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Abstract

Let fodd(z) :=
∑∞

k=1 ζ(2k + 1)z2k be the power series with the values of
the Riemann zeta function at odd integers as coefficients. This function can
be analytically continued to a meromorphic function over C. We prove that 1
and the values of fodd at rational points with relatively prime denominators
are linearly independent over Q.

Some arithmetical properties of the sequence {ζ(2k+ 1)}∞k=1 are deduced.

Mathematics Subject Classification (1991): 11J72, 11J99.

1 Introduction and results

Let ζ(s) be the Riemann zeta function. The arithmetical nature of its values at

even integers is well known from the classical formula ζ(2k) = 22k|B2k|
2(2k)!

π2k, where the
Bernoulli number B2k appears. Similar results hold for the Dedekind zeta function
ζF(s) of a totally real number field F when evaluated at even integers, by a theorem
of Siegel-Klingen [7]. In the general context of motivic L-functions, Deligne [4]
introduced the notion of critical integers (the even positive integers, in the case of
ζF(s)) and proposed a conjecture about the values at the critical integers, implying
that

L(m) = A(m)Ω(m) for m critical, (1)

with A(m) an algebraic number and Ω(m) a period, i.e., the integral over some
algebraic cycle of an algebraic differential form. This conjecture is actually a theorem
for the Artin L-functions.

Unlike the case of critical points, the values at non-critical integers are totally
mysterious: establishing the arithmetical nature of the constants ζ(2k + 1), for ex-
ample, is a surprisingly very difficult problem. It is a generally shared opinion that
every ζ(2k + 1) is a transcendental number with an arithmetical nature different
from that of ζ(2k). In particular ζ(2k + 1) should not be algebraically dependent
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on any powers of the logarithms of algebraic numbers, but the only result about
this problem is the celebrated proof of the irrationality of ζ(3) (Apéry [1], see also
Beukers [3]).
Let

feven(z) :=
∞∑
k=1

ζ(2k)z2k and fodd(z) :=
∞∑
k=1

ζ(2k + 1)z2k .

The aim of this paper is the study of fodd(z) to show that it has arithmetical pro-
perties different from that ones of feven(z). As a consequence, we show that a
representation of the form (1) is not possible for {ζ(2k + 1)} for some particular
choices of A(m) and Ω(m).

Considering the logarithmic derivative of the identity sin z = z
∏

n(1− z2/π2n2),
the equality

feven(z) =
1

2
− πz

2
cotg πz (2)

follows, a formula due to Euler.
By (2) it follows that feven(z) is a transcendental number for every rational z.

Nevertheless, the numbers 1, feven(z1) and feven(z2) are linearly dependent on Q for
every choice of z1, z2 in Q. The main result of this paper shows that this is not
possible for the function fodd(z).

Theorem. Let {rl = al/bl}Ml=1 be arbitrary distinct rational numbers with (al, bl)
= 1, 0 < rl < 1 and suppose that for any l there exists an odd prime pl such that
pl|bl and pl - bj when j 6= l. Then the numbers {1} ∪ {fodd(rl)}Ml=1 are linearly
independent over Q.

Remark 1. The hypothesis about {bl}Ml=1 in Theorem is a type of independence for
the rational numbers rl, and the relation 2(t−1)fodd(1

t
)−2(t−1)fodd( t−1

t
)+t(t−2) =

0, holding for every integer t by Proposition 1 below, shows that a some type of
independence of {rl}Ml=1 has to be assumed in order to the claim of Theorem hold.

An obvious corollary is

Corollary 1. Let 0 < r = a/b < 1 be a rational number with b not a power of 2.
Then fodd(r) is transcendental.

A lemma giving an explicit formula for fodd(z) at rational points is necessary for
the proof of Theorem. Since it has an independent interest, we state it explicitly.

