛼* 𝜀 ‖∇𝑣ℎ −𝛱0,𝐸
𝑘−1∇𝑣ℎ‖20,𝐸 + 𝛼* 𝜏𝐸 𝛽2

𝐸 ‖∇(𝐼 −𝛱∇,𝐸
𝑘 )𝑣ℎ‖20,𝐸

≥ min
{︂

1
2
, 𝛼*

}︂
‖𝑣ℎ‖2supg,𝐸 .

�

Remark 5.1. Notice that the norm ‖ · ‖supg,𝐸 is slightly different from the usual norm introduced in standard
SUPG theory [29,32], i.e.,

‖𝑣ℎ‖2s̃upg,𝐸 := 𝜀 ‖∇𝑣ℎ‖20,𝐸 + 𝜏𝐸 ‖𝛽 · ∇𝑣ℎ‖20,𝐸 .

However we observe that the “classical norm” ‖ · ‖2
s̃upg,𝐸

is controlled by the “VEM norm” ‖ · ‖supg,𝐸 . Indeed,
recalling (5.6), for any 𝑣ℎ ∈ 𝐻1(𝐸) it holds

‖𝛽 · ∇𝑣ℎ‖20,𝐸 ≤ 2‖𝛽 ·𝛱0,𝐸
𝑘−1∇𝑣ℎ‖20,𝐸 + 2𝛽2

𝐸‖(𝐼 −𝛱0,𝐸
𝑘−1)∇𝑣ℎ‖20,𝐸

≤ 2‖𝛽 ·𝛱0,𝐸
𝑘−1∇𝑣ℎ‖20,𝐸 + 2𝛽2

𝐸‖∇(𝐼 −𝛱0,𝐸
𝑘 )𝑣ℎ‖20,𝐸 .

5.2. Error estimates

The aim of the present section is to derive the rate of convergence for the proposed SUPG virtual element
scheme (4.14) in terms of the mesh size ℎ, the SUPG parameter 𝜏𝐸 , the diffusive coefficient 𝜀 and transport
advective field 𝛽. The hidden constants may depend on Ω, on 𝑘, on the regularity constant appearing in the
mesh assumption (A.1) and on the stability constants 𝛼* and 𝛼* (cf. (4.4)).

Let 𝑢 ∈ 𝑉 and 𝑢ℎ ∈ 𝑉ℎ(Ωℎ) be the solutions of problems (3.7) and (4.14), respectively, and let us define the
following error functions

𝑒ℐ := 𝑢− 𝑢ℐ , 𝑒𝜋 := 𝑢−Π∇𝑘 𝑢, 𝑒ℎ := 𝑢ℎ − 𝑢ℐ ,
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where 𝑢ℐ ∈ 𝑉ℎ(Ωℎ) is the interpolant function of 𝑢 defined in Lemma 4.1, and Π∇𝑘 𝑢 ∈ P𝑘(Ωℎ) is the piecewise
polynomial defined in (3.10). We introduce the analysis with the following abstract error estimation.

Proposition 5.2. Let 𝑢 ∈ 𝑉 and 𝑢ℎ ∈ 𝑉ℎ(Ωℎ) be the solutions of problems (3.7) and (4.14), respectively. Then
under assumption (A.1) if the parameters 𝜏𝐸 satisfy (5.3), it holds that

‖𝑢− 𝑢ℎ‖2supg . ‖𝑒ℐ‖2supg +
∑︁

𝐸∈Ωℎ

(︀
𝜂𝐸
ℱ + 𝜂𝐸

𝑎 + 𝜂𝐸
𝑏 + 𝜂𝐸

ℬ + 𝜂𝐸
ℒ
)︀

(5.7)

where
𝜂𝐸
ℱ := ̃︀ℱ𝐸

supg(𝑒ℎ)−ℱ𝐸
supg(𝑒ℎ),

𝜂𝐸
𝑎 := 𝜀𝑎𝐸(𝑢, 𝑒ℎ)− 𝜀𝑎𝐸

ℎ (𝑢ℐ , 𝑒ℎ),

𝜂𝐸
𝑏 := 𝑏skew,𝐸(𝑢, 𝑒ℎ)− 𝑏skew,𝐸

ℎ (𝑢ℐ , 𝑒ℎ),

𝜂𝐸
ℬ := ̃︀ℬ𝐸(𝑢, 𝑒ℎ)− ℬ𝐸(𝑢ℐ , 𝑒ℎ),

𝜂𝐸
ℒ := ̃︀ℒ𝐸(𝑢, 𝑒ℎ)− ℒ𝐸(𝑢ℐ , 𝑒ℎ).

Proof. Simple computations yield

‖𝑒ℎ‖2supg . 𝒜supg(𝑒ℎ, 𝑒ℎ) = 𝒜supg(𝑢ℎ − 𝑢ℐ , 𝑒ℎ) (Propostion 5.1)

. ℱsupg(𝑒ℎ)− ̃︀ℱsupg(𝑒ℎ) + ̃︀𝒜supg(𝑢, 𝑒ℎ)−𝒜supg(𝑢ℐ , 𝑒ℎ) (using (3.7) and (4.14))

.
∑︁

𝐸∈Ωℎ

(︀
𝜂𝐸
ℱ + 𝜂𝐸

𝑎 + 𝜂𝐸
𝑏 + 𝜂𝐸

ℬ + 𝜂𝐸
ℒ
)︀

(def. (3.6), (4.13), (3.5), (4.11))

The thesis now follows by the triangular inequality. �

The next step in the analysis consists in estimating all the terms in the bound (5.7). We make the following
assumption:

(A.2) Data assumption. The solution 𝑢, the advective field 𝛽 and the load 𝑓 in (3.7) satisfy:

𝑢 ∈ 𝐻𝑠+1(Ωℎ), 𝑓 ∈ 𝐻𝑠+1(Ωℎ), 𝛽 ∈ [𝑊 𝑠+1
∞ (Ωℎ)]2,

for some 0 < 𝑠 ≤ 𝑘.

Note that in the following lemmas it is not restrictive to assume 𝛽𝐸 > 0 since 𝛽𝐸 = 0 implies 𝛽|𝐸 = 0 and thus
the corresponding terms vanish.

Lemma 5.1 (Estimate of ‖𝑒ℐ‖supg). Under assumptions (A.1) and (A.2), the term ‖𝑒ℐ‖2supg can be bounded as
follows (for 0 < 𝑠 ≤ 𝑘)

‖𝑒ℐ‖2supg .
∑︁

𝐸∈Ωℎ

(︀
𝜀 + 𝜏𝐸𝛽2

𝐸

)︀
ℎ2𝑠

𝐸 |𝑢|2𝑠+1,𝐸 .

Proof. Applying the definition of the norm ‖ · ‖supg,𝐸 , of the 𝐿2-orthogonal projection 𝛱0,𝐸
𝑘−1 (cf. (3.8)), of the

𝐻1-orthogonal projection 𝛱∇,𝐸
𝑘 (cf. (3.9)), and the interpolation estimate of Lemma 4.1, we easily obtain

‖𝑒ℐ‖2supg,𝐸 = 𝜀‖∇𝑒ℐ‖20,𝐸 + 𝜏𝐸‖𝛽 ·𝛱0,𝐸
𝑘−1∇𝑒ℐ‖20,𝐸 + 𝜏𝐸𝛽2

𝐸‖∇(𝐼 −𝛱∇,𝐸
𝑘 )𝑒ℐ‖20,𝐸

≤ 𝜀‖∇𝑒ℐ‖20,𝐸 + 𝜏𝐸𝛽2
𝐸‖∇𝑒ℐ‖20,𝐸 + 𝜏𝐸𝛽2

𝐸‖∇𝑒ℐ‖20,𝐸 .
(︀
𝜀 + 𝜏𝐸𝛽2

𝐸

)︀
‖∇𝑒ℐ‖20,𝐸

.
(︀
𝜀 + 𝜏𝐸𝛽2

𝐸

)︀
ℎ2𝑠

𝐸 |𝑢|2𝑠+1,𝐸 .

The thesis now follows by summing the local contributions. �
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Lemma 5.2 (Estimate of 𝜂𝐸
ℱ (𝑒ℎ)). Under the assumptions (A.1) and (A.2), the term 𝜂𝐸

ℱ can be bounded as
follows (for 0 < 𝑠 ≤ 𝑘)

𝜂𝐸
ℱ .

(︂
𝜆𝐸ℎ𝑠+2

𝐸 |𝑓 |𝑠+1,𝐸 + 𝜏
1/2
𝐸

‖𝛽‖[𝑊 𝑠
∞(𝐸)]2

𝛽𝐸
ℎ𝑠

𝐸‖𝑓‖𝑠,𝐸

)︂
‖𝑒ℎ‖supg,𝐸

where for any 𝐸 ∈ Ωℎ

𝜆𝐸 := min

{︃
1

𝛽𝐸𝜏
1/2
𝐸

,
1

𝜀1/2

}︃
.

