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Backaction-evading (BAE) measurements of a mechanical resonator, by continuously monitoring a single
quadrature of motion, can achieve precision below the zero-point uncertainty. When this happens, the mea-
surement leaves the resonator in a quantum squeezed state. The squeezed state so generated is however con-
ditional on the measurement outcomes, while for most applications it is desirable to have a deterministic, i.e.,
unconditional, squeezed state with the desired properties. In this work we apply feedback control to achieve
deterministic manipulation of mechanical squeezing in an optomechanical system subject to a continuous BAE
measurement. We study in details two strategies, direct (Markovian) and state-based (Bayesian) feedback. We
show that both are capable to achieve optimal performances, i.e., a vanishing noise added by the feedback loop.
Moreover, even when the feedback is restricted to be a time-varying mechanical force (experimentally friendly
scenario) and an imperfect BAE regime is considered, the ensuing non-optimal feedback may still obtain signif-
icant amount of squeezing. In particular, we show that Bayesian feedback control is nearly optimal for a wide
range of sideband resolution. Our analysis is of direct relevance for ultra-sensitive measurements and quantum

state engineering in state-of-the-art optomechanical devices.

I. INTRODUCTION

The accuracy with which the position of an oscillator con-
tinuously monitored in time can be resolved has a fundamen-
tal limit, known as the standard quantum limit (SQL) [1-
3]. Backaction-evading (BAE) measurements have been pro-
posed as a way to circumvent this limit by restricting the mea-
surement to a single quadrature of motion [2, 4, 5]. BAE mea-
surements can be thought as classical measurements embed-
ded in a quantum framework. Classical in the sense that they
allow repeated measurements with arbitrary precision, since
no backaction (stemming from the non-commutative nature
of the observables) corrupts them. At the same time, evading
this constraint is connected with the emergence of quantum
properties of the object being measured [2].

Cavity optomechanics affords an extremely effective way to
control and monitor mechanical motion [6, 7]. A simple way
to implement a BAE measurement of a mechanical quadra-
ture is to drive an optomechanical cavity on both mechanical
sidebands [4, 8]. This is referred as two-tone BAE scheme
and has been demonstrated both at microwave [9, 10] and op-
tical [11] frequencies, with sensitivities approaching the SQL.
BAE measurements play a fundamental role for ultra-sensitive
force measurements in large-scale interferometers as well as
in tabletop experiments. They are key for reconstructing me-
chanical motion, e.g. for probing independently prepared me-
chanical squeezed states [12, 13]. They have also been stud-
ied and demonstrated in atomic ensembles [14-16], extended
to different regimes, e.g. stroboscopic [17], and to collective
quadratures of two resonators [16, 18-23].

Achieving uncertainties below the SQL is tied to the ap-
pearance of quantum squeezing, whereby fluctuations along
the measured quadrature are smaller than the zero-point
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level [24-26]. Squeezing is a well-known resource for
continuous-variable quantum information [27-32] and for
quantum metrology [33-35], in particular for the estima-
tion of Hamiltonian and environmental parameters [36—41],
with the paradigmatic example of gravitational-wave detec-
tion [42-44]. Therefore, besides granting precision measure-
ments, optomechanical BAE measurements of a single mo-
tional quadrature also provide an effective tool for quantum
state preparation of mechanical squeezed states. However,
quantum states prepared via this strategy, or in general via
time-continuous monitoring, are conditional on the stream of
measurement outcomes [45—47], which makes them less prac-
tical for real-time manipulation. This issue can be remedied
by implementing a feedback loop to render squeezed states
unconditional, i.e. measurement independent [25]. In this
way, feedback control can achieve deterministic manipulation
of mechanical squeezing.

So far, feedback control of mechanical motion have mainly
focused, both theoretically and experimentally, on cool-
ing [48-57], which is a prerequisite for implementing most
quantum protocols. In particular, feedback cooling to the
ground state (residual thermal occupancy nn = 0.29) was
recently demonstrated in soft-clamped membranes [57] and
cooling to microkelvin temperatures (n = 4) by feedback
only was reported in optically levitated nanoparticles [58].
Given this tremendous success, extending feedback control
to quantum properties of mechanical motion, such as squeez-
ing, seems the next logical step and within experimental
reach. However, control protocols for mechanical squeezing
are much less explored. To date, proposals in this direction
have focused on obtaining mechanical squeezing via moni-
toring and state-based feedback [8, 59], designing alternative
feedback protocols based on ancillary two-level systems [60]
or exploiting parametric amplification [61-63] or via open-
loop control protocols [64].

In this work we study in details two feedback strategies, di-
rect (Markovian) feedback and state-based (Bayesian) feed-
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back, in combination with time-continuous BAE measure-
ments, to obtain unconditionally mechanical squeezing. We
show that both strategies are capable to achieve optimal per-
formances, i.e., vanishing noise added by the feedback loop,
in suitable conditions. However, the range of parameters
where this occurs greatly differs, highlighting crucial differ-
ences between the two approaches. In both cases, we first
determine the ideal feedback loop, i.e., the one that adds no
noise, to be implemented in a perfect BAE regime. For this
case we obtain simple analytical expressions, which we then
use as a benchmark to evaluate the effects of introducing phys-
ical limitations and non-idealities. In particular, the main
sources of limitations we considered are (i) the case in which
the feedback is restricted to be a time-varying mechanical
force and (ii) imperfect BAE regime where counter-rotating
terms cannot be neglected. Remarkably, even when assuming
both restrictions, we show that Bayesian feedback is nearly
optimal (vanishing added noise) across several orders of mag-
nitude of the sideband parameter «/w,, and for not too large
values of the coupling.

Our approach is inspired by Ref. [8], where the authors
consider an approximate description of a BAE optomechan-
ical setup and, besides showing that continuous monitoring
can conditionally generate squeezing, they also discuss the
implementation of an optimal state-based feedback strategy.
Our results complete and considerably extend the analysis re-
ported there. Contrary to most treatments of optomechan-
ical feedback protocols [8, 49, 52, 61], our approach does
not rely on an effective adiabatic description of the mechan-
ical motion and is not limited to the weak-coupling regime:
it enables measurement-based control of quantum squeezing
in the good cavity limit where the optical linewidth resolves
the sidebands, and in regimes where counter-rotating terms
in the optomechanical interaction play a non-negligible role.
Our analysis shows that, even when various limitations are ac-
counted for, feedback control of BAE measurements still pro-
vides an effective and versatile tool for deterministic quantum
control of mechanical squeezed, and stands out as a useful and
promising alternative to reservoir-engineering protocols based
on unbalanced two-tone driving [65], that have been recently
experimentally demonstrated in [66, 67].

