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1ADAMSS Center, Università degli Studi di Milano, Milan, Italy
e-mail: giacomo.aletti@unimi.it

2IMT School for Advanced Studies, Lucca, Italy
e-mail: irene.crimaldi@imtlucca.it

Abstract: We introduce the Generalized Rescaled Pólya (GRP) urn, that
provides a generative model for a chi-squared test of goodness of fit for
the long-term probabilities of clustered data, with independence between
clusters and correlation, due to a reinforcement mechanism, inside each
cluster. We apply the proposed test to a data set of Twitter posts about
COVID-19 pandemic: in a few words, for a classical chi-squared test the
data result strongly significant for the rejection of the null hypothesis (the
daily long-run sentiment rate remains constant), but, taking into account
the correlation among data, the introduced test leads to a different conclu-
sion. Beside the statistical application, we point out that the GRP urn is
a simple variant of the standard Eggenberger-Pólya urn, that, with suit-
able choices of the parameters, shows “local” reinforcement, almost sure
convergence of the empirical mean to a deterministic limit and different
asymptotic behaviours of the predictive mean. Moreover, the study of this
model provides the opportunity to analyze stochastic approximation dy-
namics, that are unusual in the related literature.
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2 The Generalized Rescaled Pólya (GRP) urn . . . . . . . . . . . . . . 1638
3 Related literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1640
4 Main theorem: goodness of fit result . . . . . . . . . . . . . . . . . . 1642

arXiv: 2010.06373
∗Partially supported by the Italian “Programma di Attività Integrata” (PAI), project
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1. Introduction

The standard Eggenberger-Pólya urn (see [28, 40]) has been widely studied and
generalized (for instance, some recent variants can be found in [6, 7, 14, 18, 21,
38, 39, 40]). In its simplest form, this model with k-colors works as follows. An
urn contains N0 i balls of color i, for i = 1, . . . , k, and, at each discrete time, a
ball is extracted from the urn and then it is returned inside the urn together
with α > 0 additional balls of the same color. Therefore, if we denote by Nn i

the number of balls of color i in the urn at time n, we have

Nn i = Nn−1 i + αξn i for n ≥ 1,

where ξn i = 1 if the extracted ball at time n is of color i, and ξn i = 0 otherwise.
The parameter α regulates the reinforcement mechanism: the greater α, the
greater the dependence of Nn i on

∑n
h=1 ξh i.

The Generalized Rescaled Pólya (GRP) urn model is characterized by the
introduction of the sequence (βn)n of parameters, together with the replacement
of the parameter α of the original model by a sequence (αn)n, so that

Nn i = bi +Bn i with

Bn+1 i = βnBn i + αn+1ξn+1 i n ≥ 0.

Therefore, the urn initially contains bi+B0 i balls of color i and the parameters
βn ≥ 0, together with αn > 0, regulate the reinforcement mechanism. More
precisely, the term βnBn i links Nn+1 i to the “configuration” at time n through
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the “scaling” parameter βn, and the term αn+1ξn+1 i links Nn+1 i to the outcome
of the extraction at time n+ 1 through the parameter αn+1.

We are going to show that, with a suitable choice of the model parameters, we
have a long-term almost sure convergence of the empirical mean

∑N
n=1 ξn i/N

to the deterministic limit pi = bi/
∑k

j=1 bj , and a chi-squared goodness of fit
result for the long-term probabilities {p1, . . . , pk}. In particular, regarding the
last point, we have that the chi-squared statistics

χ2 = N

k∑
i=1

(p̂i − pi)
2

pi
=

k∑
i=1

(Oi −Npi)
2

Npi
, (1.1)

whereN is the size of the sample, p̂i = Oi/N , with Oi =
∑N

n=1 ξn i the number of
observations equal to i in the sample, is asymptotically distributed as χ2(k−1)λ,
with λ > 1, or χ2(k − 1)N1−2υλ, where λ > 0 may be smaller than 1, but υ
is always strictly smaller than 1/2. In both cases, the presence of correlation
among observations mitigates the effect in (1.1) of the sample size N , that
multiplies the chi-squared distance between the observed frequencies and the
expected probabilities. This aspect is important for the statistical applications
in the context of a “big sample”, when a small value of the chi-squared distance
might be significant, and hence a correction related to the correlation between
observations is desirable (see, for instance, [12, 15, 17, 31, 32, 36, 44, 48, 49, 53]).
More precisely, in the first case, the observed value of the chi-squared distance
has to be compared with the “critical” value χ2

1−θ(k−1)λ/N , where χ2
1−θ(k−1)

denotes the quantile of order 1− θ of the chi-squared distribution χ2(k− 1). In
the second case, the critical value for the chi-squared distance becomes χ2

1−θ(k−
1)λ/N2υ, where, although the constant λ may be smaller than 1, the effect of
the sample size N is mitigated by the exponent 2υ < 1. In other words, for this
second case, the Fisher information given by the sample does not scale with the
sample size N , but with rate N2υ.

Summing up, the GRP urn provides a theoretical framework for a chi-squared
test of goodness of fit for the long-term probabilities of correlated data, gener-
ated according to a reinforcement mechanism. Specifically, we describe a possible
application in the context of clustered data, with independence between clusters
and correlation, due to a reinforcement mechanism, inside each cluster. In par-
ticular, we develop a suitable estimation technique for the fundamental model
parameters. We then apply the proposed test to a data set of Twitter posts
about COVID-19 pandemic. Given the null hypothesis that the daily long-run
sentiment rate of the posts is the same for all the considered days (suitably
spaced days in the period February 20th – April 20th 2020), performing a clas-
sical χ2 test, the data result strongly significant for the rejection of the null
hypothesis, while, taking into account the correlation among posts sent in the
same day, the proposed test leads to a different conclusion.

The sequel of the paper is so structured. In Section 2 we set up the nota-
tion and we define the GRP urn. In Section 3 we illustrate its relationships
with previous models and we discuss the connections with related literature.
In particular, the object of the present work gives us the opportunity to study
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Stochastic Approximation (SA) dynamics, which are infrequent in SA literature
and so fill in some theoretical gaps. In Section 4 we provide the main result of
this work, that is the almost sure convergence of the empirical means to the de-
terministic limits pi and the goodness of fit result for the long-term probabilities
pi, together with comments and examples. In Section 5 we describe a possible
statistical application of the GRP urn and the related results: a chi-squared test
of goodness of fit for the long-term probabilities of clustered data, with inde-
pendence between clusters and correlation, due to a reinforcement mechanism,
inside each cluster. We apply the proposed test to a data set of Twitter posts
about COVID-19 pandemic. In Section 7 we state two convergence results for
the empirical means, which are the basis for the proof of the main theorem.
All the shown theoretical results are analytically proven. The proofs are left
to Section A in the Appendix, except for the proof of Theorem 7.1, which is
methodologically new and emphasizes new techniques of martingale limit theory
and so it is illustrated in Section 8. Finally, in the Appendix we also provide
some complements, some technical lemmas and some recalls about stochastic
approximation theory and about stable convergence.

2. The Generalized Rescaled Pólya (GRP) urn

In all the sequel, we suppose given two sequences of parameters (αn)n≥1, with
αn > 0 and (βn)n≥0 with βn ≥ 0. Given a vector x = (x1, . . . , xk)

� ∈ R
k, we set

|x| =
∑k

i=1 |xi| and ‖x‖2 = x�x =
∑k

i=1 |xi|2. Moreover we denote by 1 and 0
the vectors with all the components equal to 1 and equal to 0, respectively.

The urn initially contains bi + B0 i > 0 distinct balls of color i, with i =
1, . . . , k. We set b = (b1, . . . , bk)

� andB0 = (B0 1, . . . , B0 k)
�. We assume |b| > 0

and we set p = b
|b| . At each discrete time (n+1) ≥ 1, a ball is drawn at random

from the urn, obtaining the random vector ξn+1 = (ξn+1 1, . . . , ξn+1 k)
� defined

as

ξn+1 i =

{
1 when the extracted ball at time n+ 1 is of color i

0 otherwise,

and the number of balls in the urn is so updated:

Nn+1 = b+Bn+1 with Bn+1 = βnBn + αn+1ξn+1 , (2.1)

which gives (since |ξn+1| = 1)

|Bn+1| = βn|Bn|+ αn+1.

Therefore, setting r∗n = |Nn| = |b|+ |Bn|, we get

r∗n+1 = r∗n + (βn − 1)|Bn|+ αn+1, (2.2)

that is
r∗n+1 − r∗n = |b|(1− βn)− r∗n(1− βn) + αn+1. (2.3)
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Moreover, setting F0 equal to the trivial σ-field and Fn = σ(ξ1, . . . , ξn) for
n ≥ 1, the conditional probabilities ψn = (ψn 1, . . . , ψnk)

� of the extraction
process, also called predictive means, are

ψn = E[ξn+1|Fn] =
Nn

|Nn|
=

b+Bn

r∗n
n ≥ 0. (2.4)

It is obvious that we have |ψn| = 1. Moreover, when βn > 0 for all n, the prob-
ability ψn i results increasing with the number of times we observed the value
i, that is the random variables ξn i are generated according to a reinforcement
mechanism: the probability that the extraction of color i occurs has an increas-
ing dependence on the number of extractions of color i occurred in the past (see,
e.g. [47]). More precisely, we have

ψn =
b+B0

∏n−1
j=0 βj +

∑n
h=1

(
αh

∏n−1
j=h βj

)
ξh

|b|+ |B0|
∏n−1

j=0 βj +
∑n

h=1

(
αh

∏n−1
j=h βj

) . (2.5)

The dependence of ψn on ξh depends on the factor f(h, n) = αh

∏n−1
j=h βj , with

1 ≤ h ≤ n, n ≥ 0. In the case of the standard Eggenberger-Pólya urn, that
corresponds to αn = α > 0 and βn = 1 for all n, each observation ξh has the
same “weight” f(h, n) = α. Instead, if the factor f(h, n) increases with h, then
the main contribution is given by the most recent extractions. We refer to this
phenomenon as “local” reinforcement. For instance, this is the case when (αn)
is increasing and βn = 1 for all n. Another case is when αn = α > 0 and βn < 1
for all n. The case βn = 0 for all n is an extreme case, for which ψn depends only
on the last extraction ξn (recall that conventionally

∏n−1
j=n = 1). For the next

examples, we will show that they exhibit a broader sense local reinforcement,
in the sense that the “weight” of the observations is eventually increasing with
time.

By means of (2.4), together with (2.1) and (2.2), and recalling that p = b/|b|,
we have

ψn+1 −ψn = − (1− βn)

r∗n+1

|b|
(
ψn − p

)
+

αn+1

r∗n+1

(
ξn+1 −ψn

)
. (2.6)

Setting θn = ψn − p and ΔMn+1 = ξn+1 −ψn = ξn+1 − p− θn and letting

εn = |b| (1−βn)
r∗n+1

and δn = αn+1/r
∗
n+1, from (2.6) we obtain

ψn+1 −ψn = −εn(ψn − p) + δnΔMn+1 (2.7)

and so

θn+1 − θn = −εnθn + δnΔMn+1 . (2.8)

Therefore, the asymptotic behaviour of (θn) depends on the two sequences (εn)n
and (δn)n.
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Finally, we observe that, setting ξN =
∑N

n=1 ξn/N and μn = ξn − p, we
have the equality

μn+1 − μn = − 1

n
(μn − θn) +

1

n
ΔMn+1, (2.9)

that links the behaviour of (μn) and the one of (θn).
Different kinds of sequences (εn)n and (δn)n provide different kinds of asymp-

totic behaviour of θn and of μn, i.e. of the predictive mean ψn and of the
empirical mean ξn. In Section 4, we provide two cases in which we have a long-

term almost sure convergence of the empirical mean
∑N

n=1 ξn i/N toward the
constant pi = bi/|b|, together with a chi-squared goodness of fit result. We note
that the quantities p1, . . . , pk are related to the initial composition of the urn
(since bi is the number of balls of color i that remains constant along time, while
the quantity Bn i is updated according to the reinforcement mechanism), but it
can be seen as a (typically unknown) long-term probability distribution on the
possible values (colors) {1, . . . , k}.

3. Related literature

The particular case when in the GRP urn model we have βn = β = 0 for all
n corresponds to a version of the so-called “memory-1 senile reinforced random
walk” on a star-shaped graph introduced in [34]. The case αn = α > 0 and
βn = β = 1 for all n corresponds to the standard Eggenberger-Pólya urn with
an initial number N0 i = bi+B0 i of balls of color i. When (αn) is a not-constant
sequence, while βn = β = 1 for all n, the GRP urn coincides with the variant of
the Eggenberger-Pólya urn introduced in [46] (see also [47, Sec. 3.2]). Instead,
when β �= 1, the GRP urn does not fall in any variants of the Eggenberger-Pólya
urn discussed in [47, Sec. 3.2].

The case when αn = α > 0 and βn = β ≥ 0 for all n corresponds to the
Rescaled Pólya (RP) urn introduced and studied in [1] and applied in [5]. It is
worthwhile to point out that the two cases studied in the present work do not
include (and are not included in) the case studied in [1]. Moreover, the techniques
employed here and in [1] are completely different: when βn = β ∈ [0, 1) as in
[1], the jumps Δψn do not vanish and the process ψ = (ψn)n converges to
a stationary Markov chain and so the appropriate Markov ergodic theory is
employed; in this work, we have |Δψn| = o(1), so that the martingale limit
theory is here exploited to achieve the asymptotic results. Obviously, the two
techniques are not exchangeable or adaptable from one contest to the other one.

