Limits of integrals involving almost periodic functions

G. Molteni

Result. Math., 46(3-4): 361-366, 2004.

Abstract

Let $\mathrm{Sp} \subset \mathbb{R}^{+}$be a discrete countable set, let $\left\{a_{\lambda}\right\}_{\lambda \in \mathrm{Sp}}$ be a sequence in $l^{1}(\mathrm{Sp})$ and $f(x):=$ $\sum_{\lambda \in \mathrm{Sp}} a_{\lambda} \sin (\lambda x) . f$ is an almost periodic odd function with $\{\lambda: \pm \lambda \in \mathrm{Sp}\}$ as spectrum. We give some conditions about the set S so that $\int_{1}^{+\infty} f(x) \sin (R x) \frac{d x}{x} \rightarrow 0$ whenever $R \rightarrow+\infty, R \in S$.

AMS subject classification: 42 A 75 .

Keywords: almost period functions.

Motivations and results

The Banach algebra AP of Bohr's almost periodic functions is obtained completing with respect to the uniform norm the complex vector space generated by the functions $e^{i \lambda x}$, with $\lambda \in \mathbb{R}$ (see [1]). Over AP it is possible to define a continuous functional \mathcal{M} such that $\mathcal{M}\left(e^{i \lambda x}\right)=\delta_{\lambda, 0}$, where $\delta_{\lambda, 0}=1$ if $\lambda=0$ and 0 otherwise. An important feature of \mathcal{M} is that for every $f \in \mathrm{AP}, \mathcal{M}\left(f(x) e^{i \lambda x}\right)=0$ for all but a countable set of values for λ which constitutes the spectrum Sp of f. Usually \mathcal{M} is defined as

$$
\mathcal{M}(f):=\lim _{T \rightarrow+\infty} \frac{1}{T} \int_{0}^{T} f(x) d x
$$

but there are other possibilities. In fact, for every $\alpha \in[0,1]$ we can consider

$$
\mathcal{M}_{\alpha}(f):=\lim _{T \rightarrow+\infty} \frac{1}{\mu_{\alpha}([1, T])} \int_{1}^{T} f(x) \frac{d x}{x^{\alpha}}, \quad \text { where } \quad \mu_{\alpha}([1, T]):=\int_{1}^{T} \frac{d x}{x^{\alpha}} .
$$

The existence and the continuity of \mathcal{M}_{α} as a functional over AP can be proved following the same argument proving existence and continuity of $\mathcal{M}(f)$ (see [1]). Since a direct check shows that $\mathcal{M}_{\alpha}\left(e^{i \lambda x}\right)=$ $\delta_{\lambda, 0}$ for every $\alpha \in[0,1]$, we conclude that \mathcal{M}_{α} is only a different definition of \mathcal{M}; in other words, we have

$$
\begin{equation*}
\int_{1}^{T} f(x) e^{-i R x} \frac{d x}{x^{\alpha}}=\left(a_{R}+o(1)\right) \mu_{\alpha}([1, T]) \tag{1}
\end{equation*}
$$

where a_{R} is independent of α and is zero if $R \notin \mathrm{Sp}_{f}$. The behavior of the integral in (1) for $\alpha=0$ and $\alpha \neq 0$ is different when a more exact asymptotic behavior is looked for. In fact, suppose $R \notin \mathrm{Sp}_{f}$ so that $a_{R}=0$, and consider the case $\alpha=0$, i.e., the function

$$
F(T):=\int_{1}^{T} f(x) e^{-i R x} d x .
$$

A classical result (Theorem 4.1 of [1]) states that if F is bounded then it is almost periodic, therefore when $\alpha=0$ the limit

$$
\begin{equation*}
\lim _{T \rightarrow+\infty} \int_{1}^{T} f(x) e^{-i R x} \frac{d x}{x^{\alpha}} \tag{2}
\end{equation*}
$$

does not exist if $f \not \equiv 0$. On the contrary, when $\alpha>0$ an integration by parts

$$
\int_{1}^{T} f(x) e^{-i R x} \frac{d x}{x^{\alpha}}=\left.\frac{F(x)}{x^{\alpha}}\right|_{1} ^{T}+\alpha \int_{1}^{T} F(x) \frac{d x}{x^{\alpha+1}}
$$

is sufficient to realize that (2) exists, at least when F is bounded. When $\alpha \neq 0$, therefore, it is quite natural to enquire the behavior of (2) as a function of R, in particular we are interested in finding the behavior of

$$
\begin{equation*}
\lim _{\substack{R \rightarrow+\infty \\ R \notin \mathrm{Sp}}} \int_{1}^{+\infty} f(x) e^{-i R x} \frac{d x}{x^{\alpha}} \tag{3}
\end{equation*}
$$