The present work is structured as follows: in Sec. II we in-
troduce the Gaussian framework for describing continuously
measured quantum oscillators and linear feedback. In Sec. III
we describe two-tone optomechanical BAE measurements. In
Sec. IV we assess the performance of Markovian feedback.
In particular, we first tackle the time-independent problem
(RWA) in Sec. IV A and then include the effects of counter-
rotating terms in Sec. IV B. In Sec. V we carry a similar anal-
ysis for state-based Bayesian feedback. Finally, in Sec. VI
contains some final remarks and outlooks.

II. CONDITIONAL EVOLUTION AND FEEDBACK OF
CONTINUOUSLY MEASURED GAUSSIAN SYSTEMS

We start by reviewing the general formalism describing
bosonic Gaussian systems subject to continuous monitoring

and modelling the action of a linear feedback, which will
be later applied to the case of a two-tone optomechanical
BAE measurement. We consider a system of n quantum
harmonic oscillators described by a vector of operators I =
(G1,P1,---+Gn,DPn)T, satisfying the canonical commutation
relations

[B,87] =i, )

where ) = i@;;l oy is the symplectic form (o is the y-
Pauli matrix). We restrict ourselves to the physical scenario
where the oscillators interact via a quadratic Hamiltonian of
the form #, = T H# /2, while each of them is linearly cou-
pled to a different Markovian environment. Under these as-
sumptions one can prove that the quantum state g of the oscil-
lators is fully described by the first moments vector ¥ = Tr[oF]
and the covariance matrix o = Tr[p{t —, (£ —1)T}] [68, 69],
which evolve according to the equations

dr ~
E_Ar> (2)
%ZAO'-I-O'AT-FD. (3)

In the equations above, A, which known as the drift matrix,
depends on #, and on the system-environment interaction,
while D denotes the diffusion matrix, which depends on both
the system-environment interaction and the properties of the
environment itself, e.g. its temperature (for more details on
how to derive these matrices from the actual open-system dy-
namics we refer to Refs. [68-70]).

We then assume that the environment is continuously mon-
itored via general-dyne detection [71], yielding a continuous
photocurrent

dy: = —V2B T, dt + dw, 4)

where dw is a vector of Wiener increments, satisfy-
ing dw;jdwy, = J;xdt, or in a more compact form
{dw,dw"}/2 = 1dt. The evolution of the corresponding
conditional quantum state g, is fully described by a stochastic
evolution for its first moments, and a deterministic evolution
for its covariance matrix, which are respectively given by

dw
dr. = Ar.dt + (F —o.B)—, 5
( )\/5 (5)
do. T T
prai Ao, +o0.A'+D—-(E—-0.B)(E—-0.B)',

(6)

where the matrices E and B depends on the specific kind of
measurement performed (see Refs. [68—70] for more details).
By averaging over all the possible trajectories, that is over all
the possible results of the photocurrent dy;, one obtains the
unconditional state o, = IE[o.]. The averaging procedure
leads to increased fluctuations; one can in fact show that the
unconditional covariance matrix takes the form
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where we set o0,,c = o for clarity and we introduced the
excess noise matrix

S = E[{r., 17 }] — {Elr, E[r{]}. ®

Since averaging over all possible measurement outcomes on
an ancillary system is equivalent to tracing out the ancillary
system, it can be easily checked that Tync = Tr[ounct] and
T unc evolve according to Eqgs. (2) and (3), respectively.

In this work we analyze quantum feedback strategies that
are subject to constraints, which reflect some experimental
limitations. The goal of feedback is to exploit the informa-
tion coming from the measurements in order to modify (and
optimize) the properties of the unconditional state [25]. The
feedback is implemented via a Hamiltonian of the form

Hp = —1 ' QFu(t), 9)

which corresponds to displacements in the phase space, where
the feedback matrix F' contains the information on the dis-
placements directions that are allowed, and where the time-
dependent feedback signal u(t) is chosen according to the
feedback strategy. Since the stochastic term is confined to
the first moments [see Eq. (5)], the displacement generated
by (9) is the most general feedback operation that can be im-
plemented. The linear feedback therefore does not affect the
conditional evolution of the covariance matrix Eq. (6), while
the evolution for the first moment vector becomes

dr. :Af'cdt—l-(E—a'cB)d—w + Fu(t) dt. (10)
V2

The excess noise matrix Xg, has to be minimized through a
suitable choice of the displacements. We stress that the re-
lation 0 < 3g, < 3 holds, leading to an unconditional co-
variance matrix o, = 0. + 2f,. The best result will always
correspond to obtain a null matrix g, that is to prepare an
unconditional state having the same covariance matrix of the
conditional one, o, = o¢.

III. OPTOMECHANICAL BACKACTION-EVADING
MEASUREMENTS

We consider an optomechanical system composed of a cav-
ity and a mechanical oscillator, respectively described by
bosonic operators ay and 3(), and with frequencies wy and
wp,. The two oscillators are radiation-pressure coupled with
a single-photon coupling gg; the cavity is affected by photon
loss with rate x, while the mechanical mode interacts with a
Markovian phononic bath with decay rate v and a number of
thermal phonons 7. We then assume that the cavity is laser-
driven at the two frequencies wy = wy £ w,, with the same
amplitude. The Hamiltonian that describes the system is given
by (h=1)

Hom = Ho — godbio (65 + 130) +e(t)ah + e*(t)ao, (11)

where 7:10 =w fd:r]do + wml;gl;o is the free Hamiltonian and
(t) = 2|e| cos(wp,t)e ™It is the driving field. Moving to an
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interaction picture with respect to Ho and performing a stan-
dard linearization procedure [6, 7], we obtain the interaction
Hamiltonian

Hine(t) = —9X [Q (1 + cos(2wt)) + Psin(2wmt)|

(12)
where we have introduced the dimensionless quadratures in
the rotating frame X = (a + al)/v2, Y = oaf — a)/V2,
for the cavity degree of freedom, and Q = (b + b)/v/2,
P = 4(bt — b)/+/2 for the mechanical one (@ and b are the
annihilation operators in the rotating frame). The parame-
ter g = gole|\/w32, + kK2/4 is now the cavity-enhanced (lin-
earized) coupling strength. This Hamiltonian is composed by
a time independent part and an oscillating part. If both condi-
tions (i) wy, > Kk (good cavity limit) and (ii) w,, > g (weak
couping) are fulfilled, the fast oscillating terms in the Hamil-
tonian quickly average to zero and the Hamiltonian can be
written as