When (βn) is not identically equal to 1, since the first term in the right hand
of the above relation, the GRP urn does not belong to the class of Reinforced
Stochastic Processes (RSPs) studied in [2, 4, 3, 23, 24, 26]. Indeed, the RSPs are
characterized by a “strict” reinforcement mechanism such that ξn i = 1 implies
ψn i > ψn−1 i and so, as a consequence, ψn i has an increasing dependence on the
number of times we have ξh i = 1 for h = 1, . . . , n. When (βn) is not identically
equal to 1, the GRP urn does not satisfy the “strict” reinforcement mechanism,
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because the first term is positive or negative according to the sign of (1−βn) and
of (ψn − p). Furthermore, we observe that equation (2.6) recalls the dynamics
of a RSP with a “forcing input” (see [2, 23, 51]), but the main difference relies
on the fact that such a process is driven by a classical stochastic approximation
dynamics, that is a dynamics of the kind (2.7) with εn = δn (up to a constant)
with

∑
n εn = +∞ and

∑
n ε

2
n < +∞, while the GRP urn model also allows for

εn and δn with different rates and also for

•
∑

n εn = +∞ and
∑

n δ
2
n = +∞ or

•
∑

n εn < +∞.

Since (2.7) is the fundamental equation of the Stochastic Approximation (SA)
theory, we deem it appropriate to say a few more words on the relationship
of the present work with the SA literature. The case when δn = cεn in (2.7) is
essentially covered by the Stochastic Approximation (SA) theory (see Section E,
where we refer to [29, 37, 43, 45, 56]. See also [9, 30]). The most known case
is when

∑
n εn = +∞ and

∑
n ε

2
n < +∞. The case εn → 0,

∑
n εn = +∞ and∑

n ε
2
n = +∞ is less usual in literature, but it is well characterized in [37]. The

case when (εn)n and (δn)n in (2.7) go to zero with different rates is typically
neglected in SA literature. To our best knowledge, it is taken into consideration
only in [45], where the weak convergence rate of the sequence (ψN ) toward
a certain point ψ∗ is established under suitable assumptions, given the event
{ψN → ψ∗}. No result is given for the empirical mean ξN , which instead is
the focus of the present paper (see Theorem 4.1 below, whose proof is based on
Theorem 7.1). More precisely, the assumptions on εn and δn in the following
Theorem 7.1 imply assumption (A1.3) in [45] and so Theorem 1 in that paper
provides the weak convergence rate of the sequence (ψN −ψ∗) given the event
{ψN → ψ∗}. However, this result is not useful for our scope because of two
reasons: first, we need convergence results for the empirical mean ξN , not for the
predictive mean ψN ; second, in one case included in Theorem 7.1 (see Section 7
for more details), it seems to us not immediate to check the convergence of the
predictive means and so we develop another technique that does not ask for this
convergence (see Section 8). Hence, the contribution of Theorem 7.1 to the SA
literature is that, for a dynamics of the type (2.7) with (εn)n and (δn)n going to
zero with different rates, it provides the asymptotic behaviour of the empirical
mean ξN , covering a case when

∑
n εn = +∞ and

∑
n δ

2
n = +∞ and without

requiring the convergence of the empirical means ψN .
Finally, it is worthwhile to point out that we also analyze the case when∑
n εn < +∞, which is also excluded in SA literature and so it could be rele-

vant in that field. Specifically, we prove almost sure convergence of the predictive
means and of the empirical means toward a random variable and we give a cen-
tral limit theorem in the sense of stable convergence. However, even if interesting
from a theoretical point of view, we collect these results in Section B, because
they are not related to the chi-squared test of goodness of fit.

The following statistical application of the GRP urn was inspired by [1, 15,
42]. However, those papers only deal with the case when the statistics (1.1) is
asymptotically distributed as χ2(k − 1)λ, with λ > 1, while we also face the
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case when the statistics (1.1) is asymptotically distributed as χ2(k− 1)N1−2υλ,
illustrating a suitable estimation procedure for the fundamental parameters η =
1 − 2υ and λ. To the best of our knowledge, this is the first work presenting
a model that provides a theoretical framework for a such chi-squared test of
goodness of fit.

4. Main theorem: goodness of fit result

Given a sample (ξ1, . . . , ξN ) generated by a GRP urn, for each i = 1, . . . , k, the
statistics

Oi = #{n = 1, . . . , N : ξn i = 1} =

N∑
n=1

ξn i

counts the number of times we observed the value i. (Note that this random
variable depends on the sample size N , but we simply use the symbol Oi, instead
of ON i.) The theorem below states, under suitable assumptions, the almost

sure convergence of the empirical mean p̂i = Oi/N =
∑N

n=1 ξn i/N toward the
probability pi, together with a chi-squared goodness of fit test for the long-term
probabilities p1, . . . , pk. More precisely, we prove the following result:

Theorem 4.1. Assume pi > 0 for all i = 1, . . . , k and suppose to be in one of
the following cases:

a) εn = (n+ 1)−ε and δn = cεn, with ε ∈ (0, 1] and c > 0, or
b) εn = (n+ 1)−ε, δn ∼ c(n+ 1)−δ, with ε ∈ (0, 1), δ ∈ (ε/2, ε) and c > 0.

Define the constants υ and λ as

υ =

{
1/2 in case a)

1/2− (ε− δ) < 1/2 in case b)

and

λ =

⎧⎪⎨⎪⎩
(c+ 1)2 in case a) with ε ∈ (0, 1) ,

(c+ 1)2 + c2 = [2c(c+ 1) + 1] in case a) with ε = 1 ,
c2

1+2(ε−δ) in case b) .

(4.1)

Then p̂i = Oi/N
a.s.−→ pi and

1

N1−2υ

k∑
i=1

(Oi −Npi)
2

Npi
= N2υ

k∑
i=1

(p̂i − pi)
2

pi

d−→
N→∞

W∗ = λW0

where W0 has distribution χ2(k − 1) = Γ
(
k−1
2 , 1

2 ) and, consequently, W∗ has

distribution Γ
(
k−1
2 , 1

2λ

)
.

We note that λ is a constant greater than 1 in case a); while, in case b), it is a
strictly positive quantity. Moreover, in case b), we have 0 < (ε− δ) < ε/2 < 1/2
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and so (1− 2υ) = 2(ε− δ) ∈ (0, 1). As a consequence, we have N1−2υλ > 1 for
N large enough.

In the next two examples we show that it is possible to construct suitable
sequences (αn)n and (βn)n of the model such that the corresponding sequences
(εn)n and (δn) converge to zero with the same rate or with different rates and
satisfy the assumptions a) or b) of the above theorem, respectively.

Example 4.1. (Case εn = (n+ 1)−ε and δn = cεn, with ε > 0 and c > 0)
Take αn+1 = c|b|(1 − βn), with βn ∈ [0, 1) and c > 0, that implies δn =

αn+1

r∗n+1
= c |b|(1−βn)

r∗n+1
= cεn. Set r

∗
n = (1+ c)|b|(1− tn) so that from (2.3) we obtain

tn+1 = βntn. Hence, we have

tn+1 = t0

n∏
k=0

βk =
c|b| − |B0|
(1 + c)|b|

n∏
k=0

βk

and so

r∗n+1 = (1 + c)|b|+
(
|B0| − c|b|

) n∏
k=0

βk.

Therefore, setting β∗ =
∏∞

k=0 βk ∈ [0, 1), we get r∗n −→ r∗ = (1+c)|b|+(|B0|−
c|b|)β∗ > 0. If we choose |B0| = c|b|, then r∗n = r∗ = (1 + c)|b| for each n and
so, setting βn = 1 − (1 + c)(1 + n)−ε with ε > 0, we obtain εn = (1 + n)−ε

and δn = cεn. Taking ε ∈ (0, 1], we have that εn and δn satisfy assumption a) of
Theorem 4.1. Moreover, we have αn = c|b|(1+c)n−ε and 1−βn = (1+c)(1+n)−ε

and so, for the behaviour of the factor f(h, n) = αh

∏n−1
j=h βj in (2.5), we refer

to Section C.

Example 4.2. (Case εn = (n+ 1)−ε and δn ∼ c(n+ 1)−δ, with 0 < δ < ε < 1
and c > 0)

Take 0 < δ < ε < 1 and set γ = ε − δ > 0, r∗n = nγ and (1 − βn) =
|b|−1(1 + n)−δ. We immediately have

εn = |b| (1− βn)

r∗n+1

= (1 + n)−δ−γ = (n+ 1)−ε

and (2.3) yields αn+1 = (n+ 1)γ − nγ [1− |b|−1(1 + n)−δ]− (1 + n)−δ, so that

δn =
αn+1

r∗n+1

=
αn+1

(n+ 1)γ
= 1−

(
1− 1

n+ 1

)γ[
1− |b|−1(1 + n)−δ

]
− (1 + n)−δ−γ

= 1−
(
1− γ(n+ 1)−1 +O(n−2)

)[
1− |b|−1(1 + n)−δ

]
− (1 + n)−ε

= |b|−1(1 + n)−δ
(
1 + γ|b|(n+ 1)−1+δ − |b|(1 + n)−ε+δ

− γ(n+ 1)−1 +O(n−2+δ)
)
.

Setting c = |b|−1 > 0, we obtain εn = (n + 1)−ε and δn ∼ c(n + 1)−δ. Taking
δ ∈ (ε/2, ε), we have that εn and δn satisfy assumption b) of Theorem 4.1.
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Moreover, we have αn = cn−(2δ−ε)(1+γc−1n−1+δ−c−1n−ε+δ−γn−1+O(n−2+δ))
and (1− βn) = c(1+ n)−δ, with 0 < 2δ− ε < δ < (1+ 2δ− ε)/2, and so, for the

behaviour of the factor f(h, n) = αh

∏n−1
j=h βj in (2.5), we refer to Section C.

5. Statistical application

In a big sample the observations typically can not be assumed independent and
identically distributed, but they exhibit a structure in clusters, with indepen-
dence between clusters and with correlation inside each cluster [15, 20, 35, 42,
54, 55]. The model and the related results presented in [1] and in the present pa-
per may be useful in the situation when inside each cluster the probability that
a certain observation takes the value i is increasing with the number of previous
observations in the same cluster that are equal to the value i, hence according
to a reinforcement rule. Formally, given a “big” sample {ξn : n = 1, . . . , N},
we suppose that the N observations are ordered so that we have the following
L clusters of observations:

C
 =

{

−1∑
l=1

Nl + 1, . . . ,


∑
l=1

Nl

}
, � = 1, . . . , L.

Therefore, the cardinality of each cluster C
 is N
. We assume that the obser-
vations in different clusters are independent, that is

[ξ1, . . . , ξN1 ], . . . , [ξ∑ �−1
l=1 Nl+1

, . . . , ξ∑ �
l=1 Nl

], . . . , [ξ∑L−1
l=1 Nl+1

, . . . , ξN ]

are L independent multidimensional random variables. Moreover, we assume
that the observations inside each cluster can be modelled as a GRP urn satisfy-
ing case a) or case b) of Theorem 4.1. Given certain (strictly positive) probabil-
ities p∗1(�), . . . , p

∗
k(�) for each cluster C
, we firstly want to estimate the model

parameters and then perform a test with null hypothesis

H0 : pi(�) = p∗i (�) ∀i = 1, . . . , k

based on the statistics

Q
 =
1

N
2(ε−δ)



k∑
i=1

(
Oi(�)−N
p

∗
i (�)
)2

N
p∗i (�)
, with Oi(�) = #{n ∈ C
 : ξn i = 1},

(5.1)
and its corresponding asymptotic distribution Γ

(
k−1
2 , 1

2λ

)
, where λ is given in

(4.1). Note that we can perform the above test for a certain cluster �, or we can

consider all the clusters together using the aggregate statistics
∑L


=1 Q
 and its

corresponding distribution Γ(L(k−1)
2 , 1

2λ ).
Regarding the probabilities p∗i (�), some possibilities are:

• we can take p∗i (�) = 1/k for all i = 1, . . . , k if we want to test possible
differences in the probabilities for the k different values;
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• we can suppose to have two different periods of times, and so two sam-
ples, say {ξ(1)n : n = 1, . . . , N} and {ξ(2)n : n = 1, . . . , N}, take p∗i (�) =∑

n∈C�
ξ
(1)
n i /N
 for all i = 1, . . . , k, and perform the test on the second

sample in order to check possible changes in the long-run probabilities;
• we can take one of the clusters as benchmark, say �∗, set p∗i (�)

=
∑

n∈C�∗
ξn i/N
∗ for all i = 1, . . . , k and � �= �∗, and perform the test for

the other L− 1 clusters in order to check differences with the benchmark
cluster �∗.

Finally, if we want to test possible differences among the clusters, then we can
take p∗i (�) = p∗i =

∑N
n=1 ξn i/N for all � = 1, . . . , L and perform the test using

the aggregate statistics
∑L


=1 Q
 with asymptotic distribution Γ( (L−1)(k−1)
2 , 1

2λ ).

5.1. Estimation of the parameters

The model parameters are ε, δ and c. However, as we have seen, the fundamental
quantities are η = 2(ε − δ) and λ given in (4.1). Moreover, recall that in case
a), we have η = 0 and λ > 1 and, in case b), we have η ∈ (0, 1) and λ > 0.
Therefore, according the considered model, the pair (η, λ) belongs to S = {0}×
(1,+∞) ∪ (0, 1)× (0,+∞). In order to estimate the pair (η, λ) ∈ S, we define

T
 = Nη

 Q
 =

k∑
i=1

(
Oi(�)−N
p

∗
i (�)
)2

N
p∗i (�)
.

Given the observed values t1, . . . , tL, the log-likelihood function of Q
 reads

ln(L(η, λ)) = lnL(η, λ; t1, . . . , tL)

= −k − 1

2
L ln(λ)− k − 1

2
η

L∑

=1

ln(N
)− 1
2λ

L∑

=1

t�
Nη

�
+R1 ,

where R1 is a remainder term that does not depend on (η, λ). Now, we look for
the maximum likelihood estimator of the two parameters (η, λ).