When $f(x) x^{-\alpha} \in L^{1}(\mathbb{R})$ the Riemann-Lebesgue theorem implies that the limit in (3) is zero. This fact is not useful when f is almost periodic and not identically zero, but we would like to know the conditions we have to assume in order to prove that the limit is again zero. The function $g(x):=f(x) e^{-i R x}$ is almost periodic with $\mathrm{Sp}_{g}=\mathrm{Sp}_{f}-R$, and it is known that the primitive of an almost periodic function is bounded when 0 is not a limit point for its spectrum (see [1], Chapter IV), hence we conjecture that (3) exists and is zero if and only if R runs over a set of points whose distance from Sp_{f} is large enough, in some sense. Our principal result, the theorem below, shows that this conjecture is true for a large class of almost periodic functions.

We have inquired both the case $0<\alpha<1$ and the case $\alpha=1$. We have found similar (but not identical) conclusions but the second case is complicated by the non-integrability at $x=0$ hence we have chosen to present our result only for $\alpha=1$. Moreover, for our applications it is useful to know the behavior of

$$
\lim _{\substack{R \rightarrow+\infty \\ R \notin \mathrm{Sp}}} \int_{1}^{+\infty} f(x) \sin (R x) \frac{d x}{x}
$$

$\left(\sin (R x) / x\right.$ is the Fourier transform of the characteristic function $\left.\chi_{[-R, R]}(x)\right)$ so that we state our result directly for such object. The proofs are based on explicit formulas, hence only almost periodic functions which are associated with l^{1} sequences are considered. Summarizing, our setting is the following: $\mathrm{Sp} \subset \mathbb{R}^{+}$is a discrete set, $\left\{a_{\lambda}\right\}_{\lambda \in \mathrm{Sp}}$ is a sequence in $l^{1}(\mathrm{Sp})$ so that

$$
f(x):=\sum_{\lambda \in \mathrm{Sp}} a_{\lambda} \sin (\lambda x)
$$

is an almost periodic odd function whose spectrum is a subset of $\{ \pm \lambda: \lambda \in \operatorname{Sp}\}$.
Remark 1. The referee pointed to our attention that in the context of the signal processing theory $\sin (R x) / x$ represents the impulse response of a reconstruction filter to the unit step rectangular pulse on the time interval $[-R, R]$, that the limit $R \rightarrow+\infty$ implies an increase of bandwidth and that \mathcal{M} defines the spectral average detection performed by a signal responding instrument. In this context the spectral weights adopt a novel and interesting character. Since we are not expert of this subject, we prefer to demand to the specialized literature (for example [2] and [3]) the interested reader.

The following lemma gives an explicit and alternative formula for the integral we are studying.
Lemma 1. Let $R>0$ be fixed, then the limit

$$
\lim _{M \rightarrow+\infty} \int_{1}^{M} f(x) \sin (R x) \frac{d x}{x}
$$

exists if and only if $a_{R}=0$ and in this case

$$
\begin{equation*}
\int_{1}^{+\infty} f(x) \sin (R x) \frac{d x}{x}=\sum_{\lambda \in \mathrm{Sp}} \frac{a_{\lambda}}{2} \int_{|\lambda-R|}^{\lambda+R} \cos x \frac{d x}{x} . \tag{4}
\end{equation*}
$$