Proof. Applying the definitions (3.4), (4.12) and the definition of 𝐿2-orthogonal projection we obtain

𝜂𝐸
ℱ = ̃︀ℱ𝐸

supg(𝑒ℎ)−ℱ𝐸
supg(𝑒ℎ)

=
(︀
𝑓, 𝑒ℎ −𝛱0,𝐸

𝑘 𝑒ℎ

)︀
0,𝐸

+ 𝜏𝐸

(︀
𝑓, 𝛽 · (∇𝑒ℎ −𝛱0,𝐸

𝑘−1∇𝑒ℎ)
)︀
0,𝐸

=
(︀
(𝐼 −𝛱0,𝐸

𝑘 )𝑓, (𝐼 −𝛱0,𝐸
𝑘 )𝑒ℎ

)︀
0,𝐸

+ 𝜏𝐸

(︀
𝑓𝛽, (𝐼 −𝛱0,𝐸

𝑘−1)∇𝑒ℎ

)︀
0,𝐸

=
(︀
(𝐼 −𝛱0,𝐸

𝑘 )𝑓, (𝐼 −𝛱∇,𝐸
𝑘 )𝑒ℎ

)︀
0,𝐸

+ 𝜏𝐸

(︀
(𝐼 −𝛱0,𝐸

𝑘−1)𝑓𝛽, (𝐼 −𝛱0,𝐸
𝑘−1)∇𝑒ℎ

)︀
0,𝐸

=: 𝜂𝐸
ℱ,1 + 𝜂𝐸

ℱ,2.

(5.8)

Using a scaled Poincaré inequality we infer

𝜂𝐸
ℱ,1 ≤ ‖(𝐼 −𝛱0,𝐸

𝑘 )𝑓‖0,𝐸‖(𝐼 −𝛱∇,𝐸
𝑘 )𝑒ℎ‖0,𝐸 . ℎ𝐸‖(𝐼 −𝛱0,𝐸

𝑘 )𝑓‖0,𝐸‖∇(𝐼 −𝛱∇,𝐸
𝑘 )𝑒ℎ‖0,𝐸 .

Recalling the definition of the norm ‖ ·‖supg,𝐸 and the stability of 𝛱∇,𝐸
𝑘 with respect to the 𝐻1-seminorm, from

Lemma 3.1 we get

𝜂𝐸
ℱ,1 . min

{︃
1

𝛽𝐸𝜏
1/2
𝐸

,
1

𝜀1/2

}︃
ℎ𝑠+2

𝐸 |𝑓 |𝑠+1,𝐸‖𝑒ℎ‖supg,𝐸 . (5.9)

Regarding the second term 𝜂𝐸
ℱ,2, from (5.6) and Lemma 3.1 we obtain

𝜂𝐸
ℱ,2 ≤ 𝜏𝐸‖(𝐼 −𝛱0,𝐸

𝑘−1)𝑓𝛽‖0,𝐸‖(𝐼 −𝛱0,𝐸
𝑘−1)∇𝑒ℎ‖0,𝐸 . 𝜏

1/2
𝐸

‖(𝐼 −𝛱0,𝐸
𝑘−1)𝑓𝛽‖0,𝐸

𝛽𝐸
‖𝑒ℎ‖supg,𝐸

. 𝜏
1/2
𝐸 ℎ𝑠

𝐸

|𝑓𝛽|𝑠,𝐸

𝛽𝐸
‖𝑒ℎ‖supg,𝐸 . 𝜏

1/2
𝐸

‖𝛽‖[𝑊 𝑠
∞(𝐸)]2

𝛽𝐸
ℎ𝑠

𝐸‖𝑓‖𝑠,𝐸‖𝑒ℎ‖supg,𝐸 .

(5.10)

Now the thesis follows from (5.8), (5.9) and (5.10). �

Remark 5.2. The term ‖𝛽‖[𝑊 𝑠
∞(𝐸)]2/𝛽𝐸 = ‖𝛽/𝛽𝐸‖[𝑊 𝑠

∞(𝐸)]2 represents a locally scaled regularity term for 𝛽.
Roughly speaking, it is related to the local variations of 𝛽 and not to its amplitude.

Lemma 5.3 (Estimate of 𝜂𝐸
𝑎 ). Under the assumptions (A.1) and (A.2), the term 𝜂𝐸

𝑎 can be bounded as follows
(for 0 < 𝑠 ≤ 𝑘)

𝜂𝐸
𝑎 . 𝜀1/2ℎ𝑠

𝐸 |𝑢|𝑠+1,𝐸‖𝑒ℎ‖supg,𝐸 .

Proof. The consistency and the continuity of the form 𝑎𝐸
ℎ (·, ·), Lemmas 3.1 and 4.1 easily imply

𝜂𝐸
𝑎 = 𝜀𝑎𝐸(𝑢, 𝑒ℎ)− 𝜀𝑎𝐸

ℎ (𝑢ℐ , 𝑒ℎ) = 𝜀𝑎𝐸(𝑢−𝛱∇,𝐸
𝑘 𝑢, 𝑒ℎ) + 𝜀𝑎𝐸

ℎ (𝛱∇,𝐸
𝑘 𝑢− 𝑢ℐ , 𝑒ℎ)

≤ 𝜀
(︀
‖∇𝑒𝜋‖0,𝐸 + (1 + 𝛼*)‖∇(𝛱∇,𝐸

𝑘 𝑢− 𝑢ℐ)‖0,𝐸

)︀
‖∇𝑒ℎ‖0,𝐸

. 𝜀
(︀
‖∇𝑒ℐ‖0,𝐸 + ‖∇𝑒𝜋‖0,𝐸

)︀
‖∇𝑒ℎ‖0,𝐸 . 𝜀1/2ℎ𝑠

𝐸 |𝑢|𝑠+1,𝐸‖𝑒ℎ‖supg,𝐸 .

�
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Lemma 5.4 (Estimate of 𝜂𝐸
ℬ ). Under the assumptions (A.1) and (A.2), the term 𝜂𝐸

ℬ can be bounded as follows
(for 0 < 𝑠 ≤ 𝑘)

𝜂𝐸
ℬ . 𝜏

1/2
𝐸 𝛽𝐸

‖𝛽‖2[𝑊 𝑠
∞(𝐸)]2

𝛽2
𝐸

ℎ𝑠
𝐸‖𝑢‖𝑠+1,𝐸‖𝑒ℎ‖supg,𝐸 .

Proof. Using the definition of 𝐿2-projection, simple computations yield

𝜂𝐸
ℬ =𝜏𝐸

(︀
𝛽 · ∇𝑢, 𝛽 · ∇𝑒ℎ

)︀
0,𝐸

− 𝜏𝐸

(︀
𝛽 ·𝛱0,𝐸

𝑘−1∇𝑢ℐ , 𝛽 ·𝛱0,𝐸
𝑘−1∇𝑒ℎ

)︀
0,𝐸

− 𝜏𝐸𝛽2
𝐸𝒮𝐸((𝐼 −𝛱∇,𝐸

𝑘 )𝑢ℐ , (𝐼 −𝛱∇,𝐸
𝑘 )𝑒ℎ)

=𝜏𝐸

(︀
𝛽 · ∇𝑢− 𝛽 ·𝛱0,𝐸

𝑘−1∇𝑢ℐ , 𝛽 ·𝛱0,𝐸
𝑘−1∇𝑒ℎ

)︀
0,𝐸

+ 𝜏𝐸

(︀
𝛽 · ∇𝑢, 𝛽 · (𝐼 −𝛱0,𝐸

𝑘−1)∇𝑒ℎ

)︀
0,𝐸

− 𝜏𝐸𝛽2
𝐸𝒮𝐸((𝐼 −𝛱∇,𝐸

𝑘 )𝑢ℐ , (𝐼 −𝛱∇,𝐸
𝑘 )𝑒ℎ)

=𝜏𝐸

(︀
𝛽 · ∇𝑢− 𝛽 ·𝛱0,𝐸

𝑘−1∇𝑢ℐ , 𝛽 ·𝛱0,𝐸
𝑘−1∇𝑒ℎ

)︀
0,𝐸

+ 𝜏𝐸

(︀
(𝐼 −𝛱0,𝐸

𝑘−1)𝛽𝛽T∇𝑢, (𝐼 −𝛱0,𝐸
𝑘−1)∇𝑒ℎ

)︀
0,𝐸

− 𝜏𝐸𝛽2
𝐸𝒮𝐸((𝐼 −𝛱∇,𝐸

𝑘 )𝑢ℐ , (𝐼 −𝛱∇,𝐸
𝑘 )𝑒ℎ)

=:𝜂𝐸
ℬ,1 + 𝜂𝐸

ℬ,2 + 𝜂𝐸
ℬ,3.