Hine ~ —gX Q. (13)

This Hamiltonian has a quantum non-demolition (QND) form
and Q is a constant of motion, which makes it is a good
QND observable [4, 5]. If Y is continuously measured, the
interaction (13) shunts all the back-action to ]5, which is dy-
namically decoupled from Q; this mechanism allows to in-
crease the precision of the observable Q over time [cf. Fig. 1
(b)]. These measurements are called back-action evading
(BAE) measurements, which are an instance of QND mea-
surement [4, 5]. Note that in the following we will use the
terms BAE and QND interchangeably. In principle, increasing
the system-probe coupling, fluctuations of Q can be reduced
indefinitely; once passed the SQL, BAE measurements gener-
ate a squeezed state for the mechanical oscillator. This ideal
scenario is however limited by the presence of unmonitored
noise, e.g. from a thermal bath.

We thus assume that the Y quadrature of the cavity is
continuously monitored by homodyning the output of the
cavity field. Under these assumptions, one can exploit the
Gaussian formalism by considering the operator vector I =
(X , Y, Q, P)T, and the conditional evolution of the quantum
state can then be described by Eqgs. (5) and (6) (see Appendix
A for more details on the matrices A, D, F, B, correspond-
ing to this particular scenario). The analytical solution for the
covariance matrix of the stationary conditional state o-éss) was
derived in Ref. [47], yielding a variance of the mechanical

quadrature @

o VT TRTX
(AQ%). = %ﬂ:c(é +7% = 7V/2? + K2+ 20),

(14
where ( = /vk[16g2n(1 + 2n) + k], and 0 < 7 < 1is
the quantum efficiency of the measurement. In particular it
was shown that squeezing, i.e., fluctuations below the vacuum
noise (AQ?), < 1/2, can be in principle generated for a large

set of values of the cavity decay rate .




IV. MARKOVIAN FEEDBACK

We start our analysis by considering Markovian feed-
back [72-75]. In a Markovian feedback strategy the mea-
sured signal is directly fed back to the system. We assume
that the feedback signal u(t) at time ¢, appearing in the feed-
back Hamiltonian (9) depends only on the last photocurrent
output I(¢) = dy, /dt, which corresponds to a vanishing delay
time in the feedback loop. Moreover, we take u(t) = M1I(t),
where the matrix M encodes the particular feedback (Marko-
vian) strategy, i.e., it determines how the measured outputs are
mixed and weighted when being fed back. The first moment
vector evolution (10) is then modified as

~ dw

dr, = AmT.dt + Z\/i ,

with Ay, = (A—v2FMBT)and Z = (E—o.B)+V2FM.

Notice that the feedback modifies both the drift matrix and the

stochastic component; this observation will be especially rele-

vant when compared with the Bayesian strategy in Sec. V. By

using Ito calculus, we find the following evolution equation

for the excess noise matrix (see Appendix B for the deriva-
tion)

15)

dXs,

at :AmEfb+2fbA—nr]+ZZT. (16)

If one assumes that the feedback matrix ' is invertible,
namely that displacements are allowed in all directions in
phase space, one can exploit the residual freedom in the choice
of M to completely cancel the stochastic contribution; this
situation will be henceforth referred to as the ideal case. By
doing so one obtains the optimal matrix

FYE - o9B)

V2

Notice that in the above equation we explicitly opted for can-
celing the stochastic terms at steady state, since our goal is
to maximize the amount of (unconditional) stationary squeez-
ing. One may also make a different choice, e.g. by imposing
the stochastic terms to vanish at all times, but this of course
would lead to a more onerous kind of feedback. By enforc-
ing (17) the excess noise matrix g, will go to zero at steady
state, yielding an unconditional state having a covariance ma-

trix equal to the conditional one, i.e., o, :~0'£ ) (we will
always assume that the feedback drift matrix A,, is Hurwitz).

On the other hand, whenever F' is not invertible, for ex-
ample in scenarios where some directions of feedback are not
allowed, the stochastic term cannot be identically cancelled;
this in turn results in some excess noise. Upon averaging,
one indeed obtains a non-zero steady-state excess noise ma-

trix E]EES), asymptotic solution of the Lyapunov equation (16).
This situation will be referred as the limited case. Loosely
speaking, with Markovian feedback one prioritizes cancel-
ing (minimizing) the noise at steady state, allowing for some
modification in the relaxation dynamics of the system (Ap,).

Mopt = (17)

A. Mechanical squeezing via Markovian feedback within the
RWA approximation

We now apply the paradigm just described to the optome-
chanical setup of Sec. III. In particular, we start our analysis
by focusing on the scenario where one can apply the RWA
and thus the interaction Hamiltonian is given by Eq. (13).
We first address the ideal case, i.e., we assume a feedback
matrix /' = 14. Under this condition we can derive the op-
timal Markovian feedback matrix M, via Eq. (17) and ex-

ploit the analytical solution for a'(ss) available for a two-tone
BAE measurement within RWA [47]. The resultaing optimal
Markovian feedback Hamiltonian reads

Hio = (€l +6X) Iy (1), ()

where Iy (t) = —v/2nk Tr[p, Y] + dw /dt is the only non-zero
element of the photocurrent vector I(¢) = dy;/dt, propor-

tional to the conditional average value (Y), = Tr[o.Y], and
each feedback term is weighted by the factors

€m=4g = [v +C— /K212 +2] (19)
€f:27Tm]|:K+ _\/K2+72+2Ci| (20)

The feedback Hamiltonian (18) stabilizes at steady state the

full optomechanical covariance matrix on(;ss). The Hamilto-
nian consists of a displacement by an amount &,,, Iy dt along
the quadrature Q and a displacement by £ ¢ Iy dt along Y. The
first conclusion to be drawn from Eq. (18) is that, even in the
ideal constraint-free case, rendering a'gss) unconditional re-
quires feedback on both the optical and the mechanical degree
of freedom. A simple explanation for this fact can be given
once the effects of both the QND evolution and the measure-
ment are taken into account, as we briefly do in the follow-
ing. In Fig. 1 (b) we represent the Heisenberg evolution of the
quadratures as obtained from Eq. (13), where an arrow con-
necting two terms means that the variable at the starting point
drives the evolution of that at the ending point; the QND inter-
action entails that Q) and P are decoupled. Following the in-
teraction, the output phase quadrature is measured, which has
two main consequences: (i) through the optmechanical cou-
pling, information is acquired about the mechanical quadra-
ture Q This, provided that the values of the photo-current are
recorded, reduces the uncertainty along Q thus leading to re-
duced fluctuations and, eventually, to squeezing. At the same
time, (ii) the measurement introduces disturbance (measure-
ment backactlon) which directly affects the conjugate quadra-
ture (X;,) and then, through the dynamics, reaches the P
quadrature and leads to increased fluctuations (so-called back-
action heating). In an ideal BAE measurement the acquisition
of information (on Q) and the introduction of noise (on P)
fully decouple.

