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Abstract. We study the following Choquard type equation in the whole plane

(C) −∆u + V (x)u = (I2 ∗ F (x, u))f(x, u), x ∈ R2

where I2 is the Newton logarithmic kernel, V is a bounded Schrödinger potential and the
nonlinearity f(x, u), whose primitive in u vanishing at zero is F (x, u), exhibits the highest
possible growth which is of exponential type. The competition between the logarithmic
kernel and the exponential nonlinearity demands for new tools. A proper function space
setting is provided by a new weighted version of the Pohozaev–Trudinger inequality which
enables us to prove the existence of variational, in particular finite energy solutions to (C).

1. Introduction

Consider the following class of nonlocal equations

(1.1) −∆u+ V (x)u = (Iα ∗ F (u))f(u), x ∈ RN

where V ≥ 0 is the external Schrödinger potential, F is the primitive function of the non-
linearity f vanishing at zero, the kernel Iα is defined for x ∈ RN \ {0}, N ≥ 2 by

Iα(x) :=



Γ((N−α)/2)

Γ(α/2)πN/22α

|x|N−α
, 0 < α < N,

1

2N−1π
N
2 Γ(N2 )

log
1

|x|
, α = N,

where Γ(·) denotes Euler’s Gamma function. Notice that passing from α < N to the limiting
case α = N the kernel is no longer of one sign and does not decay at infinity which sets the
problem in a quite different framework. By introducing the function φ := Iα ∗F (u) one has
that (1.1) is equivalent to the following system

(1.2)


−∆u+ V (x)u = φf(u),

x ∈ RN

−∆
α
2 φ = F (u) ,

which in the case α = 2 it turns out to be the so-called Schrödinger–Poisson system which
has an Hamiltonian structure and which turns out to be relevant in applications, see [5]
and references therein. An extensive literature has been devoted to the higher dimensional
case N ≥ 3 and we refer to [25, 13, 14, 17, 37] for an up to date, though non exhaustive
bibliography. On the contrary, just a few results are available in the planar case. Existence
results in the case α < N = 2 have been proved in [3] in the case of power-like nonlinearities
and in [1] in the case of exponential growth. However, in dimension two the equivalence
between (1.1) and (1.2) in the Schrödinger–Poisson case α = 2, carries over as long as the
logarithmic kernel is taken into account. Existence and qualitative properties of solutions in
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2 D. CASSANI AND C. TARSI

the case of logarithmic kernel have been obtained in [7, 15] for power-like nonlinearities. On
the other hand, the polynomial growth somehow downplays the main feature of dimension
two which allows finite energy solutions to have arbitrary polynomial growth up to the
exponential.
The main purpose of this paper is to tackle the problem in which one has the logarithmic
kernel and the exponential growth, namely the limiting case α = N = 2 which is in turn
the Schrödinger-Poisson case. As we are going to see, the main difficulty arises in the
competing presence of a too loose singular behavior of the logarithmic kernel compared with
the exponential growth of the nonlinearity within the convolution, for which the problem
demands for a proper function space setting. Here we develop a suitable framework in which
we can prove the existence of mountain pass solutions. Let us finally mention that nonlinear
terms with exponential growth outside the convolution, which cast the problem in a quite
different context, have been recently considered in [2].

We will focus on the following non-autonomous problem

(1.3)

−∆u+ V (x)u =
1

2π

(
log

1

|x|
∗ F (x, u)

)
f(x, u), in R2

u ∈ H1(R2), u > 0 .

On the Schrödinger potential V we make the following assumptions:
(V1) V (x) ≥ V0 > 0 in R2 for some V0 > 0;
(V2) V (x) is a 1-periodic continuous function .

With a slight abuse of notation, we assume the nonlinearity f(x, s) = c(x)f(s) where c(x)
is a strictly positive, 1-periodic continuous function and f(s) a differentiable function whose
primitive vanishing at zero is F (s) and such that:

(f1) f(s) ≥ 0 for all s ≥ 0, f(s) ≤ Cspe4πs2 as s→ +∞ for some p > 0 and f(s) � sq−1

for some q > 2 as s→ 0;

(f2) ∃C > δ > 0 such that δ ≤ F (s)f ′(s)
f2(s)

≤ C ∀ s > 0;

(f3) lim
s→+∞

F (s)f ′(s)

f2(s)
= 1, or equivalently lim

s→+∞

d

ds

F (s)

f(s)
= 0;

(f4) lim
s→+∞

s3f(s)F (s)

e8πs2
≥ β > V, where V will be explicitly given in Section 5.

Since we look for positive solutions, we may also assume f(s) = 0 for s ≤ 0.
Let us make a few comments on our assumptions:

• (f1) gives the following

(1.4) 0 ≤ F (s) ≤ C ·
{
sq, s ≤ s0

sp−1e4πs2 , s > s0
for some s0 > 1

observing that
∫ s
s0
tpe4πt2dt ≤ sp−1

∫ s
1 te

4πt2dt for any s > 1;
• (f2) implies f(s) is monotone increasing in s, so that F (s) =

∫ s
0 f(τ)dτ ≤ sf(s).

Hence, the quantity F (x,s)
f(x,s) = c(x)F (s)

c(x)f(s) = F (s)
f(s) is well defined and vanishes only at

s = 0. Furthermore,

(1.5)
∂

∂s

(
F (x, s)

f(x, s)

)
=

d

ds

(
F (s)

f(s)

)
=
f2(s)− F (s)f ′(, s)

f2(s)
≤ 1− δ

which implies F (x, s) ≤ (1− δ)sf(x, s) and this improves the previous Ambrosetti-
Rabinowitz condition F (x, s) ≤ sf(x, s);

• (f3) yields a fine estimate from below on the quotient
Ff ′

f2
, as s→ +∞.
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Indeed, for any ε > 0 there exists sε > 0 such that:

(1.6)
Ff ′

f2
(s) ≥

{
δs, s ≤ sε
(1− ε)s, s > sε ;

• (f4) is in the spirit of the de Figueiredo–Miyagaki–Ruf condition [19] which in di-
mension two turns out to be a key ingredient in order to prove compactness. Loosely
speaking, it plays the role of the upper bound of the energy in terms of the Sobolev
constant (1/N)SN/2 in higher dimensions. The role of condition (f4) will be detailed
in Section 5;
• Functions Fi(s) satisfying our set of assumptions are for instance given by:

F1(s) =

{
sq, s ≤ s0

e4πs2 − 1, s > s0
, ∀ q > 2 F2(s) = spe4πs2 , ∀ p > 2;

F3(s) =

{
sq, s ≤ s0

cspe4πs2 , s > s0
, ∀ q > 2, p > 1 .

Accordingly to our assumptions on the nonlinearity, we will consider functionals which are
asymptotic, near the origin, to sq, with q > 2. Nevertheless, for the sake of clearness,
and since it has an independent interest by itself, we will state..... also in the case q = 2
SISTEMARE, anche nel seguito (fino a Overview) Consider the following weighted Sobolev
spaceH1

w(R2) which is the completion of smooth compactly supported functions with respect
to the norm

‖u‖2w = ‖∇u‖22 + ‖u‖2L2(wdx) =

∫
R2

|∇u|2dx+

∫
R2

u2 log(e+ |x|)dx .

Theorem 1.1. The weighted Sobolev space H1
w(R2) embeds into the weighted Orlicz space

Lφ(R2, log(e+ |x|)dx) where φ is the n-function φ(t) = et
2 − 1. More precisely, we have

(1.7)
∫
R2

(
eαu

2 − 1
)

log(e+ |x|)dx <∞

for any u ∈ H1
w(R2) and any α > 0. Moreover, the following uniform bound holds

(1.8) sup
‖u‖2w≤1

∫
R2

(
e2πu2 − 1

)
log(e+ |x|)dx < +∞ .

In the case q > 2 case, the natural weighted Sobolev space turns out to be H1Lqw(R2),
defined as the completion of smooth compactly supported functions with respect to the norm

‖u‖2w = ‖∇u‖22 + ‖u‖2/qLq(wdx) =

∫
R2

|∇u|2dx+

∫
R2

|u|q log(e+ |x|)dx .

We furthermore let
‖u‖2V :=

∫
R2

|∇u|2 + V |u|2 dx,

and use H1
V (R2) for the set of all functions with bounded ‖ · ‖V norm. Let also w0(x) :=

log(1 + |x|), and

‖u‖2q,V,w0
:= ‖u‖2V + ‖u‖2Lq(w0dx) = ‖u‖2V +

(∫
R2

|u|q log(1 + |x|)dx
) 2
q

,

and we consider H1
V L

q
w0(R2) as the completion of smooth compactly supported functions

with respect to the norm ‖ · ‖q,V,w0 (see (4.1)).
In the more general case q > 2, we prove a Trudinger type inequality similar to Theorem
1.1, see Section 3. Relying on it, we state our main result

Theorem 1.2. Suppose the nonlinearity f satisfies (f1)–(f4) and that the potential V enjoys
(V1)–(V2). Then, problem (1.3) possesses a nontrivial finite energy solution in the space
H1
V L

q
w0(R2).
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Overview. Equation (1.1) has a long history, heritage of the early studies on Polarons
iniziated by Fröhlich [20] and then has been revealed a good model also in completely
different contexts such as plasma physics [24] and quantum gravity [29]. We refer the
interested reader to the survey [25] and references therein for more on Physical aspects of
the problem.
Formally, the energy associated to problem (1.3) is given by

IV (u) =
1

2

∫
R2

|∇u|2 + V (x)u2dx− 1

4π

∫
R2

[
log

1

|x|
∗ F (x, u)

]
F (x, u)dx .