Lemma. Let a
b
∈ (0, 1) ∩Q, αj := sin2 jπ

b
and ha(z) := (sin2 πaz) ln sin2 πz. Then

fodd

(a
b

)
= b
(

ln 2− 1

2a

)
+

b∑
j=1

αaj lnαj =
b∑

j=1

ha

(j
b

)
− b
∫ 1

0

ha(z)dz , (3)

i.e., fodd(a/b)/b is the discrepancy between the integral of ha(z) and its Riemann
approximation.
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The series defining fodd(z) converges only in the disk |z| < 1, but a meromor-
phic continuation to C is possible. In fact, let ψ(z) := Γ′(z)/Γ(z) be the logari-
thmic derivative of the gamma function. The infinite product formula Γ−1(1 + z) =
eγz
∏∞

n=1(1 + z
n
)e−z/n implies that

ψ(1 + z) = −γ +
∞∑
n=1

1

n(n+ z)
= −γ +

∞∑
n=2

(−1)nζ(n)zn−1 =

− γ + feven(z)/z − fodd(z) , (4)

where γ is the Euler constant. Identities (2) and (4) provide the meromorphic
continuation. Moreover, the functional equation Γ(z+ 1) = zΓ(z) gives a functional
equation for fodd too, so that the following proposition holds.

Proposition 1. fodd(z) is an even meromorphic function with simple poles at z ∈
Z\{0}; it satisfies the functional equation fodd(z) + 1

2z
= fodd(1 − z) + 1

2(1−z) and

Resz=n fodd(z) = − sgn(n)/2.

Proposition 1 has simple but interesting consequences, for instance

Corollary 2. The claims of Theorem and Corollary 1 hold without the restriction
0 < rl < 1 as well.

Corollary 3. The sequence {ζ(2k + 1)}∞k=1 does not satisfy any linear recursion.

Remark 2. By (2), identity (3) is equivalent to the formula

ψ
(a
b

)
= −γ − ln

b

2
− π

2
cotg

πa

b
+

∑
0<j<b/2

cos
2πaj

b
ln sin

πj

b
, (5)

a celebrated relation due to Gauss. The original proof of (5) has been considerably
simplified by Jensen [6], using Abel’s theorem on the continuity of convergent power
series on the circle of convergence, and by Lehmer [8], using a relation of ψ(z) with
the Euler constants for arithmetic progressions. We prove (3) independently of (5),
thus providing a new and very short proof of (5).

The theorem follows from the lemma, the theory of linear forms in logarithms
developed by Baker [2] and some considerations about cyclotomic fields.

2 Consequences on {ζ(2k+1)}∞k=1

The theorem and Proposition 1 give some support to the belief that the conjectural
expression in (1) for the critical values probably does not hold for {ζ(2k+ 1)}. Here
there are some examples.

Let ℘Λ be the Weierstrass elliptic function for a lattice Λ ⊂ C. ℘Λ has a lattice
of poles, and three non-collinear poles can be found for every element of L :=
C(z, ℘Λ1 , ℘

′
Λ1
, · · · , ℘ΛN

, ℘′ΛN
), for every choice of Λ1, · · · ,ΛN . Hence fodd 6∈ L and,

in particular, fodd(z) 6=
∑N

i=1 ci(℘Λi
(z)− 1/z2), so
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Proposition 2. It does not exist {Λi}Ni=1 lattices and {ci}Ni=1 ∈ C such that

ζ(2k + 1)

2k + 1
=

N∑
i=1

ciG2k+2(Λi) :=
N∑
i=1

ci(
∑
ω∈Λi
ω 6=0

1

ω2k+2
) ∀k > 0 .

This is an interesting fact, in view of the series defining ζ(2k + 1).

Let ω be a period for Λ. The impossibility of the equality fodd(z) = ω℘(ωz)− 1
ωz2

gives

Proposition 3. It does not exist any lattice Λ and any period ω of Λ such that
ζ(2k + 1) = (2k + 1)G2k+2(Λ)ω2k+1, holds for every positive k.