Armed with this interpretation, it is now easy to account
for the terms featuring in Eq. (18). Continuously monitoring
the Yout quadrature causes a stochastic (measurement depen-
dent) displacement along both Y and Q, which necessarily
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FIG. 1. (a) Squeezing of the mechanical quadrature fluctuations (AQ2> (in decibel) as a function of the sideband parameter /wyy,, for
different value of the coupling g: g = 0.01lw, (red line), g = 0.05w.m, (yellow line), g = 0.3wn, (cyan line). The other values for the
parameters are: v = 10 *w,,, n = 1, @ = 10. Solid lines represent the fluctuations (AQ?)q, of the unconditional state obtained via
Markovian feedback through the Hamiltonian Hey = Emp Iy . Dashed curves represent the fluctuations (AQ2>C of the conditional states [or
equivalently of the unconditional state obtained via the optimal feedback Hamiltonian in Eq. (18)]. The shaded area marks the excluded region
beyond the threshold value Eq. (21). Dashed black lines are the predictions of the adiabatic theory Eq. (22). (b) Effects of measurement-
plus-feedback for an ideal BAE measurement. Black arrows describe how quadratures influence each other. By measuring the output phase
quadrature, information is extracted from Q (outgoing arrow), while no information can be extracted from P (incoming arrow) where all the
backaction goes. Ideal Markovian feedback drives both Q and V. (c) Markovian feedback restricted to the mechanical mode (mechanical-
limited feedback) and including non-QND terms; these open new paths (dashed arrows) where both backaction and conditioning can spread.
The mechanical mode is also subject to (unmonitored) noise from a thermal environment (Qin and P, ), which for convenience is not shown

accompanies the acquisition of information. Markovian feed-
back simply removes this effect by counter-displacing both
quadratures via the unitary generated by Hamiltonian (18),
while displacement of the other two variables (]5 and X ) can
be disregarded since they are completely decoupled and all the
backaction is dumped there. In this way we obtain an uncon-

ditional feedback state having the same (optimal) covariance

matrix as the conditional one a§ s) , thus yielding large values

of squeezing for the quadrature Q; some instances are shown
by the dashed lines in Fig. 1 (a).

We then move to address the limited feedback scenario.
One may naively think that, since the figure of merit we con-
sider pertains only a part of 0'( =) , asingle displacement would
suffice to render unconditional the sub-block we are interested
in. However, from Fig. 1 (b), we see that the measurement
correlates Q and Y, inasmuch as it jointly reduces their uncer-
tainty. Therefore, local operations on one mode will in general
affect local properties on the other (such as squeezing). More-
over, the QND coupling imposes a fundamental asymmetry
between the two quadratures, whereby noise from Q drives Y
but not the other way round. Therefore, we can already con-
clude that by limiting the feedback to a single displacement in
general we will not recover the optimal squeezing. In partic-
ular, cavity-limited feedback, i.e., implementing only the op-
tical part of g, yields poor results, since the feedback acts
‘downstream’ with respect to the QND evolution [any stochas-
tic term driving Q will also drive Y, cf. Fig. 1 (b)]. This intu-
ition can be made rigorous by neglecting the mechanical term
in Eq. (18), thus obtaining ﬁfb’f = ffX Iy (t). The corre-

sponding steady-state excess noise matrix X, can be obtained
via Eq. (16) by considering the feedback matrix Ff = 15609
(with 04 denoting a square matrix of dimension d with all el-
ements equal to zero). Under this restriction the quadrature
fluctuations of the unconditional (feedback) state (AQ2>fb are
only slightly reduced below the case with no feedback, and
consequently no squeezing can be observed.

On the other hand, if we Aconsider meghanical-limited feed-
back via the Hamiltonian Hgp, m = &, P Iy (1), we find much
better results. Again, this result can be expected as the feed-
back now acts ‘upstream’ with respect to the QND evolution
[cf. Fig. 1 (b)]. The steady-state excess noise matrix can be
obtained by considering a feedback matrix Fj, = 0y & 1o
and the corresponding values of (AQ2>fb are plotted in Fig. 1
(a) [expressed in —101log,,(AQ?) Decibel (dB)], alongside
the optimal values of the conditional state (AQ?). Since the
stochastic contribution from the cavity field is not removed,
averaging determines increased fluctuations, i.e., (AQ2>fb >
(AQ?).. Physically, the reason why mechanical-limited feed-
back remains suboptimal is that, although the feedback re-
moves the stochastic term for the evolution of the Q quadra-
ture, the dlsplacement of Q is proport10nal to the photocur-
rent, and thus to (Y)C, as the quadratures Q and Y are corre-
lated, the fluctuations of ¥ (that have not been reduced by the
feedback) will have a non-zero effect on the fluctuations of Q,
reducing the amount of squeezing that one can generate.

In Fig. 1 (a) we can clearly observe two distinct regimes
for stationary squeezing: in the bad-cavity limit (k > w,)
mechanical-limited feedback turns out to be optimal, while



in the good-cavity limit (x < w,,) we obtain worse results.
Although an analytic expression of (AQ?2)g, is available, it is
too cumbersome to be reported here. We instead now derive
simple expressions for these two limits.

In the good cavity limit mechanical-limited feedback leads
to a universal upper bound on the amount of squeezing attain-
able; by universal we mean that the value is independent of
both the strength of the coupling and the detection efficiency.
In this limit, the stochastic displacement along Y affects long-
lived cavity photons, so averaging upon it leads to compara-
tively larger excess noise. Expressing (AQ?)g in terms of
the multi-photon cooperativity C = 4g? /7y and keeping the
leading term in the expansion C >> 1, we obtain the threshold
value

y(2n + 1)

Aoy
(AQ7)thr = popr

. 2D
which corresponds to the black line in Fig. 1 (a). In particular,
from Eq. (21) it follows that there exists an excluded region of
sideband values k/w,, < 271/ Qy,, (With Q,,, = w,, /7 being
the mechanical quality factor) where squeezing cannot be at-
tained for any value of the coupling strength; this is indicated
by the shaded region in figure. This represents a nontrivial
prediction of our framework, as it sets a fundamental lower
bound on the achievable precision via Markovian feedback.