(5.11)

We analyse separately each term in the sum. The term 𝜂𝐸
ℬ,1 is bounded using (5.6) and the continuity of 𝛱0,𝐸

𝑘−1

with respect to the 𝐿2-norm, Lemmas 3.1 and 4.1:

𝜂𝐸
ℬ,1 ≤ 𝜏𝐸‖𝛽 · ∇𝑢− 𝛽 ·𝛱0,𝐸

𝑘−1∇𝑢ℐ‖0,𝐸‖𝛽 ·𝛱0,𝐸
𝑘−1∇𝑒ℎ‖0,𝐸

≤ 𝜏
1/2
𝐸 𝛽𝐸‖∇𝑢−𝛱0,𝐸

𝑘−1∇𝑢ℐ‖0,𝐸‖𝑒ℎ‖supg,𝐸

≤ 𝜏
1/2
𝐸 𝛽𝐸

(︀
‖(𝐼 −𝛱0,𝐸

𝑘−1)∇𝑢‖0,𝐸 + ‖𝛱0,𝐸
𝑘−1∇(𝑢− 𝑢ℐ)‖0,𝐸

)︀
‖𝑒ℎ‖supg,𝐸

≤ 𝜏
1/2
𝐸 𝛽𝐸

(︀
‖∇𝑒𝜋‖0,𝐸 + ‖∇𝑒ℐ‖0,𝐸

)︀
‖𝑒ℎ‖supg,𝐸

. 𝜏
1/2
𝐸 𝛽𝐸ℎ𝑠

𝐸 |𝑢|𝑠+1,𝐸‖𝑒ℎ‖supg,𝐸 .

(5.12)

For the second term 𝜂𝐸
ℬ,2 using again (5.6) and Lemma 3.1 we infer

𝜂𝐸
ℬ,2 ≤ 𝜏𝐸‖(𝐼 −𝛱0,𝐸

𝑘−1)𝛽𝛽T∇𝑢‖0,𝐸‖(𝐼 −𝛱0,𝐸
𝑘−1)∇𝑒ℎ‖0,𝐸

≤ 𝜏
1/2
𝐸 𝛽𝐸

‖(𝐼 −𝛱0,𝐸
𝑘−1)𝛽𝛽T∇𝑢‖0,𝐸

𝛽2
𝐸

‖𝑒ℎ‖supg,𝐸

. 𝜏
1/2
𝐸 𝛽𝐸ℎ𝑠

𝐸

|𝛽𝛽T∇𝑢|𝑠,𝐸

𝛽2
𝐸

‖𝑒ℎ‖supg,𝐸 . 𝜏
1/2
𝐸 𝛽𝐸

‖𝛽‖2[𝑊 𝑠
∞(𝐸)]2

𝛽2
𝐸

ℎ𝑠
𝐸‖𝑢‖𝑠+1,𝐸‖𝑒ℎ‖supg,𝐸 .

(5.13)

Finally for the last term in (5.11), employing (4.4), the stability of the 𝐻1-seminorm projection with respect to
the 𝐻1-seminorm, Lemma 3.1 and 4.1 we get

𝜂𝐸
ℬ,3 = −𝜏𝐸𝛽2

𝐸𝒮𝐸((𝐼 −𝛱∇,𝐸
𝑘 )𝑢ℐ , (𝐼 −𝛱∇,𝐸

𝑘 )𝑒ℎ)

≤ 𝛼*𝜏𝐸𝛽2
𝐸‖∇(𝐼 −𝛱∇,𝐸

𝑘 )𝑢ℐ‖0,𝐸‖∇(𝐼 −𝛱∇,𝐸
𝑘 )𝑒ℎ‖0,𝐸

≤ 𝛼*𝜏
1/2
𝐸 𝛽𝐸

(︀
‖∇𝑒ℐ‖0,𝐸 + ‖∇𝑒𝜋‖0,𝐸

)︀
‖𝑒ℎ‖supg,𝐸

. 𝜏
1/2
𝐸 𝛽𝐸ℎ𝑠

𝐸 |𝑢|𝑠+1,𝐸‖𝑒ℎ‖supg,𝐸 .

(5.14)

The thesis now follows by collecting (5.12), (5.13) and (5.14) in (5.11). �
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Lemma 5.5 (Estimate of 𝜂𝐸
ℒ ). Under the assumptions (A.1) and (A.2), the term 𝜂𝐸

ℒ can be bounded as follows
(for 0 < 𝑠 ≤ 𝑘)

𝜂𝐸
ℒ . 𝜏

1/2
𝐸 𝜀

‖𝛽‖
[𝑊

max {𝑠−1,0}
∞ (𝐸)]2

𝛽𝐸
ℎ

max {𝑠−1,0}
𝐸 ‖𝑢‖𝑠+1,𝐸‖𝑒ℎ‖supg,𝐸 .

Proof. By definition of 𝐿2-orthogonal projection we infer

𝜂𝐸
ℒ =𝜏𝐸𝜀

(︀
div𝛱0,𝐸

𝑘−1∇𝑢ℐ , 𝛽 ·𝛱0,𝐸
𝑘−1∇𝑒ℎ

)︀
0,𝐸

− 𝜏𝐸𝜀
(︀
∆𝑢, 𝛽 · ∇𝑒ℎ

)︀
0,𝐸

=𝜏𝐸𝜀
(︀
div(𝛱0,𝐸

𝑘−1∇𝑢ℐ −∇𝑢), 𝛽 ·𝛱0,𝐸
𝑘−1∇𝑒ℎ

)︀
0,𝐸

− 𝜏𝐸𝜀
(︀
∆𝑢, 𝛽 · (𝐼 −𝛱0,𝐸

𝑘−1)∇𝑒ℎ

)︀
0,𝐸

=𝜏𝐸𝜀
(︀
div(𝛱0,𝐸

𝑘−1∇𝑢ℐ −∇𝑢), 𝛽 ·𝛱0,𝐸
𝑘−1∇𝑒ℎ

)︀
0,𝐸

− 𝜏𝐸𝜀
(︀
(𝐼 −𝛱0,𝐸

𝑘−1)∆𝑢𝛽, (𝐼 −𝛱0,𝐸
𝑘−1)∇𝑒ℎ

)︀
0,𝐸

=:𝜂𝐸
ℒ,1 + 𝜂𝐸

ℒ,2.

(5.15)

The term 𝜂𝐸
ℒ,1, employing Lemmas 3.2, 3.1, and 4.1 is estimated as follows

𝜂𝐸
ℒ,1 ≤ 𝜏𝐸𝜀‖div(∇𝑢−𝛱0,𝐸

𝑘−1∇𝑢ℐ)‖0,𝐸‖𝛽 ·𝛱0,𝐸
𝑘−1∇𝑒ℎ‖0,𝐸

≤ 𝜏
1/2
𝐸 𝜀‖div(∇𝑢−𝛱0,𝐸

𝑘−1∇𝑢ℐ)‖0,𝐸‖𝑒ℎ‖supg,𝐸

≤ 𝜏
1/2
𝐸 𝜀

(︁
‖div(∇𝑢−𝛱0,𝐸

𝑘−1∇𝑢)‖0,𝐸 + ‖div𝛱0,𝐸
𝑘−1(∇𝑢−∇𝑢ℐ)‖0,𝐸

)︁
‖𝑒ℎ‖supg,𝐸

≤ 𝜏
1/2
𝐸 𝜀

(︁
|(𝐼 −𝛱0,𝐸

𝑘−1)∇𝑢|1,𝐸 + ℎ−1
𝐸 𝛾

1/2
𝐸 ‖∇𝑒ℐ‖0,𝐸

)︁
‖𝑒ℎ‖supg,𝐸

. 𝜏
1/2
𝐸 𝜀ℎ𝑠−1

𝐸 |𝑢|𝑠+1,𝐸‖𝑒ℎ‖supg,𝐸 .

(5.16)

The second term in (5.15), recalling (5.6), can be easily bounded as follows

𝜂𝐸
ℒ,2 ≤ 𝜏𝐸𝜀‖(𝐼 −𝛱0,𝐸

𝑘−1)∆𝑢𝛽‖0,𝐸‖(𝐼 −𝛱0,𝐸
𝑘−1)∇𝑒ℎ‖0,𝐸 ≤ 𝜏

1/2
𝐸 𝜀

‖(𝐼 −𝛱0,𝐸
𝑘−1)∆𝑢𝛽‖0,𝐸

𝛽𝐸
‖𝑒ℎ‖supg,𝐸

. 𝜏
1/2
𝐸 𝜀

|∆𝑢𝛽|𝜗,𝐸

𝛽𝐸
ℎ𝜗

𝐸‖𝑒ℎ‖supg,𝐸 . 𝜏
1/2
𝐸 𝜀

‖𝛽‖[𝑊 𝜗
∞(𝐸)]2

𝛽𝐸
ℎ𝜗

𝐸‖𝑢‖𝑠+1,𝐸‖𝑒ℎ‖supg,𝐸 .

(5.17)

where 𝜗 = max {𝑠− 1, 0}. Collecting (5.16) and (5.17) in (5.15) we get the thesis. �

The last and most challenging step in the analysis consists in estimating the term 𝜂𝐸
𝑏 in (5.7) for both 𝑏𝐸

𝑜,ℎ

and 𝑏𝐸
𝜕,ℎ (that we denote respectively by 𝜂𝐸

𝑏,𝑜 and 𝜂𝐸
𝑏,𝜕), see also Remark 5.3.

Lemma 5.6 (Estimate of 𝜂𝐸
𝑏,𝑜). Let 𝑏𝐸

𝑜,ℎ(·, ·) be the bilinear form in (4.5). Then under assump-
tions (A.1) and (A.2), the term 𝜂𝐸

𝑏,𝑜 can be bounded as follows (for 0 < 𝑠 ≤ 𝑘)

𝜂𝐸
𝑏,𝑜 .

