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Abstract:We provide a new perspective on extended Priestley duality for a large class of distributive lattices

equipped with binary double quasioperators. Under this approach, non-lattice binary operations are each

presented as a pair of partial binary operations on dual spaces. In this enriched environment, equational

conditions on the algebraic side of the duality may more often be rendered as first-order conditions on dual

spaces. In particular, we specialize our general results to the variety of MV-algebras, obtaining a duality for

these in which the equations axiomatizing MV-algebras are dualized as first-order conditions.
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1 Introduction
MV-algebras have been the subject of intense study principally for two reasons: first, because they provide the

equivalent algebraic semantics for Łukasiewicz many-valued propositional logic [3], and second, because of

their deep connection to lattice-ordered abelian groups via the Mundici functor [23]. Despite sharp interest

in a duality-theoretic analysis from both of these directions, MV-algebras have been notoriously resistant

to study from the perspective of Priestley duality. Although extensions of Priestley duality (see, e.g., [19])

provide the necessary tools to dualize expansions of bounded distributive lattices by additional operations

(such as the monoid operation of MV-algebras), the axioms defining MV-algebras are not easily dualized.

Indeed, the characteristic identity

¬(¬x ⊕ y) ⊕ y = ¬(¬y ⊕ x) ⊕ x (MV6)

of MV-algebras is not canonical [15]. This creates a significant obstacle in rendering (MV6) in terms of an

equivalent first-order condition on extended dual spaces, substantially hindering a transparent characteri-

zation of appropriate duals (see, e.g., [4]).

One approach, which offers at least a theoretical advantage, is extended Priestley duality for so-called

double quasioperator algebras [16, 17]. The latter comprise a huge class of lattice-ordered algebraic struc-

tures, including MV-algebras and, more generally, semilinear residuated binars (see, e.g., [8]). For these,

first-order dual conditions are guaranteed under the condition that we double the non-lattice operations of

arity two or higher. Dually, this requires, a priori, two relations per additional operation for the duality of [19],

or one derived one, as shown in [17]. From the work in [16], it is clear that an alternative approach for double

quasioperator algebras is to witness them dually by two partial operations each. This is what we will do here.
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Although much of our inquiry applies more generally, we focus on a class of double quasioperator alge-

bras that contains, inter alia, MV-algebras when presented in the signature including the bounded lattice

operations and ⊖ (the co-residual of the monoid operation ⊕). We call such algebraic structures ⊖-algebras
and provide a duality for them by enriching the Priestley duals of their bounded distributive lattice reducts

by a pair of partial binary operations, which together dualize the operation ⊖. This pair of partial binary oper-
ations reflects the two natural extensions of the operation ⊖ to the canonical extension of its corresponding
bounded distributive lattice, and thus ourwork is anchored throughout in the theory of canonical extensions.

The introduction of both of the personalities of ⊖ on dual spaces affords a more expressive environment.

As an application illustrating this expressive power, we specialize our duality for ⊖-algebras to MV-algebras.
In this setting, the law (MV6)may be rendered as a transparent first-order condition on the two partial binary

operations (see Section 4.2). We expect the ideas laid out in this paper to support many similar applications

and note that other applications of this duality theory are already under way (see, e.g., [12]).

The paper is structured as follows. Section 2 presents necessary background information regarding

canonical extensions, residuated algebraic structures, and Priestley duality. Following these preliminary

remarks, Section 3 develops our Priestley duality for ⊖-algebras. Section 4 then specializes the duality for

⊖-algebras to MV-algebras and specifically provides an analysis of the role of the defining condition (MV6).

We finish our discussion in Section 5, which offers some illustrative examples of the theory developed in

earlier sections.

2 Preliminaries
Duality theory for distributive lattices descends from a key insight of Birkhoff [2]: each finite distributive

lattice is determined up to isomorphism by its poset of join-irreducible elements. Putting aside certain excep-

tional cases, this fails badly for infinite distributive lattices; in fact, infinite distributive lattices may have no

join-irreducible elements at all. To salvage Birkhoff’s insight in such cases, we must introduce enough ideal-

ized join-irreducible elements in order to recover the original lattice. In the present treatment,we use in paral-

lel two intertwined approaches to accomplishing this: an explicitly algebraic perspective arising from canon-

ical extensions of bounded distributive lattices, and an order-topological perspective anchored in Priestley

duality. Here we summarize pertinent facts about these two approaches and their relationship. For general

background, see [14]. Note also that [18] recalls pertinent facts regarding the canonical extensions of MV-

algebras. More background regarding MV-algebras themselves may be found in Section 4.

2.1 Canonical extensions

In a complete lattice C, a ∈ C is said to be compact if, for any S ⊆ Cwith a ≤ ⋁ S, there exists some finite S󸀠 ⊆ S
with a ≤ ⋁ S󸀠. A lattice C is said to be algebraic if C is complete and, for any a ∈ C, there exists a set S of com-

pact elements of Cwith a = ⋁ S. A lattice C is said to be dually algebraic if its opposite lattice Cop is algebraic,
and doubly algebraic if it is both algebraic and dually algebraic. Given a complete distributive lattice C, an
element a ∈ C is said to be completely join-irreducible if a ∈ S for every S ⊆ C with a = ⋁ S, and dually, a is

said to be completely meet-irreducible if a ∈ S for every S ⊆ C with a = ⋀ S. We denote the collections of com-

pletely join-irreducible and completelymeet-irreducible elements of C by J∞(C) andM∞(C), respectively. For
a doubly algebraic distributive lattice C, there are mutually inverse poset isomorphisms κ : J∞(C) → M∞(C)
and κ−1 : M∞(C) → J∞(C) given, for x ∈ J∞(C) and y ∈ M∞(C), by

κ(x) = ⋁{a ∈ A : x ≰ a} and κ−1(y) = ⋀{b ∈ A : b ≰ y},

respectively. Generalizing the finite case, every doubly algebraic distributive lattice C is isomorphic to the

lattice of down-sets of the poset J∞(C) and, equivalently, of the poset M∞(C).
If A is a sublattice of a doubly algebraic lattice C, we may consider the closure of A in C by arbitrary

(not just finite) meets and joins. We say that a ∈ C is a filter element if a is a (possibly infinitary) meet of
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elements ofA and an ideal element if a is a (possibly infinitary) join of elements ofA. The sets of filter elements

of C and ideal elements of C are denoted by F(C) and I(C), respectively. Of course, these notions depend on
the choice of the sublattice A as well as the lattice C, but for our purposes, the choice of A will be obvious

from context, and we do not explicitly refer to it in our notation. Note that filter and ideal elements were

respectively called closed and open elements in [14]. Following this topological analogy,we define the interior
map int : C → I(C) by

int(a) = ⋁{x ∈ I(C) | x ≤ a}.

If A is a sublattice of a doubly algebraic distributive lattice C, then we say that A is separating in C
if J∞(C) ⊆ F(C). Note that this is equivalent toM∞(C) ⊆ I(C) and also to the demand that, for all x, y ∈ J∞(C)
with x ≰ y, there exists a ∈ A such that x ≰ a and y ≤ a. In the same setting, we say that A is compact in C if,
whenever S, T ⊆ A with⋀ S ≤ ⋁ T in C, there exist finite S󸀠 ⊆ S and T󸀠 ⊆ T such that⋀ S󸀠 ≤ ⋁ T󸀠.

A canonical extension of a bounded distributive lattice A is a doubly algebraic lattice Aδ
that contains A

as a separating, compact (bounded) sublattice. Every bounded distributive lattice has a canonical extension,

and this is unique up to an isomorphism fixing A. In light of this, we refer to the canonical extension of

a bounded distributive lattice A and denote it by Aδ
.

The canonical extension of an arbitrary bounded distributive lattice A is a completion of A and therefore

provides an embedding of A into the doubly algebraic lattice Aδ
. Moreover, it may be shown that A is dense

in Aδ
in the sense that each element of Aδ

is at once a join of meets of elements of A and a meet of joins of

elements of A. If A and B are bounded distributive lattices and f : A → B is any map, density provides two

obvious candidates for extending f to a map Aδ → Bδ
, namely the σ- and π-extensions given respectively by

f σ(x) = ⋁{⋀ f([p, u] ∩ A) | p ∈ F(Aδ), u ∈ I(Aδ), and p ≤ x ≤ u},

f π(x) = ⋀{⋁ f([p, u] ∩ A) | p ∈ F(Aδ), u ∈ I(Aδ), and p ≤ x ≤ u},

where [p, u] = {y ∈ Aδ | p ≤ y ≤ u}. Note that, in general, f σ and f π do not coincide, but f σ ≤ f π always holds.
For this reason, the σ- and π-extensions are also called the lower andupper extensions.Note that f σ(x) = f π(x)
whenever x is a filter or ideal element. In the event that f σ(x) = f π(x) for all x ∈ Aδ

, f is called smooth. When

f is smooth, we will write the common value of f σ and f π as f δ. A basic fact regarding canonical extensions

is that if f preserves join or meet, or reverses at least one of the two, then f is smooth.

We note that, for any lattices A and B, we have (Aδ)op ≅ (Aop)δ and (A × B)δ ≅ Aδ × Bδ
. This fact permits

us to extend the definitions of the σ- and π-extensions (given above for unarymaps) to those of arbitrary finite

arity in the obvious way. In particular, the definitions of the σ- and π-extensionsmay be extended to arbitrary

finitary algebraic operations expanding bounded distributive lattices. We freely apply this observation in the

case of ⊖-algebras in the work to follow.
In the sequel, we will occasionally have need of the following canonicity result (drawn from [13, Theo-

rem 4.6] as well as its dual statement).

Proposition 2.1. Let A be a distributive lattice and fi : A → A, i ∈ I.
(1) If each fi preserves finite joins, then every identity that holds in (A, {fi}i∈I) also holds in (Aδ

, {f σi }i∈I).
(2) If each fi preserves finite meets, then every identity that holds in (A, {fi}i∈I) also holds in (Aδ

, {f πi }i∈I).
2.2 Residuation, co-residuation, and double quasioperators

In order to express the theory of adjoints and (co-)residuated structures [10] in sufficient generality, we must

introduce some technical notation. This material is necessarily burdened by some heavy bookkeeping, so in

order to provide intuition, we explain its conceptual origins after we have introduced the relevant definitions

and results.

If A and B are posets and f : A → B, then a map f ♯ : B → A is called an upper adjoint of f if, for all x ∈ A,
y ∈ B,

f(x) ≤ y ⇐⇒ x ≤ f ♯(y).
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Dually, a map f ♭ : B → A is called a lower adjoint of f if, for all x ∈ B, y ∈ A,

x ≤ f(y) ⇐⇒ f ♭(x) ≤ y.
If f : A × B → C is a binary map, then for each a ∈ A, b ∈ B, we define left and right translation maps

Lf,a : B → C and Rf,b : A → C by Lf,a(x) = f(a, x) and Rf,b(x) = f(x, b), denoting these respectively by La
and Rb if f is understood from context. In the event that Lf,a has an upper adjoint (respectively, lower adjoint)
for each a ∈ A, by a slight abuse of notation,we define amap L♯f : A × C → B by L♯f (x, y) = L♯f,x(y) (and, respec-
tively, L♭f : A × C → B by L♭f (x, y) = L♭f,x(y)). We call themap L♯f (respectively, L♭f ) the left (co-)residual of f . The
right (co-)residual R♯f : C × B → A (respectively R♭f : C × B → A) is analogously defined by R♯f (x, y) = R♯f,y(x)
(respectively R♭f (x, y) = R♭f,y(x)), provided that each of the maps R♯f,y (respectively, R♭f,y) exists. When f is clear
from context, we denote the left and right (co-)residuals by L♯ and R♯ (respectively, L♭ and R♭). If f is such
that both L♯ and R♯ (respectively, L♭ and R♭) exist, then we say that f is (co-)residuated.