In the bad-cavity limit we see that mechanical-limited
feedback achieves optimal squeezing and the inequality
(AQ?)g > (AQ?). is saturated. This behaviour can be sim-
ply understood by realizing that for a large enough linewidth,
the photon lifetime inside the cavity is so short that optical
feedback becomes inconsequential. In this limit the cavity
field can be adiabatically eliminated, one obtains (AQ?)g, =
(AQ?)c ~ (AQ?),4, where the last quantity has the following
expression

1+4nC(2n+1)—1

o _
<AQ >ad - 4077 ’ (22)

and corresponds to the black dashed lines in the plot (for fur-
ther details about this behaviour see [47]). The adiabatic pre-
diction dramatically fails moving towards good cavity limit,
which is where most experiments take place. This expresses
the inadequacy of adiabatic treatment of measurement-based
squeezing available so far.

Let us now make a crucial observation regarding the me-
chanical feedback term ,}:sz7m = «fmp Iy (t). We remind that
we are working in interaction picture with respect to the free
Hamiltonian. If we go back to the laboratory frame opera-
tors Qo and Py, corresponding to the actual position and mo-
mentum of the mechanical oscillator, we obtain the feedback
Hamiltonian

Hepm = Em (cos(wmt)ﬁo — sin(wmt)Qg) Iy(). (23)

The term proportional to the position operator Qo corresponds
to a mechanical force. In clamped resonators, this can be
implemented via piezoelectric actuators [76] or via radiation-
pressure force from an auxiliary laser beam (not coupled to

the cavity mode) [57]; mechanical feedback forces have been
implemented also in levitated charged nanoparticles via elec-
trodes placed in the vicinity of the particle for cooling its
centre-of-mass motion [77-79]. On the other hand, terms pro-
portional to momentum are notoriously more challenging to
implement [49]. Therefore it is physically motivated to as-
sume that the feedback action is implemented only by means a
(possibly time-dependent) force on the mechanical oscillator.
We refer to this scenario as force-limited feedback. Neglect-
ing the terms proportional to Py in the Hamiltonian above and
going back to the rotating quadratures, we obtain

ﬁlgli?force =—&m Sin(wmt)QO Iy (t) )
1 A . N
= 5ém (P — cos(2wmt) P — sin(2wmt)Q) Iy (1),
1 - .
= §Hfb,m + Hiot- 24)

This phyiscally-constrained feedback Hamiltonian is com-
posed of a time-independent part, equal to half the opti-
mal feedback Hamiltonian in Eq. (18), plus a term ’}:[rot =
—1€(cos (2w t) P + sin(2wy,t)Q) Iy (t), with elements ro-
tating at frequency 2w,,,. These terms are depicted in Fig. 1
(¢), from which we see that the feedback now drives both me-
chanical quadratures. Of course, we may as well assume to
be able to double the feedback signal u(t), thus obtaining a
force-feedback Hamiltonian
i korce = —26m sin(wt)Qo Iy (1)

fb,force

= Heom + 2Hror. (25)

As long as we are working within the RWA, the two
choices (24), (25) are equally viable. It would then seem
that the results shown in Fig. 1 (a) can always be obtained
by simply implementing a time-dependent feedback force.
This seeming contradiction can be cleared by taking a closer
inspection at the RWA under Markovian feedback. In the
presence of feedback, besides the weak coupling condition
needed to cast the two-tone optomechanical Eq. (12) into
a QND form, also the condition |, Iy (t)| < w,, needs
to be fulfilled in order for the RWA to be valid. Substi-
tuting the expression for the homodyne current, the latter
condition splits in two parts; the first part yields w,, >
EmV2NE(Y ) e =~ \/nry (20 + 1)(Y )., where the last approx-
imation holds for high-Q mechanical resonators, while the
second part is |{,dw/dt| < w,,. However, at any given
instant the current is dominated by white noise contribution,
which takes unbounded values, so that the second condition
cannot be fulfilled. Therefore, strictly speaking the RWA is
never fully justified when dealing with Markovian feedback
and counter-rotating terms cannot be overlooked.

B. Mechanical squeezing via limited Markovian feedback
beyond the RWA approximation

We now include the effect of counter-rotating terms that
are neglected under RWA. As explained above, this analysis
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FIG. 2. (a): squeezing of the mechanical quadrature fluctuations
(AQ?) (in decibel) obtained via the non-optimal Markovian feed-
back matrix in Eq. (28), as a function of the Hamiltonian parameter
A and for three couples of parameters (g, x). The dotted lines denotes
the corresponding fluctuations (AQ2>C of the conditional states for
the same values of the parameters. Notice that the couples (g, <) has
been chosen in order to pick the maximum of squeezing obtainable
from the conditional states, at fixed coupling g and varying & as in
Fig. 1 (a). .

(b): squeezing of the mechanical quadrature fluctuations (AQ?) (in
decibel) obtained via the non-optimal Markovian feedback matrix in
Eq. (28), as a function of the sideband parameter x /wy,, for different
values of the coupling g, and by choosing the values of A maximiz-
ing the squeezing as shown in the upper panel. As above, the dotted
lines denotes the corresponding fluctuations (AQ?). of the condi-
tional states.

In both panels the values for the other parameters are fixed to:
v =10"*wm, n=1,7 = 10.

is crucial to assess the performances of Markovian feedback
control, in particular when restricting the feedback Hamil-
tonian to be a force. Due to mixing between the quadra-
tures, a rotating frame where the equations of motion be-
come time-independent can no longer be found [80, 81], nor
a closed expression for the conditional state. In this case one
has to consider the time-dependent drift matrix corresponding
to the interaction Hamiltonian (12) and numerically integrate
the evolution equation for the conditional covariance matrix

(6). However, we can still get a qualitative picture of the ef-
fects brought about by the counter-rotating terms by looking
at Fig. 1 (¢). counter-rotating terms open new paths (dashed
arrows) between the quadratures, where both backaction and
conditioning can spread. As we can see, measurement backac-
tion is no longer confined to P but now reaches both quadra-
tures, which entails a reduction of the amount of squeezing
with respect to the ideal BAE regime. At the same time, the
measurement now acquires information about both mechani-
cal quadratures, which entails that the conditional state gets
purified [47]. Finally, information is simultaneously acquired
about both the cavity and the mechanics (multiple arrows in-
coming at Y), which implies that stronger correlations be-
tween cavity and mechanics are built. Although our analysis
will be focused on the reduction of squeezing, the point to be
stressed here is that, contrary to common wisdom, counter-
rotating terms are not only tied to detrimental effects but can
actually be beneficial for conditional state preparation. This
offers a further motivation for implementing feedback in BAE
measurements beyond the weak coupling regime.