We immediately observe that, when all the clusters have the same cardinality,
that is all the N
 are equal to a certain N0, then we cannot hope to estimate η
and λ, separately. Indeed, the log-likelihood function becomes

ln(L(η, λ)) = lnL(η, λ; t1, . . . , tL)

= −k − 1

2
L
[
ln(λ) + η ln(N0)

]
− 1

2λNη
0

L∑

=1

t
 +R1 = f(λNη
0 ) .

This fact implies that it possible to estimate only the parameter (λNη
0 ) as

λ̂Nη
0 =
∑L


=1 t
/(k − 1)L.
From now on, we assume that at least two clusters have different cardinality,

that is at least a pair of cardinalities N
 are different. We have to find (if they



1646 G. Aletti and I. Crimaldi

exist!) the maximum points of the function (η, λ) → ln(L(η, λ)) on the set S,
which is not closed nor limited. First of all, we note that ln(L(η, λ)) → −∞ for
λ → +∞ and λ → 0. Thus, the log-likelihood function has maximum value on
the closure S of S and its maximum points are stationary points belonging to
(0, 1)× (0,+∞) or they belong to {0, 1} × (0,+∞). For detecting the points of
the first type, we compute the gradient of the log-likelihood function, obtaining

∇(η, λ) lnL =

(
−k−1

2

∑L

=1 ln(N
) +

1
2λ

∑L

=1

t� ln(N�)
Nη

�

−k−1
2λ L+ 1

2λ2

∑L

=1

t�
Nη

�

)
.

Hence, the stationary points (η, λ) of the log-likelihood function are solutions
of the system ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∑L

=1

t�
Nη

�
ln(N
)∑L


=1
t�
Nη

�

=

∑L

=1 ln(N
)

L

λ =

∑L

=1

t�
Nη

�

L(k − 1)
.

In particular, we get that the stationary points are of the form (η, λ(η)), with

λ(η) =

∑L

=1

t�
Nη

�

L(k − 1)
. (5.2)

In order to find the maximum points on the border, that is belonging to {0, 1}×
(0,+∞), we observe that, fixed any η, the function

λ → −k − 1

2
L ln(λ)− 1

2λ

L∑

=1

t�
Nη

�
+R2 ,

where R2 is a remainder term not depending on λ, takes its maximum value at
the point λ(η) defined in (5.2).

Summing up, the problem of detecting the maximum points of the log-
likelihood function on S reduces to the study of the maximum points on [0, 1]
of the function

η → ln(L(η, λ(η))) = −k − 1

2
L ln
( L∑


=1

t

Nη




)
− k − 1

2
η

L∑

=1

ln(N
) +R3 , (5.3)

where R3 is a remainder term not depending on η. To this purpose, we note
that we have

d
ln(L(η, λ(η))

dη
=

k − 1

2
L

⎡⎣∑L

=1

t�
Nη

�
ln(N
)∑L


=1
t�
Nη

�

−
∑L


=1 ln(N
)

L

⎤⎦ =
(k − 1)L

2
g(η) ,

where

g(x) =

∑L

=1

t�
Nx

�
ln(N
)∑L


=1
t�
Nx

�

−
∑L


=1 ln(N
)

L
.
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Setting

p(x, �) =

t�
Nx

�∑L
l=1

tl
Nx

l

and denoting by Ex[·] and by Eu[·] the mean value with respect to the dis-
crete probability distribution {p(x, �) : � = 1, . . . , L} on {N1, . . . , NL} and with
respect to the uniform discrete distribution on {N1, . . . , NL} respectively, the
above function g can be written as

g(x) =

L∑

=1

p(x, �) ln(N
)−
∑L


=1 ln(N
)

L
= Ex[ln(N)]− Eu[ln(N)] .

Moreover, we have

g′(x) =

(
−
∑L


=1
t�
Nx

�
ln2(N
)

)(∑L

=1

t�
Nx

�

)
+
(∑L


=1
t�
Nx

�
ln(N
)

)2
(∑L


=1
t�
Nx

�

)2
= −

L∑

=1

p(x, �) ln2(N
) +
( L∑


=1

p(x, �) ln(N
)
)2

= −V arx[ln(N)] ,

where V arx[·] denotes the variance with respect to the discrete probability dis-
tribution {p(x, �) : � = 1, . . . , L} on {N1, . . . , NL}. Since, we are assuming that
at least two N
 are different, we have V arx[ln(N)] > 0 and so the function g is
strictly decreasing. Finally, we observe that we have

Covu(ln(N), T ) =

∑L

=1 t
 ln(N
)

L
−
∑L


=1 t

L

∑L

=1 ln(N
)

L
= g(0)

∑L

=1 t

L

and

Covu(ln(N), T
N ) =

∑L

=1

t�
N�

ln(N
)

L
−
∑L


=1
t�
N�

L

∑L

=1 ln(N
)

L
= g(1)

∑L

=1

t�
N�

L
,

where Covu(·, ·) denotes the covariance with respect to the discrete joint distri-
bution concentrated on the diagonal and such that P{N = N
, T = t
} = 1/L
with � = 1, . . . , L. Hence, we distinguish the following cases.

First case: Covu(ln(N), T ) ≤ 0

We are in the case when g(0) ≤ 0 and so the function (5.3) is strictly decreasing
for η > 0. Thus, its maximum value on [0, 1] is assumed at η̂ = 0. Consequently,

we have λ̂ = λ(0) =
∑L

�=1 t�
L(k−1) . Recall that we need (0, λ̂) ∈ S and so λ̂ > 1. If

the model fits well the data, this is a consequence. Indeed, λ̂ is an unbiased

estimator: λ̂
d∼ Γ(L(k−1)/2, 1/(2λ)) and so E[λ̂] = λ > 1. A value λ̂ ≤ 1 means

a bad fit of the consider model to the data (the smaller the value of λ, the worse

the fitting). Note that in the threshold case (η̂ = 0, λ̂ = 1), the corresponding
test statistics (5.1) and its distribution coincide with the classical ones used for
independent observations.
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Second case: Covu(ln(N), T ) > 0 and Covu(ln(N), T
N ) < 0

We are in the case when g(0) > 0 and g(1) < 0. Hence, the function (5.3) has a
unique stationary point η̂ ∈ (0, 1), which is the maximum point. Consequently,

we have λ̂ = λ(η̂) =

∑L
�=1

t�
N η̂

�

L(k−1) > 0. The point (η̂, λ̂) belongs to S.

Third case: Covu(ln(N), T
N ) ≥ 0

We are in the case when g(1) ≥ 0 and so the function (5.3) is strictly increasing

on [0, 1]. Hence, its maximum point is at η̂ = 1, and, accordingly, we have λ̂ =

λ(1) =

∑L
�=1

t�
N�

L(k−1) . However, the point (1, λ̂) does not belong to S and so, in this

case, we conclude that we have a bad fit of the model to the data. Note that, if the

considered model fits well the data, then we have T/N
d∼ λe(η−1) ln(N)χ2(k− 1)

with η < 1 and, consequently, we expect Covu(ln(N), T
N ) < 0. Moreover, a

value η ≥ 1 in the statistics (5.1) means a central limit theorem of the type

N (1−η)/2(ξN − p)
d∼ N (0, CΓ) with (1 − η)/2 ≤ 0. This is impossible since

(ξN − p) is bounded.

6. COVID-19 epidemic Twitter analysis

We illustrate the application of the above statistical methodology to a data set
containing posts on the on-line social network Twitter about the COVID-19
epidemic. More precisely, the data set covers the period from February 20th
(h. 11pm) to April 20th (h. 10pm) 2020, including tweets in Italian language.
More details on the keywords used for the query can be found in [16]. For
every message, the relative sentiment has been calculated using the polyglot
python module developed in [19]. This module provides a numerical value v
for the sentiment and we have fixed a threshold T = 0.35 so that we have
classified as a tweet with positive sentiment those with v > T and as a tweet
with negative sentiment those with v < −T . We have discarded tweets with a
value v ∈ [−T, T ].

We are in the case k = 2 and the random variables ξn = ξn 1 take the value 1
when the sentiment of the post n is positive and the value 0 when the sentiment
of the post n is negative. We have partitioned the data so that each set Pd collect
the messages of the single day d, for d = 1(February 20st), . . . , 61(April 20th)
and then, in order to obtain independent clusters, we have set C
 = P1+3(
−1),
for � = 1, . . . , 21 = L. (We have tested the independence of the timed sequence
{Q
 : � = 1, . . . , 21} with a Ljung–Box test and we give the results in Table 2.)
Therefore N
 is the total number of tweets posted during the day 1 + 3(� − 1)

and N =
∑L


=1 N
 = 699 450 is the sample size.
Inside each cluster the sentiment associated to each message is driven by

a reinforcement mechanism, that can be modelled by means of a GRP urn:
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Fig 1. In each panel, the blue line is the cubic spline smoothing of the time series of the
observed tweets ξn+1, together with the default confidence interval (gray), the black line rep-
resents the time series of the predictive means ψn given by the GRP urn model, where the
parameters are estimated by maximum likelihood. Different panels refer to different clusters
(we show the plots only for clusters � = 2, . . . , 7, but similar results have been obtained also
for the other clusters).

the probability to have a tweet with positive sentiment is increasing with the
number of past tweets with positive sentiment and the reinforcement is mostly
driven by the most recent tweets, in the sense explained in Section 2 (conversely,
a particle interacting approach to study opinion formation may be found in
[8, 10, 11]). In Fig. 1, for clusters C
 with 2 ≤ � ≤ 7, we show the good fitting
of the GRP urn model to the data (we obtain similar results also for the other
clusters). Moreover, note that the main effect of the GRP urn model is the
presence of “local fashions”, resulting in unexpected excursions of ψn around
the long-run probabilities p. In order to point out that the considered data set
exhibits this characteristic, for each �, we have computed the daily sentiment
rate p̂(�), then, according to this probability, we have generated an independent
sequence (ξ′n) of Bernoulli variables, finally we have used the same smoothing
procedure (i.e. classical cubic spline given in R package) to get an estimate of
ψn = ψn 1, for both the real and the simulated independent data. In Fig. 2 the
daily curves clearly show different behaviors in the two cases, highlighting a
local reinforcement among tweets.

Our purpose is to test the null hypothesis H0 : p(�) = p for any � (i.e.,

no differences among clusters). Therefore, taking p∗1(�) = p∗ =
∑N

n=1 ξn/N
for each �, we have firstly estimated the model parameters and then we have
performed the chi-squared test based on the aggregate statistics

∑L

=1 Q
 and its

corresponding asymptotic distribution Γ( (L−1)(k−1)
2 , 1

2λ ). The estimated values

are η̂ = 0.4363572 and λ̂ = 2.728098 (in Fig. 3 we plot the function (5.3)). The
corresponding asymptotic confidence intervals with level 0.90, computed using
the asymptotic normality (with the asymptotic covariance matrix equal to the
inverse of the Fisher information matrix) of the maximum likelihood estimator
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Fig 2. Smoothed daily estimate of ψn for the Twitter data set (left) and for the simulated
independent data (right). The daily mean rate p̂(�) is the same for both the left and the right
panel. x-axis: daily time. y-axis: cubic spline smoothing of the observed data ξn and of the
simulated independent data ξ′n.

Fig 3. Plot of the function (5.3). Its maximum point gives the estimated value of the model
parameter η.

and the theoretical bounds on the model parameters, are Iη = (0.125 ; 0.747)

and Iλ = (0 ; 11.218). Moreover, since
∑L


=1 Q
/λ is asymptotically distributed
as Γ((L−1)(k−1)/2, 1/2) = χ2((L−1)(k−1)), we can also give the asymptotic
confidence interval for λ based on that distribution: that is, Iλ = (1.737 ; 5.028).

The contingency table and the associated statistics for testing H0 is given
in Table 1. The obtained χ2-statistics for a usual χ2-test is 5507.803, which is
significant at any level. Under the proposed GRP urn model and the null hypoth-
esis, the aggregate statistics

∑L

=1 Q
 has (asymptotic) distribution Γ(L−1

2 , 1

2λ̂
)

and the corresponding p-value associated to the data is equal to 0.4579297. The
null hypothesis that the daily long-run sentiment rate of the posts is the same
for all the considered days is therefore strongly rejected with a classical χ2 test,
while the same hypothesis is not rejected (at any meaningful level) if we take
into account the correlation given by the reinforcement mechanism in the GRP
urn model.

Note that we are not dealing with a multiple testing, since we consider a
single test based on the aggregate statistics and its asymptotic distribution.
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Table 1

Contingency table associated to COVID-Twitter data: Obs+ (Obs−) are the number of
posts with positive (negative) sentiment posted in the day � reported in the first column

(DataTime); Exp+ (Exp−) corresponds to N�p
∗ (resp. N�(1− p∗)), where

N� = Obs+ +Obs−; χ2
+ (χ2

−) is the quantity (Obs+ − Exp+)2/Exp+ (resp.

(Obs− − Exp−)2/Exp−); χ2
+

(c)
(χ2

−
(c)

) is the quantity χ2
+/N η̂

� (resp. χ2
−/N η̂

� ). The

statistics Q� corresponds to χ2
+

(c)
+ χ2

−
(c)

.