In order to have the energy well defined in presence of a logarithmic kernel, the authors
in [15, 34], restrict the space H1 introducing a further constraint, eventually setting the
problem in an intersection space in which the energy turns out to be well defined by the
Hardy–Littlewood–Sobolev inequality. Our approach here is different, from one side we
look for a proper function space setting in which such a natural constraint turns out to be
automatically satisfied and on the other side, we wonder if this can be done by allowing the
nonlinearity to exhibit exponential growth which is what we expect in dimension two, since
the seminal work of Pohozaev [31] and Trudinger [36]. Indeed, we prove that the Sobolev
space H1 with a logarithmic weight on the L2 mass term of the norm gives the proper
function space setting in which the energy in well defined up to the natural exponential
growth in the nonlinearity. Our argument throws light on the fact that, roughly speaking,
as concentration phenomena in the Moser functional are controlled by the L2 norm of the
gradient whereas vanishing phenomena are controlled by the L2 norm, here we prove that
a suitable logarithmic weight in the L2 component of the H1 norm is enough to obtain a
functional inequality which at the end yields a natural function space framework where to
set up the problem. We think this result is of independent interest and that could be useful
elsewhere. As pointed out also in [2, 15] an extra difficulty is given here by the lack of
invariance by translations of the energy which forces to prove a priori bounds of eventually
vanishing Palais–Smale sequences. Our method seems to be more natural also in this respect,
as starting from any PS sequence we can prove the existence of a weak H1-limit with no
need to establish a priori bounds.

For convenience of the reader, some preliminary material is recalled in Section 2. In Section
3 we establish the fundamental embedding inequality which will provide the function space
framework of Section 4 and that will be used throughout the paper. Section 5 is devoted
to show the underlying mountain pass geometry for the energy functional and to prove
mountain pass level estimates which in this case is a delicate matter. In Section 6 we prove
compactness results by carefully analyzing the behavior of PS sequences and finally, we
conclude in Section 7 the proof of Theorem 1.2.

2. Preliminaries

In this section we recall some well known results which will be used in the sequel.
Let H1

0 (Ω) be the classical Sobolev space, completion of smooth compactly supported func-
tions with respect to the Dirichlet norm ‖∇·‖2, when Ω is a bounded subset of RN , and with
respect to the complete Sobolev norm (‖∇ · ‖22 + ‖ · ‖22)1/2, when the domain is unbounded
and in particular for Ω = RN .
If N ≥ 3, the classical Sobolev embedding theorem reads as follows

(2.1) H1
0 (Ω) ↪→ L2∗(Ω) , namely ‖u‖2∗ ≤

1

S
‖∇u‖2 ,

where 2∗ := 2N
N−2 is the critical Sobolev exponent and the constant S in (2.1) is the best

possible [35].
When N = 2 is the so-called Sobolev limiting case. One has the embedding H1

0 (Ω) ↪→ Lp(Ω)
for all 1 ≤ p < ∞ (see also [12] for related best constants estimates), though H1

0 (Ω) 6⊂
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L∞(Ω). The maximal degree of summability for functions in H1
0 (Ω) was established inde-

pendently by Pohožaev [31] and Trudinger [36] (see also [38]) and is of exponential type, in
a suitable Orlicž class of functions, namely

(2.2) u ∈ H1
0 (Ω) =⇒

∫
Ω

(eα|u|
2 − 1) dx <∞, ∀α > 0 .

Starting from the seminal work of J. Moser [26] in which a sharp version of (2.2) is estab-
lished, the Pohozaev–Trudinger embedding has been further developed during the last fifty
years, in particular the first extension of (2.2) to unbounded domains appears in [9] for
functions with bounded Sobolev’s norm in the following form

(2.3) sup
‖∇u‖2≤1, ‖u‖2≤M

∫
R2

(
eαu

2 − 1
)
dx ≤ C(α)‖u‖2 <∞ if α < 4π

Thereafter, several sharp versions have been proved and extensions in many directions for
which we refer to [32, 11]. In particular, the borderline case in which α = 4π remained
uncovered until Ruf in [32] established the following inequality which is sharp in the sense
of Moser [26] (so-called Trudinger-Moser type inqualities):

(2.4) sup
‖∇u‖22+ ‖u‖22≤1

∫
R2

(
eαu

2 − 1
)
dx ≤ C̃(α) <∞ ⇐⇒ α ≤ 4π .

Remark 2.1. Note that in Ruf’s inequality (2.4) the constraint is defined through the com-
plete Sobolev norm ‖∇ · ‖22 + ‖ · ‖22. As one may realize by Cao’s result, a closer inspection
of the proof reveals that Ruf’s inequality still holds, at least in the subcritical case α < 4π,
replacing the L2 norm with any weighted L2 norm, provided the weight is bounded and also
bounded away from the origin.

Remark 2.2. As an application of (2.2), consider the following functional

H1(R2) 3 u 7−→
∫
R2

F (u) dx

which is continuous on H1(R2), a consequence of (f1), (1.4) and Holder’s inequality. Indeed,
note first that for any t, s > 0

|F (t)− F (s)| =
∣∣∣∣∫ t

s
f(τ)dτ

∣∣∣∣ ≤ C ∣∣∣∣∫ t

s

(
τ q−1 + τp−1e4πτ2

)
dτ

∣∣∣∣
so that, if un → u in H1(R2), as n→∞, then∫

R2

|F (un)− F (u)|dx ≤ C‖un − u‖22 + C

∫
R2

|e5πu2n − e5πu2 |dx

≤ o(1) + C

∫
R2

(
e5πu2 − 1

)
|e5π(u2n−u2) − 1|dx+ C

∫
R2

∣∣∣e5π(u2n−u2) − 1
∣∣∣ dx −→ 0

and the same holds for the functional u 7−→
∫
R2 uf(x, u) dx.

The main feature of the equation (1.1) is the nonlocal term defined through a convolution
product. This turns out to be well defined in view of the following Hardy–Littlewood–
Sobolev inequalities, which we state in RN for any N ≥ 1, see [23] and also [6] for the
interpolation spaces approach.

Proposition 2.3 (HLS inequality). Let s, r > 1 and 0 < µ < N with 1/s+µ/N + 1/r = 2,
f ∈ Ls(RN ) and g ∈ Lr(RN ). There exists a constant C(s,N, µ, r), independent of f, h,
such that ∫

RN
[

1

|x|µ
∗ f(x)]g(x) ≤ C(s,N, µ, r)‖f‖s‖g‖r.
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Remark 2.4. Note that the Sobolev inequality (2.1) is equivalent, by duality, to a special
case of the HLS inequality (2.3) (see [4]). Actually, take µ = N − 2 and s = r = 2∗: then
(2.3) says that the inclusion L

2N
N+2 (RN ) ↪→ H−1(RN ) is continuous, and so, by duality, its

counterpart, H1(RN ) ↪→ L2∗(RN ).

By exploiting a limiting procedure as µ→ 0, one can prove the so-called logarithmic Hardy–
Littlewood–Sobolev inequality, whose main feature is the presence of a sign-changing loga-
rithmic kernel, see [4, 10, 30].

Proposition 2.5 (Logarithmic HLS inequality). Let f, g be two nonnegative functions be-
longing to L lnL(RN ), such that

∫
f log(1 + |x|) < ∞,

∫
g log(1 + |x|) < ∞ and ‖f‖1 =

‖g‖1 = 1. There exists a constant CN , independent of f, g, such that

(2.5) 2N

∫
RN

[log
1

|x|
∗ f(x)]g(x) ≤ CN +

∫
RN

f log fdx+

∫
RN

g log gdx .

Remark 2.6. Let us stress the feature of the log kernel, which has variable sign, and it
is unbounded both in 0 and at +∞. This justifies the presence of the additional condi-
tion, f, g ∈ L lnL(RN ) in order to have the inequality (2.5) well defined, and in particular
that no cancellation of infinities occurs. However, this does not imply the boundedness of∫
f log f,

∫
g log g, but only of the positive parts

∫
f log+ f ,

∫
g log+ g. The further weight

conditions
∫
f log(1 + |x|),

∫
g log(1 + |x|) < ∞ make both the two sides of inequality (2.5)

finite.

3. A log-mass weighted Pohozaev–Trudinger type inequality

This Section is devoted to prove a Pohozaev–Trudinger type inequality in the whole plane
R2, with a logarithmic weight which appears only in the mass component of the energy. Here,
the logarithmic weight plays a role only as |x| → +∞, for which we consider as prototype
weight w = log(e + |x|). On the other hand, it is well known from [32, 21, 11], how the
growth near zero is a key ingredient in proving Pohozaev–Trudinger type inequalities on
unbounded domains, since it is strictly related to vanishing phenomena. Here we aim at
proving a fundamental inequality which will provide a suitable variational setting for (1.3).
Let us point out that the presence of an increasing weight prevents one to use rearrangement
arguments.