Note that if A and B are complete lattices and f : A → B preserves arbitrary joins (meets), then f has an
upper adjoint (respectively, lower adjoint). For bounded distributive lattices A and B, if f : A → B preserves

finitary meets (or, respectively, joins), f δ preserves arbitrary meets (respectively, joins). Similar comments

apply when f converts finitary meets to joins (or vice versa). This entails that if f preserves binary joins

(meets), then f δ has an upper adjoint (lower adjoint). In the event that f : A × B → C is a binarymap that pre-

serves arbitrary joins (meets) in each coordinate, the extension f σ (respectively f π) is (co-)residuated. Indeed,
if f is (co-)residuated to begin with, then the left and right (co-)residuals of f σ (respectively f π) are exactly
(L♯)π and (R♯)π (respectively (L♭)π and (R♭)π). Because adjoints are ubiquitous in canonical extensions, we

will typically drop parentheses appearing due to successive applications of σ, π, δ, ♯, and ♭ in order to ease
our notational burden (writing, e.g., (f δ)♯ as f δ♯).

Given a bounded distributive lattice A, we denote by A1

the lattice A itself and by Aop
its opposite lattice.

By an order type¹, we mean an element of {1, op}n for some positive integer n, and by a binary order type,
we mean an order type for which n = 2. For a binary order type ε = (ε

1
, ε

2
), a double quasioperator of type ε

is a map f : Aε
1 × Aε

2 → A that preserves both meet and join in each coordinate. (For more information, see

[16, 17], which provide a study of canonical extensions of double quasioperators of arbitrary, not necessarily

binary order type. See also [8] for an algebraic study of equational conditions defining residuated double

quasioperators.)

Although it appliesmuchmore generally, the content of this study ismotivated by the following situation.

Suppose that A is a bounded distributive lattice, that ⊕ is a co-residuated double quasioperator of type (1, 1)
on A, and that the right co-residual ⊖ of ⊕ is a double quasioperator of type (1, op).² Then ⊕ is the right
residual of ⊖. Both ⊕ and ⊖ are typically written in infix notation, with, e.g., the co-residuation property being
expressed by the stipulation that

x ≤ y ⊕ z ⇐⇒ x ⊖ z ≤ y

for all x, y, z ∈ A. In this setting, ⊖σ has a right residual on Aδ
given by ⊕π (see, e.g., [18, Proposition 5.3]).

Said differently, for any x, y ∈ Aδ
,

x ⊕π y = R♯⊖σ (x, y).
Accordingly, the map R♯⊖σ is a manifestation of the (extension of the) operation ⊕ on Aδ

. In the setting where

⊕ is absent from A to begin with (as in the ⊖-algebras considered in the sequel), an analogue of its extension
is nevertheless present in the guise of R♯⊖σ . Due to the importance of the latter operation, we abbreviate it by

the more evocative ⊖σ♯. We also adopt infix notation, writing

x ⊖σ♯ y = R♯⊖σ (x, y).
1 In [16, 17], the symbol ∂ was used for what is denoted op in the present paper.
2 Note that if f : A × A → B is a (co-)residuated map satisfying f(x, y) = f(y, x) for all x, y ∈ A, one may readily show that

L♯(x, y) = R♯(y, x) (respectively, L♭(x, y) = R♭(y, x)). Because the left and right (co-)residuals coincide in this setting, it is common

practice to take only one of them as primitive.
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2.3 Priestley duality and its connection to the canonical extension

The following well-known result is often called Esakia’s lemma in the more restrictive setting of a modal

operator (see, e.g., [11] for a treatment in the language of canonical extensions). To express this lemma con-

cisely, we call a subset S of a poset up-directed if every pair of elements of S have a common upper bound

in S, and down-directed if every pair of elements of S have a common lower bound in S. A poset X is called

a directed-complete partial order (or dcpo) if every up-directed subset of X has a supremum. Likewise, X is

called a dual dcpo if every down-directed subset of X has an infimum.

Lemma 2.2. Let A and B be bounded distributive lattices, and let f : A → B be order-preserving.
(1) If S is an up-directed subset of I(Aδ), then f δ(⋁ S) = ⋁{f δ(x) | x ∈ S}.
(2) If S is a down-directed subset of F(Aδ), then f δ(⋀ S) = ⋀{f δ(x) | x ∈ S}.

If A is a distributive lattice, then for each a ∈ A, we may define

â = {x ∈ M∞(Aδ) | a ≰ x}.

The collection {â | a ∈ A} ∪ {(â)c | a ∈ A} gives a subbase for a topology τ on M∞(Aδ), and equipped with

this topology, X = M∞(Aδ) forms a compact ordered topological space that is totally order-disconnected,
i.e., if x, y ∈ X with x ≰ y, then there exists a clopen down-set U ⊆ X such that y ∈ U and x ∉ U. Compact,

totally order-disconnected ordered topological spaces are called Priestley spaces. When endowed with con-

tinuous isotone maps for morphisms, Priestley spaces form a category that is dually equivalent to the cate-

gory of bounded distributive lattices and bounded lattices homomorphisms [26, 27]. As depicted here, one

functor of this equivalence associates to a bounded distributive lattice A the Priestley space (M∞(Aδ), ≤, τ)
and associates to a homomorphism f : A → B of bounded distributive lattices the continuous isotone map

(f δ)♯ ↾ M∞(Bδ). It is noteworthy that the underlying order of a Priestley space is both a dcpo and a dual dcpo.
If A is a bounded distributive lattice, a Priestley dual space of A is any Priestley space X such that A is iso-

morphic to the lattice of clopen down-sets of X. All Priestley dual spaces of A are isomorphic. As usual when

discussing particular representatives from an isomorphism class, we sometimes refer to a given Priestley dual

space of A as “the” Priestley dual space of A. However, there aremany (isomorphic, but not identical) choices

for this. For example, (M∞(Aδ), ≤, τ) is a Priestley dual space of A. Another example may be found by taking

the set PrIdl(A) of prime ideals of A endowed with the inclusion order ⊆ and the topology σ generated by all
sets of the form

{x ∈ PrIdl(A) | a ∈ x}, {x ∈ PrIdl(A) | a ∉ x},

where a ∈ A. The structure (PrIdl(A), ⊆, σ) is then a Priestley dual space of A. Themap sending a prime ideal I
of A to the completely meet-irreducible element ⋁ I of Aδ

is an isomorphism between (PrIdl(A), ⊆, σ) and
(M∞(Aδ), ≤, τ).

Of course, we could just as well work with J∞(Aδ) instead of M∞(Aδ) (by exploiting the isomorphism κ)
or with the collection of prime filters PrFil(A) of A (by exploiting the fact that PrFil(A) ≅ PrIdl(A)op via

x 󳨃→ A \ x). Suitably modifying the subbase for the topology in the obvious ways, we obtain Priestley dual

spaces of A in each instance.

In the presence of double quasioperators, one is naturally led to toggle between J∞(Aδ) andM∞(Aδ) (and
between prime filters and prime ideals). To facilitate this, for any Priestley dual space X of A, we define four
Priestley space isomorphisms

IX(−) : X → PrIdl(A), FX(−) : X → PrFil(A), μX : X → M∞(Aδ), νX : X → J∞(Aδ),

obtained by composing the isomorphisms outlined above. Since the domain X will always be clear from con-

text, for ease of notation, we will abbreviate IX(−), FX(−), μX, and νX by I(−), F(−), μ, and ν, respectively. The
isomorphisms are connected via

Ix = A ∩ ↓μ(x), μ(x) = ⋁ Ix , Fx = A ∩ ↑ν(x), ν(x) = ⋀ Fx , κ(ν(x)) = μ(x), Fcx = Ix .
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In the sequel, we will often employ the above to switch between different Priestley dual spaces of a given

distributive lattice A.³
Our treatment above began from the perspective of canonical extensions, but onemay also start from the

point of view of Priestley duality. From this perspective, we note that the canonical extension of A may be

realized as the collection of down-sets of the Priestley dual X via a 󳨃→ {x ∈ X | x ∈ â}.

3 Priestley duality for ⊖-algebras
We introduce ⊖-algebras and develop an extended Priestley duality for these based on Priestley spaces with
additional partial operations.

3.1 Definitions of ⊖-algebras and their extended dual spaces
Definition 3.1. A ⊖-algebra (A, ⊖) is a bounded distributive lattice A equipped with a binary operation ⊖
satisfying the following.

(1) ⊖ is a double quasioperator of type (1, op). That is, for all a, b, c ∈ A,

(a ∧ b) ⊖ c = (a ⊖ c) ∧ (b ⊖ c) and (a ∨ b) ⊖ c = (a ⊖ c) ∨ (b ⊖ c),
a ⊖ (b ∧ c) = (a ⊖ b) ∨ (a ⊖ c) and a ⊖ (b ∨ c) = (a ⊖ b) ∧ (a ⊖ c).

(2) ⊖ is normal as an operator. That is, for all a ∈ A, we have 0 ⊖ a = 0 and a ⊖ 1 = 0.
(3) For all a ∈ A, a ⊖ 0 = a.

Remark 3.2. We focus on double quasioperators of type (1, op) because we will apply the duality developed
in this section to the operator ⊖ of an MV-algebra. We also impose the second and third conditions because

these hold in the ⊖-reduct of MV-algebras and because it will somewhat simplify the partiality of the opera-

tions dual to ⊖. However, a generalization of the results proved in this section for ⊖-algebras may be obtained

for general double quasioperator algebras.

In seeking a functional dual of⊖, it will bemore convenient to have the dual of the followingderived operation

available. Throughout the following, we denote the dual space of A by X.

Definition 3.3. Given a ⊖-algebra (A, ⊖), the associated negation is the operation

¬ : A → A, a 󳨃→ 1 ⊖ a.

From the properties of ⊖, it follows that ¬ : Aop → A is a lattice homomorphism, i.e., ¬ reverses both binary

meet and join, sends 0 to 1 and 1 to 0. Accordingly, the dual of ¬ is a continuous order-reversing map on X.

Definition 3.4. We define the dual i of ¬ to be the continuous order-reversing map on X dual to the homo-

morphism ¬ : Aop → A. Since ¬ is unary and reverses binary meets (and joins), we have ¬σ = ¬π, and thus

we denote the unique extension by ¬δ : (Aδ)op → Aδ
. We have

for all u, v ∈ Aδ (¬δu ≤ v ⇐⇒ ¬δ♯v ≤ u),
for all u, v ∈ Aδ (u ≤ ¬δv ⇐⇒ v ≤ ¬δ♭u).

3 Readers who are more comfortable working with a particular, fixed representation of “the” Priestley dual space of A may

read this paper with that choice in mind. For example, one could, if one wished, define “the” Priestley dual space of A to be(PrIdl(A), ⊆, σ) and read every mention of the dual of A according to that definition. All results in the sequel remain true without

modification. However, we emphasize that a “neutral” perspective that toggles between particular representations of the Priestley

dual of A is the most natural environment for this paper’s content.
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In particular, for each x ∈ X, we have

ν(i(x)) = ¬δ♯μ(x) and μ(i(x)) = ¬δ♭ν(x),
or, said differently,

Fi(x) = {a ∈ A | ¬a ∈ Ix} and Ii(x) = {a ∈ A | ¬a ∈ Fx}.
In order to obtain a dual description of ⊖, we consider the upper and lower canonical extensions ⊖π and ⊖σ,
which are in general different.

Consider first ⊖π. From the general theory of canonical extensions, we know that ⊖π preserves arbitrary
non-empty meets in the first coordinate and reverses arbitrary non-empty joins in the second coordinate.

In addition, ⊖π preserves finite joins in the first coordinate and reverses finite meets in the second coordi-

nate because ⊖ has these properties and they are canonical by Proposition 2.1. Thus, for each y ∈ X, the
map R⊖π ,ν(y) : Aδ → Aδ

given by R⊖π ,ν(y)(u) = u ⊖π ν(y) preserves arbitrary non-empty meets. Viewing this

as a map R⊖π ,ν(y) : Aδ → [0, ¬δν(y)] (which is possible because the map R⊖π ,ν(y) has ¬δν(y) as the maxi-

mum of its image), it is completely meet preserving. The corresponding map Aδ × X → [0, ¬δν(y)] defined
by (u, y) 󳨃→ R⊖π ,ν(y)(u) thus has a right co-residual ⊖π♭ : [0, ¬δν(y)] × X → Aδ

, which is uniquely determined

by the following property:

for all u, v ∈ Aδ (u ≤ v ⊖π ν(y) ⇐⇒ (u ≤ ¬δν(y) and u ⊖π♭ ν(y) ≤ v)).
Also, for each y ∈ X, since R⊖σ ,μ(y) : u 󳨃→ u ⊖σ μ(y) preserves arbitrary joins (including the empty join), the

corresponding binary map (u, y) 󳨃→ R⊖σ ,μ(y)(u) has right residual ⊖σ♯ : Aδ × X → Aδ
, uniquely determined by

the following formula:

for all u, v ∈ Aδ (u ⊖σ μ(y) ≤ v ⇐⇒ u ≤ v ⊖σ♯ μ(y)).
The following fundamental fact about double quasioperators is what makes it possible to obtain functional

duals for these operations.