(︃
𝜎𝐸

‖𝛽‖[𝑊 𝑠+1
∞ (𝐸)]2

𝛽𝐸
ℎ𝑠+1

𝐸 ‖𝑢‖𝑠+1,𝐸 +
1

𝜀1/2
|𝛽|[𝑊 1

∞(𝐸)]2ℎ
𝑠+2
𝐸 |𝑢|𝑠+1,𝐸

)︃
‖𝑒ℎ‖supg,𝐸+

+ |𝛽|[𝑊 𝑠+1
∞ (𝐸)]2ℎ

2𝑠+1
𝐸 |𝑢|𝑠+1,𝐸‖𝑒ℎ‖0,𝐸 +

∫︁
𝜕𝐸

(𝛽 · 𝑛𝐸)𝑒ℐ𝑒ℎ d𝑠

(5.18)

where for any 𝐸 ∈ Ωℎ

𝜎𝐸 = min

{︃
𝛽𝐸

𝜀1/2
,

1

𝜏
1/2
𝐸

}︃
= 𝛽𝐸𝜆𝐸 . (5.19)
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Proof. By the definition of the skew symmetric forms (2.4) and (4.7) we need to estimate the terms

𝜂𝐸
𝑏,𝐴 := (𝛽 · ∇𝑢, 𝑒ℎ)𝐸 − (𝛽 ·𝛱0,𝐸

𝑘 ∇𝑢ℐ , 𝛱
0,𝐸
𝑘 𝑒ℎ)𝐸 ,

𝜂𝐸
𝑏,𝐵 := (𝛱0,𝐸

𝑘 𝑢ℐ , 𝛽 ·𝛱0,𝐸
𝑘 ∇𝑒ℎ)𝐸 − (𝑢, 𝛽 · ∇𝑒ℎ)𝐸 .

Using usual computations we infer

𝜂𝐸
𝑏,𝐴 =

(︀
𝛽 · ∇𝑢, 𝑒ℎ

)︀
𝐸
−
(︀
𝛽 ·𝛱0,𝐸

𝑘 ∇𝑢ℐ , 𝛱
0,𝐸
𝑘 𝑒ℎ

)︀
𝐸

=
(︀
𝛽 · ∇𝑢, 𝑒ℎ

)︀
𝐸
−
(︀
𝛽 · ∇𝑢ℐ , 𝛱

0,𝐸
𝑘 𝑒ℎ

)︀
𝐸

+
(︀
𝛽 · (𝐼 −𝛱0,𝐸

𝑘 )∇𝑢ℐ , 𝛱
0,𝐸
𝑘 𝑒ℎ

)︀
𝐸

=
(︀
𝛽 · ∇(𝑢− 𝑢ℐ), 𝑒ℎ

)︀
𝐸

+
(︀
𝛽 · ∇𝑢ℐ , (𝐼 −𝛱0,𝐸

𝑘 )𝑒ℎ

)︀
𝐸

+
(︀
(𝐼 −𝛱0,𝐸

𝑘 )∇𝑢ℐ , 𝛽𝛱0,𝐸
𝑘 𝑒ℎ

)︀
𝐸

=
(︀
𝛽 · ∇𝑒ℐ , 𝑒ℎ

)︀
𝐸

+
(︀
(𝐼 −𝛱0,𝐸

𝑘 )𝛽 · ∇𝑢ℐ , (𝐼 −𝛱0,𝐸
𝑘 )𝑒ℎ

)︀
𝐸

+

+
(︀
(𝐼 −𝛱0,𝐸

𝑘 )∇𝑢ℐ , 𝛽(𝛱0,𝐸
𝑘 𝑒ℎ −Π0,𝐸

0 𝑒ℎ)
)︀
𝐸

+
(︀
(𝐼 −𝛱0,𝐸

𝑘 )∇𝑢ℐ , 𝛽Π0,𝐸
0 𝑒ℎ

)︀
𝐸

=: 𝜂𝐸
𝑏,1 + 𝜂𝐸

𝑏,2 + 𝜂𝐸
𝑏,3 + 𝜂𝐸

𝑏,4,

𝜂𝐸
𝑏,𝐵 =

(︀
𝛱0,𝐸

𝑘 𝑢ℐ , 𝛽 ·𝛱0,𝐸
𝑘 ∇𝑒ℎ

)︀
𝐸
−
(︀
𝑢, 𝛽 · ∇𝑒ℎ

)︀
𝐸

=
(︀
𝛱0,𝐸

𝑘 𝑢ℐ − 𝑢, 𝛽 ·𝛱0,𝐸
𝑘 ∇𝑒ℎ

)︀
𝐸

+
(︀
𝑢, 𝛽 · (𝛱0,𝐸

𝑘 − 𝐼)∇𝑒ℎ

)︀
𝐸

=
(︀
𝛱0,𝐸

𝑘 𝑢ℐ − 𝑢, 𝛽 ·𝛱0,𝐸
𝑘 ∇𝑒ℎ

)︀
𝐸

+
(︀
(𝐼 −𝛱0,𝐸

𝑘 )𝛽𝑢, (𝛱0,𝐸
𝑘 − 𝐼)∇𝑒ℎ

)︀
𝐸

=: 𝜂𝐸
𝑏,5 + 𝜂𝐸

𝑏,6,

yielding the following expression for 𝜂𝐸
𝑏,𝑜

2𝜂𝐸
𝑏,𝑜 = 𝜂𝐸

𝑏,1 + 𝜂𝐸
𝑏,2 + 𝜂𝐸

𝑏,3 + 𝜂𝐸
𝑏,4 + 𝜂𝐸

𝑏,5 + 𝜂𝐸
𝑏,6. (5.20)

We now analyse each term 𝜂𝐸
𝑏,𝑖 for 𝑖 = 1, . . . , 6 in the sum above.

− 𝜂𝐸
𝑏,1: using an integration by parts, bound (5.6) and the definition of ‖ · ‖supg,𝐸 we infer

𝜂𝐸
𝑏,1 = (𝛽 · ∇𝑒ℐ , 𝑒ℎ)𝐸 = −(𝑒ℐ , 𝛽 · ∇𝑒ℎ)𝐸 +

∫︁
𝜕𝐸

(𝛽 · 𝑛𝐸)𝑒ℐ𝑒ℎ d𝑠

≤ ‖𝑒ℐ‖0,𝐸‖𝛽 · ∇𝑒ℎ‖0,𝐸 +
∫︁

𝜕𝐸

(𝛽 · 𝑛𝐸)𝑒ℐ𝑒ℎ d𝑠

≤ ‖𝑒ℐ‖0,𝐸

(︁
‖𝛽 ·𝛱0,𝐸

𝑘−1∇𝑒ℎ‖0,𝐸 + 𝛽𝐸‖∇(𝐼 −𝛱∇,𝐸
𝑘 )𝑒ℎ‖0,𝐸

)︁
+
∫︁

𝜕𝐸

(𝛽 · 𝑛𝐸)𝑒ℐ𝑒ℎ d𝑠

. min

{︃
𝛽𝐸

𝜀1/2
,

1

𝜏
1/2
𝐸

}︃
‖𝑒ℐ‖0,𝐸‖𝑒ℎ‖supg,𝐸 +

∫︁
𝜕𝐸

(𝛽 · 𝑛𝐸)𝑒ℐ𝑒ℎ d𝑠

𝑠 . 𝜎𝐸ℎ𝑠+1
𝐸 |𝑢|𝑠+1,𝐸‖𝑒ℎ‖supg,𝐸 +

∫︁
𝜕𝐸

(𝛽 · 𝑛𝐸)𝑒ℐ𝑒ℎ d𝑠.

(5.21)
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− 𝜂𝐸
𝑏,2: a scaled Poincaré inequality and the definition of 𝐿2-projection imply

𝜂𝐸
𝑏,2 =

(︀
(𝐼 −𝛱0,𝐸

𝑘 )𝛽 · ∇𝑢ℐ , (𝐼 −𝛱0,𝐸
𝑘 )𝑒ℎ

)︀
𝐸

=
(︀
(𝐼 −𝛱0,𝐸

𝑘 )𝛽 · ∇𝑢, (𝐼 −𝛱0,𝐸
𝑘 )𝑒ℎ

)︀
𝐸
−
(︀
(𝐼 −𝛱0,𝐸

𝑘 )𝛽 · ∇𝑒ℐ , (𝐼 −𝛱0,𝐸
𝑘 )𝑒ℎ

)︀
𝐸

≤
(︁
‖(𝐼 −𝛱0,𝐸

𝑘 )𝛽 · ∇𝑢‖0,𝐸 + ‖𝛽 · ∇𝑒ℐ‖0,𝐸

)︁
‖(𝐼 −𝛱0,𝐸

𝑘 )𝑒ℎ‖0,𝐸

≤
(︁
‖(𝐼 −𝛱0,𝐸

𝑘 )𝛽 · ∇𝑢‖0,𝐸 + ‖𝛽 · ∇𝑒ℐ‖0,𝐸

)︁
‖(𝐼 −𝛱∇,𝐸

𝑘 )𝑒ℎ‖0,𝐸

. min

{︃
𝛽𝐸

𝜀1/2
,

1

𝜏
1/2
𝐸

}︃
ℎ𝐸

(︃
‖(𝐼 −𝛱0,𝐸

𝑘 )𝛽 · ∇𝑢‖0,𝐸

𝛽𝐸
+
‖𝛽 · ∇𝑒ℐ‖0,𝐸

𝛽𝐸

)︃
‖𝑒ℎ‖supg,𝐸

. 𝜎𝐸

(︂
|𝛽 · ∇𝑢|𝑠,𝐸

𝛽𝐸
+ |𝑢|𝑠+1,𝐸

)︂
ℎ𝑠+1

𝐸 ‖𝑒ℎ‖supg,𝐸

. 𝜎𝐸

(︂‖𝛽‖[𝑊 𝑠
∞(𝐸)]2

𝛽𝐸
+ 1
)︂

ℎ𝑠+1
𝐸 ‖𝑢‖𝑠+1,𝐸‖𝑒ℎ‖supg,𝐸 .