Proof. The series defining f converges uniformly on \mathbb{R}, therefore

$$
\begin{array}{rl}
\int_{1}^{M} & f(x) \sin (R x) \frac{d x}{x}=\sum_{\lambda \in \mathrm{Sp}_{\mathrm{p}}} a_{\lambda} \int_{1}^{M} \sin (\lambda x) \sin (R x) \frac{d x}{x} \\
& =-\sum_{\lambda \in \mathrm{Sp}^{2}} \frac{a_{\lambda}}{2} \int_{1}^{M}[\cos (\lambda+R) x-\cos (\lambda-R) x] \frac{d x}{x} \\
& =-\sum_{\substack{\lambda \in \mathrm{Sp} \\
\lambda \neq R}} \frac{a_{\lambda}}{2}\left[\int_{\lambda+R}^{M(\lambda+R)} \cos x \frac{d x}{x}-\int_{|\lambda-R|}^{M|\lambda-R|} \cos x \frac{d x}{x}\right]-\frac{a_{R}}{2}\left[\int_{1}^{M} \cos (2 R x) \frac{d x}{x}-\int_{1}^{M} \frac{d x}{x}\right] .
\end{array}
$$

When $R \neq \lambda$ and $M \gg R$ we have $|\lambda-R| \leq \lambda+R \leq M|\lambda-R| \leq M(\lambda+R)$, so that

$$
=-\sum_{\substack{\lambda \in \mathrm{Sp} \\ \lambda \neq R}} \frac{a_{\lambda}}{2}\left[\int_{M|\lambda-R|}^{M(\lambda+R)} \cos x \frac{d x}{x}-\int_{|\lambda-R|}^{\lambda+R} \cos x \frac{d x}{x}\right]-\frac{a_{R}}{2} \int_{2 R}^{2 R M} \cos x \frac{d x}{x}+\frac{a_{R}}{2} \ln M .
$$

The series depending on M can be uniformly estimated since

$$
\begin{equation*}
\int_{M|\lambda-R|}^{M(\lambda+R)} \cos x \frac{d x}{x}=\left.\frac{\sin x}{x}\right|_{M|\lambda-R|} ^{M(\lambda+R)}+\int_{M|\lambda-R|}^{M(\lambda+R)} \sin x \frac{d x}{x^{2}} \ll \frac{1}{M|\lambda-R|}, \tag{5}
\end{equation*}
$$

so that

$$
\sum_{\substack{\lambda \in \mathrm{Sp} \\ \lambda \neq R}} \frac{\left|a_{\lambda}\right|}{2}\left|\int_{M|\lambda-R|}^{M(\lambda+R)} \cos x \frac{d x}{x}\right| \lll \sum_{\substack{\lambda \in \mathrm{Sp} \\ \lambda \neq R}}\left|a_{\lambda}\right| \frac{1}{M|\lambda-R|} \ll \frac{1}{M} .
$$

A similar upper bound, this time with $M=1$, proves that also the second series converges, therefore as $M \rightarrow+\infty$ we have

$$
\int_{1}^{M} f(x) \sin (R x) \frac{d x}{x}=\sum_{\substack{\lambda \in \operatorname{Sp} \\ \lambda \neq R}} \frac{a_{\lambda}}{2} \int_{|\lambda-R|}^{\lambda+R} \cos x \frac{d x}{x}-\frac{a_{R}}{2} \int_{2 R}^{+\infty} \cos x \frac{d x}{x}+\frac{a_{R}}{2} \ln M+O\left(M^{-1}\right),
$$

and the claim follows.
Now we approximate Identity (4) in such a way that only the elements of Sp which are near to R appear explicitly.

Lemma 2. Let Sp and a_{λ} as before, with $a_{R}=0$. Let c be an arbitrary positive constant, then

$$
\int_{1}^{+\infty} f(x) \sin (R x) \frac{d x}{x}=-\sum_{\substack{\lambda \in \mathrm{Sp} \\|\lambda-R|<c}} \frac{a_{\lambda}}{2} \ln |\lambda-R|+O_{c}\left(\sum_{\substack{\lambda \in \mathrm{Sp} \\ R / 2<\lambda<2 R}}\left|a_{\lambda}\right|\right)+O\left(R^{-1}\right)
$$