Proposition 3.5. Let (A, ⊖) be a ⊖-algebra, X the dual space of A, and let y ∈ X. Then the following hold.
(1) If j ∈ J∞(Aδ) and j ≤ ¬δν(y), then either j ⊖π♭ ν(y) = 0 or j ⊖π♭ ν(y) ∈ J∞(Aδ);
(2) If m ∈ M∞(Aδ), then either m ⊖σ♯ μ(y) = 1 or m ⊖σ♯ μ(y) ∈ M∞(Aδ).

Proof. See the proof of [16, Theorem 4.4], or also [18, Proposition 6.4].

It is interesting to understand for which completely join irreducibles j ∈ [0, ¬δν(y)], we have j ⊖π♭ ν(y) = 0,
and for which completely meet irreducibles, we have m ⊖σ♯ μ(y) = 1.
Proposition 3.6. Let (A, ⊖)bea⊖-algebra, X thedual space of A, and let x, y ∈ X. The following three conditions
are equivalent:
(i) ν(x) ≤ ¬δν(y);
(ii) i(x) ≰ y;
(iii) (x, y) ∈ ⋃a∈A[¬̂a × â].
Moreover, if these conditions hold, then ν(x) ⊖π♭ ν(y) ̸= 0. Furthermore, the following three conditions are equiv-
alent:
(iv) μ(x) ⊖σ♯ μ(y) ̸= 1;
(v) y ≤ i(x);
(vi) (x, y) ∈ ⋂a∈A([¬̂a × X] ∪ [X × â]).
Proof. Note that

ν(x) ≤ ¬δν(y) ⇐⇒ ¬δν(y) ≰ μ(x)
⇐⇒ ¬δ♯μ(x) ≰ ν(y)
⇐⇒ ν(i(x)) ≰ ν(y)
⇐⇒ i(x) ≰ y.
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For the last condition of the first equivalence, we start from

ν(x) ≤ ¬δν(y) = ⋁{¬a | y ∈ â}.

Since ν(x) is completely join-irreducible, this is equivalent to the existence of a ∈ A with y ∈ â and x ∈ ¬̂a,
thus yielding the last condition. For the “moreover” statement, note that ν(x) ≰ 0 = 0 ⊖π ν(y), so we have

ν(x) ⊖π♭ ν(y) ̸= 0 by residuation.
For the second set of equivalences, we have

μ(x) ⊖σ♯ μ(y) ̸= 1 ⇐⇒ 1 ≰ μ(x) ⊖σ♯ μ(y)
⇐⇒ ¬δμ(y) ≰ μ(x)
⇐⇒ ¬δ♯μ(x) ≰ μ(y)
⇐⇒ ν(y) ≤ ν(i(x))
⇐⇒ y ≤ i(x).

For the last condition of the second equivalence, we start from

ν(x) ≤ ¬δμ(y) = ⋀{¬a | y ∉ â}.

By definition of infima, this is equivalent to y ∈ â or x ∈ ¬̂a for all a ∈ A, thus yielding the last condition.

We are now ready to define the two partial functions which will account for ⊖ on the dual of A.

Definition 3.7. Let (A, ⊖) be a ⊖-algebra and X the dual space of A. Let

dom(+) := ⋂
a∈A([¬̂a × X] ∪ [X × â]) = {(x, y) ∈ X2 | y ≤ i(x)},

and let

+ : dom(+) → X, x + y = μ−1(μ(x) ⊖σ♯ μ(y)).
Further, define

dom(⋆) := ⋃
a∈A[¬̂a × â] = {(x, y) ∈ X2 | i(x) ≰ y}

and

⋆ : dom(⋆) → X, x ⋆ y = ν−1(ν(x) ⊖π♭ ν(y)).
We call the tuple (X, i, +, ⋆) the extended dual space of (A, ⊖).

The definitions of + and ⋆ can be rephrased in terms of prime filters and prime ideals, as follows.

Lemma 3.8. Let (A, ⊖) be a ⊖-algebra and (X, i, +, ⋆) its extended dual space. For any (x, y) ∈ dom(+), we have
(1) Fx+y = {a ∈ A | for all b ∈ A, if b ∈ Iy , then a ⊖ b ∈ Fx)},
(2) Ix+y = {a ∈ A | there exists b ∈ A such that b ∈ Iy and a ⊖ b ∈ Ix}.
For any (x, y) ∈ dom(⋆), we have
(3) Fx⋆y = {a ∈ A | there exists b ∈ A such that b ∈ Fy and a ⊖ b ∈ Fx}.
(4) Ix⋆y = {a ∈ A | for all b ∈ A, if b ∈ Fy , then a ⊖ b ∈ Ix},
Proof. Let (x, y) ∈ dom(+). For any a ∈ A, we have

ν(x + y) ≤ a ⇐⇒ a ≰ μ(x + y) = μ(x) ⊖σ♯ μ(y)
⇐⇒ a ⊖σ μ(y) ≰ μ(x)
⇐⇒ ν(x) ≤ a ⊖σ μ(y) = ⋀{a ⊖ b | b ≤ μ(y)}.

From this, the first item follows by the definition of infimum. The second item now follows because Ix+y is the
complement of Fx+y. The proof of the last two items is similar.
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3.2 Properties of extended dual spaces of ⊖-algebras
For the following, it is convenient to introduce the following notation. Suppose that X is a Priestley space

whose topology is τ. By τ↑, we mean the topology consisting of all open up-sets in τ, and by τ↓, we mean the

topology consisting of all open down-sets in τ. See, for example, [18, Section 2] for more information on the

relationships between τ, τ↑, and τ↓.
Proposition 3.9. The extended dual space (X, i, +, ⋆) of a ⊖-algebra (A, ⊖) has the following properties.
(1) The domain of + is a closed down-set.
(2) The domain of ⋆ is an open down-set.
(3) The function + is (jointly) upper continuous, i.e., + is continuous when viewed as a function from dom(+)

to (X, τ↑), where dom(+) is equipped with the subspace topology of the product (X, τ↑) × (X, τ↑).
(4) The function ⋆ is (jointly) lower continuous, i.e., ⋆ is continuous when viewed as a function from dom(⋆)

to (X, τ↓), where dom(⋆) is equipped with the subspace topology of the product (X, τ↓) × (X, τ↓).
(5) The function + is order-preserving, i.e., for any (x, y) ∈ dom(+), x󸀠 ≤ x and y󸀠 ≤ y, we have x󸀠 + y󸀠 ≤ x + y.
(6) The function ⋆ is order-preserving, i.e., for any (x, y) ∈ dom(⋆), x ≤ x󸀠 and y ≤ y󸀠, we have x ⋆ y ≤ x󸀠 ⋆ y󸀠.
Proof. (1) holds because dom(+) is an intersection of clopen down-sets, and (2) holds because dom(⋆) is
a union of clopen down-sets. For (3), by definition of the topology τ↑ on X, it suffices to prove that (+)−1(â) is
closed in dom(+) for every a ∈ A. Indeed, using Lemma 3.8, we have

(+)−1(â) = dom(+) ∩ ⋂
b∈A[(â ⊖ b × X) ∪ (X × b̂)],

which is a closed set in the subspace dom(+) of (X, τ↑) × (X, τ↑). Similarly, for (4), it suffices to prove that

(⋆)−1(â) is open in dom(⋆) for every a ∈ A. Again using Lemma 3.8, we have

(⋆)−1(â) = dom(⋆) ∩ ⋃
b∈A[â ⊖ b ∩ b̂],

which is an open set in the subspace dom(⋆) of (X, τ↓) × (X, τ↓). Items (5) and (6) follow because both ⊖σ♯
and ⊖π♭ are order preserving in each coordinate.
Inspection of the foregoing proof attests that,mutatismutandis, the previous proposition appliesmore gener-

ally to any bounded distributive lattice expanded by a double quasioperator. The next proposition, however,

uses the two additional defining properties of ⊖-algebras.

Proposition 3.10. The extended dual space (X, i, +, ⋆) of a ⊖-algebra (A, ⊖) has the following properties.
(1) The function + is expanding, i.e., for any (x, y) ∈ dom(+), x ≤ x + y.
(2) For any x ∈ X, there exists yx ∈ X such that (x, yx) ∈ dom(+) and x + yx = x.

Proof. For (1), note first that u ⊖σ 0 = u for any u ∈ Aδ
, by Proposition 2.1. In particular, for any x, y ∈ X, we

have

μ(x) ≤ μ(x) ⊖σ♯ 0 ≤ μ(x) ⊖σ♯ μ(y),
where, in the second inequality, we use that ⊖σ♯ is order preserving. Thus, x ≤ x + y if (x, y) ∈ dom(+). For (2),
note that, for any x ∈ X, we have that ν(x) ≤ ν(x) ⊖σ 0. Hence, by residuation, we have that

ν(x) ≰ μ(x) ⊖σ♯ 0 = ⋀
y∈X μ(x) ⊖σ♯ μ(y),

where the second equality holds because ⊖σ♯ is a right residual, hence preserves arbitrary meets in the

second coordinate. By definition of infimum, pick yx ∈ X such that ν(x) ≰ μ(x) ⊖σ♯ μ(yx). In particular,

μ(x) ⊖σ♯ μ(yx) ̸= 1, so (x, yx) ∈ dom(+). By residuation and the definition of +, we have x + yx ≤ x. By (1),

we must have x + yx = x.

The following lemma is an immediate consequence of [17, Proposition 4.2]. For the benefit of the reader not

familiar with the notation of that paper, we record the proof in our setting.
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Lemma 3.11. Let (A, ⊖) be a ⊖-algebra with extended dual space (X, i, +, ⋆). For any x, w
1
, w

2
∈ X with

(x, w
1
) ∈ dom(+) and (x, w

2
) ∈ dom(+), there exists w

0
∈ X such that (x, w

0
) ∈ dom(+), w

1
≤ w

0
, w

2
≤ w

0
,

and either x + w
0
= x + w

1
or x + w

0
= x + w

2
.

Proof. Write z := ν(x + w
1
) ∨ ν(x + w

2
). Note that, for k ∈ {1, 2}, we have

ν(x) ≤ ν(x + wk) ⊖σ μ(wk) ≤ z ⊖σ μ(wk),

where the first inequality follows from the definition of + and residuation, and the second inequality from

order preservation of ⊖σ in the first coordinate. Therefore, since ⊖σ sends ∨ to ∧ in the second coordinate, we
deduce that

ν(x) ≤ z ⊖σ (μ(w
1
) ∨ μ(w

2
)).

Now, because ⊖σ reverses arbitrary meets in the second coordinate, we obtain

ν(x) ≤ z ⊖σ⋀{μ(w
0
) | μ(w

1
) ∨ μ(w

2
) ≤ μ(w

0
)} = ⋁{z ⊖σ μ(w

0
) | μ(w

1
) ∨ μ(w

2
) ≤ μ(w

0
)}.

As ν(x) is completely join irreducible, pickw
0
∈ Xwith μ(w

1
) ∨ μ(w

2
) ≤ μ(w

0
) and ν(x) ≤ z ⊖σ μ(w

0
). Clearly,

w
1
≤ w

0
and w

2
≤ w

0
. It also follows from ν(x) ≤ z ⊖σ μ(w) that z ≰ μ(x) ⊖σ♯ μ(w

0
), so that (x, w

0
) ∈ dom(+).

It remains to prove that x + w
0
∈ {x + w

1
, x + w

2
}.

Since ⊖σ preserves joins in the first coordinate, we have

ν(x) ≤ z ⊖σ μ(w
0
) = (ν(x + w

1
) ⊖σ μ(w

0
)) ∨ (ν(x + w

2
) ⊖σ μ(w

0
)).