(5.22)

− 𝜂𝐸
𝑏,3: from the definition of 𝐿2-projection, the Poincaré inequality and Lemma 3.1, we infer

𝜂𝐸
𝑏,3 =

(︀
(𝐼 −𝛱0,𝐸

𝑘 )∇𝑢ℐ , 𝛽(𝛱0,𝐸
𝑘 𝑒ℎ −Π0,𝐸

0 𝑒ℎ)
)︀
𝐸

=
(︀
(𝐼 −𝛱0,𝐸

𝑘 )∇𝑢ℐ , (𝛽 −Π0,𝐸
0 𝛽)(𝛱0,𝐸

𝑘 𝑒ℎ −Π0,𝐸
0 𝑒ℎ)

)︀
𝐸

≤ ‖(𝐼 −𝛱0,𝐸
𝑘 )∇𝑢ℐ‖0,𝐸‖(𝐼 −Π0,𝐸

0 )𝛽‖𝐿∞‖(𝛱0,𝐸
𝑘 −Π0,𝐸

0 )𝑒ℎ‖0,𝐸

≤ ‖(𝐼 −𝛱0,𝐸
𝑘−1)∇𝑢ℐ‖0,𝐸‖(𝐼 −Π0,𝐸

0 )𝛽‖𝐿∞‖(𝐼 −Π0,𝐸
0 )𝑒ℎ‖0,𝐸

.
ℎ𝐸

𝜀1/2

(︀
‖∇𝑒ℐ‖0,𝐸 + ‖∇𝑒𝜋‖0,𝐸

)︀
‖(𝐼 −Π0,𝐸

0 )𝛽‖𝐿∞‖𝑒ℎ‖supg,𝐸

.
1

𝜀1/2
|𝛽|[𝑊 1

∞(𝐸)]2ℎ
𝑠+2
𝐸 |𝑢|𝑠+1,𝐸‖𝑒ℎ‖supg,𝐸 .

(5.23)

− 𝜂𝐸
𝑏,4: using similar computations of the previous item we obtain

𝜂𝐸
𝑏,4 =

(︀
(𝐼 −𝛱0,𝐸

𝑘 )∇𝑢ℐ , 𝛽Π0,𝐸
0 𝑒ℎ

)︀
𝐸

=
(︀
(𝐼 −𝛱0,𝐸

𝑘 )∇𝑢ℐ , (𝛽 −𝛱0,𝐸
𝑘 𝛽)Π0,𝐸

0 𝑒ℎ

)︀
𝐸

≤ ‖(𝐼 −𝛱0,𝐸
𝑘 )∇𝑢ℐ‖0,𝐸‖(𝐼 −Π𝑘,𝐸

0 )𝛽‖𝐿∞‖Π0,𝐸
0 𝑒ℎ‖0,𝐸

≤
(︀
‖∇𝑒ℐ‖0,𝐸 + ‖∇𝑒𝜋‖0,𝐸

)︀
‖(𝐼 −Π𝑘,𝐸

0 )𝛽‖𝐿∞‖𝑒ℎ‖0,𝐸

. |𝛽|[𝑊 𝑠+1
∞ (𝐸)]2ℎ

2𝑠+1
𝐸 |𝑢|𝑠+1,𝐸‖𝑒ℎ‖0,𝐸 .

(5.24)

− 𝜂𝐸
𝑏,5: exploiting the property of 𝐿2-projection and bound (5.6) we get

𝜂𝐸
𝑏,5 =

(︀
𝛱0,𝐸

𝑘 𝑢ℐ − 𝑢, 𝛽 ·𝛱0,𝐸
𝑘 ∇𝑒ℎ

)︀
𝐸

=
(︀
𝛱0,𝐸

𝑘 𝑢ℐ − 𝑢, 𝛽 ·𝛱0,𝐸
𝑘−1∇𝑒ℎ

)︀
𝐸

+
(︀
𝛱0,𝐸

𝑘 𝑢ℐ − 𝑢, 𝛽 · (𝛱0,𝐸
𝑘 −𝛱0,𝐸

𝑘−1)∇𝑒ℎ

)︀
𝐸

≤ ‖𝛱0,𝐸
𝑘 𝑢ℐ − 𝑢‖0,𝐸

(︁
‖𝛽 ·𝛱0,𝐸

𝑘−1∇𝑒ℎ‖0,𝐸 + 𝛽𝐸‖(𝛱0,𝐸
𝑘 −𝛱0,𝐸

𝑘−1)∇𝑒ℎ‖0,𝐸

)︁
≤
(︁
‖(𝐼 −𝛱0,𝐸

𝑘 )𝑢‖0,𝐸 + ‖𝑒ℐ‖0,𝐸

)︁(︁
‖𝛽 ·𝛱0,𝐸

𝑘−1∇𝑒ℎ‖0,𝐸 + 𝛽𝐸‖∇(𝐼 −𝛱∇,𝐸
𝑘 )𝑒ℎ‖0,𝐸

)︁
≤ min

{︃
𝛽𝐸

𝜀1/2
,

1

𝜏
1/2
𝐸

}︃(︁
‖(𝐼 −𝛱0,𝐸

𝑘 )𝑢‖0,𝐸 + ‖𝑒ℐ‖0,𝐸

)︁
‖𝑒ℎ‖supg,𝐸

. 𝜎𝐸ℎ𝑠+1
𝐸 |𝑢|𝑠+1,𝐸‖𝑒ℎ‖supg,𝐸 .

(5.25)
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− 𝜂𝐸
𝑏,6: using similar computations of the previous item we have

𝜂𝐸
𝑏,6 =

(︀
(𝐼 −𝛱0,𝐸

𝑘 )𝛽𝑢, (𝛱0,𝐸
𝑘 − 𝐼)∇𝑒ℎ

)︀
𝐸

≤ ‖(𝐼 −𝛱0,𝐸
𝑘 )𝛽𝑢‖0,𝐸‖(𝛱0,𝐸

𝑘 − 𝐼)∇𝑒ℎ‖0,𝐸 ≤ ‖(𝐼 −𝛱0,𝐸
𝑘 )𝛽𝑢‖0,𝐸‖∇(𝐼 −𝛱∇,𝐸

𝑘 )𝑒ℎ‖0,𝐸

≤ min

{︃
𝛽𝐸

𝜀1/2
,

1

𝜏
1/2
𝐸

}︃
‖(𝐼 −𝛱0,𝐸

𝑘 )𝛽𝑢‖0,𝐸

𝛽𝐸
‖𝑒ℎ‖supg,𝐸

. 𝜎𝐸
|𝛽𝑢|𝑠+1,𝐸

𝛽𝐸
ℎ𝑠+1

𝐸 ‖𝑒ℎ‖supg,𝐸

. 𝜎𝐸

‖𝛽‖[𝑊 𝑠+1
∞ (𝐸)]2

𝛽𝐸
ℎ𝑠+1

𝐸 ‖𝑢‖𝑠+1,𝐸‖𝑒ℎ‖supg,𝐸 .

(5.26)

The thesis now follows gathering (5.21)–(5.26) in (5.20). �

Lemma 5.7 (Estimate of 𝜂𝐸
𝑏,𝜕). Let 𝑏𝐸

𝜕,ℎ(·, ·) be the bilinear form in (4.6). Then under assump-
tions (A.1) and (A.2), the term 𝜂𝐸

𝑏,𝜕 can be bounded as follows

𝜂𝐸
𝑏,𝜕 .𝜎𝐸

‖𝛽‖[𝑊 𝑠+1
∞ (𝐸)]2

𝛽𝐸
ℎ𝑠+1

𝐸 ‖𝑢‖𝑠+1,𝐸‖𝑒ℎ‖supg,𝐸 +
∫︁

𝜕𝐸

(𝛽 · 𝑛𝐸)𝑒ℐ𝑒ℎ d𝑠

where 𝜎𝐸 is defined in (5.19).