3.1. Proof of Theorem 1.1. Let us first perform a change of variables which enables one
to pass from H1

w(R2) to functions in H1(R2) . Note that the inverse transformation does not
turn out to be explicit and this is why we can not expect to prove directly our inequality.
Let us use polar coordinates in R2:

x = (x1, x2) = |x|(cos θ, sin θ), where |x| =
√
x2

1 + x2
2

We perform the change of variable

y = (y1, y2) = |x|
√

log(e+ |x|)(cos θ, sin θ)

which acts only on the radial part of any point in R2, equivalently

T (|x|) = |y|, y

|y|
=

x

|x|
, |y| = |x|

√
log(e+ |x|)

In order to simplify the notation, set r = |x| and s = |y|, so that the transformation becomes
s = T (r) = r

√
log(e+ r). Note that

T ′(r) =
2 log(e+ r) + r

e+r

2
√

log(e+ r)
> 0, T (0) = 0, lim

r→+∞
T (r) = +∞

and thus T is invertible on R2, though the inverse map is not explicitly known.
Define

v(y) := u(x), that is, v(y) = u
(
T−1(|y|) cos θ, T−1(|y|) sin θ

)
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or, equivalently
u(r cos θ, r sin θ) = v (T (r) cos θ, T (r) sin θ) .

Then, by a direct calculation, if

w(r, θ) := u(r cos θ, r sin θ) w̃(s, θ) := v (s cos θ, s sin θ) , w(r, θ) = w̃ (T (r), θ)

we have
wr(r, θ) = w̃s (T (r), θ)T ′(r), wθ (T (r), θ) = w̃θ (T (r), θ)

so that∫
R2

|∇v|2dy1dy2 =

∫ 2π

0

∫ +∞

0

[
w̃2
s +

w̃2
θ

s2

]
sdsdθ

=

∫ 2π

0

∫ +∞

0

[
w̃2
s(T (r), θ) +

w̃2
θ(T (r), θ)

T 2(r)

]
T ′(r)T (r)drdθ

=

∫ 2π

0

∫ +∞

0

[
w2
r(r, θ) ·

1

[T ′(r)]2
+
w2
θ(r, θ)

r2
· r2

T 2(r)

]
T ′(r)T (r)drdθ .

Now,
1

[T ′(r)]2
=

log(e+ r)[
log(e+ r) + r

2(e+r)

]2 ,
r2

T 2(r)
=

1

log(e+ r)

so that
1

3

r2

T 2(r)
<

1

[T ′(r)]2
<

r2

T 2(r)
.

Then,

1

3

∫ 2π

0

∫ +∞

0

[
w2
r +

w2
θ

r2

]
r2T ′(r)

T (r)
drdθ ≤

∫
R2

|∇v|2dy1dy2

≤
∫ 2π

0

∫ +∞

0

[
w2
r +

w2
θ

r2

]
r2T ′(r)

T (r)
drdθ .

Noting that

r2T ′(r)

T (r)
= r

[
1 +

r

2(e+ r) log(e+ r)

]
=⇒ r <

r2T ′(r)

T (r)
< 2r

we eventually get
1

3

∫
R2

|∇u|2dx1dx2 <

∫
R2

|∇v|2dy1dy2 < 2

∫
R2

|∇u|2dx1dx2

On the other hand,∫
R2

v2dy =

∫ 2π

0

∫ ∞
0

w̃2(s, θ)sdsdθ =

∫ 2π

0

∫ ∞
0

w̃2(T (r), θ)T ′(r)T (r)drdθ

=

∫ 2π

0

∫ ∞
0

w2(r, θ)T ′(r)T (r)drdθ .

Since

T ′(r)T (r) = r

[
log(e+ r) +

r

2(e+ r)

]
= r log(e+ r)

[
1 +

r

2(e+ r) log(e+ r)

]
=
r2T ′(r)

T (r)
log(e+ r)

we conclude that ∫
R2

v2dy =

∫ 2π

0

∫ ∞
0

w2 r
2T ′(r)

T (r)
log(e+ r)drdθ
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and, in turn ∫
R2

u2 log(e+ |x|)dx <
∫
R2

v2dy < 2

∫
R2

u2 log(e+ |x|)dx .

Finally,

(3.1)
1

3
‖u‖2w0

< ‖v‖2 = ‖∇v‖22 + ‖v‖22 < 2‖u‖2w0
.

We have then proved that the map

T : H1
w(R2) → H1

0 (R2)

u 7→ v

is an invertible, continuous and with continuous inverse map. Then,∫
R2

(
eαu

2 − 1
)

log(e+ |x|)dx =

∫ 2π

0

∫ +∞

0

(
eαu

2(r cos θ,r sin θ) − 1
)

log(e+ r)rdrdθ

=

∫ 2π

0

∫ +∞

0

(
eαv

2(T (r) cos θ,T (r) sin θ) − 1
) log(e+ r)r

T ′(r)T (r)
T ′(r)T (r)drdθ

≤
∫ 2π

0

∫ +∞

0

(
eαv

2(ρ cos θ,ρ sin θ) − 1
)
ρdρdθ =

∫
R2

(
eαv

2 − 1
)
dx < +∞

by [32] for any α > 0. The uniform bound (1.8) follows directly from (3.1), as for any
u ∈ H1

w and α ≤ 2π one has∫
R2

(
e2πu2/‖u‖2w0 − 1

)
log(e+ |x|)dx

=

∫ 2π

0

∫ +∞

0

(
e2πu2(r cos θ,r sin θ)/‖u‖2w0 − 1

)
log(e+ r)rdrdθ

=

∫ 2π

0

∫ +∞

0

(
e2πv2(T (r) cos θ,T (r) sin θ)/‖u‖2w0 − 1

) log(e+ r)r

T ′(r)T (r)
T ′(r)T (r)drdθ

≤
∫ 2π

0

∫ +∞

0

(
e4πv2(ρ cos θ,ρ sin θ)/‖v‖2 − 1

)
ρdρdθ =

∫
R2

(
e4πv2/‖v‖2 − 1

)
dx < C(α)

again by [32].
A consequence of this embedding result is the continuity of the weighted Pohozaev–Trudinger
functional on H1

w(R2), namely we have

Corollary 3.1. For any α > 0 the functional

H1
w(R2) −→ R

u 7−→
∫
R2

(
eαu

2 − 1
)

log(e+ |x|)dx

is continuous.

Remark 3.2. The value 2π in (1.8) is not sharp and the problem of establishing a sharp
version of (1.8) in the spirit of Moser [26] remains essentially open.

3.2. The case q > 2. Let us now consider the more general case of a growth function
F (s) � sq as s→ 0 with q > 2. In this case, the natural weighted Sobolev space turns out
to be H1Lqw(R2), defined as the completion of smooth compactly supported functions with
respect to the norm

‖u‖2w = ‖∇u‖22 + ‖u‖2/qLq(wdx) =

∫
R2

|∇u|2dx+

∫
R2

|u|q log(e+ |x|)dx .
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Theorem 3.3. Let F (s) satisfy assumption (f1). Then, the space H1Lqw(R2) embeds into
the weighted Orlicz space LF (R2, log(e+ |x|)dx). More precisely,

(3.2)
∫
R2

F (α|u|) log(e+ |x|)dx < +∞

for any u ∈ H1Lqw(R2) and any α > 0.
Furthermore, for any α ≤ 1/

√
q one has

(3.3) sup
‖u‖2w≤1

∫
R2

F (α|u|) log(e+ |x|)dx < +∞ .

Proof. The result will follow from the following estimate

F (s) ≤ C

{
sq, if s < 1

sp−1e4πs2 , if s ≥ 1

Indeed, let u ∈ H1Lqw be such that ‖u‖w ≤ 1 and define

v =

{
|u|q/2, |u| < 1

|u|, |u| > 1
.

Then

‖v‖2w = ‖∇v‖22 + ‖v‖2w ≤
q

2

∫
R2

|∇u|2dx

+

∫
|u|<1

|u|q log(e+ |x|)dx+

∫
|u|>1

|u|2 log(e+ |x|)dx

≤ q

2

∫
R2

|∇u|2dx+

∫
R2

|u|q log(e+ |x|)dx ≤ q

2
‖u‖2w ≤

q

2
.

Hence∫
R2

F (α|u|) log(e+ |x|)dx ≤ C
∫
R2

αq|u|q log(e+ |x|)dx

+ C

∫
|u|>1

αp−1|u|p−1eα
24πu2 log(e+ |x|)dx

= Cαq‖u‖2/qLq(wdx) + C

∫
|v|>1

αp−1|v|p−1eα
24πv2 log(e+ |x|)dx

≤ Cα‖u‖2/qLq(wdx) + Cαp−1

{∫
|v|>1

|v|
α2q

1−α2q
(p−1)

} 1−α2q
α2q

·

{∫
|v|>1

(
e4πv2/q − 1

)
log(e+ |x|)dx

}α2q

≤ Cα,q + Cα,q,p

{∫
R2

(
e2πv2/‖v‖2w − 1

)
log(e+ |x|)dx

}α2q

≤ Cα,p,q

where we have applied Theorem 1.1 and embeddings for weighted Sobolev spaces. �

Clearly, a corollary similar to 3.1 holds also in this case

Corollary 3.4. For any α > 0 the functional

H1Lqw(R2) −→ R

u 7−→
∫
R2

F (α|u|) log(e+ |x|)dx

is continuous, where F is a function satisfying assumption (f1).
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In analogy to our case, weighted Pohozev–Trudinger inequalities allowing increasing mono-
mial weights have been proved in [16, 27]. Finally, let us mention that related inequalities in
Sobolev spaces with respect to log-weighted measures can be found in [8], where the authors
consider a logarithmic weight in the full Sobolev norm.

4. The functional framework

The energy functional related to (1.3) is given by

IV (u) =
1

2
‖u‖2V − F(u).

where
F(u) =

1

4π

∫
R2

[
log

1

|x|
∗ F (x, u)

]
F (x, u) dx,

and

‖u‖V :=

(∫
R2

|∇u|2 + V (x)u2dx

)1/2

.