Proof. In fact, from (5) we have the upper bound

$$
\sum_{\substack{\lambda \in \mathrm{Sp} \\ \lambda \leq R / 2}} a_{\lambda} \int_{|\lambda-R|}^{\lambda+R} \cos x \frac{d x}{x} \ll \sum_{\substack{\lambda \in \mathrm{Sp} \\ \lambda \leq R / 2}} \frac{\left|a_{\lambda}\right|}{|\lambda-R|} \ll R^{-1}
$$

the same argument holds in the range $\lambda \geq 2 R$, therefore

$$
\sum_{\lambda \in \mathrm{Sp}} a_{\lambda} \int_{|\lambda-R|}^{\lambda+R} \cos x \frac{d x}{x}=\sum_{\substack{\lambda \in \operatorname{Sp} \\ R / 2<\lambda<2 R}} a_{\lambda} \int_{|\lambda-R|}^{\lambda+R} \cos x \frac{d x}{x}+O\left(R^{-1}\right)
$$

Using (5) again but in ranges $R / 2<\lambda<R-c$ and $R+c<\lambda<2 R$, we obtain

$$
\begin{equation*}
\sum_{\lambda \in \mathrm{Sp}} a_{\lambda} \int_{|\lambda-R|}^{\lambda+R} \cos x \frac{d x}{x}=\sum_{\substack{\lambda \in \mathrm{Sp} \\|\lambda-R|<c}} a_{\lambda} \int_{|\lambda-R|}^{\lambda+R} \cos x \frac{d x}{x}+O_{c}\left(\sum_{\substack{\lambda \in \mathrm{Sp} \\ R / 2<\lambda<2 R \\|\lambda-R| \geq c}}\left|a_{\lambda}\right|\right)+O\left(R^{-1}\right) \tag{6}
\end{equation*}
$$

Since

$$
\begin{aligned}
\int_{|\lambda-R|}^{\lambda+R} \cos x \frac{d x}{x} & =\int_{|\lambda-R|}^{1} \cos x \frac{d x}{x}+O(1)=-\ln |\lambda-R|+\int_{|\lambda-R|}^{1} \frac{\cos x-1}{x} d x+O(1) \\
& =-\ln |\lambda-R|+O(1)
\end{aligned}
$$

uniformly on $\lambda \in \mathrm{Sp}$ and $R \in \mathbb{R}^{+}$, from (6) we get

$$
\sum_{\lambda \in \mathrm{Sp}} a_{\lambda} \int_{|\lambda-R|}^{\lambda+R} \cos x \frac{d x}{x}=-\sum_{\substack{\lambda \in \mathrm{Sp} \\|\lambda-R|<c}} a_{\lambda} \ln |\lambda-R|+O\left(\sum_{\substack{\lambda \in \mathrm{Sp} \\|\lambda-R|<c}}\left|a_{\lambda}\right|\right)+O_{c}\left(\sum_{\substack{\lambda \in \mathrm{Sp} \\ R / 2<\lambda<2 R \\|\lambda-R| \geq c}}\left|a_{\lambda}\right|\right)+O\left(R^{-1}\right)
$$

which is the claim.
Lemma 2 immediately implies the following theorem.
Theorem. Given $\phi: \mathbb{R} \rightarrow \mathbb{R}^{+}$, suppose that $S_{\phi}:=\left\{x \in \mathbb{R}^{+}:|x-\lambda| \geq 1 / \phi(\lambda), \forall \lambda \in \operatorname{Sp}\right\}$ is unbounded and that

$$
\lim _{R \rightarrow+\infty} \sum_{\substack{\lambda \in \mathrm{Sp} \\|\lambda-R|<1}}\left|a_{\lambda} \ln \phi(\lambda)\right|=0
$$

then

$$
\begin{equation*}
\lim _{\substack{R \rightarrow+\infty \\ R \in S_{\phi}}} \int_{1}^{+\infty} f(x) \sin (R x) \frac{d x}{x}=0 \tag{7}
\end{equation*}
$$

We note that S_{ϕ} is unbounded if and only if $\Delta_{\lambda}:=\inf \{|\eta-\lambda|, \eta \in \mathrm{Sp}, \eta \neq \lambda\}>1 / \phi(\lambda)$ for infinitely many $\lambda \in \mathrm{Sp}$, so that a function ϕ as in Theorem exists if and only if

$$
\begin{equation*}
\lim _{R \rightarrow+\infty} \sum_{\substack{\lambda \in \mathrm{Sp} \\|R-\lambda|<1}}\left|a_{\lambda} \ln \left(\Delta_{\lambda}\right)\right|=0 . \tag{8}
\end{equation*}
$$