We start by considering the optimal (time-dependent)
Markovian matrix M, namely all phase-space directions are
allowed. It can be numerically derived via Eq. (17), by choos-
ing F' = 14 and by replacing a’&ss) with the numerical solution
of Eq. (6). The corresponding optimal Markovian feedback
Hamiltonian reads

7:lfb = (m32ﬁ’ — m42Q — m22X + m123>)IY, (26)

where the elements m ;. appearing are the only non-zero el-
ements of My,:. Compared to Eq. (18), 7:lfb now generates
displacements also along P and X. As done before, we now
purposedly neglect the cavity field terms (mechanical-limited
feedback) and move back to the laboratory frame operators

Hepm = (mz2P — mynQ) Iy,
= [mgg (]50 cos(wmt) — Qo sin(wmt)> +
. (QO cos(wmt) + Py sin(wmt)” Iy. @7

We further restrict the feedback to act as a force on the oscilla-
tor (force-limited feedback), and following the line of reason-
ing of the previous section we consider the following feedback
Hamiltonian

,}:Zfb,force(A) =—2)\ [m472 cos(wmt) + m3 2 Sin(wmt)]QO Iy 5
= Ao + 2\ Hror (28)

where r)LAlfb,m here denotes the mechanical-restricted optimal
Hamiltonian in Eq. (27) and where ﬁrot contains elements
rotating a twice the mechanical frequency 2w,,; these addi-
tional contributions are sketched in Fig. 1 (¢). The free real
parameter A allows to interpolate between two cases: choos-
ing A = 1/2 corresponds to consider only the elements pro-
portional to QO, while for A = 1 we double the feedback sig-
nal, re-obtaining the optimal Hamiltonian (27) plus a larger
counter-rotating term 27:t,ot. In our formalism, this choice



corresponds to multiplying the optimal feedback matrix Mo
with a time-dependent limited feedback matrix of the form
Fo, = (2X) (02 & W), with

W = RFforceRT ;

_ ( sin? (wyt) sin(wy,t) cos(wmt) )

= . o , (29)
sin(wy,t) cos(wimt) cos? (wy,t)

where R is the rotation matrix by an angle w,,,t and Fiorce =

diag(0, 1) is the feedback matrix corresponding to feedback

displacements along Py axis only.

We can now numerically integrate Eq. (16) for the excess
noise matrix Xg,, and evaluate the corresponding fluctuation
(AQ2 )b, averaged over a period (the integration is carried out
until o, and 3¢, reach a time-periodic steady state). In Fig. 2
(a), we have plotted (AQ?)g, as a function of X for the three
choices of the parameters (g, ) yielding the maximum values
of squeezing observed in in Fig. 1 (a). As expected, for larger
values of g we observe a larger reduction of the squeezing.
Remarkably, we also observe that the counter-rotating terms
appearing in the feedback Hamiltonian play a major role. In-
deed, the optimal value of A maximizing the squeezing in gen-
eral corresponds to neither A = 1/2 nor A = 1. We thus
conclude that none of the two approaches discussed at the end
of the previous section corresponds to the optimal choice. In
particular, as we may now expect, we notice how when in-
creasing the opto-mechanical coupling g, one should choose
smaller values of A: the counter-rotating terms in the feed-
back Hamiltonian in the strong-coupling regime have in fact a
major role. However it is also important to remark that for rel-
atively small values of g, applying this physically constrained
feedback strategy yield only a small reduction in the squeez-
ing that one can obtain unconditionally, respect to the one ob-
tained via the continuously-monitored conditional states.

Finally, in Fig. 2 (b) we show a comparison between RWA
and full Hamiltonian for a particular choice of the experimen-
tal parameters values, and by choosing the corresponding op-
timal value of A. The solid curve shows the mean uncondi-
tional squeezing (averaged over one mechanical period) and
the shaded area extends between the minimum and maximum
value of squeezing. We see that Markovian feedback enforces
a more conservative condition for RWA, which strictly speak-
ing is never fulfilled. This is confirmed by looking at the
weak coupling instances where, even when the RWA on the
QND Hamiltonian (13) provides an excellent approximation,
<AQ2>fb is still appreciably smaller than the corresponding
(AQ?).. Our results show how counter-rotating terms, that
have been so far neglected, have a non trivial effect even in
weak coupling regime, where one would expect RWA to be
excellent approximation, reinforcing the need of accounting
them in the assessment of these control strategies.

V. BAYESIAN FEEDBACK

We now assume that the feedback signal u(t) can be chosen
by taking into account the whole measurement results, that
is all the values of the photocurrent dy,, with 0 < s <

these are used to estimate properties of the conditional state,
which are in turn exploited in the feedback step. This kind
of non-Markovian feedback is typically referred to as state-
based feedback or Bayesian feedback, as determining the con-
ditioned state of the quantum system from classical photo-
current corresponds indeed to a quantum version of the clas-
sical Bayesian update [25, 82]. Here we will focus on the
minimization of quadratic cost function defined as

h(t) = B[(#"S#). +u'Zu], (30)

that one typically integrates over a certain time interval h =

fg h(s)ds. In the following we will be interested in optimiz-
ing this cost function at the (possibly time periodic) steady
state; we will then consider the infinite-time limit hgs =
lim;, oo h(t). The positive semi-definite matrix .S > 0 sets
the particular property of the system that we want to min-
imize, while the positive-definite matrix = > 0 quantifies
the cost of the linear driving u(¢) that we are implement-
ing with our feedback strategy. Under these assumptions we
are dealing with the paradigm of linear-quadratic-Gaussian
(LQG) control [25]. This is indeed a well-known classi-
cal optimal control problem, which is well suited for Gaus-
sian quantum systems. It has been previously applied to op-
tomechanical systems, e.g. to cool the mechanical oscilla-
tor [49, 52, 53], or harness the optomechanical entanglement
generated in the blue-detuned regime for various state prepa-
ration tasks [53]. Moreover, a crucial ingredient of LQG con-
trol, namely optimal quantum state estimation (correspond-
ing to the classical Kalman filter), has been recently demon-
strated for both mechanically compliant resonators [83, 84]
and levitated nanoparticles [85, 86]. According to LQG con-
trol, the solution minimizing Eq. (30) is obtained by consider-
ing a feedback signal depending linearly on the first moment
vector