Proof. Recalling definition (4.6) we need to estimate the terms

𝜂𝐸
𝑏,𝐴 := (𝛽 · ∇𝑢, 𝑒ℎ)𝐸 − (𝛽 · ∇𝛱0,𝐸

𝑘 𝑢ℐ , 𝛱
0,𝐸
𝑘 𝑒ℎ)𝐸 −

∫︁
𝜕𝐸

(𝛽 · 𝑛𝐸)(𝐼 −𝛱0,𝐸
𝑘 )𝑢ℐ𝛱

0,𝐸
𝑘 𝑒ℎ d𝑠,

𝜂𝐸
𝑏,𝐵 := (𝛱0,𝐸

𝑘 𝑢ℐ , 𝛽 · ∇𝛱0,𝐸
𝑘 𝑒ℎ)𝐸 − (𝑢, 𝛽 · ∇𝑒ℎ)𝐸 +

∫︁
𝜕𝐸

(𝛽 · 𝑛𝐸)(𝐼 −𝛱0,𝐸
𝑘 )𝑒ℎ𝛱0,𝐸

𝑘 𝑢ℐ d𝑠.

By integration by parts we have

𝜂𝐸
𝑏,𝐴 =

(︀
𝛽 · ∇𝑢, (𝐼 −𝛱0,𝐸

𝑘 )𝑒ℎ

)︀
𝐸

+
(︀
𝛽 · ∇(𝑢−𝛱0,𝐸

𝑘 𝑢ℐ), 𝛱0,𝐸
𝑘 𝑒ℎ

)︀
𝐸

−
∫︁

𝜕𝐸

(𝛽 · 𝑛𝐸)(𝐼 −𝛱0,𝐸
𝑘 )𝑢ℐ𝛱

0,𝐸
𝑘 𝑒ℎ d𝑠

=
(︀
𝛽 · ∇𝑢, (𝐼 −𝛱0,𝐸

𝑘 )𝑒ℎ

)︀
𝐸
−
(︀
𝑢−𝛱0,𝐸

𝑘 𝑢ℐ , 𝛽 · ∇𝛱0,𝐸
𝑘 𝑒ℎ

)︀
𝐸

+
∫︁

𝜕𝐸

(𝛽 · 𝑛𝐸)(𝑢− 𝑢ℐ)𝛱0,𝐸
𝑘 𝑒ℎ d𝑠

=
(︀
(𝐼 −𝛱0,𝐸

𝑘 )𝛽 · ∇𝑢, (𝐼 −𝛱0,𝐸
𝑘 )𝑒ℎ

)︀
𝐸

+
(︀
𝛱0,𝐸

𝑘 𝑢ℐ − 𝑢, 𝛽 · ∇𝛱0,𝐸
𝑘 𝑒ℎ

)︀
𝐸

+
∫︁

𝜕𝐸

(𝛽 · 𝑛𝐸)𝑒ℐ𝛱
0,𝐸
𝑘 𝑒ℎ d𝑠

=: 𝜂𝐸
𝑏,1 + 𝜂𝐸

𝑏,2 + 𝜂𝐸
𝑏,3,
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𝜂𝐸
𝑏,𝐵 =

(︀
𝛱0,𝐸

𝑘 𝑢ℐ − 𝑢, 𝛽 · ∇𝛱0,𝐸
𝑘 𝑒ℎ

)︀
𝐸
−
(︀
𝑢, 𝛽 · ∇(𝐼 −𝛱0,𝐸

𝑘 )𝑒ℎ

)︀
𝐸

+
∫︁

𝜕𝐸

(𝛽 · 𝑛𝐸)(𝐼 −𝛱0,𝐸
𝑘 )𝑒ℎ𝛱0,𝐸

𝑘 𝑢ℐ d𝑠

=
(︀
𝛱0,𝐸

𝑘 𝑢ℐ − 𝑢, 𝛽 · ∇𝛱0,𝐸
𝑘 𝑒ℎ

)︀
𝐸

+
(︀
𝛽 · ∇𝑢, (𝐼 −𝛱0,𝐸

𝑘 )𝑒ℎ

)︀
𝐸

+
∫︁

𝜕𝐸

(𝛽 · 𝑛𝐸)(𝐼 −𝛱0,𝐸
𝑘 )𝑒ℎ(𝛱0,𝐸

𝑘 𝑢ℐ − 𝑢) d𝑠

=
(︀
𝛱0,𝐸

𝑘 𝑢ℐ − 𝑢, 𝛽 · ∇𝛱0,𝐸
𝑘 𝑒ℎ

)︀
𝐸

+
(︀
(𝐼 −𝛱0,𝐸

𝑘 )𝛽 · ∇𝑢, (𝐼 −𝛱0,𝐸
𝑘 )𝑒ℎ

)︀
𝐸

+
∫︁

𝜕𝐸

(𝛽 · 𝑛𝐸)(𝐼 −𝛱0,𝐸
𝑘 )𝑒ℎ(𝛱0,𝐸

𝑘 𝑢ℐ − 𝑢) d𝑠

=: 𝜂𝐸
𝑏,2 + 𝜂𝐸

𝑏,1 + 𝜂𝐸
𝑏,4,

yielding the following expression for 𝜂𝐸
𝑏,𝜕

2𝜂𝐸
𝑏,𝜕 = 2𝜂𝐸

𝑏,1 + 2𝜂𝐸
𝑏,2 + 𝜂𝐸

𝑏,3 + 𝜂𝐸
𝑏,4. (5.27)

We now analyse each term 𝜂𝐸
𝑏,𝑖 for 𝑖 = 1, . . . , 4 in the sum above.

− 𝜂𝐸
𝑏,1: using the same computations in (5.22) we infer

𝜂𝐸
𝑏,1 =

(︀
(𝐼 −𝛱0,𝐸

𝑘 )𝛽 · ∇𝑢, (𝐼 −𝛱0,𝐸
𝑘 )𝑒ℎ

)︀
𝐸
. 𝜎𝐸

‖𝛽‖[𝑊 𝑠
∞(𝐸)]2

𝛽𝐸
ℎ𝑠+1

𝐸 ‖𝑢‖𝑠+1,𝐸‖𝑒ℎ‖supg,𝐸 . (5.28)

− 𝜂𝐸
𝑏,2: exploiting the computation in (5.25) we obtain

𝜂𝐸
𝑏,2 =

(︀
𝛱0,𝐸

𝑘 𝑢ℐ − 𝑢, 𝛽 · ∇𝛱0,𝐸
𝑘 𝑒ℎ

)︀
𝐸

=
(︀
𝛱0,𝐸

𝑘 𝑢ℐ − 𝑢, 𝛽 ·𝛱0,𝐸
𝑘−1∇𝑒ℎ

)︀
𝐸

+
(︀
𝛱0,𝐸

𝑘 𝑢ℐ − 𝑢, 𝛽 · (∇𝛱0,𝐸
𝑘 𝑒ℎ −𝛱0,𝐸

𝑘−1∇𝑒ℎ)
)︀
𝐸

≤ ‖𝛱0,𝐸
𝑘 𝑢ℐ − 𝑢‖0,𝐸

(︁
‖𝛽 ·𝛱0,𝐸

𝑘−1∇𝑒ℎ‖0,𝐸 + 𝛽𝐸‖𝛱0,𝐸
𝑘−1(∇𝑒ℎ −∇𝛱0,𝐸

𝑘 𝑒ℎ)‖0,𝐸

)︁
≤
(︁
‖(𝐼 −𝛱0,𝐸

𝑘 )𝑢‖0,𝐸 + ‖𝑒ℐ‖0,𝐸

)︁(︁
‖𝛽 ·𝛱0,𝐸

𝑘−1∇𝑒ℎ‖0,𝐸 + 𝛽𝐸‖∇(𝐼 −𝛱∇,𝐸
𝑘 )∇𝑒ℎ‖0,𝐸

)︁
≤ min

{︃
𝛽𝐸

𝜀1/2
,

1

𝜏
1/2
𝐸

}︃(︁
‖(𝐼 −𝛱0,𝐸

𝑘 )𝑢‖0,𝐸 + ‖𝑒ℐ‖0,𝐸

)︁
‖𝑒ℎ‖supg,𝐸

. 𝜎𝐸ℎ𝑠+1
𝐸 |𝑢|𝑠+1,𝐸‖𝑒ℎ‖supg,𝐸 .