When ℘Λ has algebraic invariants G4, G6, every G2k is algebraic as well by the
relation ℘′2 = 4℘3 − 60G4℘ − 140G6, and ω is a transcendental number by the
theorem of Schneider [9]. Hence, Proposition 3 excludes a particular form of (1) for
the numbers ζ(2k + 1).

Let K be the field of meromorphic functions assuming only algebraic values at
the rational points; then

Corollary 4. fodd 6∈ K⊗Q C.

In fact, our theorem implies that arbitrarily long sets of values of fodd at rational
points are Q-linearly independent, while this is not the case for g ∈ K ⊗Q C. In
fact, g is a finite sum

∑N
j=1 cjfj, with cj ∈ C and fj ∈ K, and the set {g(zi)}N+1

i=1 is

always Q-linearly dependent for every choice of zi ∈ Q.

Remark 3. Corollary 4 states a peculiar property of fodd, since feven ∈ K⊗Q C.

K is a too large field to deduce any direct consequences from Corollary 4; for
this purpose the subfield M := Q(z, sin πz) ⊂ K is more convenient. Actually, every
element of Q(z, x) regular at {|x|, |z| < δ} is a series of the form

∑∞
m,n=0 cm,nz

mxn

with {cm,n} satisfating the linear recursion

M∑
u,v=1

au,v cm−u,n−v = 0 for every m,n ≥ 0 ,

for some {au,v}M1 ∈ Q.
Hence, the series

∑∞
m,n=0 cm,nz

m sinm πz is an element of M regular for |z| < δ, so

that it can be written as
∑∞

h=0(
∑h

l=0 dh,lπ
l)zh for a suitable double sequence {dh,l}

of algebraic numbers. Hence, the following proposition holds.
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Proposition 4. It does not exist N sequences {a(i)
u,v,t}Ni=1 ∈ Q and {ci}N1 ∈ C such

that {c(i)
l,m,n} satisfy the linear recursion

∑M
u,v,t=1 a

(i)
u,v,tc

(i)
l−u,m−v,n−t = 0 ∀i = 1, . . . , N ,

and

ζ(2k + 1) =
N∑
i=1

ci

2k+1∑
l=0

d
(i)
k,l πl for every k > 0 ,

where d
(i)
k,l are related to the coefficients c

(i)
m,n as above.

Again, Proposition 4 excludes a particular form of (1) for ζ(2k+ 1), π being the
period in this case.

Corollary 3 and Propositions 2, 3, 4 are only a few implications of Theorem
and Proposition 1. Other and more complicated consequences can be deduced, all
showing that representations of the form (1) are impossible if some conditions are
imposed on the sequence {A(m)}.

3 Proofs

3.1 The lemma . . .

By the identity ln(4 sin2 πz) = ln(1 − e2πiz) + ln(1 − e−2πiz) and the power series

− ln(1− z) =
∑∞

k=1
zk

k
converging uniformly in the complex region {|z| ≤ 1}∩{|z−

1| > δ}, we obtain the Fourier series

ln(2 sinπz) = −
∞∑
k=1

cos 2kπz

k
uniformly for z ∈ [δ, 1− δ], ∀δ > 0, (6)

(see also [11], ch. 3, sec. 14). A term by term integration of (6) gives the identity∫ 1

0
ha(z)dz = 1/2a − ln 2. Moreover, we remark that ha(z) ∈ C1[0, 1], that ha(z) ∈

C∞(0, 1) and that h′′a(z) is integrable in [0, 1]. Hence the Euler-Maclaurin summation
formula (see [10], ch. 1) gives the relation

b∑
j=1

ha

(j
b

)
− b
∫ 1

0

ha(z)dz = − 1

2b

∫ 1

0

B2({bz})h′′a(z)dz , (7)

with B2(z) the second Bernoulli polynomial and where {z} denotes the fractional
part of z. Since B2({z}) = 1