u(t) = —K(t)r., 3D

such that the evolution of the first moments is rewritten as

- dw

dr. = ApT.dt + L ok (32)
with A, = (A— FK(t)) and L = (F — o.B). We stress that
Bayes feedback (31) employs only the mean values (some-
times referred to as the ‘estimates’) of the conditional state,
i.e., the feedback signal is noiseless. One further proves that
the matrix K,p, optimizing the steady-state cost function s
reads

Kopt =2 'FTY (33)
where Y is the solution of the (homogeneous) Riccati equa-
tion

0=ATY +YA+S—-YF="1FTY. (34)

In this case the evolution for the feedback excess noise matrix
is given by (see Appendix B for details on the derivation)

dXg,
dt

= A2 + S Al + LLT. (35)



By solving the corresponding Lyapunov equation, one can
thus calculate the steady-state excess noise matrix g and
assess the performance of the feedback strategy.

By comparing Eqs. (16) and (35), we notice an impor-
tant difference in the working principles of Markovian and
Bayesian feedback. While both strategies change the drift ma-
trix A, adding a damping term to the first moments, and con-
sequently to the excess noise matrix Xg,, Markovian strate-
gies also aim to reduce the diffusion term in the Lyapunov
equation (16), cancelling it in the optimal scenario and yield-
ing an unconditional feedback covariance matrix og, = o.
It is also important to remark that, as mentioned in the pre-
vious section, Markovian feedback is more expensive: the
white noise term dw/dt, entering into the feedback signal
u(t) via the photocurrent, yields indeed a diverging average
E[(Fu(t))TFu(t)]. On the other hand, Bayesian LQG feed-
back strategies, by fixing a non-zero cost on the feedback dis-
placement, involve always a finite average signal, and in this
sense, as we will see in the following, it is of interest in prac-
tical implementations. The average feedback at steady-state
can be evaluated via the formula [25]

lim E[(Fu(t))TFu(t)] = Tl FKop 267 Ko F ). (36)
This quantity is in general finite, as it diverges only by taking
the limit of zero cost matrix = — 0; in this limit one is
supposed to implement an infinite damping matrix Kqp,
and, by considering a full-rank feedback matrix /' = 1, one
obtains a steady-state zero excess noise matrix and thus the

optimal result O']SZS) = a&ss).

A. Mechanical squeezing via Bayesian feedback within the
RWA approximation

We now apply this formalism to our optomehcanical setup.
Our goal is to minimize the steady-state fluctuations of the
Q quadrature, with a non-zero cost on the feedback displace-
ment. In terms of the figure of merit hg, this is obtained by
the choosing S = diag(0,0,1,0) and = = x14, where the
parameter y > 0 weights the cost of the overall feedback with
respect to the property to be optimized (squeezing along Q).
By considering the matrix = proportional to the identity we
are assuming equal cost for all phase-space directions of feed-
back displacement. Nevertheless, as done in the Markovian
case, we will indirectly impose infinite cost along some di-
rections in phase-space by choosing non-full rank feedback
matrices F'.

We start by considering the ideal feedback matrix F' = 14.
By applying the formulas above, one can analytically ob-
tain the optimal matrix K, and the corresponding feedback
Hamiltonian, which reads

7:lfb,b = Qe (’Y 4 +72) p,

= —B(Q).P, (37)

where 3 is a positive real parameter, monotonically decreas-
ing with the parameter x (the smaller the feedback cost y,
the larger the damping of the conditional average value <Q>C).
The first thing to be noticed is that the ideal feedback Hamil-
tonian contains no cavity terms, which in this framework turn
out to be unnecessary. Indeed, as explained before, Bayesian
feedback corresponds only to an attenuation of the first mo-
ment vector and consequently on the excess noise matrix. As
our goal is to reduce the fluctuations of the quadrature me-
chanical operator Q, the feedback Hamiltonian does lead to
a damping only in this direction of phase-space, and other
feedback operations are not necessary. We also notice that,
as expected, in the limit of either zero or infinite cost parame-
ter x, we implement respectively an infinite or zero damping.
Finally we observe that the feedback Hamiltonian, apart from
the cost parameter Y, only depends on the parameter -y, since
all the salient information is incapsulated in the average value
<Q>C'

Solving Eq. (35), we derive an analytical expression for the
excess noise at steady state for the mechanical operator Q

s VX (PHCoaVE A )T e
O i+ 16921 '

In Fig. (3) we plot the behavior of the mechanical squeez-
ing (in terms of dB) as a function of the sideband parameter
k/wm. We observe that increasing the cost parameter y or
decreasing the optomechanical coupling g have a different ef-
fect on the steady-state squeezing achievable. In particular,
increasing x penalizes the “intermediate” sideband values for
which the squeezing is maximum, while the range for which
squeezing can be observed remains almost unchanged com-
pared to the optimal conditional states.

It is important to stress that Bayesian feedback allows
to obtain nearly optimal squeezing also in the good cavity
limit, notwithstanding the fact that the optimal feedback
Hamiltonian acts on the mechanical oscillator only. This
shows a fundamental difference respect to the Markovian
scenario, where mechanical-limited feedback yields a large
reduction of the squeezing achievable for k/w,, < 1 and to
a threshold value under which no squeezing can be observed.
Furthermore, the fact that, for a fixed cost x, a larger cou-
pling constant g implies larger deviations from the optimal
conditional squeezing, strongly suggests that larger coupling
values demand larger values of the feedback signal u(t).