Thanks to the assumptions on the potential V , ‖u‖V is equivalent to the standard Sobolev
norm. However, the energy functional IV is not well defined on H1(R2) due to the nonlocal
term F(u). In view of the logarithmic HLS inequality (2.5), Stubbe first proposed in the
unpublished paper [34] to set the problem in the intersection space adding the integrability
condition for which the energy is well defined. Let H1

V L
q
w0(R2) be the completion of smooth

compactly supported functions with respect to the norm

(4.1) ‖u‖2q,V,w0
:= ‖u‖2V + ‖u‖2/qLq(w0dx)

=

∫
R2

|∇u|2dx+

∫
R2

u2V (x)dx+

{∫
R2

|u|q log(1 + |x|))dx
}2/q

which in the case q = 2 is induced by the scalar product

〈u, v〉 =

∫
R2

∇u∇vdx+

∫
R2

V (x)uvdx+

∫
R2

uv log(1 + |x|2)dx .

Accordingly to [22, Theorem 1.11],H1
V L

q
w0 is a Banach space whose dual can be characterized

as follows [33, Theorem 14.9]

H−1
V Lqw0

(R2) =
(
H1(R2) ∩ Lq(R2, w0dx)

)′
= H−1(R2) + (Lq)′(R2, w0dx)|H1

V L
q
w0
.

Next, the Orlicz type embedding established in Section 3 will enable us to apply the loga-
rithmic version of the HLS inequality in order to have the energy functional well defined on
H1
V L

q
w0 and sufficiently smooth for variational purposes.

In what follows we will use extensively the following elementary identity

log
1

r
= log

(
1 +

1

r

)
− log (1 + r) .

Furthermore, since we suppose that the nonlinearity f(x, s) has the form f(x, s) = c(x)f(s)
where c(x) is a strictly positive, 1-periodic continuous function, from now on we may reduce
to the case c(x) = 1 (the general case immediately).
Let us introduce the following bilinear forms:

(u, v) 7→ B1(u, v) =

∫
R2

[log(1 + |x|) ∗ u] vdx =

∫
R2

∫
R2

log(1 + |x− y|)u(x)v(y)dxdy;

(u, v) 7→ B2(u, v) =

∫
R2

[
log(1 +

1

|x|
) ∗ u

]
vdx =

∫
R2

∫
R2

log

(
1 +

1

|x− y|

)
u(x)v(y)dxdy;

(u, v) 7→ B0(u, v) =

∫
R2

[
log

1

|x|
∗ u
]
vdx = B2(u, v)−B1(u, v) .
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Since log(1 + t) ≤ t for any t > 0, thanks to (2.3) with µ = 1, N = 2 we have that B2(u, v)

is well defined on L4/3(R2)× L4/3(R2), and

|B2(u, v)| ≤
∫
R2

∫
R2

1

|x− y|
|u|(x)|v|(y)dxdy ≤ C‖u‖4/3‖v‖4/3

Since log(1 + |x− y|) ≤ log(1 + |x|+ |y|) ≤ log(1 + |x|) + log(1 + |y|) we also have

|B1(u, v)| ≤
∫
R2

∫
R2

[log(1 + |x|) + log(1 + |y|)] |u|(x)|v|(y)dxdy

= ‖u‖L1(w)‖v‖1 + ‖u‖1‖v‖L1(w)

where for simplicity we wriwe ‖ · ‖L1(w) in place of ‖ · ‖L1(wdx). Evaluating the bilinear forms
Bi(·, ·) on the field (F (u), F (u)) we obtain the functionals:

F1 : H1Lq, w → [0,+∞), F1(u) = B1(F (u), F (u))

=

∫
R2

∫
R2

log(1 + |x− y|)F (u(x))F (u(y))dxdy;

F2 : H1Lqw → [0,+∞), F2(u) = B2(F (u), F (u))

=

∫
R2

∫
R2

log

(
1 +

1

|x− y|

)
F (u(x))F (u(y))dxdy;

F : H1 → [0,+∞),F(u) = B0(F (u), F (u)) = F2(u)− F1(u) .

Reasoning as done above for the bilinear forms Bi, one has that F2(u) is well defined on
H1
V L

q
w0(R2) (actually, on the larger Sobolev space H1(R2)) by assumption (f1) and recalling

(2.2)). Whereas for F1(u), observe that the quantity ‖F (x, u)‖L1(w0dx) is always finite, for
any u ∈ H1

V L
q
w0 , by combining (1.4) with Theorem 1.1 and Theorem 3.3.

Remark 4.1. Note that for instance when q = 2, the weight in the L2 component of the
norm is given by V (x)+log(1+|x|) for which we have C1[V (x)+log(1+|x|)] ≤ log(e+|x|) ≤
C2[V (x) + log(1 + |x|)] for some positive constants Ci. Thus the norms involved turn out to
be equivalent and this extends to q > 2 as the norm ‖ · ‖V is equivalent to the Sobolev norm.

4.1. Regularity of the energy functional. The main goal of this section is to prove
regularity of the energy functional IV . We have the following

Lemma 4.2. The functionals F1,F2,F and IV are C1 on H1
V L

q
w0(R2).

Proof. Consider F1 and let {un} be a sequence in H1
V L

q
w0(R2) converging to some u. Then

|F1(un)− F1(u)|

≤
∫
R2

∫
R2

log(1 + |x− y|) |F (un(x))F (un(y))− F (u(x))F (u(y))| dxdy

≤
∫
R2

∫
R2

log(1 + |x− y|)F (un(x)) |F (un(y))− F (u(y))| dxdy+

+

∫
R2

∫
R2

log(1 + |x− y|) |F (un(x))− F (u(x))|F (u(y))dxdy

≤
∫
R2

∫
R2

log(1 + |x|)F (un(x)) |F (un(y))− F (u(y))| dxdy+

+

∫
R2

∫
R2

log(1 + |y|) |F (un(y))− F (u(y))|F (un(x))dxdy

+

∫
R2

∫
R2

log(1 + |x|)F (u(y)) |F (un(x))− F (u(x))| dxdy+

+

∫
R2

∫
R2

log(1 + |y|) |F (un(x))− F (u(x))|F (y, u(y))dxdy = I1 + I2 + I3 + I4 .
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Now the terms Ii tend to 0, as n→∞ thanks to the continuity of the functional
∫
R2 F (u)dx

on H1 and of the functional
∫
R2 F (u) log(1 + |x|)dx on H1

V L
q
w0 , as a consequence of (1.4)

and corollaries 3.1, 3.4 . For instance for I1 we have∫
R2

∫
R2

log(1 + |x|)F (un(x)) |F (un(y))− F (u(y))| dxdy =

=

[∫
R2

log(1 + |x|)F (un(x))dx

]
·
[∫

R2

|F (un(y))− F (u(y))| dy
]

≤
[∫

R2

log(e+ |x|)F (u(x))dx+ o(1)

]
o(1) .

For any u ∈ H1
V L

q
w0 the Gâteaux derivative of F1 at u ∈ H1

V L
q
w0 is given by

F′1(u)[v] = 2

∫
R2

∫
R2

log(1 + |x− y|)F (u(x))v(y)f(u(y))dxdy, v ∈ H−1Lqw0
.

Since

|F′1(u)v| ≤ 2

∫
R2

∫
R2

log(1 + |x|)F (u(x))v(y)f(u(y))dxdy

+ 2

∫
R2

∫
R2

log(1 + |y|)F (u(x))v(y)f(u(y))dxdy

≤ 2‖v‖2
(∫

R2

f2(u)dx

)1/2 ∫
R2

log(1 + |x|)F (u)dx+

+ 2

(∫
R2

log(1 + |y|)vqdy
)1/q (∫

R2

log(1 + |y|)(F (u)f(u))
q
q−1dy

)(q−1)/q

≤ C(u)‖v‖q,V,w0

thanks to Theorems 1.1, 3.3, so that F′1(u) ∈ H−1
V Lqw0 . The fact that F′1(un) → F′1(u) in

H−1
V Lqw0 if un → u in H1

V L
q
w0 follows by similar arguments, we just sketch the proof:

|F′1(un)v − F′1(u)v|

= 2

∣∣∣∣∫
R2

∫
R2

log(1 + |x− y|) [F (un(x))f(un(y))− F (u(x))f(u(y))] v(y)

∣∣∣∣ dxdy
≤ 2

∫
R2

∫
R2

log(1 + |x− y|) |F (un(x))− F (u(x))| f(un(y))|v(y)|dxdy+

+ 2

∫
R2

∫
R2

log(1 + |x− y|) |f(un(y))− f(u(y))|F (u(x))|v(y)|dxdy

≤ 2

∫
R2

∫
R2

log(1 + |x|)|F (un)− F (u)|dx
∫
R2

f(u)|v|dy

+ 2

∫
R2

|F (un)− F (u)|dx
∫
R2

log(1 + |y|)f(u)|v|dy+

+ 2

∫
R2

log(1 + |x|)F (u)dx

∫
R2

|f(un)− f(u)|v|dy

+ 2

∫
R2

F (u)dx

∫
R2

log(1 + |y|)|f(un)− f(u)||v|dy

We conclude by applying Holder’s inequality and Theorems 1.1 and 3.3, together with Corol-
laries 3.1 and 3.4, which guarantee the integrals involved are continuously bounded, thus

|F′1(un)v − F′1(u)v| ≤ C(u)on(1)‖v‖q,V,w0

where on(1) tends to 0 together with un → u in H1
V L

q
w0 , as n→∞.
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Consider F2 and let {un} be a sequence in H1
V L

q
w0(R2) converging to some u and assume

u 6= 0. Since un → u in H1(R2), by [28] we have

(4.2)
∫
R2

|F (un)− F (u)|pdx→ 0, for any p > 0 .