As ν(x) is join irreducible, pick k ∈ {1, 2} such that ν(x) ≤ ν(x + wk) ⊖σ μ(w0
). We claim that x + w

0
= x + wk.

Indeed, it follows from the definition of + and residuation that μ(x + w
0
) ≤ μ(x + wk), so x + w

0
≤ x + wk.

Moreover, since + is order-preserving and wk ≤ w0
, we also have x + wk ≤ x + w0

. Thus, x + w
0
= x + wk, as

required.

In Proposition 3.12, we exhibit important properties of the unary left translation operations L+,x induced by
the binary operation +.

Proposition 3.12. Let X be the extended dual space of a ⊖-algebra A. For any x ∈ X, the function Lx = L+,x is
well-defined as a map ↓i(x) → ↑x, and has a totally ordered image and an upper adjoint L♯x : ↑x → ↓i(x).
Proof. Note that Lx is indeed well-defined considered as a map with domain ↓i(x) and codomain ↑x by

Definition 3.7 and Proposition 3.10 (7). To see that the image of Lx is totally ordered, let w
1
, w

2
∈ ↓i(x).

By Lemma 3.11, pick w
0
∈ ↓i(x) such that w

1
, w

2
≤ w

0
and, say, x + w

0
= x + w

1
. Since w

2
≤ w

0
and + is

order-preserving by Proposition 3.9 (5), we have x + w
2
≤ x + w

0
≤ x + w

1
. In case instead x + w

0
= x + w

2
,

we obtain in the same way x + w
1
≤ x + w

2
.

Finally, we show the existence of the upper adjoint. Let z ∈ ↑x be arbitrary, and consider the set

S := {y ∈ ↓i(x) | x + y ≤ z}.

Note that S has a supremum: by Lemma 3.11, S is an up-directed set, by Proposition 3.9 (8), S is non-empty,

and ≤ is a directed complete partial order. Define k(x, z) := sup S. We claim that k(x, −) is the desired upper
adjoint L♯x.

Clearly, k(x, z) ≤ i(x); moreover, Lx(y) ≤ z trivially implies y ≤ k(x, z) for any y ≤ i(x). For the converse,
it suffices to show that x + k(x, z) ≤ z. Note first that, for any y ∈ ↓i(x), we have x + y ≤ z if and only if

ν(x) ≤ ν(z) ⊖σ μ(y), using the definitions of +, μ, ν and residuation. Therefore,

ν(x) ≤ ⋀{ν(z) ⊖σ μ(y) | y ∈ S} (definition of S)

= ν(z) ⊖σ⋁{μ(y) | y ∈ S} (Lemma 2.2)

= ν(z) ⊖σ μ(k(x, z)) (μ is order-isomorphism).

Hence, x + k(x, z) ≤ z, as required.
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Remark 3.13. A unary version of the binary function k defined in the proof of Proposition 3.12 has appeared
before in the literature on duality for MV-algebras; also see [18, Remark 7.7].

Since the operations + and ⋆ come from one and the same operation on A, it is natural that they should be
related. In Proposition 3.14, we make this precise.

Proposition 3.14. Let (A, ⊖) be a ⊖-algebra, X the extended dual space of A, and (x, y) ∈ dom(⋆). Then

x ⋆ y = inf{x + w | (x, w) ∈ dom(+) and w ≰ y},

where the infimum is with respect to the order on X.

Proof. We first prove that

μ(x ⋆ y) = int(μ(x) ⊖σ♯ ν(y)). (3.1)

To this end, note that, for any a ∈ A, we have

a ≤ μ(x ⋆ y) ⇐⇒ ν(x ⋆ y) ≰ a
⇐⇒ ν(x) ≰ a ⊖π ν(y) = a ⊖σ ν(y) (∗)

⇐⇒ a ⊖σ ν(y) ≤ μ(x)
⇐⇒ a ≤ μ(x) ⊖σ♯ ν(y),

where the equality marked (∗) follows from the fact that ⊖σ and ⊖π agree on ideal elements of Aδ × (Aδ)op.
Thus, equality (3.1) follows since the completely meet-irreducible μ(x ⋆ y) is an ideal element.

Now, since ⊖σ♯ is the right residual of a (1, op) double quasioperator, it preserves arbitrary meets in both

coordinates, so

μ(x) ⊖σ♯ ν(y) = ⋀{μ(x) ⊖σ♯ μ(w) | ν(y) ≤ μ(w)}.
Moreover, since μ(x) ⊖σ♯ μ(w) = μ(x + w) when (x, w) ∈ dom(+), and μ(x) ⊖σ♯ μ(w) = 1 otherwise, we obtain

μ(x) ⊖σ♯ ν(y) = ⋀{μ(x + w) | (x, w) ∈ dom(+) and w ≰ y}. (3.2)

Now, for any z ∈ X, μ(z) is an ideal element. Therefore, again using the fact that ⊖σ and ⊖π agree on ideal

elements, for any z ∈ X,

μ(z) ≤ μ(x ⋆ y) ⇐⇒ ν(x ⋆ y) ≰ μ(z)
⇐⇒ ν(x) ≰ μ(z) ⊖π ν(y) = μ(z) ⊖σ ν(y)
⇐⇒ μ(z) ≤ μ(x + w) for all (x, w) ∈ dom(+) such that w ≰ y (using (3.2)).

Since μ is an order isomorphism, it follows from this equivalence that x ⋆ y is indeed the greatest lower bound
of the set on the right-hand side.

Remark 3.15 (Comparison with [17]). We compare the properties of the binary operations + and ⋆ that we
proved in the above to the properties of the ternary relations R and S introduced in a more general setting

in [17]. Properties (1)–(4) in Proposition 3.9 correspond to (Rϵ
top

) and (Sϵ
top

) in [17], and (5) and (6) correspond

to (Rϵ
ord

) and (Sϵ
ord

) in [17]. The conjunction of properties (7) and (8) in Proposition 3.9 corresponds to the

specific axiom a ⊖ 0 = a of ⊖-algebras, which is not considered in [17]. The property proved in Lemma 3.11

corresponds to the property (Rϵ
dop

) in [17], and the property proved in Proposition 3.14 corresponds to (RSϵ≤)
and (RSϵ≥) in [17].
3.3 ⊖-spaces and their dual algebras
Theaboveproperties canbeused to completely characterize the extendeddual spaces of⊖-algebras,whichwe
call ⊖-spaces. Indeed, in Section 3.4, wewill define an appropriate notion ofmorphismswithwhich ⊖-spaces
become a category, and we will prove a duality theorem between ⊖-algebras and ⊖-spaces (Theorem 3.27).
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The following provides the needed characterization of the extended dual spaces of ⊖-algebras.

Definition 3.16. A ⊖-space is a tuple (X, i, +, ⋆), where
(1) X is a Priestley space,

(2) i : X → X is a continuous order-reversing function,

(3) + is an upper continuous partial function with dom(+) = {(x, y) ∈ X2 | y ≤ i(x)},
(4) ⋆ is a lower continuous partial function with dom(⋆) = {(x, y) ∈ X2 | i(x) ≰ y},
(5) + and ⋆ are order preserving in both coordinates,
(6) for any (x, y) ∈ dom(⋆),

x ⋆ y = inf{x + w | (x, w) ∈ dom(+) and w ≰ y}, (⋆+)

(7) for any x ∈ X, the image of the left translation map Lx = L+,x : ↓i(x) → ↑x is a totally ordered subset of

↑x, and moreover, this function has an upper adjoint L♯x : ↑x → ↓i(x).
Remark 3.17. Note that, in Definition 3.16, if A is a bounded distributive lattice and X is the Priestley dual

ofA, then thedomainof⋆maybe equivalently expressed asdom(⋆) = {(x, y) ∈ X2 | ν(y) ≤ μ(i(x))}or, in terms

of prime filters and ideals of A, as {(x, y) ∈ X2 | Fy ⊆ Ii(x)}.
Remark 3.18. Note that, in a ⊖-space, both operations i and ⋆ can be defined from the partial operation +.
Indeed, for any x ∈ X, i(x) is the maximum y ∈ X such that (x, y) ∈ dom(+), and the property (⋆+) uniquely
determines⋆ in terms of+ and i. Thus, the data (X, +)with X a Priestley space and+ a partial function entirely
determines the ⊖-space (X, i, +, ⋆). However, stating the definition of ⊖-spaces in this smaller signature is

cumbersome. More importantly, the axiom (MV6) can be expressed dually as a first-order property of the

partial operations + and ⋆, including in the language their domains as primitive (see Section 4 below).

We will now show how to define a ⊖-algebra from a ⊖-space (Proposition 3.21) and that any ⊖-algebra is

isomorphic to its double dual (Proposition 3.23). First, in the following definition, starting from a ⊖-space X,
we define operations f+ and f⋆ on the complete lattice C of down-sets of the poset underlying the ⊖-space.
We then show in Proposition 3.21 that C, equipped with these operations, is isomorphic to the canonical

extension of a ⊖-algebra structure on the dual lattice of X. The operations f+ and f⋆ respectively capture the
σ- and π-extensions of the operation ⊖ when the canonical extension is realized as the complete lattice of

down-sets.

Definition 3.19. Let (X, i, +, ⋆) be a ⊖-space, and let C be the complete lattice of down-sets of X. Denote by
π
1
: X × X → X the projection on the first coordinate. For u, v ∈ C, define

f+(u, v) := π1[+−1(u) ∩ (X × (X \ v))]
= {x ∈ X | there exists w ∈ X such that w ∉ v, (x, w) ∈ dom(+) and x + w ∈ u},

f⋆(u, v) := X \ (π1[(X \ ⋆−1(u)) ∩ (X × v)])
= {x ∈ X | for all y ∈ X, if y ∈ v, then(x, y) ∈ dom(⋆) and x ⋆ y ∈ u}.

We call the tuple (C, f+, f⋆) the complex algebra of (X, i, +, ⋆).
In the proof of item (6) of Proposition 3.21, we will need the well-known fact that the topology of open down-

sets of a Priestley space is contained in the dual Scott topology of the underlying poset (see, e.g., [28]). Since

we do not use this terminology anywhere else in the paper, we give a direct statement and proof for the

convenience of the reader.

Lemma 3.20. Let X be a Priestley space, let S ⊆ X be a down-directed subset, and let U ⊆ X be an open down-
set. If the infimum of S lies in U, then S intersects U non-trivially.

Proof. Without loss of generality, we may identify X with the prime ideals of a distributive lattice L, ordered
by inclusion and equipped with the Priestley topology. Now, since S ⊆ X is down-directed, its intersection

s
0
= ⋂ S is a prime ideal, and this prime ideal must then be the infimum of S in X. If s

0
∈ U, then s

0
∈ â ⊆ U

for some a ∈ L. By definition, this means that a ∉ s
0
, so that a ∉ s for some s ∈ S. Thus, s ∈ â ⊆ U, showing

that S ∩ U ̸= 0.
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Proposition 3.21. Let (X, i, +, ⋆) be a ⊖-space with complex algebra (C, f+, f⋆). Moreover, denote by B the
sublattice of C consisting of the clopen down-sets of X. The following properties hold.
(1) f+ is a well-defined binary operation on C, which preserves⋁ in the first coordinate and sends⋀ to⋁ in the

second coordinate.
(2) f⋆ is a well-defined binary operation on C, which preserves⋀ in the first coordinate and sends⋁ to⋀ in the

second coordinate.
(3) For any u, v ∈ C, f+(u, v) ≤ f⋆(u, v).
(4) For any u, v

1
, v

2
∈ C, f+(u, v1) ∧ f+(u, v2) = f+(u, v1 ∨ v2).

(5) For any u ∈ C, f+(u, 0B) = u.
(6) For any a, b ∈ B, if b ̸= 0B, then f+(a, b) = f⋆(a, b).
(7) The pair (B, ⊖B), with a ⊖B b := f+(a, b), is a well-defined ⊖-algebra.
Proof. (1) Let u, v ∈ C. We need to show that f+(u, v) is a down-set. Let x ∈ f+(u, v) and x󸀠 ≤ x. Pickw ∉ vwith
(x, w) ∈ dom(+) and x + w ∈ u. Since dom(+) is a down-set, (x󸀠, w) ∈ dom(+), and since + is order-preserving
in the first coordinate, x󸀠 + w ≤ x + w. Since u is a down-set, x󸀠 + w ∈ u. Hence, x󸀠 ∈ f+(u, v). The preservation
properties are clear from discrete duality for operators, or easily verified directly. Item (2) is similar to (1).