Date Obs+ Obs− Exp+ Exp− χ2
+ χ2

− χ2
+

(c)
χ2
−

(c)

2020-02-20 25 43 35.11 32.89 2.91 3.11 0.46 0.49
2020-02-23 53564 60476 58886.18 55153.82 481.02 513.58 2.99 3.19
2020-02-26 29831 37175 34599.51 32406.49 657.20 701.67 5.15 5.50
2020-02-29 18220 22184 20863.18 19540.82 334.87 357.53 3.27 3.49
2020-03-03 16801 14834 16335.18 15299.82 13.28 14.18 0.14 0.15
2020-03-06 27906 27030 28366.99 26569.01 7.49 8.00 0.06 0.07
2020-03-09 41650 34769 39460.04 36958.96 121.54 129.76 0.90 0.96
2020-03-12 255 156 212.23 198.77 8.62 9.20 0.62 0.67
2020-03-15 14193 13562 14331.69 13423.31 1.34 1.43 0.02 0.02
2020-03-18 12064 10089 11439.02 10713.98 34.15 36.46 0.43 0.46
2020-03-21 11571 10026 11151.92 10445.08 15.75 16.81 0.20 0.22
2020-03-24 13339 9172 11623.88 10887.12 253.07 270.20 3.19 3.41
2020-03-27 14798 10039 12824.94 12012.06 303.55 324.09 3.67 3.92
2020-03-30 12689 10651 12051.94 11288.06 33.67 35.95 0.42 0.45
2020-04-02 12714 9300 11367.24 10646.76 159.56 170.36 2.03 2.17
2020-04-05 13373 10815 12489.82 11698.18 62.45 66.68 0.76 0.82
2020-04-08 14889 11987 13877.81 12998.19 73.68 78.67 0.86 0.92
2020-04-11 12153 10777 11840.23 11089.77 8.26 8.82 0.10 0.11
2020-04-14 13406 11430 12824.42 12011.58 26.37 28.16 0.32 0.34
2020-04-17 13977 11371 13088.80 12259.20 60.27 64.35 0.72 0.77
2020-04-20 13753 12393 13500.86 12645.14 4.71 5.03 0.06 0.06

Table 2

Summary of Ljung–Box test for autocorrelation of {Q� : � = 1, . . . , 21}, with different
numbers of autocorrelation lags being tested. Df: number of lags under investigation; χ2:
Ljung–Box test statistics, which is distributed as a χ2 distribution with Df degrees of

freedom under the null hypothesis of independence; p−value: p−value of the Ljung–Box test.
The strong emotional involvement of the considered period had a “mixing effect” that

cancelled possible significant autocorrelation during different 3-delayed days.

Df 1 2 3 4 5 6 7 8 9 10
χ2 3.454 3.624 4.209 4.640 5.065 7.103 8.660 8.812 10.360 12.852
p−value 0.063 0.163 0.240 0.326 0.408 0.311 0.278 0.358 0.322 0.232

Anyway, it is also possible to frame the problem in a multiple testing setting
(i.e. a test for each �). In that case, fixed a certain significance level, we have to
compare the single statistics Q
 with the quantile of the distribution Γ( 12 ,

1

2λ̂
)

associated to (1 − level
21 ). For example, taking the level equal to 0.05 (and so

(1 − level
21 ) = 0.997619), we have to compare each Q
 (see Table 1 or Fig. 4)

with the value 25.18. As a consequence, for each �, the null hypothesis is not
rejected. Given the same level, if we consider the usual χ2-test in a multiple
testing setting, we have to compare the standard χ2-statistics (see Table 1)
with the value 9.23 and so, for almost all �, the null hypothesis is strongly
rejected.
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Fig 4. Plot of the Q�-series. The black line corresponds to the value 10.50. In a multiple
testing setting, taking the level equal to 0.05 (and so (1 − level

21
) = 0.997619), we have to

compare each Q� with the value 25.18.

7. Asymptotic results for the empirical means

Theorem 4.1 is a consequence of the following Proposition 7.1 and Theorem 7.1
for the empirical means ξN . In the sequel, we will use the symbol

s−→ in order
to denote the stable convergence: in a probability space (Ω,A, P ), a sequence
(Yn) of random variables converges stably to a kernel K if, for each H ∈ A with
P (H) > 0, it converges in distribution under the probability measure P (·|H)
toward the mixture of probability measures E[K(·)|H] (for more details and a
brief review on stable convergence, see Section F).

Leveraging the Stochastic Approximation results collected in Section E, we
prove in Section A.3 the following result:

Proposition 7.1. Take εn = (n+1)−ε and δn = cεn, with ε ∈ (0, 1] and c > 0,

and set Γ = diag(p)− pp�. Then ξN
a.s.−→ p and

√
N
(
ξN − p

) s−→ N (0, λΓ) ,

with λ = (c + 1)2 when 0 < ε < 1 and λ = (c + 1)2 + c2 = 2c(c + 1) + 1 when
ε = 1.

For the case when (εn)n and (δn)n in (2.7) go to zero with different rates, we
prove the following theorem (the proof is illustrated in Section 8):

Theorem 7.1. Take εn = (n + 1)−ε and δn ∼ c(n + 1)−δ, with ε ∈ (0, 1),

δ ∈ (ε/2, ε) and c > 0. Then ξN
a.s.−→ p and

N1/2−(ε−δ)
(
ξN − p

) s−→ N
(
0,

c2

1 + 2(ε− δ)
Γ

)
,

with Γ = diag(p)− pp�.

In the framework of the above theorem, we can distinguish the following two
cases:
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1) ε ∈ (1/2, 1) and δ ∈ (1/2, ε) or
2) ε ∈ (0, 1) and δ ∈ (ε/2,min{ε, 1/2}] \ {ε}.

In case 1), we have
∑

n εn = +∞,
∑

n ε
2
n < +∞ and

∑
n δ

2
n < +∞ and so the

typical asymptotic behaviour of the predictive mean of an urn process, that is
its almost sure convergence. In case 2), we have

∑
n εn = +∞ and

∑
n δ

2
n = +∞

(while the series
∑

n ε
2
n may be convergent or divergent) and it seems to us not

immediate to check the convergence of the predictive means. Therefore, for the
proof of Theorem 7.1 in this last case, we will employ a different technique,
which is based on the L2-estimate of Lemma 8.1 for the predictive mean ψN

and the almost sure convergence of the corresponding empirical mean ψN−1.

Remark 7.1. It could be a bit surprising to see that the almost sure limit p =
b
|b| of the empirical means ξN does not depend on the whole initial composition

(i.e. b + B0) of ther urn, but only on b. However, it is not so strange since
bi is the number of balls of color i that remains constant along time, while
the quantity Bn i is scaled by βn and updated according to the outcome of the
extraction n + 1 (see equation (2.1)). Therefore, in particular, the quantities

B0 i are multiplied by the factor
∏n−1

j=0 βj (see (2.5)), which converges to zero.
Indeed, we have

n−1∏
j=0

βj =

n−1∏
j=0

(
1− εnr

∗
n+1

|b|

)
≤

n−1∏
j=0

(1− εn)

and the last term converges to zero when
∑+∞

n=0 εn = +∞.

8. Proof of Theorem 7.1

For all the sequel, we set ψN−1 =
∑N

n=1 ψn−1/N and θN−1 =
∑N

n=1 θn−1/N .
To the proof of Theorem 7.1, we premise some intermediate results.

Lemma 8.1. Under the same assumptions of Theorem 7.1, we have E[‖θn‖2] =
O(nε−2δ) → 0.

Proof. We observe that, starting from (2.7), we get

‖θn+1‖2 = θn+1
�θn+1 = (1− εn)

2‖θn‖2 + δ2n‖ΔMn+1‖2

+ 2(1− εn)δnθn
�ΔMn+1

and so

E[‖θn+1‖2|Fn] = (1− εn)
2‖θn‖2 + δ2nE[‖ΔMn+1‖2|Fn] , (8.1)

where ΔMn+1 = ξn+1 −ψn. Hence, setting xn = E[‖θn‖2], we get

xn+1 = (1− 2εn)xn + ε2nxn + δ2nE[‖ΔMn+1‖2]

= (1− 2εn)xn + εn

(
εnxn +

δ2n
εn

E[‖ΔMn+1‖2]
)

= (1− 2εn)xn + 2εnζn,
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with 0 ≤ ζn =
(
εnxn +

δ2n
εn
E[‖ΔMn+1‖2]

)
/2. Applying Lemma D.3 (with

γn = 2εn), we find that lim supn xn ≤ lim supn ζn. On the other hand, since
(ΔMn+1)n is uniformly bounded (and so uniformly bounded in L2) and ε2n/δ

2
n ∼

c−2n−2(ε−δ) → 0, we have ζn = O(εn + δ2nε
−1
n ) = O(δ2n/εn) and so xn =

O(δ2n/εn). We can conclude recalling that δ2n/εn ∼ c2nε−2δ.

Lemma 8.2. Under the same assumptions of Theorem 7.1, we have

θN−1 =
1

N

N∑
n=1

θn−1 =
1

N

N−1∑
n=0

δn
εn

ΔMn+1 +RN , (8.2)

where RN
a.s.−→ 0 and NυE

[
|RN |

]
−→ 0 with υ = 1/2− (ε− δ) ∈ (0, 1/2).

Proof. By (2.8), we have

θn = − 1

εn
(θn+1 − θn) +

δn
εn

ΔMn+1.

Therefore, we can write

N−1∑
n=0

θn = −
N−1∑
n=0

1

εn
(θn+1 − θn) +

N−1∑
n=0

δn
εn

ΔMn+1

= −
(

θN
εN−1

− θ0
ε0

)
−

N−1∑
n=1

(
1

εn−1
− 1

εn

)
θn +

N−1∑
n=0

δn
εn

ΔMn+1 ,

where the second equality is due to the Abel transformation for a series, which
is the analogue of the integration by parts:

k2∑
n=k1

fn(gn+1 − gn) = (fk2gk2+1 − fk1gk1)−
k2∑

n=k1+1

gn(fn − fn−1)

= (fk2gk2+1 − fk1gk1) +

k2∑
n=k1+1

gn(fn−1 − fn) .

It follows the decomposition (8.2) with

RN = − 1

N

(
θN
εN−1

− θ0
ε0

)
− 1

N

N−1∑
n=1

(
1

εn−1
− 1

εn

)
θn . (8.3)

Since |θn| = O(1), we have

|RN | = O(N−1ε−1
N−1) +O

(
N−1

N−1∑
n=1

|ε−1
n−1 − ε−1

n |
)

Note that
∑N−1

n=1 |ε−1
n−1 − ε−1

n | = ε−1
0 − ε−1

N−1 when (εn) is decreasing and so the

last term in the above expression is O(N−1ε−1
N−1). Therefore, since ε < 1 by

assumption, we have |RN | = O(N−(1−ε)) → 0.
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Regarding the last statement of the lemma, we observe that, from what we
have proven before, we obtain NυE

[
|RN |

]
= O(Nυ−(1−ε)) = O(N δ−1/2) → 0

when δ < 1/2. However, in the considered cases 1) and 2), we might have δ ≥
1/2. Therefore, we need other arguments in order to prove the last statement.
To this purpose, we observe that, by Lemma 8.1, we have E[ |θn| ] = O(nε/2−δ)
and so, by (8.3), we have

NυE
[
|RN |

]
= O(N−(1−υ)N3ε/2−δ) +O

(
1

N1−υ

N−1∑
n=1

|ε−1
n−1 − ε−1

n |nε/2−δ

)

= O(N−(1−ε)/2) +O

(
1

N1−υ

N−1∑
n=1

|ε−1
n−1 − ε−1

n |nε/2−δ

)
.

Moreover, we have

N−1∑
n=1

|ε−1
n−1 − ε−1

n |nε/2−δ =

N−1∑
n=1

[nε − (n− 1)ε]nε/2−δ

= O
(N−1∑

n=1

nε−1+ε/2−δ
)
= O(N3ε/2−δ) = o(N1−υ) ,

because υ = 1/2 − (ε − δ) and ε < 1. Summing up, we have NυE[|RN |] =
O(N−(1−ε)/2) + o(1) → 0.

Lemma 8.3. Under the same assumptions of Theorem 7.1, we have θN−1
a.s.−→

0, that is ψN−1
a.s.−→ p. In particular, when ε ∈ (1/2, 1) and δ ∈ (1/2, ε), we

have θN
a.s.−→ 0, that is ψN

a.s.−→ p.

Proof. Let us distinguish the following two cases:

1) ε ∈ (1/2, 1) and δ ∈ (1/2, ε) or
2) ε ∈ (0, 1) and δ ∈ (ε/2,min{ε, 1/2}] \ {ε}.

For the case 1), we observe that, by (8.1), we have

E[‖θn+1‖2|Fn] ≤ (1 + ε2n)‖θn‖2 + δ2nE[‖ΔMn+1‖2|Fn] ,

where ΔMn+1 = ξn+1 − ψn. Therefore, since (ΔMn+1)n (and so (E
[‖ΔMn+1‖2|Fn])n) is uniformly bounded and, in case 1), we have

∑
n ε

2
n < +∞

and
∑

n δ
2
n < +∞, the sequence (‖θn‖2)n is a bounded non-negative almost

supermartingale (see [50] for the definition of non-negative almost supermartin-
gale). As a consequence, it converges almost surely to a certain random variable
(again, see [50] for this convergence result). This limit random variable is nec-
essarily equal to 0 because, by Lemma 8.1, we have E[‖θn‖2] = O(nε−2δ) → 0.
Hence, we have the almost sure convergence of θN to 0 and, consequently, the
almost sure convergence of θN−1 to 0 follows by Lemma D.2 and Remark D.1
(with cn = n and vN,n = n/N), because E[θn−1|Fn−2] = (1− εn−2)θn−2 → 0
almost surely.
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For the case 2), we use Lemma 8.2, that gives the decomposition (8.2), with

RN
a.s.−→ 0. Indeed, by this decomposition, it is enough to prove that the term∑N−1

n=0
δn
εn
ΔMn+1/N converges almost surely to 0. To this purpose, we observe

that, if we set

Ln =

n∑
j=1

1

j

δj−1

εj−1
ΔMj ,

then (Ln) is a square integrable martingale. Indeed, we have

+∞∑
n=1

1

n2

δ2n−1

ε2n−1

E[‖ΔMn‖2] = O

(
+∞∑
n=1

1

n1+2υ

)
< +∞ .