(5.29)

− 𝜂𝐸
𝑏,3 +𝜂𝐸

𝑏,4: we use a scaled trace inequality [18] making use of the scaled norm |||𝑣|||21,𝐸 := ‖𝑣‖2𝐿2(𝐸) +ℎ2
𝐸 |𝑣|2𝐻1(𝐸)

for all 𝑣 ∈ 𝐻1(𝐸). We obtain

𝜂𝐸
𝑏,3 + 𝜂𝐸

𝑏,4 =
∫︁

𝜕𝐸

(𝛽 · 𝑛𝐸)𝑒ℐ𝛱
0,𝐸
𝑘 𝑒ℎ d𝑠 +

∫︁
𝜕𝐸

(𝛽 · 𝑛𝐸)(𝐼 −𝛱0,𝐸
𝑘 )𝑒ℎ(𝛱0,𝐸

𝑘 𝑢ℐ − 𝑢) d𝑠

=
∫︁

𝜕𝐸

(𝛽 · 𝑛𝐸)(𝛱0,𝐸
𝑘 − 𝐼)𝑒ℎ(𝑒ℐ + 𝑢−𝛱0,𝐸

𝑘 𝑢ℐ) d𝑠 +
∫︁

𝜕𝐸

(𝛽 · 𝑛𝐸)𝑒ℐ𝑒ℎ d𝑠

. 𝛽𝐸

(︀
‖𝑒ℐ‖𝐿2(𝜕𝐸) + ‖𝑢−𝛱0,𝐸

𝑘 𝑢ℐ‖𝐿2(𝜕𝐸)

)︀
‖(𝐼 −𝛱0,𝐸

𝑘 )𝑒ℎ‖𝐿2(𝜕𝐸) +
∫︁

𝜕𝐸

(𝛽 · 𝑛𝐸)𝑒ℐ𝑒ℎ d𝑠

. 𝛽𝐸ℎ−1
𝐸

(︀
|||𝑒ℐ |||1,𝐸 + |||𝑢−𝛱0,𝐸

𝑘 𝑢ℐ |||1,𝐸

)︀
‖(𝐼 −𝛱0,𝐸

𝑘 )𝑒ℎ‖0,𝐸 +
∫︁

𝜕𝐸

(𝛽 · 𝑛𝐸)𝑒ℐ𝑒ℎ d𝑠

. 𝛽𝐸

(︀
|||𝑒ℐ |||1,𝐸 + |||𝑢−𝛱0,𝐸

𝑘 𝑢|||1,𝐸

)︀
‖∇(𝐼 −𝛱∇,𝐸

𝑘 )𝑒ℎ‖0,𝐸 +
∫︁

𝜕𝐸

(𝛽 · 𝑛𝐸)𝑒ℐ𝑒ℎ d𝑠

. 𝜎𝐸ℎ𝑠+1
𝐸 |𝑢|𝑠+1,𝐸‖𝑒ℎ‖supg,𝐸 +

∫︁
𝜕𝐸

(𝛽 · 𝑛𝐸)𝑒ℐ𝑒ℎ d𝑠.

(5.30)
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The thesis now follows gathering (5.28), (5.29) and (5.30) in (5.27). �

Remark 5.3. The main difficulty in proving Lemmas 5.6 and 5.7 lays in handling a variable coefficient 𝛽 in
the presence of projection operators, without paying a price for small values of 𝜀. For form (4.5), we are able
to obtain a “damped” dependence on 𝜀: in estimate (5.18) the term 𝜀−1/2|𝛽|[𝑊 1

∞(𝐸)]2ℎ
𝑠+2
𝐸 |𝑢|𝑠+1,𝐸 blows up as

𝜀 → 0, but at the same time it is of higher order with respect to ℎ𝐸 . Instead, for the new form (4.6) we are able
to obtain full independence from 𝜀.

We are now ready to prove the convergence results for the proposed VEM SUPG scheme. The error estimates
in Lemmas 5.1–5.7 are explicit in the parameters of interest: the mesh size ℎ, the diffusive coefficient 𝜀, the
advective field 𝛽 and the SUPG parameter 𝜏𝐸 . In order to simplify the final estimate and to make clearer the
implications of the convergence results, in the following propositions we include the Sobolev regularity terms

for 𝑢, 𝑓 and the normalized norms
‖𝛽‖[𝑊 𝑚

𝑝 (𝐸)]2

𝛽𝐸
in the constant.

Proposition 5.3. Under the assumptions (A.1) and (A.2), let 𝑢 ∈ 𝑉 be the solution of equation (2.1) and
𝑢ℎ ∈ 𝑉ℎ(Ωℎ) be the solution of equation (4.14) obtained with the bilinear form 𝑏𝐸

𝑜,ℎ(·, ·) in (4.5). Then it holds
that

‖𝑢− 𝑢ℎ‖2supg .
∑︁

𝐸∈Ωℎ

Θ𝐸
𝑜

(︂
ℎ2𝑠

𝐸 (𝜀 + 𝜏𝐸𝛽2
𝐸 + 𝜏𝐸) + 𝜆2

𝐸ℎ
2(𝑠+2)
𝐸 + 𝜆2

𝐸𝛽2
𝐸ℎ

2(𝑠+1)
𝐸 +

+𝜏𝐸𝜀2ℎ
2(𝑠−1)
𝐸 + 𝛽2

𝐸

ℎ
2(𝑠+2)
𝐸

𝜀
+ 𝛽2

𝐸

ℎ2(2𝑠+1)

𝜀

)︃
,

where the constant Θ𝐸
𝑜 depends on ‖𝑢‖𝑠+1,𝐸, ‖𝑓‖𝑠+1,𝐸,

‖𝛽‖
[𝑊 𝑠+1
∞ (𝐸)]2

𝛽𝐸
·

Proof. The proof is a direct consequence of Proposition 5.2, Lemmas 5.1, 5.3, 5.4, 5.5, and 5.6, making use of
𝜎𝐸 = 𝛽𝐸𝜆𝐸 and estimating the last two terms in (5.18) as follows.

The penultimate term is bounded using the Poincaré inequality on the domain Ω∑︁
𝐸∈Ωℎ

|𝛽|[𝑊 𝑠+1
∞ (𝐸)]2ℎ

2𝑠+1
𝐸 |𝑢|𝑠+1,𝐸‖𝑒ℎ‖0,𝐸

≤

(︃ ∑︁
𝐸∈Ωℎ

𝛽2
𝐸 |𝛽/𝛽𝐸 |2[𝑊 𝑠+1

∞ (𝐸)]2
ℎ

2(2𝑠+1)
𝐸 |𝑢|2𝑠+1,𝐸

)︃1/2(︃ ∑︁
𝐸∈Ωℎ

‖𝑒ℎ‖20,𝐸

)︃1/2

.

(︃ ∑︁
𝐸∈Ωℎ

𝛽2
𝐸ℎ

2(2𝑠+1)
𝐸 |𝑢|2𝑠+1,𝐸

)︃1/2

‖𝑒ℎ‖0,Ω

.

(︃ ∑︁
𝐸∈Ωℎ

𝛽2
𝐸ℎ

2(2𝑠+1)
𝐸 |𝑢|2𝑠+1,𝐸

)︃1/2

‖∇𝑒ℎ‖0,Ω

.

(︃ ∑︁
𝐸∈Ωℎ

𝛽2
𝐸

ℎ
2(2𝑠+1)
𝐸

𝜀
|𝑢|2𝑠+1,𝐸

)︃1/2

‖𝑒ℎ‖supg.

For the last term, noticing that 𝑒ℐ , 𝑒ℎ ∈ 𝑉 , it holds that∑︁
𝐸∈Ωℎ

∫︁
𝜕𝐸

(𝛽 · 𝑛𝐸)𝑒ℐ𝑒ℎ d𝑠 = 0. (5.31)

�
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Proposition 5.4. Under the assumptions (A.1) and (A.2), let 𝑢 ∈ 𝑉 be the solution of equation (2.1) and
𝑢ℎ ∈ 𝑉ℎ(Ωℎ) be the solution of equation (4.14) obtained with the bilinear form 𝑏𝐸

𝜕,ℎ(·, ·) in (4.6). Then it holds
that

‖𝑢− 𝑢ℎ‖2supg .
∑︁

𝐸∈Ωℎ

Θ𝐸
𝜕

(︁
ℎ2𝑠

𝐸 (𝜀 + 𝜏𝐸𝛽2
𝐸 + 𝜏𝐸) + 𝜆2

𝐸ℎ
2(𝑠+2)
𝐸 + 𝛽2

𝐸𝜆2
𝐸ℎ

2(𝑠+1)
𝐸 + 𝜏𝐸𝜀2ℎ

2(𝑠−1)
𝐸

)︁
where the constant Θ𝐸

𝜕 depends on ‖𝑢‖𝑠+1,𝐸, ‖𝑓‖𝑠+1,𝐸,
‖𝛽‖

[𝑊 𝑠+1
∞ (𝐸)]2

𝛽𝐸
·

Proof. The proof follows from Proposition 5.2, Lemmas 5.1, 5.3, 5.4, 5.5, 5.7 and equation (5.31), also recalling
that 𝜎𝐸 = 𝛽2

𝐸𝜆2
𝐸 . �

It is well known that in order to obtain a stable and optimal convergent method both in the convective and
in the diffusion dominated regime the SUPG parameter 𝜏𝐸 has to be chosen in accordance with

𝜏𝐸 ≃ min
{︂

ℎ𝐸

𝛽𝐸
,
ℎ2

𝐸

𝜀

}︂
.