Hence

|F2(un)− F2(u)|

≤
∫
R2

∫
R2

log(1 + |x− y|−1) |F (un(x))F (un(y))− F (u(x))F (u(y))| dxdy

≤
∫
R2

∫
R2

log(1 + |x− y|−1)F (un(x)) |F (un(y))− F (u(y))| dxdy+

+

∫
R2

log(1 + |x− y|−1) |F (un(x))− F (u(x))|F (u(y))dxdy

≤
∫
R2

∫
R2

1

|x− y|
F (un(x)) |F (un(y))− F (u(y))| dxdy+

+

∫
R2

∫
R2

1

|x− y|
F (u(y)) |F (un(x))− F (u(x))| dxdy .

The last two integrals tend to 0, thanks to (4.2), the continuity of the functional
∫
F (u)dx

on H1 and the HLS inequality. In the case u = 0 the proof is similar.
For any u ∈ H1

V L
q
w0 the Gâteaux derivative of F2 at u ∈ H1

V L
q
w0 is given by

F′2(u)v = 2

∫
R2

∫
R2

log(1 + |x− y|−1)F (u(x))v(y)f(u(y))dxdy .

Since

|F′2(u)v| ≤ 2

∫
R2

∫
R2

1

|x− y|
F (u(x))v(y)f(u(y)) ≤ C(u)‖v‖2 ≤ C(u)‖v‖q,V,w0

thanks to (2.2) and HLS inequality, one has F′2(u) ∈ H−1
V Lqw0 . The fact that F′2(un)→ F′2(u)

in H−1
V Lqw0 if un → u in H1

V L
q
w0 is similar to previous cases.

Clearly from F = F2 − F1 one has F ∈ C1 on H1
V L

q
w0 . �

5. The variational framework

As we are going to see, the variational framework for problem (1.3) is non-standard as we
will exploit the de Figuereido–Miyagaki–Ruf type condition (f4) to prove estimates of the
mountain pass level for the energy functional IV . Let us first establish the Mountain Pass
geometry in the next

Lemma 5.1. The energy functional IV satisfies:
(1) there exist ρ, δ0 > 0 such that IV |Sρ ≥ δ0 > 0 for all

u ∈ Sρ = {u ∈ H1
V L

q
w0

: ‖u‖q,V,w0 = ρ};

(2) there exists e ∈ H1
V L

q
w0 with ‖e‖q,V,w0 > ρ such that IV (e) < 0.

Proof. To shorten the notation, we assume f(x, s) = f(s). From ‖u‖2V ≤ ‖u‖2q,V,w0
, if ρ

is small then the H1 norm ‖u‖V is also small. As a consequence of the logarithmic HLS
inequality,

F(u) =
1

4π

∫
R2

[
log

1

|x|
∗ F (u)

]
F (u)dx

≤ ‖F (u)‖1
[
C‖F (u)‖1 +

∫
R2

F (u) logF (u)dx− ‖F (u)‖1 log ‖F (u)‖1
]
.
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By (2.3) and recalling estimates (1.4), since the Sobolev norm is small enough we have that
the L1 norm of F (u) can be bounded as follows

‖F (u)‖1 ≤ C
(
‖u‖22 + ‖u‖qq

)
≤ C‖u‖2V .

Moreover, on one side∫
R2

F (u) logF (u)dx ≤
∫
R2

|F (u) logF (u)|dx ≤ c1

∫
R2

ure4π2
dx+ c2

∫
R2

u2dx

≤ c3‖u‖r2r
(∫

R2

(
eαu

2 − 1
)
dx

) 1
2

+ c2

∫
R2

u2dx ≤ c‖u‖2V

for some r > 2 and α > 4π. On the other side, since q > 2 and ‖F (u)‖1 ≤ C‖u‖2V ,

|‖F (u)‖1 log ‖F (u)‖1| ≤ c|‖u‖2V log ‖u‖V | ≤ ‖u‖V
provided the Sobolev norm is small and in turn we obtain

F(u) ≤ c‖u‖3V
and thus

IV (u) ≥ 1

2
‖u‖2V − c‖u‖3V = δ0 > 0

where δ0 depends only on ρ. This yields the first claim of the Lemma.

Let now e be a smooth function, compactly supported in a small ball, say B1/4. Then

F(e) =
1

4π

∫
R2

[
log

1

|x|
∗ F (e)

]
F (e)dx

=
1

4π

∫
R2

∫
R2

log
1

|x− y|
F (e(x))F (e(y))dxdy

≥ log 2

4π

∫
R2

∫
R2

F (e(x))F (e(y))dxdy =
log 2

4π

(∫
R2

F (e)dx

)2

since F (e(x))F (e(y)) 6= 0 only for |x|, |y| < 1/4, which implies |x − y| < 1/2 and thus
|x− y|−1 > 2. Similarly,

IV (te) =
1

2
t2‖e‖2V − F(te) ≤ 1

2
t2‖e‖2V −

log 2

4π

(∫
R2

F (te)dx

)2

→ −∞

since F has exponential growth, as t→ +∞. �

By the Ekeland Variational Principle [18], there exists a Palais–Smale sequence (PS in the
sequel) {un} ⊂ H1

V L
q
w0(R2) such that

I ′V (un)→ 0, IV (un)→ mV ,

where the Mountain Pass level mV can be characterized by

(5.1) 0 < mV := inf
γ∈Γ

max
t∈[0,1]

IV (γ(t))

where
Γ :=

{
γ ∈ C1([0, 1], H1

V L
q
w0

) : γ(0) = 0, IV (γ(1)) < 0
}
.

The next energy level estimate will be crucial in the sequel, in particular in proving com-
pactness, for which 1/2 turns out to be a substitute of the Sobolev level (1/N)SN/2 in higher
dimensions.

Lemma 5.2. The mountain pass level mV satisfies

mV <
1

2
.
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Proof. It is enough to prove that there exists a function w ∈ H1
V L

q
w0 , with ‖w‖q,V,w0 = 1,

such that

max
t≥0

IV (tw) <
1

2
.

Let us introduce the following Moser type functions with support in Bρ

wn =
1√
2π



√
log n, 0 ≤ |x| ≤ ρ

n ,

log(ρ/|x|)√
log n

, ρ
n ≤ |x| ≤ ρ,

0, |x| ≥ ρ ,

where ρ will be fixed later on. One has that

‖wn‖21,q(w) =

∫
Bρ

|∇wn|2 + V (x)w2
ndx+

[∫
Bρ

log(1 + |x|)|wqndx

]2/q

≤
∫ ρ

ρ/n

dr

r log n
+ Vρ

∫ ρ/n

0
log n rdr + (2π)

2
q
−1

log n

[∫ ρ/n

0
log(1 + r) rdr

]2/q

+ Vρ

∫ ρ

ρ/n

log2(ρ/r)

log n
rdr +

(2π)
2
q
−1

log n

[∫ ρ

ρ/n
logq(ρ/r) log(1 + r)rdr

]2/q

≤ 1 + Vρ
ρ2

2

log n

n2
+ (2π)

2
q
−1

log n

[∫ ρ/n

0
log(1 + r) rdr

]2/q

+ Vρ

∫ ρ

ρ/n

log2(ρ/r)

log n
rdr + (2π)

2
q
−1 log2/q(1 + ρ)

log n

[∫ ρ

ρ/n
logq(ρ/r) rdr

]2/q

= 1 +Vρ

∫ ρ

ρ/n

log2(ρ/r)

log n
rdr+ (2π)

2
q
−1 log2/q(1 + ρ)

log n

[∫ ρ

ρ/n
logq(ρ/r) rdr

]2/q

+ o
(

1

log n

)
.

The two integral terms in the previous expression can be estimated as follows. On the one
hand ∫

logk(ρ/r)rdr =
r2

2

k∑
j=0

(log(ρ/r))k−j
k(k − 1) · · · (k − j + 1)

2j

as well as

Vρ

∫ ρ

ρ/n

log2(ρ/r)

log n
rdr =

ρ2Vρ
4 log n

+ o
(

1

log n

)
.

On the other hand, since q may be integer or not, a rough estimate reads as follows∫ ρ

ρ/n
logq(ρr ) rdr ≤

∫ ρ

ρ/n

{
log[q](ρr ) + log[q]+1(ρr )

}
rdr =

ρ2[q]!

2[q]+1

[
1 +

[q] + 1

2

]
+ o (1)

so that eventually

1 ≤ ‖wn‖21,q(w) ≤ 1 + δn + o
(

1

log n

)
,

where

δn =
ρ2

4 log n

[
Vρ + (2π)

2
q
−1

log
2
q (1 + ρ)

[q]!

2[q]−1

(
1 +

[q] + 1

2

)]
+ o

(
1

log n

)
(5.2)
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Setting wn = wn/
√

1 + δn, we get ‖wn‖q,V,w0 ≤ 1. We claim that there exists n such that

(5.3) max
t≥0

IV (twn) <
1

2
.

Let us argue by contradiction and suppose this is not the case, so that for all n let tn > 0
be such that

(5.4) max
t≥0

IV (twn) = IV (tnwn) ≥ 1

2
.

Then tn satisfies
d

dt
IV (twn)|t=tn = 0

and

(5.5) t2n ≥
1

2π

∫
R2

[
log

1

|x|
∗ F (tnwn)

]
tnwnf(tnwn)dx,

(5.6) t2n ≥ 1 +
1

2π

∫
R2

[
log

1

|x|
∗ F (tnwn)

]
F (tnwn)dx .