Therefore, (Ln) converges almost surely, that is we have
∑

n
1
n

δn−1

εn−1
ΔMn < +∞

almost surely. Applying Lemma D.1 (with vN,n = n/N), we find

1

N

N−1∑
n=0

δn
εn

ΔMn+1 =

N∑
n=1

vN,n
1

n

δn−1

εn−1
ΔMn

a.s.−→ 0

and so θN−1
a.s.−→ 0.

Proof of Theorem 7.1. Set υ = 1/2− (ε− δ) ∈ (0, 1/2) and λ = c2/[2(1− υ)] =
c2/[1 + 2(ε− δ)]. Moreover, let us distinguish the following two cases:

1) ε ∈ (1/2, 1) and δ ∈ (1/2, ε) or
2) ε ∈ (0, 1) and δ ∈ (ε/2,min{ε, 1/2}] \ {ε}.

Almost sure convergence: In case 1), by Lemma 8.3, ψN converges almost surely
to p. Therefore, the almost sure convergence of ξN to p follows by Lemma D.2
and Remark D.1 (with cn = n and vN,n = n/N), because E[ξn+1|Fn] = ψn →
p almost surely and

∑
n E[‖ξn‖2]n−2 ≤

∑
n n

−2 < +∞.
In case 2), we use a different argument. Take γ ∈ [0, υ) and set

Ln =
n∑

j=1

1

j1−γ

δj−1

εj−1
ΔMj .

Then (Ln) is a square integrable martingale, because we have

+∞∑
n=1

1

n2−2γ

δ2n−1

ε2n−1

E[‖ΔMn‖2] = O

(
+∞∑
n=1

1

n1+2υ−2γ

)
< +∞ .

Therefore, (Ln) converges almost surely, that is we have
∑

n
1

n1−γ

δn−1

εn−1
ΔMn <

+∞ almost surely.
By Lemma D.1 (with vN,n = (n/N)1−γεn−1/δn−1 ∼ n1−γ−ε+δ/N1−γ), we

get

1

N1−γ

N−1∑
n=0

ΔMn+1 =

N∑
n=1

vN,n
1

n1−γ

δn−1

εn−1
ΔMn

a.s.−→ 0.
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Therefore, we have

Nγ
(
ξN −ψN−1

)
=

1

N1−γ

N−1∑
n=0

ΔMn+1
a.s.−→ 0,

that is
(
ξN −ψN−1

)
= o(N−γ) for each γ ∈ [0, υ). Recalling Lemma 8.3, we

obtain in particular that ξN converges almost surely to p.
Second order asymptotic behaviour: We have

Nυ
(
ξN − p

)
= NυμN = Nυ−1/2

√
N
(
μN − θN−1

)
+NυθN−1 . (8.4)

Moreover, by Lemma 8.1, we have

1

N

N−1∑
n=0

E[|θn|] = O(N−1
N∑

n=1

nε/2−δ) = O(N−1−δ+ε/2+1) = O(N ε/2−δ) → 0 ,

1

N

N−1∑
n=0

E[‖θn‖2] = O(N−1
N∑

n=1

nε−2δ) = O(N−1−2δ+ε+1) = O(N ε−2δ) → 0 ,

and so Theorem A.1 holds true with V = Γ (see Remark A.1). Therefore, the
first term in the right side of (8.4) converges in probability to 0 because υ < 1/2.
Hence, if we prove that

NυθN−1
s−→ N (0, λΓ) , (8.5)

then the proof is concluded.
In order to prove (8.5), we observe that, by decomposition (8.2) in Lemma

8.2, we have

NυθN−1 =

N∑
n=1

YN,n +NυRN ,

where YN,n = 1
N1−υ

δn−1

εn−1
ΔMn and NυRN converges in probability to 0 (be-

cause NυE
[
|RN |] → 0). Therefore, it is enough to prove that the term

∑N
n=1

YN,n stably converges to the Gaussian kernel N (0, λΓ), with λ = c2/[2(1 −
υ)] = c2/[1 + 2(ε − δ)]. To this purpose, we observe that E[YN,n|Fn−1] = 0

and so
∑N

n=1 YN,n converges stably to N (0, λΓ) if the conditions (c1) and
(c2) of Theorem F.1, with V = λΓ, hold true. Regarding (c1), we note that
δn−1/εn−1 ∼ cnε−δ = cn1/2−υ and so we have

max
1≤n≤N

|YN,n| ≤ N−(1−υ) max
1≤n≤N

δn−1

εn−1
|ξn −ψn−1|

≤ N−(1−υ) max
1≤n≤N

δn−1

εn−1
= O(N−1/2) → 0 .

Condition (c2) means

1

N2(1−υ)

N∑
n=1

δ2n−1

ε2n−1

(ξn −ψn−1)(ξn −ψn−1)
� P−→ λΓ. (8.6)
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We note that N−2(1−υ)
∑N

n=1 δ
2
n−1/ε

2
n−1 → λ, because δ2n−1/ε

2
n−1 ∼ c2n1−2υ,

and

E[(ξn −ψn−1)(ξn −ψn−1)
�|Fn−1] = diag(ψn−1)−ψn−1ψn−1

� .

Therefore, in case 1), condition (8.6) immediately follows by the almost sure con-
vergence ofψn to p. It is enough to apply Lemma D.2 and Remark D.1 with cn =
n and vN,n = nδ2n−1/(N

2(1−υ)ε2n−1) ∼ c2n1+2(ε−δ)/N2−2υ = c2(n/N)2(1−υ). In
case 2), we apply again Lemma D.2 with the above cn and vN,n, but we note
that ψn = θn + p and so condition (D.1) in Lemma D.2, with V = λΓ, is
equivalent to

1

N2−2υ

N−1∑
n=0

δ2n
ε2n

θn
P−→ 0 and

1

N2−2υ

N−1∑
n=0

δ2n
ε2n

θnθn
� P−→ 0k×k.

These two convergences hold true because, by Lemma 8.1, we have

1

N2−2υ

N−1∑
n=0

δ2n
ε2n

E[|θn|] = O(N−2+2υ
N∑

n=1

n−2δ+2ε−δ+ε/2)

= O(N−2+2υ−3δ+5ε/2+1) = O(N−δ+ε/2) → 0 ,

1

N2−2υ

N−1∑
n=0

δ2n
ε2n

E[‖θn‖2] = O(N−2+2υ
N∑

n=1

n−2δ+2ε−2δ+ε)

= O(N−2+2υ−4δ+3ε+1) = O(N−2δ+ε) → 0 .

Therefore, in both cases 1) and 2), conditions c1) and c2) of Theorem F.1 are

satisfied and so
∑N

n=1 YN,n stably converges to the Gaussian kernel N (0, λΓ).

Appendix A: Proofs and intermediate results

We here collect some proofs omitted in the main text of the paper.

A.1. Proof of Theorem 4.1

The proof is based on Proposition 7.1 (for case a)) and Theorem 7.1 (for case b)).
The almost sure convergence of Oi/N immediately follows since Oi/N = ξN i.
In order to prove the stated convergence in distribution, we mimic the classical
proof for the Pearson chi-squared test based on the Sherman Morrison formula
(see [52]), but see also [49, Corollary 2].

We start recalling the Sherman Morrison formula: if A is an invertible square
matrix and we have 1− v�A−1u �= 0, then

(A− uv�)−1 = A−1 +
A−1uv�A−1

1− v�A−1u
.
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Given the observation ξn = (ξn 1, . . . , ξnk)
�, we define the “truncated” vector

ξ∗n = (ξ∗n 1, . . . , ξ
∗
nk−1)

�, given by the first k − 1 components of ξn. Propo-
sition 7.1 (for case a)) and Theorem 7.1 (for case b)) give the second order
asymptotic behaviour of (ξn), that immediately implies

Nυ
(
ξ
∗
N − p∗

)
=

∑N
n=1(ξ

∗
n − p∗)

N1−υ

d−→N (0,Γ∗), (A.1)

where p∗ is given by the first k − 1 components of p and Γ∗ = λ(diag(p∗) −
p∗p∗T ). By assumption pi > 0 for all i = 1, . . . , k and so diag(p∗) is invertible
with inverse diag(p∗)−1 = diag( 1

p1
, . . . , 1

pk−1
) and, since (diag(p∗)−1)p∗ = 1 ∈

R
k−1, we have

1− p∗Tdiag(p∗)−1p∗ = 1−
k−1∑
i=1

pi =
k∑

i=1

pi −
k−1∑
i=1

pi = pk > 0.

Therefore we can use the Sherman Morrison formula with A = diag(p∗) and
u = v = p∗, and we obtain

(Γ∗)
−1 =

1

λ
(diag(p∗)− p∗p∗T )−1 =

1

λ

(
diag( 1

p1
, . . . , 1

pk−1
) +

1

pk
11�
)
. (A.2)

Now, since
∑k

i=1(ξN i − pi) = 0, then ξN k − pk = −
∑k−1

i=1 (ξN i − pi) and so we
get

k∑
i=1

(Oi −Npi)
2

Npi
= N

k∑
i=1

(ξN i − pi)
2

pi
= N
[ k−1∑

i=1

(ξN i − pi)
2

pi
+

(ξN k − pk)
2

pk

]
= N
[ k−1∑

i=1

(ξN i − pi)
2

pi
+

(
∑k−1

i=1 (ξN i − pi))
2

pk

]
= N

k−1∑
i1,i2=1

(ξN i1 − pi1)(ξN i2 − pi2)
(
Ii1,i2

1

pi1
+

1

pk

)
,

where Ii1 i2 is equal to 1 if i1 = i2 and equal to zero otherwise. Finally, from the
above equalities, recalling (A.1) and (A.2), we obtain

1

N1−2υ

k∑
i=1

(Oi −Npi)
2

Npi
= λN2υ(ξ

∗
N − p∗)�(Γ∗)

−1(ξ
∗
N − p∗)

d−→λW0 = W∗,

where 1 − 2e ≥ 0 and W0 is a random variable with distribution χ2(k − 1) =
Γ((k − 1)/2, 1/2), where Γ(a, b) denotes the Gamma distribution with density
function

f(w) =
ba

Γ(a)
wa−1e−bw.

As a consequence, W∗ has distribution Γ((k − 1)/2, 1/(2λ)).
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A.2. A preliminary central limit theorem

The following preliminary central limit theorem is useful for the proofs of the
other central limit theorems stated in the main part and in Section B.

Theorem A.1. If

1

N

N∑
n=1

diag(ψn−1)−ψn−1ψn−1
� P−→V , (A.3)

where V is a random variable with values in the space of positive semidefinite
k × k-matrices, then

√
N
(
μN − θN−1

)
=

√
N
(
ξN −ψN−1

) s−→ N (0, V ) .

Proof. We can write

√
N
(
ξN −ψN−1

)
=

1√
N

N
(
ξN −ψN−1

)
=

1√
N

N∑
n=1

(ξn −ψn−1)

=
1√
N

N∑
n=1

ΔMn =

N∑
n=1

YN,n,

with YN,n = N−1/2ΔMn. For the convergence of
∑N

n=1 YN,n, we observe that
E[YN,k|Fk−1] = 0 and so, by Theorem F.1, it converges stably to N (0, V ) if
the conditions (c1) and (c2) hold true. Regarding (c1), we note that max1≤n≤N

|YN,n| ≤ 1√
N
max1≤n≤N |ξn −ψn−1| = O(1/

√
N) → 0. Condition (c2) means

N∑
n=1

YN,nY
�
N,n =

1

N

N∑
n=1

(ξn −ψn−1)(ξn −ψn−1)
� P−→ V.

The above convergence holds true by Assumption (A.3) and Lemma D.2 (with
cn = n and vN,n = n/N). Indeed, we have

∑
n≥1 E[‖ξn − ψn−1‖2]/n2 ≤∑

n≥1 n
−2 < +∞ and

E[(ξn −ψn−1)(ξn −ψn−1)
�|Fn−1] = diag(ψn−1)−ψn−1ψn−1

� .

Remark A.1. Recalling that ψn = θn + p, the convergence (A.3) with V =
Γ = diag(p)− pp�, means

θN−1 =
1

N

N∑
n=1

θn−1
P−→ 0 and

1

N

N∑
n=1

θn−1θn−1
� P−→ 0k×k ,

where 0k×k is the null matrix with dimension k × k.
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A.3. Proof of Proposition 7.1

By Lemma D.2 (with cn = n and vN,n = n/N), Remark D.1 and Theorem
E.1, we immediately get ξN → p almost surely. Indeed, we have E[ξn+1|Fn] =
ψn → p almost surely and

∑
n≥1 E[‖ξn‖2]n−2 ≤

∑
n≥1 n

−2 < +∞.

Regarding the central limit theorem for ξN , we have to distinguish the
two cases 1/2 < ε ≤ 1 or 0 < ε ≤ 1/2. In the first case, the result follows
from Theorem E.3, because (2.9) and the fact that E[ΔMn+1ΔMn+1

� |Fn] =

diag(ψn−1) − ψn−1ψn−1
� → Γ almost surely; while for the second case the

result follows from Theorem A.1. Indeed, we have
√
N
(
ξN − p

)
=

√
N
(
ξN −ψN−1

)
+

√
N
(
ψN−1 − p

)
= (c+ 1)

√
N
(
ξN −ψN−1

)
−

√
NDN ,

where DN = c
(
ξN −ψN−1

)
−
(
ψN−1 − p

)
. By Theorem A.1, the term (c +

1)
√
N
(
ξN −ψN−1

)
stably converges to N (0, (c+1)2Γ) (note that assumption

(A.3) is satisfied with V = Γ, because ψn → p almost surely). Therefore, in
order to conclude, it is enough to show that

√
NDN converges in probability

to 0. To this purpose, we observe that, by (2.7) with δn = cεn, we have

ψn −ψn−1 = εn−1 [c(ξn −ψn−1)− (ψn−1 − p)]

and so

DN =
1

N

N∑
n=1

ψn −ψn−1

εn−1
.