(3) Let u, v ∈ C. Let x ∈ f+(u, v) be arbitrary, and pick w ∉ v with (x, w) ∈ dom(+) and x + w ∈ u. Let y ∈ v
be arbitrary. Thenw ≰ y, since v is a down-set, and y ∈ v butw ∉ v. In particular, since (x, w) ∈ dom(+)means

that w ≤ i(x), we must have i(x) ≰ y, i.e., (x, y) ∈ dom(⋆). Moreover, x ⋆ y ≤ x + w, by property (⋆+) in the

definition of ⊖-spaces. Hence, we have x ⋆ y ∈ u. Since y ∈ v was arbitrary, we conclude that x ∈ f⋆(u, v).
(4) Let u, v

1
, v

2
∈ C. The inclusion from right to left is clear because f+ is order reversing in the second

coordinate. Let x ∈ f+(u, v1) ∧ f+(u, v2). For i ∈ {1, 2}, pickwi ∉ vi with (x, wi) ∈ dom(+) and x + wi ∈ u. Since
the image of Lx is totally ordered, without loss of generality, assume x + w

1
≤ x + w

2
. Let w

0
:= L♯x(x + w2

).
By the definition of L♯x, we have w1

, w
2
≤ w

0
, so w

0
∉ v

1
∨ v

2
. Also, by the definition of Lx, x + w0

= x + w
2
,

so x + w
0
∈ u, so we obtain x ∈ f+(u, v1 ∨ v2).

(5) Let u ∈ C. Suppose that x ∈ u. By definition of ⊖-spaces, pick yx ∈ X such that (x, yx) ∈ dom(+) and
x + yx = x. It follows that x ∈ f+(u, 0B). Conversely, suppose that x ∈ f+(u, 0B). By definition of f+, pick w ∈ X
such that (x, w) ∈ dom(+) and x + w ∈ u. Since x ≤ x + w in any ⊖-space and u is a down-set, we have x ∈ u.

(6) Let a, b ∈ B with b ̸= 0B. By item (3), it suffices to prove that f⋆(a, b) ≤ f+(a, b). Let x ∈ f⋆(a, b). Let
y ∈ b be arbitrary. By definition of f⋆(a, b), we have (x, y) ∈ dom(⋆) and x ⋆ y ∈ a. Note that

{x + w | (x, w) ∈ dom(+), w ≰ y}

is a totally ordered set with infimum x ⋆ y ∈ a. By Lemma 3.20, we may choose wy ≰ y with (x, wy) ∈ dom(+)
and x + wy ∈ a. Also, since wy ≰ y, choose by ∈ B such that y ∈ by and wy ∉ by. We then have b ⊆ ⋃y∈b by, so
pick a finite subcover {byi }ni=1. Since b ̸= 0B, we have n ≥ 1. For each i ∈ {1, . . . , n}, we have x + wyi ∈ a, and
wyi ∉ byi , so x ∈ f+(a, byi ) for each i ∈ {1, . . . , n}. Using item (4), we have x ∈ ⋀ni=1 f+(a, byi ) = f+(a,⋁ni=1 byi ),
and using item (1), f+(a,⋁ni=1 byi ) ≤ f+(a, b). Hence, x ∈ f+(a, b), as required.

(7) We first need to prove that f+(a, b) is clopen for every a, b ∈ B. Let a and b be clopen down-sets in X.
If b = 0, then f+(a, b) = a by (5), which is clopen. Now assume b ̸= 0. Note that, since π

1
is a continuous

map between compact Hausdorff spaces, it is a closed map. By the definition of f+ and continuity of +, it
follows that f+(a, b) is closed. Similarly, by the definition of f⋆ and continuity of ⋆, f⋆(a, b) is open. By (6),
f+(a, b) = f⋆(a, b), so this set is clopen. It follows immediately from (1), (2), and (6) that ⊖B is a double quasi-
operator of type (1, op). The fact that ⊖B is normal as an operator follows from (1) by taking the empty join

in the first coordinate and the empty meet in the second coordinate. Finally, the fact that 0B is a right-unit

for ⊖B follows from (5). Hence, (B, ⊖B) is a ⊖-algebra.

Definition 3.22. For any ⊖-space (X, i, +, ⋆), we call (B, ⊖B), defined as in the last item of Proposition 3.21,

the dual ⊖-algebra of (X, i, +, ⋆).

Proposition 3.23. Let (A, ⊖A) be a ⊖-algebra, let (X, i, +, ⋆) be its extended dual space, and let (B, ⊖B) be the
dual ⊖-algebra of (X, i, +, ⋆). The ⊖-algebras (A, ⊖A) and (B, ⊖B) are isomorphic via the Stone–Priestley isomor-
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phism (̂ ⋅ ) : A → B. Moreover, this isomorphism extends uniquely to an isomorphism between (Aδ
, ⊖σA) and the

reduct (C, f+) of the complex algebra of (X, i, +, ⋆).
Proof. For the first statement, we need to prove that â ⊖A b = â ⊖B b̂ for any a, b ∈ A. Indeed, for any x ∈ X,
we have

x ∈ â ⊖A b ⇐⇒ a ⊖σA b ≰ μ(x)
⇐⇒ a ⊖σA ⋀

b≤μ(w) μ(w) ≰ μ(x)
⇐⇒ ⋁

b≤μ(w) a ⊖σA μ(w) ≰ μ(x)

⇐⇒ there exists w ∈ X such that b ≤ μ(w) and a ⊖A μ(w) ≰ μ(x)

⇐⇒ there exists w ∈ X such that b ≤ μ(w) and a ≰ μ(x) ⊖σ♯A μ(w)

⇐⇒ there exists w ∈ X such that b ≤ μ(w), μ(x) ⊖σ♯A μ(w) ̸= 1, and a ≰ μ(x) ⊖σ♯A μ(w)

⇐⇒ there exists w ∈ X with w ∉ b̂, (x, w) ∈ dom(+), and x + w ∈ â

⇐⇒ x ∈ f+(â, b̂) = â ⊖B b̂.
For the “moreover” part, we first recall [14, Theorem 3.7] that the (smooth) extension of any surjective homo-

morphism between distributive lattice expansions is a homomorphism between the canonical extensions.

Since extensions also preserve injectivity [14, Theorem 3.2], the (smooth) extension of the isomorphism (̂ ⋅ )
is an isomorphism between (Aδ

, ⊖σA) and (C, ⊖
σ
B). Since φ(a ⊖B b) = f+|B×B(a, b), it thus remains to prove that

f+ is the σ-extension of⊖B. Note that completely join-irreducibles (respectively, completelymeet-irreducibles)

in C are of the form ↓x (respectively, (↑x)c), where x ∈ X. Thus, for each x ∈ X, we have φ(μ(x)) = (↑x)c and
φ(ν(x)) = ↓x. Since both ⊖σB and f+ are complete (1, op)-operators, it therefore suffices to prove that, for any

x, y ∈ X, φ(ν(x) ⊖σB μ(y)) = f+(↓x, (↑y)c). Let x, y ∈ X. Recall that, by definition of φ,
φ(ν(x) ⊖σB μ(y)) = ⋀{a ⊖B b | φ(ν(x)) ⊆ a, b ⊆ φ(μ(y)), a, b ∈ B}

= ⋀{f+(a, b) | φ(ν(x)) ⊆ a, b ⊆ φ(μ(y)), a, b ∈ B}.
It is immediate from this equality that f+(↓x, (↑y)c) ⊆ φ(ν(x) ⊖σB μ(y)). For the other inequality, suppose that
z ∉ f+(↓x, (↑y)c). Denote by L+,z = Lz : X ⇀ X the partial function w 󳨃→ z + w as usual. It follows from the

continuity of + that Lz is continuous. Also, by definition of f+, z ∉ f+(↓x, (↑y)c)means that L−1z (↓x) is disjoint
from ↑y. Since L−1z (↓x) is the filtered intersection of the collection of clopen down-sets {L−1z (a) | x ∈ a, a ∈ B}
and ↑y is the filtered intersection of the collection of clopen up-sets {X \ b | y ∉ b, b ∈ B}, by compactness

of X, there exist a, b ∈ B such that x ∈ a, y ∉ b, and L−1z (a) is disjoint from X \ b. By definition of f+, this
means that z ∉ f+(a, b), so z ∉ φ(ν(x) ⊖σB μ(y)), as required.
3.4 Morphisms

The above shows that any ⊖-algebra can be represented as the dual algebra of a ⊖-space. This representation
theorem can be extended to a duality theorem, as we will do now. Before we state and prove the duality

theorem, we need to define the appropriate notion of morphism between ⊖-spaces. The correct notion is that
of “bounded morphism for +”. Indeed, readers familiar with duality for modal and/or Heyting algebras will

recognize the “forth” and “back” conditions in, respectively, items (2) and (3) of the following definition.

Definition 3.24. Amorphism froma⊖-space (X
1
, i
1
, +

1
, ⋆

1
) to a⊖-space (X

2
, i
2
, +

2
, ⋆

2
) is a continuous order-

preserving function f : X
1
→ X

2
such that

(1) for all x ∈ X
1
, f(i

1
(x)) = i

2
(f(x)),

(2) for all x, y ∈ X
1
, if (x, y) ∈ dom(+

1
), then f(x) +

2
f(y) ≤ f(x +

1
y),

(3) for all x ∈ X
1
and z ∈ X

2
, if (f(x), z) ∈ dom(+

2
), then there exists w󸀠 ∈ X

1
such that (x, w󸀠) ∈ dom(+

1
),

z ≤ f(w󸀠), and f(x +
1
w󸀠) = f(x) +

2
z.
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Remark 3.25. In the special case of Definition 3.24 where the Priestley space X
1
is a closed subspace of the

Priestley space X
2
, and the order on X

1
is the restriction of the order on X

2
, we have that the inclusion map

ι : X
1
󳨅→ X

2
is a morphism of ⊖-spaces if and only if the following two properties hold:

(1) for all x ∈ X
1
, i

1
(x) = i

2
(x);

(2) for all (x, y) ∈ dom(+
1
), x +

1
y = x +

2
y.

Lemma 3.26. Let (X
1
, i
1
, +

1
, ⋆

1
) and (X

2
, i
2
, +

2
, ⋆

2
) be ⊖-spaces with dual ⊖-algebras (A

1
, ⊖

1
) and (A

2
, ⊖

2
),

respectively, and let f : X
1
→ X

2
be a continuous order-preserving function with dual lattice homomorphism

h = f−1 : A
2
→ A

1
. The following are equivalent:

(1) f is a morphism of ⊖-spaces;
(2) h is a homomorphism of ⊖-algebras.

Proof. Let hδ : Aδ
2

→ Aδ
1

be the extension of h to a complete homomorphism between canonical extensions;

writing φi for the isomorphism Aδ
i ≅ D(Xi), we have that hδ = φ−1

1

∘ f−1 ∘ φ
2
. Because ⊖ is a monotone oper-

ation, the equation h(a ⊖ b) = h(a) ⊖ h(b) is canonical [14, Lemma 3.24], so that item (2) is equivalent to

(3) for all u, v ∈ Aδ
1

, hδ(u) ⊖σ
1

hδ(v) = hδ(u ⊖σ
2

v).
Note that, if u = 0 or v = 1, then hδ(u) ⊖σ

1

hδ(v) = 0 = h(0) = hδ(u ⊖σ
2

v) = h(0) always holds. Since the func-
tions (u, v) 󳨃→ h(u ⊖σ v) and (u, v) 󳨃→ h(u) ⊖σ h(v) preserve non-empty joins in the first coordinate and send

non-empty meets to joins in the second coordinate, (3) is equivalent to

(4) for all y, z ∈ X, hδ(ν(y)) ⊖σ
1

hδ(μ(z)) = hδ(ν(y) ⊖σ
2

μ(z)).
Using the isomorphism from Proposition 3.23 and the isomorphisms φi, (4) is equivalent to

(5) for all y, z ∈ X, f+
1

(f−1(↓y), f−1((↑z)c)) = f−1(f+
2

(↓y, (↑z)c)).
Using the definitions of f−1 and f+i , (5) is equivalent to
(6) for all x, y, z ∈ X, there exists w󸀠 ∈ f−1(↑z) such that (x, w󸀠) ∈ dom(+

1
) and f(x +

1
w󸀠) ≤ y if and only if

there exists w ∈ ↑z such that (f(x), w) ∈ dom(+
2
) and f(x) +

2
w ≤ y.