Note that in (5.5) we have an inequality instead of the equality since we know ‖wn‖2q,V,w0
= 1,

whereas in the energy functional it appears the equivalent, though smaller norm ‖wn‖V .
Actually the two norms differ for a quantity which is O(1/ log n).
From now on let us suppose ρ ≤ 1/2. This will simplify a few estimates, since for any
(x, y) ∈ supp wn × supp wn we will have |x− y| > 1, and in turn log(1/|x− y|) > 0. Let us
now proceed in three steps:

Step 1. The following holds lim supn→+∞ t
2
n ≥ 1.

Let us assume by contradiction that lim supn t
2
n < 1: this implies that, up to a subsequence,

there exists a positive constant δ0 such that t2n ≤ 1− δ0 for n large enough. Since ρ ≤ 1
2 , for

any |x| < ρ, the set {y : |x− y| > 1, |y| < ρ} is empty. Recalling that the functions wn are
compactly supported in Bρ we have∫

R2

[
log

1

|x|
∗ F (tnwn)

]
F (tnwn)dx

=

∫
Bρ

∫
|x−y|≤1

log
1

|x− y|
F (tnwn(x))F (tnwn(y))dxdy ≥ 0

and thus a contradiction with (5.6).

Step 2. The following holds lim infn→+∞ t
2
n ≤ 1.

Let us suppose by contradiction that lim infn→+∞ t
2
n > 1. Hence, up to a subsequence, there

exists a constant δ0 > 0 such that
t2n ≥ 1 + δ0

as n → +∞. Let us estimate from below the right hand side of (5.5) (taking into account
the possible negative sign of the logarithmic function):

(5.7)
∫
R2

[
log

1

|x|
∗ F (tnwn)

]
tnwnf(tnwn)dx

=

∫
|x|≤ ρ

n
,|y|≤ ρ

n

log
1

|x− y|
F (tnwn(x))tnwnf(tnwn(y))dxdy+

+

∫
R2×R2\{|x|≤ ρ

n
,|y|≤ ρ

n
}

log
1

|x− y|
F (tnwn(x))tnwnf(tnwn(y))dxdy = I1 + I2
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Thanks to (f4) we have for any ε > 0 (here we choose ε = β/2),

(5.8) sf(s)F (s) ≥ (β − ε) · 1

s2
· e8πs2 =

β

2s2
· e8πs2 , for all s ≥ sε = sβ .

By the very definition of wn and since |x − y| < 2ρ/n < 1, we can estimate, for n large
enough, I1 as follows

I1 =

∫
Bρ/n

tnwnf(tnwn)dy

∫
Bρ/n

log
1

|x− y|
F (tnwn) dx

=

∫
Bρ/n

tn

√
log n√

2π(1 + δn)
f

(
tn

√
log n√

2π(1 + δn)

)
dy

·
∫
Bρ/n

log
1

|x− y|
F

(
tn

√
log n√

2π(1 + δn)

)
dx

≥ 2πβ
e4t2n(1+δn)−1 logn

2t2n(1 + δn)−1 log n

∫
Bρ/n

dy

∫
Bρ/n

log
1

|x− y|
dx.

The last integral can be estimated as follows∫
Bρ/n

dy

∫
Bρ/n

log
1

|x− y|
dx ≥

∫
Bρ/n

dy

∫
Bρ/n

log
n

|2ρ|
dx = π2

(ρ
n

)4
log

n

2ρ

As a consequence, we obtain

(5.9) I1 ≥ π3ρ4β
e4(t2n(1+δn)−1−1) logn

t2n(1 + δn)−1 log n
log

n

2ρ
≥ π3ρ4βt−2

n e4(
t2n

1+δn
−1) logn

for any n ≥ n(ρ, β). Note that since ρ ≤ 1/2 we have

I2 ≥ 0 .

Now, combining (5.5), (5.7) and (5.9) yields

(5.10) t4n ≥ π3ρ4βe4(
t2n

1+δn
−1) logn

which is a contradiction, either if tn → +∞ or tn stays bounded with t2n ≥ 1+ δ0. The proof
of Step 2 is then completed. Observe that, as a consequence of Step 1 and Step 2

t2n → 1 as n→ +∞ .

Moreover, as a byproduct of (5.10), we also have for some C > 0,

e4(
t2n

1+δn
−1) logn ≤ C

that is

(5.11)
t2n

1 + δn
≤ 1 +

C

log n
= 1 + O

(
1

log n

)
.

Step 3. We are now in the condition of getting a contradiction and determine the quantity
V which appears in condition (f4). We have proved that t2n → 1. Moreover, we also know
that t2n ≥ 1 by (5.6), since ρ ≤ 1/2. By (5.10), recalling definition (5.2) of δn, we have

1 + o(1) ≥ t4n ≥ π3ρ4βe4(
t2n

1+δn
−1) logn ≥ π3ρ4βe−4 δn

1+δn
logn

≥ π3ρ4βe
−ρ2

(
Vρ+(2π)

2
q−1

log
2
q (1+ρ)

[q]!

2[q]−1

(
1+

[q]+1
2

))
+o(1)

where Vρ = max|x|≤ρ V (x). Passing to the limit, we obtain

(5.12) 1 ≥ π3ρ4βe
−ρ2

(
Vρ+(2π)

2
q−1

log
2
q (1+ρ)

[q]!

2[q]−1

(
1+

[q]+1
2

))
.
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Now set in assumption (f4)

V := inf
|x|≤1/2

1

π3
|x|−4e

|x|2
(
V1/2+(2π)

2
q−1

log
2
q (1+|x|) [q]!

2[q]−1

(
1+

[q]+1
2

))
,

a quantity which is actually a minimum, since the right hand function is continuous and
unbounded as |x| → 0 . Finally, fix ρ ∈ (0, 1/2] such that

β >
1

π3
ρ−4e

ρ2
(
V1/2+(2π)

2
q−1

log
2
q (1+ρ)

[q]!

2[q]−1

(
1+

[q]+1
2

))

to get

π3ρ4βe
−ρ2

(
Vρ+(2π)

2
q−1

log
2
q (1+ρ)

[q]!

2[q]−1

(
1+

[q]+1
2

))
> 1

which contradicts (5.12). �

6. Properties of Palais-Smale sequences

In this Section we prove that the weak limit in H1
V L

q
w0(R2) of the PS sequence for IV given

by the Ekeland Variational Principle, which we know from Section 5 is at the energy level
mV < 1/2, is actually a weak nontrivial solution of (1.3). As we are going to see, the
presence of the sign changing factor log(|x|) makes the estimates rather delicate. We start
with the following Lemma in which we prove boundedness of PS sequences at any level
c < 1/2.

Lemma 6.1. Assume that (V1)–(V2) and (f1)–(f4) hold. Let {un} ⊂ H1
V L

q
w0 be an arbitrary

PS sequence for IV at level c, namely

IV (un)→ c <
1

2
and I ′V (un)→ 0 in H−1

V Lqw0
(R2), as n→ +∞ .

Then, the sequence un is bounded in H1(R2) as well as∣∣∣∣∫
R2

[
log

1

|x|
∗ F (x, un)

]
F (x, un)dx

∣∣∣∣ ≤ C, ∣∣∣∣∫
R2

[
log

1

|x|
∗ F (x, un)

]
unf(x, un)dx

∣∣∣∣ ≤ C .

Proof. Let {un} ∈ H1
V L

q
w0(R2) be a PS sequence for IV , namely as n→∞ is,

(6.1)
1

2
‖un‖2V −

1

4π

∫
R2

[
log

(
1

|x|

)
∗ F (x, un)

]
F (x, un)dx→ c

and

(6.2)
∣∣∣∣∫

R2

∇un∇v + V unvdx−
1

4π

∫
R2

[
log

(
1

|x|

)
∗ F (x, un)

]
vf(x, un)dx

− 1

4π

∫
R2

[
log

(
1

|x|

)
∗ vf(x, un)

]
F (x, un)dx

∣∣∣∣
=

∣∣∣∣∫
R2

∇un∇v + V unvdx−
1

2π

∫
R2

[
log

(
1

|x|

)
∗ F (x, un)

]
vf(x, un)dx

∣∣∣∣ ≤ τn‖v‖H−1Lqw

for all v ∈ H−1
V Lqw0(R2), where τn → 0 as n → +∞. Since H1(R2) ↪→ H−1

V Lqw0(R2) and
H1
V L

q
w0(R2) ↪→ H1(R2), we can take v = un in (6.2), to obtain

(6.3)∣∣∣∣‖un‖2V − 1

2π

∫
R2

[
log

(
1

|x|

)
∗ F (x, un)

]
unf(x, un)dx

∣∣∣∣ ≤ τn‖un‖H−1Lqw
≤ Cτn‖un‖V
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where we have also used the fact that ‖ · ‖V is an equivalent norm to the standard one in
H1(R2). Another suitable choice for test function is given by

vn =


F (x, un)

f(x, un)
=
c(x)F (un)

c(x)f(un)
=
F (un)

f(un)
if un > 0

(1− δ)un if un ≤ 0

where the quantity δ is the one appearing in (1.5), F (s) ≤ (1 − δ)sf(s). Indeed, since
f(s) = 0 if and only if s = 0, by (f2) we have that 0 ≤ vn ≤ Cun (actually, it is uniformly
bounded) so that vn is well defined and in Lq(w0dx). Furthermore,

∇vn = ∇un
f2(un)− F (un)f ′(un)

f2(un)
= ∇un

(
1− F (un)f ′(un)

f2(un)

)
.