Moreover, we note that
∑+∞

n=1(ψn − ψn−1) = limN ψN − ψ0 = p− ψ0 < +∞
and, by Lemma D.1 (with vN,n = εN−1/εn−1), we get

εN−1

N∑
n=1

ψn −ψn−1

εn−1

a.s.−→ 0.

For ε ≤ 1/2, this fact implies

√
NDN =

1√
NεN−1

εN−1

N−1∑
n=1

ψn −ψn−1

εn−1

a.s.−→ 0 .

The proof is thus concluded.

Appendix B: Case
∑

n εn < +∞

In this section we provide some results regarding the case
∑

n εn < +∞, even if,
as we will see, this case is not interesting for the chi-squared test of goodness of
fit. Indeed, as shown in the following result, the empirical mean almost surely
converges to a random variable, which does not coincide almost surely with a
deterministic vector.
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Theorem B.1. If
∑+∞

n=0 εn < +∞, then ξN
a.s.−→ ψ∞, where ψ∞ is a ran-

dom variable, which is not almost surely equal to a deterministic vector, that is
P (ψ∞ �= q) > 0 for all q ∈ Rk.

Proof. When
∑+∞

n=0 εn < +∞, the sequence (ψn) is a (bounded) non-negative
almost supermartingale (see [50]) because, by (M2.7), we have

E[ψn+1|Fn] = ψn(1− εn) + εnp ≤ ψn + εnp.

As a consequence, it converges almost surely (and in Lp with p ≥ 1) to a
certain random variable ψ∞. An alternative proof of this fact follows from quasi-
martingale theory [41]: indeed, since

∑
n E[ |E[ψn+1|Fn]−ψn| ] = O(

∑
n εn) <

+∞, the stochastic process (ψn) is a non-negative quasi-martingale and so it
converges almost surely (and in Lp with p ≥ 1) to a certain random variable
ψ∞.

The almost sure convergence of ξn to ψ∞ follows by Lemma D.2 and Remark
D.1 (with cn = n and vN,n = n/N), because E[ξn+1|Fn] = ψn → ψ∞ almost
surely and

∑
n≥1 E[‖ξn‖2]n−2 ≤

∑
n≥1 n

−2 < +∞.
In order to show that ψ∞ is not almost surely equal to a deterministic vector,

we set

yn = E[‖ψn − p‖2]− ‖E[ψn − p]‖2 =

k∑
i=1

V ar[ψn i − pi]

and observe that, starting from (M2.7), we get

ψn+1 − p = (1− εn)(ψn − p) + δnΔMn+1

and so

‖E[ψn − p]‖2 = E[ψn − p]�E[ψn − p] = (1− εn)
2‖E[ψn − p]‖2

and

E[‖ψn+1 − p‖2] = E[(ψn+1 − p)�(ψn+1 − p)]

= (1− εn)
2E[‖ψn − p‖2] + δ2nE[‖ΔMn+1‖2] .

Hence, we obtain

yn+1 = (1− εn)
2yn + δ2nE[‖ΔMn+1‖2] = (1− 2εn)yn + ζ̃n (B.1)

with ζ̃n = ε2nyn + δ2nE[‖ΔMn+1‖2] ≥ 0. It follows that, given ñ such that

εn < 1/2 for n ≥ ñ, we have yN ≥ yñ
∏N−1

n=ñ (1− 2εn) for each N ≥ ñ and so

E[‖ψ∞ − p‖2]− ‖E[ψ∞ − p]‖2 = y∞ = lim
N→+∞

yN

≥ yñ

+∞∏
n=ñ

(1− 2εn) = yñ exp

(
+∞∑
n=ñ

ln(1− 2εn)

)
.
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The above exponential is strictly greater than 0 because
∑+∞

n=ñ ln(1 − 2εn) ∼
−2
∑+∞

n=ñ εn > −∞. Therefore, if yñ > 0, then we have y∞ > 0. This means that
ψ∞ − p, and consequently ψ∞, is not almost surely equal to a deterministic
vector, that is P (ψ∞ �= q) > 0 for all q ∈ R

k. If yñ = 0, that is if ψñ is almost

surely equal to a deterministic vector ψ̃, then, by (B.1), we get

yñ+1 = δ2nE[‖ΔMn+1‖2] = δ2ñE[‖ξñ+1 − ψ̃‖2] > 0 ,

because δn > 0 for each n and ψ̃ is different from a vector of the canonical base
of Rk by means of the assumption bi +B0 i > 0 and equality (M2.4). It follows
that we can repeat the above argument replacing ñ by ñ+ 1 and conclude that
ψ∞ is not almost surely equal to a deterministic vector.

As a consequence of the above theorem, if we aim at having the almost
sure convergence of ξN to a deterministic vector, we have to avoid the case∑+∞

n=0 εn < +∞. However, for the sake of completeness, we provide a second-
order convergence result also in this case. First, we note that Theorem A.1 still
holds true with V = diag(ψ∞)−ψ∞ψ∞

�. Indeed, assumption (A.3) is satisfied
by Lemma D.2 and Remark D.1 (with cn = n and vN,n = n/N), because of the
almost sure convergence of ψn to ψ∞. Moreover, we have the following theorem:

Theorem B.2. Suppose to be in one of the following two cases:

a)
∑N

n=1 nεn−1 = o(
√
N) and

∑N
n=1 nδn−1 = o(

√
N);

b) εn = (n+1)−ε and δn ∼ c(n+1)−δ with c > 0, δ ∈ (1/2, 1) and ε > δ+1/2
(ε = +∞ included, that means εn = 0 for all n).

Set υ = 1/2 and λ = 1 in case a) and υ = δ − 1/2 ∈ (0, 1/2) and λ =
c2/[2(1− υ)] = c2/(3− 2δ) in case b). Then, we have

Nυ
(
ξN −ψN

) s−→ N (0, λΓ) ,

where Γ = diag(ψ∞)−ψ∞ψ∞
�.

When (ψN −ψ∞) = oP (N
−υ), we also have

Nυ
(
ξN −ψ∞

) s−→ N (0, λΓ) .

Note that case a) covers the case εn = (n + 1)−ε and δn ∼ c(n + 1)−δ with
c > 0 and min{ε, δ} > 3/2.

The case εn = 0 (that is βn = 1) for all n corresponds to the case considered
in [46], but in that paper the author studies only the limit ψ∞ and he does not
provide second-order convergence results.

Proof. We have

Nυ
(
ξN −ψN

)
=

1

N1−υ

(
NξN −NψN

)
=

1

N1−υ

N∑
n=1

[ξn −ψn−1 + n(ψn−1 −ψn)]
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and, by (2.7),

=
1

N1−υ

N∑
n=1

(ξn −ψn−1) +
1

N1−υ

N∑
n=1

nεn−1(ψn−1 − p)

− 1

N1−υ

N∑
n=1

nδn−1ΔMn

=
1

N1/2−υ

N∑
n=1

YN,n +QN +
N∑

n=1

ZN,n,

where

YN,n =
ξn −ψn−1√

N
=

ΔMn√
N

, ZN,n = −nδn−1(ξn −ψn−1)

N1−υ
=

nδn−1ΔMn

N1−υ

and

QN =
1

N1−υ

N∑
n=1

nεn−1(ψn−1 − p).

In both cases a) and b), we have
∑N

n=1 nεn−1 = o(N1−υ) and so QN converges

almost surely to 0. Moreover, by Theorem A.1,
∑N

n=1 YN,n stable converges to

N (0, V ) with V = Γ = diag(ψ∞) − ψ∞ψ∞
�. Therefore it is enough to study

the convergence of
∑N

n=1 ZN,n. To this purpose, we observe that, if we are in

case a), then
∑N

n=1 ZN,n converges almost surely to 0 and so

√
N
(
ξN −ψN

) s−→ N (0,Γ).

Otherwise, if we are in case b), we observe that E[ZN,n|Fn−1] = 0 and so∑N
n=1 ZN,n converges stably to N (0, λΓ) if the conditions (c1) and (c2) of The-

orem F.1, with V = λΓ, hold true. Regarding (c1), we observe that max1≤n≤N

|ZN,n| ≤ 1
N1−υ max1≤n≤N nδn−1|ξn−ψn−1| = O(1/

√
N). Regarding condition

(c2), that is

N∑
n=1

ZN,nZN,n
�=

1

N2(1−υ)

N∑
n=1

n2δ2n−1(ξn−ψn−1)(ξn−ψn−1)
� P−→ c2

2(1− υ)
Γ,

we observe that it holds true even almost surely, because 1
N2(1−υ)

∑N
n=1 n

2δ2n−1 →
c2/[2(1− υ)] = c2/(3− 2δ) and

E[(ξn −ψn−1)(ξn −ψn−1)
�|Fn−1] = diag(ψn−1)−ψn−1ψn−1

� a.s.−→ Γ

(see Lemma D.2 and Remark D.1 with cn = n and vN,n = n3δ2n−1/N
2(1−υ) ∼

c2(n/N)3−2δ). Therefore, we have

Nυ
(
ξN −ψN

) s−→ N
(
0, c2(3− 2δ)−1Γ

)
.
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Finally, we observe that

Nυ
(
ξN −ψ∞

)
= Nυ

(
ξN −ψN

)
+Nυ (ψN −ψ∞) .

Therefore, when (ψN −ψ∞) = oP (N
−υ), we have

Nυ
(
ξN −ψ∞

) s−→ N (0, λΓ) .

An example of the case a) of Theorem B.2 with (ψN −ψ∞) = oP (N
−υ) is

the RP urn with αn = α > 0 and βn = β > 1 (see [1]). Indeed, in this case,
we have εn ∼ cεβ

−n and δn ∼ cδβ
−n, where cε > 0 and cδ > 0 are suitable

constants, and (ψN −ψ∞) = O(β−N ). We conclude this section with other
two examples regarding the case εn = 0 (that is βn = 1) for all n.

Example B.1 (Case εn = 0 and δn ∼ c(n + 1)−δ with c > 0 and δ > 3/2).
If εn = 0 for all n, then we have r∗n = |b| + |B0| +

∑n
h=1 αh. Therefore, if

we take αn = n−δ, with δ > 3/2, then r∗n converges to the constant r∗ =
|b|+|B0|+

∑+∞
h=1 h

−δ and δn = αn+1/r
∗
n+1 ∼ cαn+1 = c(n+1)−δ, with c = 1/r∗.

Moreover, since δ > 3/2, assumption a) of Theorem B.2 is satisfied. We also
observe that

∑
n δ

2
n < +∞ and so ψ∞ i is not concentrated on {0, 1} and has no

atoms in (0, 1) (see [46, Th. 2 and Th. 3]). More precisely, we have

ψ∞ =
b+B0 +

∑+∞
n=1 αnξn

|b|+ |B0|+
∑+∞

n=1 αn

and so

ψN −ψ∞

=
(b+B0 +

∑N
n=1 αnξn)

∑
n≥N+1 αn − (|b|+ |B0|+

∑N
n=1 αn)

∑
n≥N+1 αnξn

(|b|+ |B0|+
∑N

n=1 αn)(|b|+ |B0|+
∑+∞

n=1 αn)

=O
( ∑

n≥N+1

αn

)
= O(N1−δ).

Since δ > 3/2, we get (ψN − ψ∞) = o(N−1/2). This fact can also be obtained
as a consequence of Theorem B.3 below. Indeed, this theorem states that the
rate of convergence of ψN to ψ∞ is N−(δ−1/2).

Note that, since βn = 1 for all n, the factor f(h, n) in (M2.5) coincides with
αh and so, in this case, it is decreasing.

Example B.2 (Case εn = 0 and δn ∼ c(n+1)−δ with c > 0 and δ ∈ (1/2, 1)). As
in the previous example, since εn = 0 for all n, we have r∗n = |b|+|B0|+

∑n
h=1 αh.

Let us set An =
∑n

h=1 αh = exp(bnα) with b > 0 and α ∈ (0, 1/2), which brings
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to r∗n ∼ An ↑ +∞ and αn = exp(bnα)− exp(b(n− 1)α) and

δn−1 =
αn

|b|+ |B0|+An
∼ 1−

∑n−1
h=1 αh∑n
h=1 αh

= 1− exp [b ((n− 1)α − nα)]

= bnα
(
1− (1− n−1)α

)
+O
(
n2α(1− (1− n−1)α)2

)
= bnα

(
αn−1 +O(n−2)

)
+O(n−(2−2α))

= bαn−(1−α) +O(n−(2−α)) +O(n−(2−2α)) = bαn−(1−α) +O(n−2(1−α)),

so that δ = (1− α) ∈ (1/2, 1) and c = bα > 0. Hence, we have δn ∼ c(n+ 1)−δ

and assumption b) of Theorem B.2 is satisfied. We also observe that
∑

n δ
2
n <

+∞ and so ψ∞ i is not concentrated on {0, 1} and has no atoms in (0, 1)
(see [46, Th. 2 and Th. 3]). Moreover, by Theorem B.3 below, we get that
Nυ (ψN −ψ∞)−→N

(
0, c2(2υ)−1Γ

)
, where υ = δ− 1/2. Hence, applying The-

orem F.3, we obtain

Nυ
(
ξN −ψ∞

) s−→ N
(
0, c2[2υ(1− υ)]−1Γ

)
.