By first-order logic, (6) is equivalent to the conjunction of

(7) (a) for all x, y, z, w󸀠 ∈ X, if z ≤ f(w󸀠), (x, w󸀠) ∈ dom(+
1
) and f(x +

1
w󸀠) ≤ y, then there exists w ∈ X such

that z ≤ w, (f(x), w) ∈ dom(+
2
), and f(x) +

2
w ≤ y, and

(b) for all x, y, z, w ∈ X, if z ≤ w, (f(x), w) ∈ dom(+
2
), and f(x) +

2
w ≤ y, then there exists w󸀠 ∈ X such

that z ≤ f(w󸀠), (x, w󸀠) ∈ dom(+
1
), and f(x +

1
w󸀠) ≤ y,

We now claim that (7) (a) and (7) (b) are, respectively, equivalent to

(8) (a) for all x, w󸀠 ∈ X, if (x, w󸀠) ∈ dom(+
1
), then (f(x), f(w󸀠)) ∈ dom(+

2
) and f(x) +

2
f(w󸀠) ≤ f(x +

1
w󸀠), and

(b) for all x, z ∈ X, if (f(x), z) ∈ dom(+
2
), then there exists w󸀠 ∈ X such that z ≤ f(w󸀠), (x, w󸀠) ∈ dom(+

1
),

and f(x +
1
w󸀠) ≤ f(x) +

2
z.

Indeed, (8) (a) is the special case of (7) (a) where we put y := f(x +
1
w󸀠) and z := f(w󸀠): since dom(+

2
) is

a down-set and +
2
is order-preserving, the existence of w in (7) (a) implies in particular that (f(x), f(w󸀠)) is in

the domain of +
2
and

f(x) +
2
f(w󸀠) ≤ f(x) +

2
w ≤ y = f(x +

1
w󸀠).

Also, (8) (b) is the special case of (7) (b) where we put w := z and y := f(x) +
2
z. Conversely, if (8) (a) holds

and x, y, z, w󸀠 are as in the premise of (7) (a), set w := f(w󸀠); then (f(x), f(w󸀠)) ∈ dom(+
2
) by (8) (a), and

f(x) +
2
w = f(x) +

2
f(w󸀠) ≤ f(x +

1
w󸀠) ≤ y, so this w satisfies the conclusion of (7) (a). If (8) (b) holds and

x, y, z, w are as in the premise of (7) (b), then (f(x), z) ∈ dom(+
2
) since dom(+

2
) is a down-set, so we can pick

w󸀠 ∈ X as in (8) (b). Then f(x +
1
w󸀠) ≤ f(x) +

2
w ≤ y, so the same w󸀠 satisfies the conclusion of (7) (b).

Applying (8) (a) to w󸀠 := i
1
(x) gives that (f(x), f(i

1
(x))) ∈ dom(+

2
), i.e., f(i

1
(x)) ≤ i

2
(f(x)). Applying (8) (b)

to z := i
2
(f(x)) gives w󸀠 ∈ X with z ≤ f(w󸀠) and w󸀠 ≤ i

1
(x), so z ≤ f(i

1
(x)), i.e., i

2
(f(x)) ≤ f(i

1
(x)). Thus, (8) (a)

and (8) (b) together imply Definition 3.24 (1). Notemoreover that, in the presence of f(i
1
(x)) = i

2
(f(x)), (8a) is

equivalent to Definition 3.24 (2): if (x, w󸀠) ∈ dom(+
1
), then f(w󸀠) ≤ f(i

1
(x)) = i

2
(f(x)), since f is order preserv-

ing, so (f(x), f(w󸀠)) ∈ dom(+
2
). Also note that, in the presence of (8) (a), the elementw󸀠which exists according

to (8) (b) actually satisfies f(x +
1
w󸀠) ≤ f(x) +

2
z ≤ f(x) +

2
f(w󸀠) ≤ f(x +

1
w󸀠), so equality holds throughout.We

thus conclude that (2), which is equivalent to the conjunction of (8) (a) and (8) (b), is equivalent to f being
a morphism of ⊖-spaces as defined in Definition 3.24.
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Combining Proposition 3.21, Proposition 3.23, and Lemma 3.26 shows that the assignment which sends

a ⊖-space to its dual ⊖-algebra and amorphism of ⊖-spaces to the inverse image homomorphism between the

dual ⊖-algebras is a well-defined, full, faithful, and essentially surjective functor. We have therefore proved

the following theorem.

Theorem 3.27. The category of⊖-algebras andhomomorphisms is dually equivalent to the category of⊖-spaces
and morphisms.

4 MV-algebras
The aim of this section is to specialize the duality for ⊖-algebras obtained in the previous section to the full

subcategory of ⊖-algebras that is isomorphic to the category of MV-algebras. This will in particular yield

a duality between MV-algebras and certain ⊖-spaces satisfying some additional first-order conditions. Back-

ground references for MV-algebras are [5, 24].

4.1 MV-algebras as ⊖-algebras
AnMV-algebra is an algebra (A, ⊕, ¬, 0) of type (2, 1, 0) satisfying the following conditions, where 1 abbre-
viates ¬0:
(1) (A, ⊕, 0) is a commutative monoid;

(2) ¬¬a = a for all a ∈ A;
(3) a ⊕ 1 = 1 for all a ∈ A;
(4) ¬(¬a ⊕ b) ⊕ b = ¬(¬b ⊕ a) ⊕ a for all a, b ∈ A.
In fact, although none of our results here rely on this fact, we note that it already follows from the remain-

ing axioms that ⊕ is commutative [21]. Because it is often given as the sixth item in a commonly adopted

equational basis for MV-algebras, (4) is frequently called (MV6) in the literature (see, e.g., the influential

monograph [5]).

Many of the characteristic properties of MV-algebras derive from (MV6), including the fact that the term

a ∨ b := ¬(¬a ⊕ b) ⊕ b defines the join operation of a lattice for anyMV-algebra. This lattice has least element 0

and greatest element 1, and its meet operation is definable via the DeMorgan dual a ∧ b := ¬(¬a ∨ ¬b). With

respect to order of this lattice, ⊕ has a right co-residual ⊖ that is definable via the term a ⊖ b := ¬(¬a ⊕ b).
It follows that, to any MV-algebra A = (A, ⊕, ¬, 0), one may associate an algebra A⊖ = (A, ∨, ∧, 0, 1, ⊖),

where the operations of A⊖ are obtained in the manner just described. Note that A⊖ is a ⊖-algebra in the

sense of Definition 3.1. Conversely, if A = (A, ∨, ∧, 0, 1, ⊖) is a ⊖-algebra, then one may define an algebra

A⊕ = (A, ⊕, ¬, 0) in the signature of MV-algebras by putting ¬a := 1 ⊖ a and a ⊕ b := ¬(¬a ⊖ b). The algebra
A⊕ need not be an MV-algebra in general; we now characterize those ⊖-algebras for which it is.

Proposition 4.1. Let A = (A, ∨, ∧, 0, 1, ⊖) be a ⊖-algebra. The following are equivalent:
(1) the algebra A⊕ is an MV-algebra;
(2) for all a, b, c ∈ A,

(i) (a ⊖ b) ⊖ c = a ⊖ ¬(¬b ⊖ c),
(ii) ¬a ⊖ b = ¬b ⊖ a, and
(iii) a ∧ b = a ⊖ (a ⊖ b).

Consequently, if the equivalent conditions (1) and (2) are satisfied, then ⊕ is an associative and commutative
binary operation, ⊖ is the right co-residual of ⊕, and ¬ is an involution.

Proof. Suppose first that (1) holds, and let a, b, c ∈ A. Note that ¬¬a = a holds by definition. For (i), the

associativity of ⊕ gives (¬a ⊕ b) ⊕ c = ¬a ⊕ (b ⊕ c), and rewriting this using the identities ¬¬x = x and x ⊖ y =
¬(¬x ⊕ y) yields (a ⊖ b) ⊖ c = a ⊖ ¬(¬b ⊖ c). For (ii), the commutativity of ⊕ gives ¬(¬a ⊖ b) = ¬(¬b ⊖ a);
whence ¬a ⊖ b = ¬b ⊖ a. Finally, for (iii), note that ¬¬x = x, (MV6), the commutativity of ⊕, and the identity
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a ∨ b = ¬(¬a ⊕ b) ⊕ b provide that

a ∧ b = ¬[(b ⊕ ¬a) ⊕ ¬a] = ¬[¬a ⊕ ¬(¬a ⊕ b)] = a ⊖ (a ⊖ b),

as desired.

For the converse, suppose that A is a ⊖-algebra satisfying the three conditions of (2). Property (i)

gives that (¬a ⊖ b) ⊖ c = ¬a ⊖ ¬(¬b ⊖ c) for all a, b, c ∈ A. Instantiating a = 1 in (iii) gives ¬¬x = x for all

x ∈ A; whence we obtain ¬[¬¬(¬a ⊖ b) ⊖ c] = ¬[¬a ⊖ ¬(¬b ⊖ c)]. Applying the definition of ⊕ then yields

(a ⊕ b) ⊕ c = a ⊕ (b ⊕ c), so ⊕ is associative. The commutativity of ⊕ follows from (ii). That 0 is a neutral

element for ⊕ follows from the fact that a ⊖ 0 = a holds in any ⊖-algebra together with the identity ¬¬a = a.
This shows that (A, ⊕, 0) is a commutative monoid. The identity a ⊕ 1 = 1 follows from the fact that a ⊖ 1 = 0
in any ⊖-algebra. To see that ¬(¬a ⊕ b) ⊕ b = ¬(¬b ⊕ a) ⊕ a holds, note that (iii) together with the com-

mutativity of ⊕ and ¬¬a = a shows that both sides of the equation are equal to a ∨ b; whence the result
follows.

It follows from the remarks in the paragraph preceding Proposition 4.1, and from the fact that a function

preserves ⊖ and 1 if and only if it preserves ⊕ and ¬, that the category of MV-algebras is isomorphic to the full
subcategory of ⊖-algebras which validate the equivalent conditions in Proposition 4.1. In the presence of the
identities (2) (i), (2) (ii), and ¬¬a = a, the identity (2) (iii) is equivalent to (MV6) for the defined operation ⊕.
Even when ⊖ is the right co-residual of the defined operation ⊕ and ¬ is an involution, (2) (i) and (2) (ii) do

not suffice to axiomatize MV-algebras without (2) (iii). The following proposition characterizes the duals of

this larger class of ⊖-algebras.

Proposition 4.2. LetA = (A, ∨, ∧, 0, 1, ⊖) be a ⊖-algebra and (X, i, +, ⋆) its extended dual space. Moreover, for
a, b ∈ A, define a ⊕ b = ¬(¬a ⊖ b). The following are equivalent.
(1) For all a, b, c ∈ A,

(i) ¬¬a = a,
(ii) a ⊕ b = b ⊕ a,
(iii) (a ⊕ b) ⊕ c = a ⊕ (b ⊕ c),
(iv) ⊖ is the right co-residual of ⊕.

(2) For all x, y, z ∈ X,
(i) i(i(x)) = x,
(ii) if (x, y), (y, x) ∈ dom(+), then x + y = y + x,
(iii) if (x, y + x), (y, z), (x + y, z), (x, y) ∈ dom(+), then x + (y + z) = (x + y) + z,
(iv) if (i(x), y), (z, y) ∈ dom(+), then i(x) + y ≤ i(z) if and only if z + y ≤ x.

Proof. It is easy to see that, for each x ∈ X and a ∈ A, a ∈ Ii(i(x)) if and only if ¬¬a ∈ Ix. Hence, if (1) (i) holds,
then (2) (i) follows immediately. Conversely, if (1) (i) fails, then there exists a ∈ A with a ̸= ¬¬a, and there is
some prime ideal Ix that contains one of a or ¬¬a but not the other. This implies that (2) (i) fails, giving that

(1) (i) and (2) (i) are equivalent.