This condition is always satisfied when Sp is well spaced, i.e., $\Delta_{\lambda} \gg 1$, but can fail if $\inf _{\lambda} \Delta_{\lambda}=0$.
Remark 2. The restriction $R \in S_{\phi}$ in (7) is necessary, in fact the limit can be non-zero when R runs on a set sufficiently near to Sp . For example, suppose $\mathrm{Sp}=\mathbb{N} \backslash\{0\}$ and let $a_{n}=n^{-2}$. Then, from Lemma 2 (with $c=1 / 2$) we have

$$
\int_{1}^{+\infty} f(x) \sin (R x) \frac{d x}{x}=-\frac{\ln \|R\|}{2\lfloor R\rfloor^{2}}+o(1)
$$

where $\lfloor R\rfloor$ is the integer which is nearest to R and $\|R\|:=|R-\lfloor R\rfloor|$: obviously the limit can be zero, positive or infinite for suitable choices of R.

Remark 3. The similar problem for even functions is easier. In fact, let $g(x):=\sum_{\lambda \in \mathrm{Sp}} b_{\lambda} \cos (\lambda x)$, where Sp is a discrete countable set and $\left\{b_{\lambda}\right\}_{\lambda \in \mathrm{Sp}}$ is a sequence in $l^{1}(\mathrm{Sp})$. Then, an argument similar to that one proving Lemma 1 shows that

$$
\int_{1}^{+\infty} g(x) \sin (R x) \frac{d x}{x}=\pi \sum_{\substack{\lambda \in S_{\mathrm{p}} \\ \lambda<R}} b_{\lambda}-\sum_{\substack{\lambda \in \mathrm{Sp} \\ \lambda \neq R}} \frac{b_{\lambda}}{2} \int_{\lambda-R}^{\lambda+R} \sin x \frac{d x}{x}+\frac{b_{R}}{2} \int_{2 R}^{+\infty} \sin x \frac{d x}{x} \quad \forall R,
$$

so that by the dominated convergence theorem we conclude that $\int_{1}^{+\infty} g(x) \sin (R x) \frac{d x}{x}$ tends to zero as R tends to infinity, without any restriction about the set containing R.

An application

Let $\mathrm{Sp}:=\{\lambda: \lambda=\ln n, n \in \mathbb{N}, n>1\}$ so that $\Delta_{\lambda} \sim e^{-\lambda}$, and take $a_{\lambda}=\lambda^{-2} e^{-\lambda}$ so that

$$
f(x)=\sum_{\lambda \in \mathrm{Sp}_{\mathrm{p}}} a_{\lambda} \sin (\lambda x)=\sum_{n=2}^{\infty} \frac{\sin (x \ln n)}{n \ln ^{2} n} .
$$

Since $\sum_{|R-\lambda|<1}\left|a_{\lambda} \ln \left(\Delta_{\lambda}\right)\right| \asymp \lambda^{-1}$, by (8) and our theorem we know that there exists a function ϕ (for example, $\phi(\lambda) \asymp \Delta_{\lambda}^{-1}=e^{\lambda}$) such that $\int_{1}^{+\infty} f(x) \sin (R x) d x / x$ tends to 0 as $R \rightarrow \infty$ in S_{ϕ}. It is interesting to check this claim when R runs over some particular sequence, for example, what happens if we take $R \in \mathbb{N}$? An answer to this question follows from known results about the transcendence measure of logarithms of algebraic numbers; in particular, we use the following fact: there exists $c>0$ such that

$$
\begin{equation*}
\forall p, q, n \in \mathbb{N} \backslash\{0\}, \quad\left|\frac{p}{q}-\ln n\right|>e^{-c(\ln n) \ln (q \ln n)} \tag{9}
\end{equation*}
$$