Finally, note that, as before, since βn = 1 for all n, the factor f(h, n) in (M2.5)
coincides with αh and so, in this case, �(h) = ln(f(h, n)) = ln(αh) ∼ ln(δh−1) +
bhα ∼ bhα − bα(1 − α) ln(h). Hence, there exists h∗ such that h → �(h) is
increasing for h ≥ h∗. Since maxh≤h∗ �(h) ≤ C, for a suitable constant C, the
contributions of the observations until h∗ are eventually smaller than those with
h ≥ h∗, that are increasing with h.

Theorem B.3. For εn = 0 for all n and δn ∼ c(n + 1)−δ with c > 0 and
1/2 < δ ≤ 1, we have

N δ− 1
2 (ψN −ψ∞)−→N

(
0, c2(2δ − 1)−1Γ

)
stably in the strong sense w.r.t. F ,

where Γ = diag(ψ∞)−ψ∞ψ∞
�.

Proof. We want to apply Theorem F.2. To this purpose, we recall that, when
εn = 0 for all n, the process (ψn) is a martingale with respect to F . Moreover,
it converges almost surely and in mean to ψ∞. Therefore, in order to conclude,
it is enough to check conditions (c1) and (c2) of Theorem F.2. Regarding the
first condition, we note that

N δ−1/2 sup
n≥N

|ψn −ψn+1| = N δ−1/2 sup
n≥N

δn|ΔMn+1|

= O(N δ−1/2−δ) = O(N−1/2) −→ 0.

Finally, regarding the second condition, we observe that

N2δ−1
∑
n≥N

(ψn −ψn+1)(ψn −ψn+1)
�
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∼ N2δ−1c2
∑
n≥N

(n+ 1)−2δ(ΔMn+1)(ΔMn+1)
� a.s.−→ c2

(2δ − 1)
Γ,

where the almost sure convergence follows from [24, Lemma 4.1] and the fact
that

E[(ΔMn+1)(ΔMn+1)
�|Fn] = E[(ξn+1 −ψn)(ξn+1 −ψn)

�|Fn]
a.s.−→ Γ.

Appendix C: Computations regarding the local reinforcement

Suppose αn ∼ an−α for n ≥ 1 and (1 − βn) ∼ b(n + 1)−β for n ≥ 0. In the

following subsections we study the behaviour of the factor f(h, n) = αh

∏n−1
j=h βj

in some particular cases that cover the cases of the two examples in Section M4.
Specifically, for all the considered cases, we set �(h, n) = ln(αh

∏n−1
j=h βj) =

ln(αh) +
∑n−1

j=h ln(βj) for n ≥ h, so that

�(h∗, n)− �(h, n) = ln(αh∗)− ln(αh)−
h∗−1∑
j=h

ln(βj), h∗ ≥ h, (C.1)

and we prove that there exists h∗ such that maxh≤h∗ �(h, n) ≤ �(h∗, n) and
h → �(h, n) is increasing for h ≥ h∗. This means that the weights f(h, n) of the
observations until h∗ are smaller than those with h ≥ h∗ and the contribution
of the observation for h ≥ h∗ is increasing with h.

C.1. Case α = β ∈ (0, 1)

Suppose αn = an−α and 1− βn = b(n+ 1)−α, with a, b > 0 and α ∈ (0, 1). For
n ≥ h, we have

�(h+ 1, n)− �(h, n) = ln(a(h+ 1)−α)− ln(ah−α)− ln(1− b(h+ 1)−α)

= −α ln
(
1 +

1

h

)
− ln

(
1− b

(h+ 1)α

)
= −α

h
+

b

(h+ 1)α
.

Since α < 1, there exists h0 such that the function h → �(h, n) is monotonically
increasing for h ≥ h0. Now, fix η > 0 and let j0 such that j ≥ j0 implies

ln(βj) ≤ − bj−α

1+η . Then take h∗ ≥ max(h0, j0) + 1 and h ≤ h0 − 1. For h∗ large

enough, we get by (C.1)

�(h∗, n)− �(h, n) = ln(ah−α
∗ )− ln(ah−α)−

h∗−1∑
j=h

ln(βj)

≥ ln(h−α
∗ ) +

h∗−1∑
j=max(h0,j0)

bj−α

1 + η
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≥ −α ln(h∗) + C1 +
b

1 + η

∫ h∗−1

max(h0,j0)

x−α dx

= −α ln(h∗) + C1 +
b

(1 + η)(1− α)

[
(h∗ − 1)1−α

−max(h0, j0)
1−α
]

= C2 − α ln(h∗) +
b

(1 + η)(1− α)
(h∗ − 1)1−α ≥ 0 .

Therefore, taking h∗ large enough, we have maxh≤h∗ �(h, n) = maxh≤h0−1 �(h, n)
∨maxh0≤h≤h∗ �(h, n) ≤ �(h∗, n).

C.2. Case α = β = 1

Suppose αn = an−1 and 1− βn = b(n+ 1)−1, with a > 0 and b > 1. For n ≥ h,
we have

�(h+ 1, n)− �(h, n) = ln(a(h+ 1)−1)− ln(ah−1)− ln(1− b(h+ 1)−1)

= − ln
(
1 +

1

h

)
− ln

(
1− b

(h+ 1)

)
=

b− 1

h+ 1
+ o(h−1).

Since b > 1, we can argue as in the previous subsection. Therefore, there exists h0

such that the function h → �(h, n) is monotonically increasing for h ≥ h0. Now,

fix η = (b− 1)/(b + 1) > 0 and let j0 such that j ≥ j0 implies ln(βj) ≤ − bj−1

1+η .

Then take h∗ ≥ max(h0, j0) + 1 and h ≤ h0 − 1. For h∗ large enough, we get by
(C.1)

�(h∗, n)− �(h, n) = ln(ah−1
∗ )− ln(ah−1)−

h∗−1∑
j=h

ln(βj)

≥ ln(h−1
∗ ) +

h∗−1∑
j=max(h0,j0)

bj−1

1 + η

≥ − ln(h∗) + C1 +
b

1 + η

∫ h∗−1

max(h0,j0)

x−1 dx

= − ln(h∗) + C1 +
b

(1 + η)

[
ln(h∗ − 1)− ln(max(h0, j0))

]
= C2 +

b− 1− η

(1 + η)
ln(h∗)−O(1/h∗)

= C2 +
b(b− 1)

2b
ln(h∗)−O(1/h∗) ≥ 0 .

Therefore, taking h∗ large enough, we have maxh≤h∗ �(h, n) = maxh≤h0−1 �(h, n)
∨maxh0≤h≤h∗ �(h, n) ≤ �(h∗, n).
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C.3. Case β < 1 and 0 < α < β < (1 + α)/2

Suppose

αn = an−α
(
1 +

c1
n1−β

+
c2

nβ−α
+

c3
n

+O(1/n2−β)
)

and 1−βn = b(n+1)−β , with a, b > 0, 0 < α < β < (1+α)/2 and c1, c2, c3 ∈ R.
Set γ = β − α ∈ (0, 1/2). For n ≥ h, we have

�(h+ 1, n)− �(h, n) = ln(a(h+ 1)−α)− ln(ah−α)− ln
(
1− b(h+ 1)−β

)
+ ln

(
1 + c1/(h+ 1)1−β + c2/(h+ 1)γ

+ c3/(h+ 1) +O(1/h2−β)
)

− ln
(
1 + c1/h

1−β + c2/h
γ + c3/h+O(1/h2−β)

)
.

(C.2)
Now, we aim at obtaining a series expansion with a reminder term of the type
o(1/hβ). Since β < 1, the first three terms of the right-hand side of the above
equation give

ln(a(h+ 1)−α)− ln(ah−α)− ln(1− b(h+ 1)−β)

= −α ln
(
1 +

1

h

)
− ln

(
1− b

(h+ 1)β

)
=

b

(h+ 1)β
+ o(h−β).

We deal now with the last two terms of (C.2). We recall that

ln(1 + x) = x− x2

2
+

x3

3
+ · · ·+ (−1)j−1 x

j

j
+ o(xj) ,

and therefore, since 2 − β = 1 + 1 − β > 1 > β and j(1 − β) > β and jγ =
j(β−α) > β for j large enough, there are only a finite number J0 of terms with
an order τj ≤ β. In other words, we can write

ln
(
1 + c1/(h+ 1)1−β + c2/(h+ 1)γ + c3/(h+ 1) +O(1/n2−β)

)
− ln

(
1 + c1/h

1−β + c2/h
γ + c3/h+O(1/n2−β)

)
=

J0∑
j=1

Cj(h+ 1)−τj −
J0∑
j=1

Cjh
−τj + o(1/hβ)

=

J0∑
j=1

Cjh
−τj
[
(1 + h−1)−τj − 1

]
+ o(1/hβ)

=

J0∑
j=1

Cjh
−τj (τjh

−1 + o(1/h)
)
+ o(1/hβ) = o(1/hβ) .

Summing up, we have

�(h+ 1, n)− �(h, n) =
b

(h+ 1)β
+ o(h−β).
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Then there exists h0 such that the function h → �(h, n) is monotonically increas-

ing for h ≥ h0. Now, fix η > 0 and let j0 such that j ≥ j0 implies ln(βj) ≤ − bj−β

1+η .

Then take h∗ ≥ max(h0, j0) + 1 and h ≤ h0 − 1. Since β < (1 + α)/2, we have
αn = an−α(1 +O(1/nγ)) and so, for h∗ large enough, we get by (C.1)

�(h∗, n)− �(h, n) = ln(ah−α
∗ )− ln(ah−α) + ln(1 +O(h−γ

∗ )) + C1 −
h∗−1∑
j=h

ln(βj)

≥ ln(h−α
∗ ) + ln(1 +O(h−γ

∗ )) + C1 +

h∗−1∑
j=max(h0,j0)

bj−β

1 + η

≥ −α ln(h∗) +O(h−γ
∗ ) + C2 +

b

1 + η

∫ h∗−1

max(h0,j0)

x−β dx

= −α ln(h∗) +O(h−γ
∗ ) + C2

+
b

(1 + η)(1− β)

[
(h∗ − 1)1−β −max(h0, j0)

1−β
]

= C3 +O(h−γ
∗ )− α ln(h∗) +

b

(1 + η)(1− β)
(h∗ − 1)1−β ≥ 0 .

Therefore, taking h∗ large enough, we have maxh≤h∗ �(h, n) = maxh≤h0−1 �(h, n)
∨maxh0≤h≤h∗ �(h, n) ≤ �(h∗, n).

Appendix D: Technical results

We recall the generalized Kronecker lemma [3, Corollary A.1]:

Lemma D.1 (Generalized Kronecker Lemma). Let {vN,n : 1 ≤ n ≤ N} and
(zn)n be respectively a triangular array and a sequence of complex numbers such
that vN,n �= 0 and

lim
N

vN,n = 0, lim
n

vn,n exists finite,

N∑
n=1

|vN,n − vN,n−1| = O(1)

and
∑

n zn is convergent. Then limN

∑N
n=1 vN,nzn = 0.

The above corollary is useful to get the following result for complex random
variables, which slightly extends the version provided in [3, Lemma A.2]:

Lemma D.2. Let H = (Hn)n be a filtration and (Yn)n a H-adapted sequence of
complex random variables. Moreover, let (cn)n be a sequence of strictly positive
real numbers such that

∑
n E
[
|Yn|2

]
/c2n < +∞ and let {vN,n, 1 ≤ n ≤ N} be a

triangular array of complex numbers such that vN,n �= 0 and

lim
N

vN,n = 0, lim
n

vn,n exists finite,

N∑
n=1

|vN,n − vN,n−1| = O(1) .
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Suppose that
N∑

n=1

vN,n
E[Yn|Hn−1]

cn

P−→ V, (D.1)

where V is a suitable random variable. Then
∑N

n=1 vN,nYn/cn
P−→ V .

If the convergence in (D.1) is almost sure, then also the convergence of∑N
n=1 vN,nYn/cn toward V is almost sure.

Proof. Consider the martingale (Mn)n defined by

Mn =
n∑

j=1

Yj − E[Yj |Hj−1]

cj
.

It is bounded in L2 since
∑

n
E[|Yn|2]

c2n
< +∞ by assumption and so it is almost

surely convergent, that means∑
n

Yn(ω)− E[Yn|Hn−1](ω)

cn
< +∞

for ω ∈ B with P (B) = 1. Therefore, fixing ω ∈ B and setting zn =
Yn(ω)−E[Yn|Hn−1](ω)

cn
, by Lemma D.1, we get

lim
N

N∑
n=1

vN,n
Yn(ω)− E[Yn|Hn−1](ω)

cn
= 0 ,

that is
N∑

n=1

vN,n
Yn − E[Yn|Hn−1]

cn

a.s.−→ 0.

In order to conclude, it is enough to observe that

N∑
n=1

vN,n
Yn

cn
=

N∑
n=1

vN,n
Yn − E[Yn|Hn−1]

cn
+

N∑
n=1

vN,n
E[Yn|Hn−1]

cn

and use assumption (D.1).

Remark D.1. If we have
∑N

n=1
|vN,n|
cn

= O(1), limN

∑N
n=1

vN,n

cn
= λ ∈ C

and E[Yn|Hn−1]
a.s.−→ Y , then (D.1) is satisfied with almost sure convergence

and V = λY . Indeed, if we denote by A an event such that P (A) = 1 and
limn E[Yn|Hn−1](ω) = Y (ω) for each ω ∈ A, then we can fix ω ∈ A, set
wn = E[Yn|Hn−1](ω) and w = Y (ω), and apply the generalized Toeplitz lemma
[3, Lemma A.1] (with zN,n = vN,n/(cnλ) and s = 1 when λ �= 0 and with

zN,n = vN,n/cn and s = 0 when λ = 0) in order to get
∑N

n=1 vN,n
wn

cn
→ λY

almost surely.
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The proof of the following lemma can be found in [27]. We here rewrite the
proof only for the reader’s convenience.