Since the quantity (F/f)′ is bounded by (f2), see also (1.5), we have

|∇vn|2 ≤ C|∇un|2

so that vn ∈ H1
V L

q
w0(R2). Taking v = vn = F (un)

f(un) in (6.2) and recalling that f(s), F (s) = 0

for any s ≤ 0 yields

(6.4)∣∣∣∣∣(1− δ)
∫
{un≤0}

|∇un|2 +

∫
{un>0}

|∇un|2
(

1− F (un)f ′(un)

f2(un)

)
dx+

∫
R2

V (x)un
F (x, un)

f(x, un)
dx

− 1

2π

∫
R2

[
log

1

|x|
∗ F (x, un)

]
F (x, un)

∣∣∣∣
≤ τn‖vn‖H−1

V Lqw0
≤ τn‖un‖V .

Now recall (6.1), namely

1

2π

∫
R2

[
log

(
1

|x|

)
∗ F (x, un)

]
F (x, un)dx = ‖un‖2V − 2c+ o(1) .

Only two cases may occur as n → +∞ (we are not excluding that both the two cases may
appear for different subsequence of un):

•
∫
R2

[
log
(

1
|x|

)
∗ F (x, un)

]
F (x, un)dx ≤ 0: in this case we have, directly,

‖un‖2V ≤ 2c+ o(1) ≤ 3c

and c ≥ 0;
•
∫
R2

[
log
(

1
|x|

)
∗ F (x, un)

]
F (x, un) > 0. In this case, combining (6.1) and (6.4) yields∫

R2

(
|∇un|2 + V u2

n

)
dx− 2c+ o(1)−

∫
{un>0}

|∇un|2
(

1− F (un)f ′(un)

f2(un)

)
dx

− (1− δ)
∫
{un≤0}

|∇un|2dx−
∫
R2

V (x)un
F (un)

f(un)
dx ≤ τn‖un‖V

Since, as a consequence of (f2), F (x, s) ≤ (1− δ)sf(x, s) (see also (1.5)) we have, as n→∞

δ

∫
R2

|∇un|2 + V u2
ndx ≤ τn‖un‖V + 2c+ o(1) .

In conclusion we have proved that
‖un‖V ≤ C .

As a consequence, from (6.1) and (6.3), we also have∣∣∣∣∫
R2

[
log

1

|x|
∗ F (x, un)

]
F (x, un)dx

∣∣∣∣ ≤ C, ∣∣∣∣∫
R2

[
log

1

|x|
∗ F (x, un)

]
unf(x, un)dx

∣∣∣∣ ≤ C,
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that is our thesis.
�

Remark 6.2. Let us note that, as a consequence of the previous Lemma 6.1, given any
PS sequence at level c there is always another positive PS sequence at the same level.
Indeed, since un is bounded in H1

V L
q
w0(R2) as proved above, we can test I ′V (un) against

u−n = max (−un, 0) obtaining (see (6.2))∣∣∣∣∣
∫
{un<0}

|∇un|2 + V |un|2dx

∣∣∣∣∣ ≤ τnC
Hence, the sequence {u+

n } is positive, and it is again a PS sequence at the same level c (since
F (s) = 0 for s ≤ 0).

From now on we will consider only positive PS sequence, even if not specified.
Differently from standard contexts in which having proved boundedness of a PS sequence
brings the conclusion at hand, here it does not allow to employ standard arguments to prove
the weak limit is actually a nontrivial solution to the equation. Indeed, the presence of the
exponential nonlinearity together with the sign-changing behavior of the logarithmic kernel,
prevents the application of standard estimates. Here comes into play the key estimate for
the mountain pass level mV < 1/2 established in Lemma 5.2.

Lemma 6.3. Assume (V1) − (V2) and (f1) − (f4). Let {un} ⊂ H1
V L

q
w0 be a (positive) PS

sequence for IV at level c < 1/2. Then, for any 1 ≤ α < 1
2c the following uniform bound

holds
sup
n∈N

∫
R2

[F (x, un)]α <∞ .

Proof. Without loss of generality, we consider f(x, s) = f(s). By Lemma 6.1 the sequence
{un} is bounded in H1(R2) and we may assume un ⇀ u in H1(R2), un → u in Lsloc(R2) for
any 1 ≤ s <∞ and un → u a.e. in R2, with

lim
n→+∞

‖un‖2V = A2 ≥ ‖u‖2V

As in the proof of Lemma 6.1, we will carefully select a suitable test function vn. Let us
introduce the following auxiliary function

G(t) =

∫ t

0

√
F (s)f ′(s)

f(s)
ds

which is well defined and C1 thanks to (f2). Moreover, by Hölder’s inequality we have

(6.5) G2(t) ≤
∫ t

0
ds ·

∫ t

0

Ff ′

f2
ds = t

[∫ t

0

(
Ff ′ − f2

f2
+ 1

)
ds

]
=

= t

[∫ t

0
− d

ds

F

f
+ t

]
= t2 − tF (t)

f(t)

Define
vn := G(un) ,

then ∫
R2

|∇vn|2dx =

∫
R2

|∇un|2
Ff ′

f2
(un)dx ≤ C,

∫
R2

V v2
ndx =

∫
R2

V G2(un)dx ≤ C

as un is bounded in H1 and applying again (f2). We aim at proving that

‖∇vn‖22 + ‖
√
V (x)vn‖22 ≤ 1

as n is large enough. First, note that as n→ +∞, one has

0 ≤
∫
R2

V G2(un)dx ≤
∫
R2

V u2
ndx ≤ C .
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In order to estimate the norm ‖vn‖2V recall (6.1) and (6.4). From ‖un‖2V → A2 ≥ ‖u‖2V , we
have

lim
n→+∞

1

2π

∫
R2

[
log

(
1

|x|

)
∗ F (un)

]
F (un)dx = A2 − 2c

and∣∣∣∣∫
R2

|∇un|2
(

1− F (un)f ′(un)

f2(un)

)
dx+

∫
R2

V (x)un
F (un)

f(un)
dx

− 1

2π

∫
R2

[
log

1

|x|
∗ F (un)

]
F (un)dx

∣∣∣∣→ 0

so that∫
R2

|∇un|2
(

1− F (un)f ′(un)

f2(un)

)
dx+

∫
R2

V (x)un
F (un)

f(un)
dx+ 2c

−
∫
R2

|∇un|2dx−
∫
R2

V u2
ndx = o(1)

and in turn

(6.6) ‖vn‖2V =

∫
R2

|∇G(un)|2dx+

∫
R2

V (x)G2(un)dx

= 2c+

∫
R2

V (x)

(
un
F (un)

f(un)
− u2

n +G2(un)

)
dx+ o(1) ≤ 2c+ o(1) < 1

by (6.5), as n is large enough.
Once we have estimated the norm of vn, let us take advantage of this to improve the ex-
ponential integrability of the original sequence un. By (f3), for any ε > 0 there exists a
constant tε > 0 such that

1− ε <
√
F (t)f ′(t)

f(t)
≤ 1 + ε, for all t ≥ tε .

Next by (f2) we also have either un(x) ≤ tε or un(x) ≥ tε which implies

(6.7) vn ≥
∫ tε

0
δdt +

∫ un

tε

(1 − ε)dt ≥ δtε + (1 − ε)(un − tε) ≥ (1 − ε)(un − tε)

and thus
un ≤ tε +

vn
1− ε

, for any x ∈ R2 .

Hence (hereafter Cε may change from line to line)

(6.8)
∫
R2

[F (un)]α dx =

∫
un≤tε

[F (un)]α dx+

∫
un≥tε

[F (un)]α dx

≤ Cε
∫
un≤tε

[
u2
n

]α
dx+

∫
un≥tε

[
F

(
tε +

vn
1− ε

)]α
dx

≤ Cε
∫
un≤tε

u2
ndx+ C

∫
un≥tε

(
tε +

vn
1− ε

)α(p−1)

e4πα(tε+
vn
1−ε )2dx

≤ Cε‖un‖22 + Cε

∫
un≥tε

e4πα(1+ε)(tε+
vn
1−ε )2dx

where, in the last line, we use the following inequality: for any T > 0 and for any ε > 0 there
exists C = CT,ε such that sp−1 ≤ CT,εe4πεs2 for any s ≥ T (with T = tε already fixed as well
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as C = Cε). Moreover, for any ε > 0 there exists Cε such that (t+ s)2 ≤ Cεt2 + (1 + ε)s2 for
any s, t > 0. Then

(6.9)
(
tε +

vn
1− ε

)2

≤ Cεt2ε + (1 + ε)

(
vn

1− ε

)2

.

As byproduct of (6.7), if un ≥ tε then vn ≥ δtε. Combining this with (6.9) and (6.8) we
obtain∫

R2

[F (un)]αdx ≤ Cε‖un‖22 + Cε

∫
un≥tε

e
4πα(1+ε)2

v2n
(1−ε)2 dx

≤ Cε‖un‖22 + Cε

∫
R2

e
4πα(1+ε)2

v2n
(1−ε)2 − 1dx .

Let us now fix 0 < ε < 1 and set

η :=
1

2c
− α > 0, εα := c2η2 = c2

(
1

2c
− α

)2

<
1

4
.

With these choices we obtain∫
R2

[F (un)]αdx ≤ Cα‖un‖22 + Cα

∫
R2

e
4πα

(1+εα)2

(1−εα)2
‖vn‖2V

v2n
‖vn‖2V − 1dx .