(for $q=1$ this claim is due to Mahler, the generalization we consider here is an immediate consequence of Theorem 9.1 of [5]). Let $r: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$be an arbitrary function monotonously decreasing to 0 and
satisfying $r(x) \geq x^{-1} \ln x$. Let

$$
\begin{aligned}
& \phi(\lambda):=e^{c \lambda^{2} r(\lambda)} \\
& S_{\phi}:=\left\{x:|x-\lambda|>\phi^{-1}(\lambda), \forall \lambda \in \mathrm{Sp}\right\} \\
& S_{\phi, r}:=\left\{p / q \in \mathbb{Q}: 1 \leq q \leq \lambda^{-1} e^{\lambda r(\lambda)}, \text { where } \lambda=\lambda(p / q) \in \operatorname{Sp} \text { and }\left|\frac{p}{q}-\lambda\right|=\min _{\eta \in \mathrm{Sp}}\left|\frac{p}{q}-\eta\right|\right\}
\end{aligned}
$$

The inclusion $S_{\phi, r} \subset S_{\phi}$ follows by (9) and since

$$
\sum_{|\lambda-R|<1}\left|a_{\lambda} \ln \phi(\lambda)\right| \ll \sum_{|\lambda-R|<1} \frac{r(\lambda)}{e^{\lambda}} \ll r(R-1) \sum_{|\lambda-R|<1} \frac{1}{e^{\lambda}} \asymp r(R-1) \rightarrow 0
$$

the theorem gives

$$
\begin{equation*}
\lim _{\substack{R \rightarrow+\infty \\ R \in S_{\phi, r}}} \int_{1}^{+\infty} f(x) \sin (R x) \frac{d x}{x}=0 \tag{10}
\end{equation*}
$$

When $r(x)=x^{-1} \ln x$ we have $S_{\phi, r}=\mathbb{N}$, but for other choices of $r, S_{\phi, r}$ can be significantly larger than \mathbb{N}.
We note that $f(x)=-\Im F(1+i x)$ where $F(s):=\sum_{n=2}^{\infty} n^{-s} / \ln ^{2} n$, so that by (10) and Remark 3 we conclude that

$$
\begin{equation*}
\lim _{\substack{R \rightarrow+\infty \\ R \in S_{\phi, r}}} \int_{1}^{+\infty} F(\sigma+i x) \sin (R x) \frac{d x}{x}=0 \tag{11}
\end{equation*}
$$

when $\sigma=1$. By similar arguments it is possibile to prove the validity of (11) for every $\sigma \geq 1$. The function $F(s)$ has an analytical continuation to $\mathbb{C} \backslash(-\infty, 1]$ coming from the equality $F^{\prime \prime}(s)+1=\zeta(s)$ where $\zeta(s)$ is the Riemann zeta function. It is probable that (11) holds whenever $F(\sigma+i x)=o(x)$, in particular, we conjecture that (11) holds whenever $\mu_{F}(\sigma)<1$, where $\mu_{F}(\sigma):=\inf \left\{a>0: F(\sigma+i x) \ll{ }_{a}\right.$ $\left.x^{a}, x>1\right\}$ is the Lindelöf function of F. It is known that the the Lindelöf function is a convex function and it is simple to prove that $\mu_{F}(1)=0$, therefore (11) should be true also in some range $\sigma \in(c, 1)$. In particular, assuming LH (i.e., the Lindelöf hypothesis for $\zeta(s)$ stating $\mu_{\zeta}(\sigma)=0$ when $\sigma \in[1 / 2,1]$; see [4]) we get $\mu_{F}(\sigma) \leq 4(1-\sigma)$ when $\sigma \in[1 / 2,1]$, hence (11) should be correct at least when $\sigma \in(3 / 4,1)$. Our inquires in this direction have been fruitless.

Acknowledgements. The author thanks Prof. P. Codecà for many interesting remarks and the referee for helpful comments.

References

[1] C. Corduneanu, Almost periodic functions, 2 ed., Chelsea Publishing Company, NY, 1989.
[2] A. V. Oppenheim and R. W. Schafer, Discrete-time signal processing, Prentice Hall, NJ, 1989.
[3] A. V. Oppenheim and A. S. Willsky, Signals and systems Prentice-Hall, London, 1983.
[4] E. C. Titchmarsh, The theory of the riemann zeta-function, 2 ed., Oxford University Press, NY, 1986.
[5] M. Waldschmidt, Diophantine approximation on linear algebraic groups, Springer-Verlag, Berlin, 2000.
G. Molteni, Dipartimento di Matematica, Università di Milano, Via Saldini 50, 20133 Milano, Italy
e-mail: giuseppe.molteni@mat.unimi.it