Lemma D.3 ([27, Lemma 18]). Let xn, ζn, γn be non-negative sequences such
that γn → 0,

∑
n γn = +∞ and

xn ≤ (1− γn)xn−1 + γnζn.

Then lim supn xn ≤ lim supn ζn.

Proof. Take L > lim supn ζn and n∗ large enough so that ζn < L and γn ≤ 1
when n ≥ n∗. Then, using that (x+ y)+ ≤ x+ + y+, we have for n ≥ n∗

(xn − L)+ ≤ ((1− γn)(xn−1 − L) + γn(ζn − L))
+

≤ (1− γn)(xn−1 − L)+ + γn(ζn − L)+

≤ (1− γn)(xn−1 − L)+.

Since
∑

n γn = +∞, the above inequality implies that limn(xn−L)+ = 0. This is
enough to conclude, because we can choose L arbitrarily close to lim supn ζn.

Appendix E: Some stochastic approximation results

Consider a stochastic process (θn) taking values in Θ = [−1, 1]k, adapted to a
filtration F = (Fn)n and following the dynamics

θn+1 = (1− εn)θn + cεnΔMn+1, (E.1)

where c > 0, (ΔMn+1)n is a uniformly bounded martingale difference sequence
with respect to F and εn = (n + 1)−ε with ε ∈ (0, 1] so that εn → 0 and∑

n εn = +∞. Setting ΔM̃n+1 = cΔMn+1, equation (E.1) becomes

θn+1 = (1− εn)θn + εnΔM̃n+1.

Then:

Theorem E.1. In the above setting, we have θN
a.s.−→ 0 .

Proof. We have the following two cases:

• ε ∈ (1/2, 1] so that
∑

n ε
2
n < +∞ or

• ε ∈ (0, 1/2] so that
∑

n ε
2
n = +∞.

For the first case, we refer to [37, Cap. 5, Th. 2.1]. For the second case, we

refer to [37, Cap. 5, Th. 3.1]). In this case, since (θn) and (ΔM̃n) are uniformly
bounded, the key assumption to be verified in order to apply [37, Cap. 5, Th. 3.1]
is the “rate of change” condition (see [37, p. 137]), that is

lim sup
N

sup
t∈[0,1]

|M0(N + t)−M0(N)| = 0, a.s.
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whereM0(t) =
∑m(t)−1

j=0 εjΔM̃j+1 andm(t) = inf{n : t < tn+1 =
∑n

j=0 εj} (see
[37, p. 122]). Since (ΔM̃n) is uniformly bounded, the above condition is satisfied
when the following simpler conditions are satisfied (see [37, pp. 139-141]):

(i) For each u > 0
∑

n e
−u/εn < +∞;

(ii) For some T < +∞, there exists a constant c(T ) < +∞ such that
supn≤j≤m(tn+T )

εj
εn

≤ c(T ).

When εn = (1 + n)−ε, condition (i) is obviously verified, because we have

limn n
2/eu(1+n)−ε

= 0. Finally, condition (ii) is always satisfied when εn is de-
creasing, as it is in the case εn = (1 + n)−ε. Indeed, we simply have

supn≤j≤m(tn+T ) εj/εn = εn/εn = 1.

Theorem E.2. In the above setting, if we have E[ΔMn+1ΔMn+1
�|Fn]

a.s.−→ Γ
with Γ a symmetric positive definite matrix, then we have

1√
εN

θN
d−→ N (0,Σ),

where Σ = c2Γ/2 when ε ∈ (0, 1) and Σ = c2Γ when ε = 1.

Proof. We have θN
a.s.−→ 0 and 0 belongs to the interior part of Θ. Moreover,

we have

E[ΔM̃n+1ΔM̃n+1

�
|Fn]

a.s.−→ c2Γ.

For the case ε ∈ (1/2, 1], we refer to [29, Th. 2.1] (with h = Id, U∗ = c2Γ and
γ∗ = 1) and [45, Th. 1] (with H = −Id, γn = σn = εn and so γ0 = 1 and β = ε).
For the case ε ∈ (0, 1/2], we refer to [37, cap.10, Th. 2.1] (with A = −Id). The
key assumption for applying this theorem is θn/

√
εn tight. On the other hand,

in the considered setting, this last condition is satisfied because of [37, Th. 4.1].
Note that the limit distribution corresponds to the stationary distribution of
the diffusion

dUt = (−Id+ c(ε))Utdt+ cΓ1/2dWt,

where W = (Wt)t is a standard Wiener process and

c(ε) =

{
0 for ε < 1

1/2 for ε = 1.

Therefore the limit covariance matrix is determined by solving the associated
Lyapunov’s equation [45], that, in the considered case, simply is

2 (−Id+ c(ε)Id) Σ = −c2Γ.

Theorem E.3. In the above setting, let (μn) be another stochastic process tak-
ing values in Θ = [−1, 1]k, adapted to a filtration F and following the dynamics

μn+1 − μn = − 1

n
(μn − θn) +

1

n
ΔMn+1 .
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Suppose that E[ΔMn+1ΔMn+1
�|Fn]

a.s.−→ Γ. If ε ∈ (1/2, 1), then we have(√
NμN

ε
−1/2
N θN

)
d−→ N

(
0,

(
(c+ 1)2Γ 0

0 c2

2 Γ

))
.

If ε = 1, then we have(√
NμN

ε
−1/2
N θN

)
d−→ N

(
0,

(
[(c+ 1)2 + c2]Γ c(c+ 1)Γ

c(c+ 1)Γ c2Γ

))
.

Proof. The dynamics for the pair (μn,θn)n is{
μn+1 − μn = − 1

n (μn − θn) +
1
nΔMn+1

θn+1 − θn = −εnθn + cεnΔMn+1 = −εnθn + εnΔM̃n+1 .

with E[ΔMn+1ΔMn+1
� |Fn]

a.s.−→ Γ. Therefore, when 1/2 < ε < 1, the state-
ment follows from [43] (with Q11 = Q22 = −Id, Q12 = Id, Q21 = 0, b = β0 = 1,
a = ε, Γ11 = Γ, Γ22 = c2Γ and Γ12 = Γ21 = cΓ). In particular, the two blocks of
the limit covariance matrix, say Σμ and Σθ, are determined solving the equations

(H +
1

2
Id)Σμ +Σμ(H

� +
1

2
Id) = −Γμ,

whereH = Q11−Q12Q
−1
22 Q21 = −Id+0 and Γμ = Γ11+Q12Q

−1
22 Γ22(Q

−1
22 )

�Q�
12−

Γ12(Q
−1
22 )

�Q�
12 −Q12Q

−1
22 Γ21 = Γ + c2Γ + cΓ + cΓ = (c+ 1)2Γ, and

Q22Σθ +ΣθQ
�
22 = −Γ22.

When ε = 1, we can conclude by [45] or [56] taking Xn = (μn, θn)
�. Indeed,

in this case the covariance matrix is given by

(H +
1

2
Id)Σ + Σ(H� +

1

2
Id) = −Γ̃,

where

H =

(
−Id Id
0 −Id

)
and Γ̃ =

(
Γ cΓ
cΓ c2Γ

)
.

Therefore, if we split Σ in blocks, say Σμ, Σθ and Σμθ, we find the system

−Σμ + 2Σμθ = −Γ

−Σμθ +Σθ = −cΓ

−Σθ = −c2Γ

and so the proof is concluded by solving this system.
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Appendix F: Stable convergence

This brief section contains some basic definitions and results concerning sta-
ble convergence. For more details, we refer the reader to [22, 25, 33] and the
references therein.

Let (Ω,A, P ) be a probability space, and let S be a Polish space, endowed
with its Borel σ-field. A kernel on S, or a random probability measure on S, is
a collection K = {K(ω) : ω ∈ Ω} of probability measures on the Borel σ-field
of S such that, for each bounded Borel real function f on S, the map

ω → Kf(ω) =

∫
f(x)K(ω)(dx)

is A-measurable. Given a sub-σ-field H of A, a kernel K is said H-measurable
if all the above random variables Kf are H-measurable. A probability measure
ν can be identified with a constant kernel K(ω) = ν for each ω.

On (Ω,A, P ), let (Yn)n be a sequence of S-valued random variables, let H
be a sub-σ-field of A, and let K be a H-measurable kernel on S. Then, we say
that Yn converges H-stably to K, and we write Yn −→ K H-stably, if

P (Yn ∈ · |H)
weakly−→ E [K(·) |H] for all H ∈ H with P (H) > 0,

where K(·) denotes the random variable defined, for each Borel set B of S, as
ω → KIB(ω) = K(ω)(B). In the case when H = A, we simply say that Yn

converges stably to K and we write Yn −→ K stably. Clearly, if Yn −→ K H-
stably, then Yn converges in distribution to the probability distribution E[K(·)].
The H-stable convergence of Yn to K can be stated in terms of the following
convergence of conditional expectations:

E[f(Yn) |H]
σ(L1, L∞)−→ Kf (F.1)

for each bounded continuous real function f on S. In [25] the notion of H-
stable convergence is firstly generalized in a natural way replacing in (F.1) the
single sub-σ-field H by a collection G = (Gn) (called conditioning system) of
sub-σ-fields of A and then it is strengthened by substituting the convergence
in σ(L1, L∞) by the one in probability (i.e. in L1, since f is bounded). Hence,
according to [25], we say that Yn converges to K stably in the strong sense, with
respect to G = (Gn), if

E [f(Yn) | Gn]
P−→ Kf

for each bounded continuous real function f on S.
We now conclude this section recalling some convergence results that we

apply in our proofs.
From [33, Th. 3.2] (see also [25, Th. 5 and Cor. 7] or [22, Th. 5.5.1 and

Cor. 5.5.2]), we get:

Theorem F.1. Given a filtration F = (Fn)n, let (YN,n)N,n be a triangular
array of random variables with values in R

k such that YN,n is Fn-measurable
and E[YN,n|Fn−1] = 0. Suppose that the following two conditions are satisfied:
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(c1) E [ max1≤n≤N |YN,n| ] → 0 and

(c2)
∑N

n=1 YN,nYN,n
� P−→ V , where V is a random variable with values in

the space of positive semidefinite k × k-matrices.

Then
∑N

n=1 YN,n converges stably to the Gaussian kernel N (0, V ).

From [25, Th. 5, Cor. 7, Rem. 4] or [22, Th. 5.5.1, Cor. 5.5.2, Rem. 5.5.2]),
we obtain:

Theorem F.2. Let (Ln) be a R
k-valued martingale with respect to the filtration

F = (Fn). Suppose that Ln
a.s., L1

−→ L for some R
k-valued random variable L and

(c1) nυ E[supj≥n |Lj−1 −Lj | ] −→ 0 and

(c2) n2υ
∑

j≥n(Lj−1−Lj)(Lj−1−Lj)
� P−→ V , where V is a random variable

with values in the space of positive semidefinite k × k-matrices.

Then

nυ
(
Ln −L

)
−→ N (0, V ) stably in strong sense w.r.t. F .

Indeed, following [25, Example 6], it is enough to observe that Ln − L can
be written as Ln −L =

∑
j≥n(Lj −Lj+1).

Finally, the following result combines together a stable convergence and a
stable convergence in the strong sense [13, Lemma 1].

Theorem F.3. Suppose that Cn and Dn are S-valued random variables, that
M and N are kernels on S, and that G = (Gn)n is an (increasing) filtration
satisfying for all n

σ(Cn)⊂Gn and σ(Dn)⊂σ (
⋃

nGn) .

If Cn stably converges to M and Dn converges to N stably in the strong sense,
with respect to G, then

[Cn, Dn] −→ M ⊗N stably.

(Here, M ⊗ N is the kernel on S × S such that (M ⊗ N)(ω) = M(ω) ⊗ N(ω)
for all ω.)

This last result contains as a special case the fact that stable convergence and
convergence in probability combine well: that is, if Cn stably converges to M
and Dn converges in probability to a random variable D, then (Cn, Dn) stably
converges to M ⊗ δD, where δD denotes the Dirac kernel concentrated in D.
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Generalized Rescaled Pólya urn and its statistical application 1677

References

[1] Aletti, G. and Crimaldi, I. (2022). The Rescaled Pólya Urn: local rein-
forcement and chi-squared goodness of fit test. Advances in Applied Prob-
ability 54.

[2] Aletti, G., Crimaldi, I. and Ghiglietti, A. (2017). Synchronization
of reinforced stochastic processes with a network-based interaction. Ann.
Appl. Probab. 27 3787–3844. MR3737938

[3] Aletti, G., Crimaldi, I. and Ghiglietti, A. (2019). Networks of rein-
forced stochastic processes: asymptotics for the empirical means. Bernoulli
25 3339–3378. MR4010957

[4] Aletti, G., Crimaldi, I. and Ghiglietti, A. (2020). Interacting Re-
inforced Stochastic Processes: Statistical Inference based on the Weighted
Empirical Means. Bernoulli 26 1098–1138. MR4058362

[5] Aletti, G., Crimaldi, I. and Saracco, F. (2021). A model for the
Twitter sentiment curve. PLOS ONE 16 1–28.

[6] Aletti, G., Ghiglietti, A. and Rosenberger, W. F. (2018). Nonpara-
metric covariate-adjusted response-adaptive design based on a functional
urn model. Ann. Statist. 46 3838–3866. MR3852670

[7] Aletti, G., Ghiglietti, A. and Vidyashankar, A. N. (2018). Dy-
namics of an adaptive randomly reinforced urn. Bernoulli 24 2204–2255.
MR3757528

[8] Aletti, G., Naldi, G. and Toscani, G. (2007). First-order contin-
uous models of opinion formation. SIAM J. Appl. Math. 67 837–853.
MR2300313
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