By (6.6), ‖vn‖2V ≤ 2c+ o(1) as n is large enough, so that

‖vn‖2V ≤ 2c+ 4c2η, as n→ +∞ .

Hence,

α
(1 + εα)2

(1− εα)2
‖vn‖2V ≤ 2c

(
1

2c
− η
)

(1 + c2η2)2

(1− c2η2)2
(1 + 2cη) =

(1 + c2η2)2

(1− c2η2)2
(1− 4c2η2) < 1

since the last inequality is equivalent to

(1 + c2η2)2(1− 4c2η2) = (1 + c4η4 + 2c2η2)(1− 4c2η2) < (1− c2η2)2 = 1 + c4η4 − 2c2η2 .

In conclusion we have∫
R2

[F (un)]αdx ≤ Cα‖un‖22 + Cα

∫
R2

e
4π

v2n
‖vn‖2V − 1dx ≤ Cα

by the Ruf inequality (2.4) and Remark 2.1. �

Proposition 6.4. Assume that conditions (V1)–(V2) and (f1)–(f4) are satisfied. Let {un} ⊂
H1
V L

q
w0 be a (poisitive) PS sequence for IV at level c < 1/2, weakly converging to u in H1.

If u 6= 0, then u ∈ H1
V L

q
w0 and un ⇀ u weakly in H1

V L
q
w0. Furthermore, as n→∞

[log |x| ∗ F (x, un)] f(x, un) −→ [log |x| ∗ F (x, u)] f(x, u) in L1
loc(R2)(6.10)

and u is a weak solution to (1.3).

Proof. Fix α ∈ (1, 1/2c) so that by (6.1) we have

1

2
‖un‖2V +

∫
R2

∫
R2

log (1 + |x− y|)F (un(x))F (un(y))dxdy =

= c+

∫
R2

∫
R2

log

(
1 +

1

|x− y|

)
F (un(x))F (un(y))dxdy + o(1)

≤ c+ 1 + Cα

∫
R2

∫
R2

[
1 +

1

|x− y|4
α−1
α

]
F (un(x))F (un(y))dxdy

≤ c+ 1 + Cα

{∫
R2

[F (un)]αdx

}2

+ Cα

{∫
R2

F (un)dx

}2
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by Proposition 2.3, since 2
α + 4α−1

α
1
2 = 2. Hence, by Lemma 6.3,∫

R2

∫
R2

log (1 + |x− y|)F (un(x))F (un(y))dxdy ≤ Cα

as n→ +∞, and thus also
∫
R2×R2 log (1 + |x− y|)uqn(x)uqn(y)dxdy is bounded. Since u 6= 0,

by Lemma 2.1 in [15] we have∫
R2

log(1 + |x|2)uqn(x)dx ≤ C as n→ +∞

so that ‖un‖2q,V,w0
is bounded. Up to a subsequence we have un ⇀ u in H1

V L
q
w0 . Moreover,

recall that as n→ +∞,

(6.11)
1

2π

∫
R2

[
log

1

|x|
∗ F (un)

]
vf(un)dx =

∫
R2

∇u∇v+V (x)uvdx+o(1), v ∈ H−1
V Lqw0

,

in particular for any ϕ ∈ C∞c (R2). In order to prove that u is a weak solution of (1.3), let
us suppose for the moment the following
Claim: ∫

R2

∣∣∣∣log
1

|x|
∗ F (un)

∣∣∣∣ f(un)undx ≤ C

of which we postpone the proof. Now we apply Lemma 2.1 in [19] to the sequence of functions

g(y, un(y)) :=

(
log

1

|x|
∗ F (un)

)
(y)f(un(y)),

restricted to any compact domain Ω: they are L1 functions since un, u ∈ H1
V L

q
w0 and, thanks

to the claim, un(y)g(y, un(y)) is uniformly bounded in L1. Therefore, from [19] we have(
log

1

|x|
∗ F (un)

)
f(un)dx→

(
log

1

|x|
∗ F (u)

)
f(u)dx in L1

loc(R2)

as well as ∫
R2

[
log

1

|x|
∗ F (un)

]
f(un)ϕdx→

∫
R2

[
log

1

|x|
∗ F (u)

]
f(u)ϕdx

for any ϕ ∈ C∞c (R2), which is a dense subset of H−1
V Lqw0 . This together with (6.11) implies

that u is a weak solution of (1.3).
Proof of the Claim.
The key ingredient is the uniform bound provided by Lemma 6.3. In order to simplify the
notation, let us set

wn(y) =

(
log

1

|x|
∗ F (un)

)
(y)

By (6.3) ∫
R2

wnf(un)undx = A2 + o(1) ,

where A = limn→+∞ ‖un‖V ≥ ‖u‖V so that∫
R2

wnf(un)undx > 0

for n large enough (note that we are assuming u 6= 0, that is, A2 > 0). Hence,

0 <

∫
R2

wnf(un)undx =

∫
wn>0

wnf(un)undx+

∫
wn<0

wnf(un)undx

which implies ∫
R2

w−n f(un)undx <

∫
R2

w+
n f(un)undx
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and thus ∫
R2

|wn|f(un)undx ≤ 2

∫
R2

w+
n f(un)undx .

Now, we have∫
R2

w+
n f(un)un =

∫
y:wn>0

f(un(y))un(y)dy

∫
R2

log(1 +
1

|x− y|
)F (un(x))dx

−
∫
y:wn>0

f(un(y))un(y)dy

∫
R2

log(1 + |x− y|)F (un(x))dx

≤
∫
R2

∫
R2

log(1 +
1

|x− y|
)F (un(x))f(un(y))un(y)dxdy .

Therefore, for any µ > 0, small, there exists a constant δµ ∈ (0, 1) sufficiently small such
that∫

R2

w+
n f(un)undx ≤

∫
R2

dy

∫
|x−y|>δµ

log(1 + δ−1
µ )F (un(x))f(un(y))un(y)dx+

+ 2

∫
R2

dy

∫
|x−y|<δµ

1

|x− y|µ
F (un(x))f(un(y))un(y)dx

≤ Cµ
∫
R2

F (un(x))dx

∫
R2

f(un)un(y)dy

+

∫
R2

∫
R2

1

|x− y|µ
F (un(x))f(un)(y)un(y)dxdy .

The first integral in the last expression is uniformly bounded, as one can see by Lemma 6.3
and Holder’s inequality, recalling that ‖un‖V is also uniformly bounded. Concerning the
second term, by the HLS inequality if 2/s+ µ/2 = 1, one has∫

R2

∫
R2

1

|x− y|µ
F (un(x))f(un(y))un(y)dxdy ≤ C(µ)‖F (un)‖s‖f(un)un‖s .

Since
s =

4

4− µ
→ 1 as µ→ 0

we can choose µ small enough to apply again Lemma 6.3 and Holder’s inequality, to obtain
that ‖F (un)‖s‖f(un)un‖s stays bounded. Finally,

∫
w+
n f(un)un is bounded and the same

holds for
∫
|wn|f(un)un, that is our claim. �

7. Proof of Theorem 1.2

We are now ready to prove Theorem 1.2. From Lemma 5.1, the functional IV satisfies the
Mountain Pass geometry. Hence, there exists a (positive) (PS) sequence {un} ⊂ H1

V L
q
w0(R2)

at level mV and by Lemma 6.3, {un} is bounded in H1 and it weakly converges to some
u ∈ H1. We have that either {un} is vanishing, that is for any r > 0

lim
n→+∞

sup
y∈R2

∫
Br(y)

u2
ndx = 0

or there exist r, δ > 0 and a sequence {yn} ⊂ Z2 such that

lim
n→∞

∫
Br(yn)

u2
ndx ≥ δ.

If {un} is vanishing, by Lions’ concentration-compactness result we have

(7.1) un → 0 in Ls(R2) ∀ s > 2,

as n→∞. In this case it is standard to show that

‖F (x, un)‖γ , ‖unf(x, un)‖γ → 0



SCHRÖDINGER–NEWTON EQUATIONS IN DIMENSION TWO 25

for some values of γ > 1 and close to 1, thanks to the improved exponential integrability
given by Lemma 6.3 and the growth assumption F (x, t) < tf(x, t). Hence, applying the
HLS inequality we deduce, similarly to the conclusion of the proof of Proposition 6.4:∫

R2

∫
R2

log

(
1 +

1

|x− y|

)
F (x, un(x))F (y, un(y))dxdy → 0(7.2) ∫

R2

∫
R2

log

(
1 +

1

|x− y|

)
F (x, un(x))un(y)f(y, un(y))ddxdy → 0(7.3)

as n→∞. Combining (7.2)–(7.3) with (6.1) and (6.11) yields
1

2π

∫
R2

∫
R2

log (1 + |x− y|)F (x, un(x)) [F (y, un(y))− un(y)f(y, un(y))] dxdy = 2mV + o(1)

so that mv ≤ 0, which is not possible. Therefore the vanishing case does not occur.

Now set vn := un(· − yn), then

(7.4)
∫
Br(0)

v2
ndx ≥ δ .

By the periodicity assumption, IV and I ′V are both invariant by the Z2-action, so that {vn}
is still a PS sequence at level mV . Then vn ⇀ v in H1(R2) with v 6= 0 by using (7.4), since
vn → v in L2

loc(R2). We conclude by Proposition 6.4 that v ∈ H1
V L

q
w0 is a nontrivial critical

point of IV and IV (v) = mV , which completes the proof of Theorem 1.2.
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