Now suppose that (1) holds. Then ⊖σ is the right co-residual of ⊕π (see, e.g., [18, Proposition 5.3] for

a proof), and the latter is associative and commutative since ⊕ is associative and commutative, using Propo-

sition 2.1. Thus,⊖σ♯ = ⊕π is associative and commutative;whence (2) (ii) and (2) (iii) follow immediately from

the definition of +. For (2) (iv), note that

ν(x) ⊖σ μ(y) = ¬δ(¬δν(x) ⊕π μ(y)) = ¬δ(μ(i(x)) ⊖σ♯ μ(y)) = ¬δμ(i(x) + y) = ν(i(i(x) + y)).
Now observe that

ν(x) ⊖σ μ(y) ≤ μ(z) ⇐⇒ ν(x) ≤ μ(z) ⊖σ♯ μ(y)
iff ν(i(i(x) + y)) ≤ μ(z) ⇐⇒ ν(x) ≤ μ(z + y)
iff ν(z) ≤ ν(i(i(x) + y)) ⇐⇒ ν(z + y) ≤ ν(x)
iff z ≤ i(i(x) + y) ⇐⇒ z + y ≤ x
iff i(x) + y ≤ i(z) ⇐⇒ z + y ≤ x.

This gives (2) (iv), showing that (1) implies (2).
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For the converse, note that (2) (ii) and (2) (iii) entail that ⊖σ♯ is associative and commutative. In the pres-

ence of (1) (i) (equivalently, (2) (i)), a ⊖ b = ¬(¬a ⊕ b). Thus, for all x, y ∈ X, ν(x) ⊖σ μ(y) = ¬δ(¬δν(x) ⊕π μ(y)).
Since ⊖σ♯ is associative and commutative, then ¬δ being an involution implies that, for all x, y ∈ X, we have
ν(x) ⊖σ μ(y) = ¬δ(¬δν(x) ⊖σ♯ μ(y)); whence ⊖σ♯ and ⊕π coincide. It follows that the restriction of ⊕π to A is

associative and commutative, i.e., ⊕ is associative and commutative. The argument of the preceding para-

graph then shows that ⊖σ is the right co-residual of ⊕π by (2) (iv); whence ⊖ is the right co-residual of ⊕. It
follows that (2) (iv) implies (1) (iv), and hence (2) implies (1).

4.2 The dual of (MV6)

From Proposition 4.1, the algebras whose duals are characterized in Proposition 4.2 comprise a supervariety

of MV-algebras, and MV-algebras are exactly the subvariety of algebras satisfying a ∧ b = a ⊖ (a ⊖ b) (which
is equivalent to (MV6) in this formulation). The following dualizes the latter identity in this context. Crucially,

offering a dual condition in terms of both + and ⋆ allows for the application of Proposition 2.1 in the proof

of the following. The fact that this is possible underscores the benefit of working with the duality we have

offered here.

Proposition 4.3. Let (A, ⊖) be a ⊖-algebra with extended dual space (X, i, +, ⋆). Assume further that ¬ is an
involution, that the operation a ⊕ b := ¬(¬a ⊖ b) is a right co-residual of ⊖, and that ⊕ is commutative. The
following are equivalent:
(1) for all a, b ∈ A, a ∧ b = a ⊖ (a ⊖ b);
(2) for all x, x󸀠, y ∈ X, if (x, y) ∈ dom(⋆) and there exists w ≰ y such that x󸀠 + w ≤ x ⋆ y, then x󸀠 ≤ x.
Proof. Note that (1) may readily be seen to be equivalent to the condition that, for all a, b, ∈ A,

¬a ∧ b ≤ (a ⊕ b) ⊖ a.

By Proposition 2.1, this inequality is equivalent to

(3) for all u, v ∈ Aδ
, ¬u ∧ v ≤ (u ⊕π v) ⊖π u.

Note that, if u = 0, then ¬u ∧ v = v, and (u ⊕π v) ⊖π u = v, where in the second equality, one uses that the

equations a ⊕ 0 = a and a ⊖ 0 = a, which hold in any ⊖-algebra, are canonical. Thus, (3) is equivalent to
(4) for all u, v ∈ Aδ

, if u ̸= 0, then ¬u ∧ v ≤ (u ⊕π v) ⊖π u.
Now, since the completely join-irreducibles join-generate Aδ

and ⊖π sends non-empty joins to non-empty

meets in the second coordinate, (4) is equivalent to

(5) for all u, v ∈ Aδ
, x, y ∈ X, if

{{{
{{{
{

u ̸= 0,
ν(x) ≤ ¬u ∧ v, and
ν(y) ≤ u,

then ν(x) ≤ (u ⊕π v) ⊖π ν(y).
Note that the minimum values of u and v for which the antecedent of (5) is satisfied, if any, are u := ν(y) and
v := ν(x). Therefore, since u and v only occur positively in the term (u ⊕π v) ⊖π ν(y), (5) is equivalent to
(6) for all x, y ∈ X, if ν(x) ≤ ¬ν(y), then ν(x) ≤ (ν(x) ⊕π ν(y)) ⊖π ν(y).
(The equivalence of (5) and (6) is the typical “Sahlqvist” correspondence argument, well known in modal

logic.) Condition (6) is essentially already a first-order condition on the extended dual space X. It remains to

show that (6) is equivalent to the simpler condition (2). To this end, first note that (6) is equivalent to

(7) for all x, y ∈ X, if
{{{
{{{
{

ν(x) ≤ ¬ν(y),
ν(x) ≤ μ(x󸀠), and
ν(y) ≤ μ(w),

then ν(x) ⊖π♭ ν(y) ≤ μ(x󸀠) ⊕π μ(w).
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Indeed, to see that (6) and (7) are equivalent, consecutively use the adjunction between ⊖π♭ and ⊖π,
approximate ν(x) as the meet of completely meet-irreducibles μ(x󸀠) and ν(y) as the meet of completely

meet-irreducibles μ(w), and then use the fact that ⊕π preserves arbitrary meets in both coordinates, being

the right co-residual of ⊖σ.
Substituting the definitions of the operations + and ⋆ and the defining properties of μ and ν in (7) and

rearranging using first-order logic, (7) is equivalent to

(8) for all x, x󸀠, y ∈ X, if (x, y) ∈ dom(⋆) and there exists w ≰ y such that x󸀠 + w ≤ x ⋆ y, then x󸀠 ≤ x.
The above condition is precisely (2), as required.

Definition 4.4. We say that a ⊖-space (X, i, +, ⋆) is anMV-space if, for all x, y, z ∈ X,
(i) i(i(x)) = x,
(ii) if (x, y), (y, x) ∈ dom(+), then x + y = y + x,
(iii) if (x, y + x), (y, z), (x + y, z), (x, y) ∈ dom(+), then x + (y + z) = (x + y) + z,
(iv) if (i(x), y), (z, y) ∈ dom(+), then i(x) + y ≤ i(z) if and only if z + y ≤ x,
(v) if (x, y) ∈ dom(⋆) and there exists w ≰ y such that z + w ≤ x ⋆ y, then z ≤ x.

Corollary 4.5. The category of MV-algebras with MV-algebra homomorphisms is dually equivalent to the full
subcategory of ⊖-spaces consisting of the MV-spaces.

Proof. The result is immediate from Theorem 3.27 and Propositions 4.2 and 4.3 because the latter precisely

characterize the ⊖-spaces dual to a class of ⊖-algebras that are term-equivalent to MV-algebras, by Proposi-

tion 4.1.

Note that, in particular, Corollary 4.5 establishes that the duals of MV-algebras may be captured relative to

the theory of ⊖-spaces by simple first-order conditions.

5 Some examples
In this final section, we present two examples illustrating our duality for ⊖-algebras. The first of these

concerns a class of ⊖-algebras satisfying conditions (i)–(iv) of Corollary 4.5, but refuting (v), which dual-

izes (MV6). In contrast, the second example discusses a perfect MV-algebra and hence satisfies (i)–(v) of

Corollary 4.5. Both examples arise from the disconnected rotation construction (see [20], and for a duality-

theoretic discussion, see [9]) and share the same underlying lattice reduct. This lattice is constructed as

follows (Figure 1). Consider the non-positive integers N = {n ∈ ℤ | n ≤ 0} equipped with the obvious order-

ing. Define A = ({1} × N) ∪ ({0} × N), and order the elements of A by (j, a) ≤ (k, b) if and only if one of the

following hold:

(1) j < k,
(2) j = k = 1 and a ≤ b, or
(3) j = k = 0 and b ≤ a.
The set A is a chain under ≤, and (A, ≤) gives the (lattice reduct of) the disconnected rotation of N. Because
(A, ≤) is a chain, each proper principal down-set ↓(j, a) of (A, ≤) is a prime ideal. Apart from these, there is

just one more prime ideal, usually called the co-radical of A, C = {(0, a) | a ∈ N}. The poset of prime ideals of

the lattice (A, ≤) is pictured in Figure 1. Note that here we write principal down-sets of the form ↓(0, a − 1) as
(↑(1, a))c owing to the fact that, in both examples to follow, we have i(1, a) = (↑(1, a))c.

Example 5.1 (Nilpotent minimum algebras). A monoidal t-norm logic algebra (or MTL-algebra) is an algebra

(A, ∧, ∨, ⋅ ,→, 0, 1), where (A, ∧, ∨, 0, 1) is a bounded distributive lattice, (A, ⋅ , 1) is a commutative monoid,

→ is the residual of ⋅ , and for all a, b ∈ A, (a → b) ∨ (b → a) = 1. MTL-algebras form a variety, and the latter

identity axiomatizes the fact that this variety is generated by totally ordered MTL-algebras. An MTL-algebra

is involutive if a 󳨃→ a → 0 is an involution, and in this setting, one may define a co-residuated commutative

and associative operation ⊕ by a ⊕ b = ¬(¬a ⋅ ¬b). If (A, ∧, ∨, ⋅ ,→, 0, 1) is an involutive MTL-algebra and ⊖
is the right co-residual of ⊕, then (A, ∧, ∨, ⊖, 0, 1) is a ⊖-algebra. A nilpotent minimum algebra (introduced by
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0

−1
−2

(1, 0)
(1, −1)
(1, −2)
(0, −2)
(0, −1)
(0, 0)

↓(1, −1)
↓(1, −2)
↓(1, −3)

C

(↑(0, −3))c
(↑(0, −2))c
(↑(0, −1))c

Figure 1: Hasse diagrams of N (left), its disconnected rotation (A, ≤) (middle), and the Priestley dual of (A, ≤) (right).
Fodor [7]) is an involutive MTL-algebra satisfying the identity

(a ⋅ b → 0) ∨ (a ∧ b → a ⋅ b) = 1.

The directly indecomposable nilpotent minimum algebras lacking a negation fixed point can be obtained as

disconnected rotations of Gödel hoops [29].

Endowing the chain N (defined above) the operation

a ⇒ b =
{
{
{

0 if a ≤ b
b if b < a

gives this lattice with the structure of a Brouwerian algebra (i.e., a Heyting algebra possibly missing a bottom

element). The disconnected rotation A of the Brouwerian algebra N is constructed as follows. The lattice

reduct of the A is the lattice (A, ≤) defined above, and we endow it with binary operations ⋅ and→ defined

by

(j, a) ⋅ (k, b) =

{{{{{{
{{{{{{
{

(1, a ∧ b) if j = k = 1,
(0, 0) if j = k = 0,
(0, a ⇒ b) if k < j,
(0, b ⇒ a) if j < k,

(j, a) → (k, b) =

{{{{{{
{{{{{{
{

(1, a ⇒ b) if j = k = 1,
(0, b ⇒ a) if j = k = 0,
(0, a ∧ b) if k < j,
(1, 0) if j < k.

The resulting algebra A = (A, ∧, ∨, ⋅ ,→, (0, 0), (1, 0)) is a nilpotent minimum algebra. With the defined

operation a ⊖ b = a ⋅ ¬b = a ⋅ (b → (0, 0)), we obtain a (term-equivalent) ⊖-algebra (A, ∧, ∨, ⊖, (0, 0), (1, 0)).
Direct computation yields that ¬(0, a) = (1, a) and ¬(1, a) = (0, a).