Let us analyse the asymptotic order of convergence for the two versions of VEM scheme in both regimes (where
we recall 𝛽𝐸 . 1 for all 𝐸 ∈ Ωℎ due to the scaling choice (A.0).
− convection dominated regime 𝜀 ≪ ℎ𝐸𝛽𝐸 : 𝜏𝐸 = 𝛽−1

𝐸 ℎ𝐸 , 𝜆2
𝐸 = 𝛽−1

𝐸 ℎ−1
𝐸 ,

– form 𝑏𝐸
𝑜,ℎ(·, ·)

‖𝑢− 𝑢ℎ‖2supg .
∑︁

𝐸∈Ωℎ

(︀
ℎ2𝑠+1

𝐸 (𝛽𝐸 + 𝛽−1
𝐸 ) + 𝛽−1

𝐸 ℎ2𝑠+3
𝐸 + 𝜀ℎ2𝑠

𝐸 + 𝛽−1
𝐸 𝜀2ℎ2𝑠−1

𝐸

+ 𝛽2
𝐸𝜀−1ℎ

2(𝑠+2)
𝐸 + 𝛽2

𝐸𝜀−1ℎ
2(2𝑠+1)
𝐸

)︀
= 𝑂

(︀
ℎ2𝑠+1(1 + 𝜀−1ℎ3)

)︀
;

– form 𝑏𝐸
𝜕,ℎ(·, ·)

‖𝑢− 𝑢ℎ‖2supg .
∑︁

𝐸∈Ωℎ

(︀
ℎ2𝑠+1

𝐸 (𝛽𝐸 + 𝛽−1
𝐸 ) + 𝛽−1

𝐸 ℎ2𝑠+3
𝐸 + 𝜀ℎ2𝑠

𝐸 + 𝛽−1
𝐸 𝜀2ℎ2𝑠−1

𝐸

)︀
= 𝑂(ℎ2𝑠+1) ;

− diffusion dominated regime 𝛽𝐸ℎ𝐸 ≪ 𝜀: 𝜏𝐸 = ℎ2
𝐸𝜀−1, 𝜆2

𝐸 = 𝜀−1,

– form 𝑏𝐸
𝑜,ℎ(·, ·)

‖𝑢− 𝑢ℎ‖2supg .
∑︁

𝐸∈Ωℎ

(︁
𝜀ℎ2𝑠

𝐸 + 𝛽2
𝐸𝜀−1ℎ

2(𝑠+1)
𝐸 + 𝜀−1ℎ

2(𝑠+2)
𝐸

)︁
= 𝑂(𝜀ℎ2𝑠) ;

– form 𝑏𝐸
𝜕,ℎ(·, ·)

‖𝑢− 𝑢ℎ‖2supg .
∑︁

𝐸∈Ωℎ

(︁
𝜀ℎ2𝑠

𝐸 + 𝛽2
𝐸𝜀−1ℎ

2(𝑠+1)
𝐸 + 𝜀−1ℎ

2(𝑠+2)
𝐸

)︁
= 𝑂(𝜀ℎ2𝑠).

We conclude that in the diffusion dominated regime both schemes yield the optimal rate of convergence. In
the convection dominated regime only the scheme derived from the bilinear forms 𝑏𝐸

𝜕,ℎ(·, ·) has the optimal rate
of convergence. For the scheme derived from 𝑏𝐸

𝑜,ℎ(·, ·) the error is polluted by 𝜀−1. Nevertheless, we stress that
such a factor appears in front of the “higher” order term ℎ3, therefore the influence of the diffusion coefficient
is strongly reduced.

6. Numerical experiments

In this section we numerically validate the proposed methods by means of the following model problem.
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Figure 1. Example of meshes used for the present test case.

Model problem

We consider a family of problems in the unit square Ω = (0, 1)2, one per each choice of the parameter 𝜀. We
select the advection term as

𝛽(𝑥, 𝑦) :=
[︂
−2 𝜋 sin(𝜋 (𝑥 + 2 𝑦))

𝜋 sin(𝜋 (𝑥 + 2 𝑦))

]︂
.

We choose the boundary conditions and the source term (which turns out to depend on 𝜀) in such a way that
the analytical solution is always the function

𝑢(𝑥, 𝑦) := sin(𝜋 𝑥) sin(𝜋 𝑦).

Guided by the definition of the || · ||supg norm (cf. (5.1) and (5.2)), by the error estimates of Propositions 5.3–
5.4, and noticing that the discrete solution 𝑢ℎ ∈ 𝑉ℎ(Ωℎ) is not explicitly point-wise available, the following error
quantities will be considered.

– 𝐻1−seminorm error

𝑒𝐻1 :=
√︃∑︁

𝐸∈𝒯ℎ

⃦⃦
∇(𝑢−Π∇𝑘 𝑢ℎ)

⃦⃦2

0,𝐸
;
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Figure 2. Effect of the SUPG term on the convergence histories: the case 𝜀 = 10−3.

– convective norm error

𝑒𝒞 :=

⎯⎸⎸⎷∑︁
𝐸∈𝒯ℎ

(︃
𝜀

⃦⃦⃦⃦
∇(𝑢−Π∇𝑘 𝑢ℎ)

⃦⃦⃦⃦2

0,𝐸

+ 𝜏𝐸

⃦⃦⃦⃦
𝛽 · ∇(𝑢−Π∇𝑘 𝑢ℎ)

⃦⃦⃦⃦2

0,𝐸

)︃
.

As far as the mesh types are concerned, we take the following:

– quad: a mesh composed by structured quadrilaterals;
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Figure 3. Effect of the SUPG term on the convergence histories: the case 𝜀 = 10−6.

– tria: a Delaunay triangulation of the unit square;
– voro: a centroidal Voronoi tessellation of the unit square where the cell shapes are optimized via a Lloyd

algorithm
– rand: a Voronoi tessellation of the unit square where the cell shapes are not optimized.

In Figure 1 we show an example of such meshes, and we also remark that the former two types can be used in
connection with a standard finite element procedure, contrary to the latter two.
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Figure 4. Convergence lines for the case 𝜀 = 10−3, mesh types tria and rand.

Moreover, since we are interested in a robustness analysis with respect to the diffusion parameter, for each mesh
sequence we take

𝜀 = 10−3 and 10−6.

We recall that, for the stabilized scheme here proposed, in the presence of a regular solution the expected
convergence rate in the convective norm is, in the convection dominated regime and for practical mesh ranges,
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Figure 5. Convergence lines for the case 𝜀 = 10−6, mesh types tria and rand.

𝑂(ℎ𝑘+1/2). This justifies the slope lines plotted in the relevant figures. For the 𝐻1 norm, we instead plot standard
𝑂(ℎ𝑘) slopes, which is the best one can expect from the interpolation estimates.

Effect of the SUPG stabilization

Before assessing the convergence properties of the proposed methods, we check the effect of inserting the
SUPG term in the variational formulation of the problem. Here we focus on the first choice for the convective
bi-linear form, without the algebraical skew-symmetrization; namely we here use form (4.5).
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Table 1. Diffference between the stiffness matrices considering 𝑏𝐸
𝑜,ℎ(·, ·) or 𝑏𝐸

𝜕,ℎ(·, ·).

𝑘 voro

1 1.1221e-15 1.7536e-17
2 9.2636e-16 2.3161e-17

In Figures 2 and 3 we show the convergence graphs for different approximation degrees 𝑘 and for each type of
the meshes. The cases with and without the SUPG term are labelled as SUPG and NONE, respectively. As expected,
dropping the SUPG term clearly deteriorates the quality of the discrete solutions for all approximation degree 𝑘,
the degeneration being heavier for smaller 𝜀. We do not report the results for “large” 𝜀, but we have experienced
that, of course, both the SUPG and the NONE approaches give similar outcomes, attaining the correct convergence
rate.

Incidentally, we remark that Figures 2 and 3 also display the robustness of the present SUPG virtual element
approach with respect to element shape and distortion. In fact, given an approximation degree 𝑘, the convergence
histories are rather similar for all the mesh types, even though the rand meshes are less structured and contain
edges that are very small with respect to the element diameter.

Different discrete convective bi-linear forms

We now present the numerical results for different variants of the convective term approximation. More pre-
cisely, we consider four types of (local) discrete convective terms: 𝑏𝐸

𝑜,ℎ(·, ·) and 𝑏𝐸
𝜕,ℎ(·, ·), and their skew-symmetric

counterparts, see (4.5), (4.6) and (4.7). We refer to such approximations as orig and boun, respectively, while
we label their skew-symmetric counterparts as origSkew and bounSkew (the ones covered by the theoretical
analysis developed in Sect. 5).

To avoid instabilities in the convection dominated regime, in what follows we always take advantage of the
SUPG stabilization.

In Figures 4 and 5 we collect the results with the diffusion coefficients 𝜀 = 10−3 and 𝜀 = 10−6, respectively.
We here show the results only for the mesh types tria and rand since the results obtained with the other types
are very similar. We notice that the convergence rate of both error norms 𝑒𝒞 and 𝑒𝐻1 are the expected ones,
and they are robust in the parameter 𝜀. When we consider the 𝐻1-seminorm error 𝑒𝐻1 , we observe that the
origSkew behaves slightly worst than the other three discrete forms, especially for the approximation degrees
𝑘 = 2, 3, and independently of the values of 𝜀.

We conclude the section by noticing that 𝑏𝐸
𝜕,ℎ(·, ·) and 𝑏𝐸

𝑜,ℎ(·, ·) coincide for a constant convection term 𝛽 (the
proof can be easily performed by a direct computation). To have a numerical evidence about this fact, we have
considered a problem with constant vector field 𝛽 and compared the stiffness matrices provided by 𝑏𝐸

𝑜,ℎ(·, ·) and
𝑏𝐸
𝜕,ℎ(·, ·), respectively. For every mesh and every approximation degree, we have found that they always differ

up to machine precision. Here we show the data (norms of the difference between the stiffness matrices) only
for the finest voro mesh and for 𝑘 = 1, 2, see Table 1.
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formulation of advection-diffusion problems. Comput. Methods Appl. Mech. Eng. 293 (2016) 18–40.
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