π2

∑∞
1

cos 2kπz
k2

uniformly for z ∈ R and

h′′a(z) = 2π2(2a2 cos 2πaz ln sinπz + 2a sin 2πaz
cos πz

sin πz
− sin2 πaz

sin2 πz
) ,

the right side of (7) becomes

2a2

b

∞∑
k=1

∞∑
l=1

1

k2l

∫ 1

0

cos 2kbπz cos 2πaz cos 2lπz dz , (8)
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where we have used the 0 < a < b condition to cancel some zero-terms. By the
orthogonality of the Fourier basis, (8) is equal to

a2

2b

∞∑
k=1

( 1

k2

1

kb+ a
+

1

k2

1

kb− a

)
and it is easy to verify that this quantity is fodd(a

b
), so the lemma is proved.

3.2 . . . and the theorem

We have to prove that βl = 0 ∀l is the unique solution of

β0 +
M∑
l=1

βlfodd

(al
bl

)
= 0 βl ∈ Q .

By the lemma, this linear form becomes

β̃−1 + β̃0 ln 2 +
M∑
l=1

bl∑
j=1

β̃l,j lnαl,j = 0 , (9)

with αl,j := sin2 jπ
bl

, β̃−1 := β0 − 1
2

∑M
l=1 βl

bl
al

, β̃0 :=
∑M

l=1 βlbl and β̃l,j := βlαl,jal .

Moreover, β̃−1, β̃0 and any β̃l,j belongs to Q, since αl,jal ∈ Q[bl]+, the maximal real
subfield of the cyclotomic field Q[bl]. Some values for j such that αl,j = 0 appear
in (9), but in this case β̃l,j = 0 too, and the total contribution is zero.

Equation (9) involves a Q-linear form in logarithms of algebraic numbers that
can be investigated by the fundamental theorems of Baker. In fact, Theorem 1 in [2]
(inhomogeneous case) shows that (9) is impossible when β̃−1 6= 0, and for β̃−1 = 0,
Theorem 2 in [2] (homogeneous case) implies that the solutions of (9) can be found
in Q. It follows that we can suppose β0 = 1

2

∑M
l=1 βl

bl
al

and β̃0, β̃l,j ∈ Z so that (9)
becomes

2β̃0
M∏
l=1

bl∏
j=1

α
β̃l,j
l,j = 1 β̃0, β̃l,j ∈ Z . (10)

Let Ll := Q[bl]+, L := ⊗lLl, and let N(·) be the norm map. It is a well known fact
that (see [5], ch. VI, eq. 3.10)

NQ[q]+/Q(sin2 jπ

q
) = q/4[Q[q]+:Q] for every q, (j, q) = 1 . (11)

We apply NL/Q = NL1/QNL/L1 to (10) and we consider the terms with l = 1; it
becomes

R

b1∏
j=1

[NL1/Q(α1,j)]
β̃1,j [L :L1] = 1 , (12)
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where R is a rational that by (11) is divisible only by 2 and the primes appearing
in bl with l > 1. In particular νp1(R) = 0, where νp1 is the valuation at the prime p1

that divides b1 but not bl for l > 1 by the hypothesis of our theorem, so (12) gives

0 = νp1(

b1∏
j=1

[NL1/Q(α1,j)]
β̃1,j) =

b1∑
j=1

β̃1,j νp1(NL1/Q(α1,j)) =

β1

b1∑
j=1

sin2 ja1π

b1

νp1(NL1/Q(α1,j)) . (13)

By (11) again, νp1(NL1/Q(α1,j)) ≥ 0 and it is not zero when (j, b1) = 1; moreover,
sin2 ja1π

b1
> 0 for such a value of j, hence (13) gives β1 = 0.

In similar way we prove that βl = 0 for l > 0 and the condition β0 = 1
2

∑M
j=1 βl

bl
al

gives β0 = 0 too. The theorem is proved.
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