To describe the ⊖-space dual to A, it is convenient to work with prime ideals. For prime ideals I, J and
points x, y of the dual space of A with I = Ix and J = Iy, we will abbreviate Ii(x), Ix+y, and Ix⋆y by i(I), I + J,
and I ⋆ J, respectively. Onemay show by direct computation that i(↓(1, a)) = (↑(0, a))c and that i(C) = C. This
suffices to characterize i since this operation is an involution.
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Computing with Lemma 3.8(2) shows that

I + J = J + I =
{
{
{

I ∨ J if J ⊆ i(I),
undefined otherwise.

For instance, ↓(1, a) + I is defined if and only if I ⊆ (↑(0, a))c. Consequently, I = (↑(0, b))c for some b ≥ a.
Then

↓(1, a) + I = {(j, p) ∈ A | there exists (k, q) ∈ (↑(0, b))c[(j, p) ⊖ (k, q) ∈ ↓(1, a)]}
= {(j, p) ∈ A | there exists (k, q) ̸≥ (0, b)[(j, p) ⋅ ¬(k, q) ≤ (1, a)]}.

Note that (k, q) ̸≥ (0, b) if and only if k = 0 and q ≰ b. Also, (j, p) ⋅ ¬(0, q) ≤ (1, a) trivially holds if j = 0, so
we need only consider the case when j = 1. Then (j, p) ⋅ ¬(0, q) ≤ (1, a) if and only if p ∧ q ≤ a, and by residu-
ation this holds if and only if p ≤ q ⇒ a. Subject to q ≰ b, we have a ≤ b < q and hence q ⇒ a = a. It follows
that ↓(1, a) + I = ↓(1, a) = ↓(1, a) ∨ I for any ideal I for which + is defined. The other cases follow by similar

computations.

The values of ⋆may be computed directly from Lemma 3.8 as well, but we use Proposition 3.14. Phrased

in terms of prime ideals, for all (I, J) ∈ dom(⋆),

I ⋆ J = inf{I + K | (I, K) ∈ dom(+) and K ̸⊆ J} = inf{I + K | J ⊂ K ⊆ i(I)}.

To express the values of ⋆ compactly, for I ̸= ↓(1, −1), C, we denote by I󸀠 the unique cover of I. Using the

above characterization of ⋆, one may compute that

I ⋆ J =
{{{
{{{
{

I if J ⊆ i(I) ⊆ I or J ⊂ I ⊂ C,
J󸀠 if I ⊂ C and I ⊂ J,
undefined otherwise.

For instance, suppose that I = (↑(0, a))c for some 0 ̸= a ∈ N and J = ↓(1, b) for some b < a. Then J󸀠 is the
least K satisfying J ⊂ K ⊆ i(I); whence I ⋆ J = J󸀠. On the other hand, we have

I ⋆ C = inf{I + K | C ⊂ K ⊆ i(I)} = inf{I ∨ K | C ⊂ K} = C.

The remaining cases are handled in an analogous manner.

We note that the dual of A satisfies the conditions given in Proposition 4.2. However, condition (v) of

Corollary 4.5 fails. To see this, take, for example, Ix = (↑(0, −2))c, Iz = (↑(0, −3))c, Iy = ↓(1, −4), and w = i(z).
Then z + w = w = x ⋆ y and w ≰ y, but z ≰ x.

Example 5.2 (The Chang MV-algebra). Let A = (A, ⊕, ¬, 0) be an MV-algebra, and let ⋅ be a binary operation
defined by a ⋅ b = ¬(¬a ⊕ ¬b). We say that an element a ∈ A has finite order if there exists a positive integer n
such that an = 0, and that a has infinite order otherwise.We say thatA is perfect if, for each a ∈ A, a has finite
order if and only if ¬a has infinite order (see, e.g., [1]). The variety generated by the perfect MV-algebras

coincides with the variety generated by the Chang MV-algebra [6], and the perfect MV-algebras are exactly

those that are isomorphic to disconnected rotations of cancellative hoops [25]. The Chang MV-algebra Cmay

be defined on the same lattice reduct A as in the previous example. The operations ⊕ and ¬ are uniquely
determined by

¬(1, a) = (0, a),
(1, a) ⊕ (1, b) = (1, 0),
(0, a) ⊕ (0, b) = (0, a + b),
(1, a) ⊕ (0, b) = (1, min{a − b, 0}).

The elements of the form (0, b) are “infinitesimals” in the sense that there is no n > 0 such that the sum

(0, b) ⊕ ⋅ ⋅ ⋅ ⊕ (0, b) (n-times) is the top element.
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Computing as before shows i is the same as in the previous example. Moreover, the partial operation +
on the dual of C is determined by

↓(0, a) + ↓(0, b) = ↓(0, b) + ↓(0, a) = ↓(0, a + b),
C + ↓(0, a) = ↓(0, a) + C = C,

↓(0, a) + ↓(1, b) = ↓(1, b) + ↓(0, a) = ↓(1, a − b) for a < b,

and is undefined in all other cases. The values of ⋆may again be computed using Proposition 3.14, and this

yields

↓(0, a) ⋆ ↓(0, b) = ↓(0, b) ⋆ ↓(0, a) = ↓(0, a + b − 1),
↓(0, a) ⋆ C = C ⋆ ↓(0, a) = C,

↓(0, a) ⋆ ↓(1, b) = ↓(1, a − b − 1) if b < a,
↓(1, a) ⋆ ↓(0, b) = ↓(1, a − b + 1) if b < a,

and is undefined in the remaining cases.

We note that byMcNaughton’s representation theorem [22], the freeMV-algebra F
MV
(1) on one generator

may be realized as the MV-subalgebra of [0, 1][0,1] whose members are piecewise linear with integer coeffi-

cients. The Chang MV-algebra C is isomorphic to the quotient of F
MV
(1) by the prime MV-ideal consisting of

all f ∈ F
MV
(1) such that f ↾[0,ϵ)= 0 for some ϵ > 0. The results in [18] show that the MV-space associated to

F
MV
(1) admits a decomposition over its space of prime MV-ideals, and the latter is well known in the litera-

ture (see, e.g., [23]). From this perspective, what we have computed above is the MV-space dual to one of the

“vertical” stalks in one of the sheaf representations discussed in [18]. The explicit computation of the dual

space of F
MV
(1) (and, more generally, F

MV
(n)) can thus be performed by analogously computing the dual

spaces of quotients of F
MV
(1) at prime MV-ideals.

References
[1] L. P. Belluce, A. Di Nola and A. Lettieri, Local MV-algebras, Rend. Circ. Mat. Palermo (2) 42 (1993), no. 3, 347–361.
[2] G. Birkhoff, Rings of sets, Duke Math. J. 3 (1937), no. 3, 443–454.
[3] W. J. Blok and D. Pigozzi, Algebraizable logics,Mem. Amer. Math. Soc. 77 (1989), 1–78.
[4] L. M. Cabrer and S. A. Celani, Priestley dualities for some lattice-ordered algebraic structures, including MTL, IMTL and

MV-algebras, Cent. Eur. J. Math. 4 (2006), no. 4, 600–623.
[5] R. L. O. Cignoli, I. M. L. D’Ottaviano and D. Mundici, Algebraic Foundations of Many-Valued Reasoning, Trends Log. Stud.

Log. Libr. 7, Kluwer Academic, Dordrecht, 2000.
[6] A. Di Nola and A. Lettieri, Perfect MV-algebras are categorically equivalent to abelian l-groups, Studia Logica 53 (1994),

no. 3, 417–432.
[7] J. Fodor, Nilpotent minimum and related connectives for fuzzy logic, in: Proceedings of 1995 IEEE International Conference

on Fuzzy Systems, IEEE Press, Piscataway (1995), 2077–2082.
[8] W. Fussner and P. Jipsen, Distributive laws in residuated binars, Algebra Universalis 80 (2019), no. 4, Paper No. 54.
[9] W. Fussner and S. Ugolini, A topological approach to MTL-algebras, Algebra Universalis 80 (2019), no. 3, Paper No. 38.
[10] N. Galatos, P. Jipsen, T. Kowalski and H. Ono, Residuated Lattices: An Algebraic Glimpse at Substructural Logics, Stud.

Logic Found. Math. 151, Elsevier, Amsterdam, 2007.
[11] M. Gehrke, Canonical extensions, Esakia spaces, and universal models, in: Leo Esakia on Duality in Modal and

Intuitionistic Logics, Outst. Contrib. Log. 4, Springer, Dordrecht (2014), 9–41.
[12] M. Gehrke, T. Jakl and L. Reggio, A duality theoretic view on limits of finite structures, in: Foundations of Software Science

and Computation Structures, Lecture Notes in Comput. Sci. 12077, Springer, Cham (2020), 299–318.
[13] M. Gehrke and B. Jónsson, Bounded distributive lattices with operators,Math. Japon. 40 (1994), no. 2, 207–215.
[14] M. Gehrke and B. Jónsson, Bounded distributive lattice expansions,Math. Scand. 94 (2004), no. 1, 13–45.
[15] M. Gehrke and H. A. Priestley, Non-canonicity of MV-algebras, Houston J. Math. 28 (2002), no. 3, 449–455.
[16] M. Gehrke and H. A. Priestley, Canonical extensions of double quasioperator algebras: An algebraic perspective on duality

for certain algebras with binary operations, J. Pure Appl. Algebra 209 (2007), no. 1, 269–290.
[17] M. Gehrke and H. A. Priestley, Duality for double quasioperator algebras via their canonical extensions, Studia Logica 86

(2007), no. 1, 31–68.
[18] M. Gehrke, S. J. van Gool and V. Marra, Sheaf representations of MV-algebras and lattice-ordered abelian groups via

duality, J. Algebra 417 (2014), 290–332.



W. Fussner et al., Priestley duality for MV-algebras and beyond | 921

[19] R. Goldblatt, Varieties of complex algebras, Ann. Pure Appl. Logic 44 (1989), no. 3, 173–242.
[20] S. Jenei, On the structure of rotation-invariant semigroups, Arch. Math. Logic 42 (2003), no. 5, 489–514.
[21] M. Kolařík, Independence of the axiomatic system for MV-algebras,Math. Slovaca 63 (2013), 1–4.
[22] R. McNaughton, A theorem about infinite-valued sentential logic, J. Symbolic Logic 16 (1951), 1–13.
[23] D. Mundici, Interpretation of AF C∗-algebras in Łukasiewicz sentential calculus, J. Funct. Anal. 65 (1986), no. 1, 15–63.
[24] D. Mundici, Advanced Łukasiewicz Calculus and MV-Algebras, Trends Log. Stud. Log. Libr. 35, Springer, Dordrecht, 2011.
[25] C. Noguera, F. Esteva and J. Gispert, Perfect and bipartite IMTL-algebras and disconnected rotations of prelinear

semihoops, Arch. Math. Logic 44 (2005), no. 7, 869–886.
[26] H. A. Priestley, Representation of distributive lattices by means of ordered stone spaces, Bull. Lond. Math. Soc. 2 (1970),

186–190.
[27] H. A. Priestley, Ordered topological spaces and the representation of distributive lattices, Proc. Lond. Math. Soc. (3) 24

(1972), 507–530.
[28] H. A. Priestley, Intrinsic spectral topologies, in: Papers on General Topology and Applications (Flushing 1992), Ann.

New York Acad. Sci. 728, New York Academy of Science, New York (1994), 78–95.
[29] S. Ugolini, Varieties of residuated lattices with an MV-retract and an investigation into state theory, Ph.D. Thesis,

University of Pisa, 2018.


	Priestley duality for MV-algebras and beyond
	1 Introduction
	2 Preliminaries
	2.1 Canonical extensions
	2.2 Residuation, co-residuation, and double quasioperators
	2.3 Priestley duality and its connection to the canonical extension

	3 Priestley duality for $\ominus$-algebras
	3.1 Definitions of $\ominus$-algebras and their extended dual spaces
	3.2 Properties of extended dual spaces of $\ominus$-algebras
	3.3 $\ominus$-spaces and their dual algebras
	3.4 Morphisms

	4 MV-algebras
	4.1 MV-algebras as $\ominus$-algebras
	4.2 The dual of (MV6)

	5 Some examples