B. Mechanical squeezing via Bayesian feedback beyond the
RWA approximation

We now consider the effect of counter-rotating terms in
the optomechanical Hamiltonian (12). Moreover, similarly to
the Markovian case, we also focus on the force-limited case,
namely when feedback is actuated via a Hamiltonian propor-
tional to the laboratory position operator QO. Remarkably,
thanks to the LQG-control theory, in this case we can actually
find the optimal feedback strategy, represented by a matrix
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FIG. 3. (a) Diagram depicting how quadratures influence each other in the case of ideal state-based (Bayesian) feedback; all conventions are
as in Fig. 1. Mechanical position variance in terms of squeezing factor (dB) as a function of the sideband parameter & /wy,, for three different
values of cost parameter (solid lines). The dashed black line denotes the optimal squeezing obtained via the conditional evolution within
RWA approximation, corresponding to Eq. (14)). Different panels correspond to different values of the coupling g [(b), g = 0.05wm; (¢),
g = 0.3w,, ], while the other parameters are fixed as following: = 1, 7 = 10, v = 10" *w;,.

Kopt, with a fixed limited feedback matrix Fi, = 0y & W,
where the matrix W has been defined in Eq. (29). In this
case, as both the drift matrix A and the feedback matrix F},
are time-dependent, one has to evaluate the time-periodic sta-
tionary matrices representing the conditional states covariance
matrix o, the optimal Bayesian feedback matrix Y and the
excess noise matrix X, via respectively Eqs. (6), (34) and
(35). The corresponding feedback Hamiltonian takes the form

Hivp = —(Bo(t)(Q)c + Bx ()(X))Qo, (39
where in general we observe 8¢ (t) > Bx(t) > 0, and the

extra term portional to (X). arises because of the counter-
rotating terms in the optomechanical Hamiltonian

The corresponding unconditional fluctuations <AQ2)fb are
then evaluated by averaging them over a period and we have
reported them in Fig. 4. We remind that, at variance with
Markovian feedback, here the feedback signal is bounded. In
particular one can evaluate its steady-state average magnitude
E[(Fu(t))" Fu(t)] via Eq. (36). We have numerically evalu-
ated this quantity, averaging as before its value over its steady-
state period, and we have reported it in the insets of Fig. 4 (in
order to obtain the average force in Newton, we have taken its
square root and multiplied it by a factor ii/z,f = 10720 N's,
with 2,5 &~ 107 m being the zero point motion of a stan-
dard mechanical oscillator). From these plots we can take the
following conclusions: remarkably for small values of the op-
tomechanical coupling constant g (e.g. for g = 0.05w,,,), we
obtain the optimal amount of squeezing, that is the one corre-
sponding to Eq. (14) for conditional states evolving within the
RWA approximation, even by considering the counter-rotating
terms and if we restrict to a force-limited Bayesian feedback.
As we increase the value of g (e.g. for g = 0.3w,,), we do
observe sensible deviations from the optimal case, that seem
to be more due to the role of counter-rotating terms, rather
than to the limited feedback strategy (we remark that the re-
sults shown for Y = 0.1w;,! are not much improved if we
further decrease x). In particular we find that the average
feedback force needed to obtain the nearly-optimal results is

indeed very small. In general we observe that u(¢) depends on
the cost parameter y via a constant factor, and thus, once the
time-dependence of the optimal matrix Kqp: has been iden-
tified, one should try to implement a corresponding feedback
force u(t) proportional to the first moment vector r., and with
the larger proportionality constant allowed by the experimen-
tal setup and our results show how nearly-optimal steady-state
squeezing can be obtained by implementing a force that is
well within reach of the state-of-the-art experimental capabil-
1ties.

VI. CONCLUSIONS

In this work we have discussed in detail how to determin-
istically generate mechanical squeezing via time-continuous
back-action evading (BAE) measurement plus feedback. Con-
trary to previous studies [8], our approach takes into account
the effects of a finite cavity linewidth and is not limited to
the weak-coupling regime; it is therefore apt to describe state-
of-the-art optomechanical systems. We discussed two main
feedback strategies: state-based (Bayesian) feedback, which
employs the measurement record to compute (in real-time)
the optimal feedback signal and direct (Markovian) feedback,
where the measured current is directly fed back to the system.
In both cases, our approach consisted in first determining the
form of the feedback that needs to be implemented in the case
of an ideal BAE measurement; this provide a benchmark to be
contrasted with realistic scenarios, where backaction evasion
is imperfect and the manipulation of the optomechanical sys-
tem is subject to limitations, which render feedback control
non-optimal.

When employing a Markovian feedback strategy, achieving
optimal unconditional squeezing requires feedback on both
the cavity and the mechanical degree of freedom; only for
a fast enough cavity, mechanical-only feedback recovers the
maximum amount of squeezing (equal to the conditional one).
Moreover, when further restricting the feedback to be ac-
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FIG. 4. Mechanical position variance in terms of squeezing factor
(dB) as a function of the sideband parameter x/w.,, obtained un-
conditionally via Bayesian feedback limited to a force on the me-
chanical oscillator and beyond RWA for two values of the optome-
chanical coupling g [(a@), ¢ = 0.05wm; (b), g = 0.3wn] and for
three different values of the cost parameter x (from top to bottom
x = {0.1,1,100}); the dotted curves show the mean squeezing (av-
eraged over one mechanical period) and the shaded area extends be-
tween the minimum and maximum value of squeezing. The dashed
black line denotes the optimal squeezing obtained via the condi-
tional evolution within RWA approximation, corresponding to Eq.
(14). The insets show the corresponding average feedback force
(h/2pe)/E[(Fu(t))T Fu(t)] as a function of the sideband param-
eter k/wm, and by considering a mechanical oscillator described by
a zero point motion T pf = 107" m.

The other parameters are fixed as following: n = 1, n = 10,
v = 10_4wm

tuated only via a mechanical force, we found that counter-
rotating terms cannot be neglected, due to the unbounded
feedback signal. Once these are included, significant val-
ues of squeezing may be obtained for small enough coupling
g, although force-limited feedback always adds some noise.
On the other hand, Bayesian feedback attains the maximum
squeezing (namely it adds no noise) via a mechanical term
alone. Even in the case of force-feedback, for not too large
couplings g it attains nearly-optimal unconditional squeezing
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across the whole range of sideband values /w,,, and that the
average feedback force needed is well within the state-of-the-
art experimental capabilities.

Therefore, we identified the conditions under which a
“cheap” feedback, consisting of a time-dependent mechani-
cal force (and thus easier to implement), results in no or little
added noise and thus generates large amount of mechanical
squeezing. We have included counter-rotating terms in our
analysis, which are usually neglected. On the one hand, we
found that depending on the nature of the feedback policy,
the effect brought about by these terms cannot be overlooked.
On the other hand, their incorporation allows to model op-
tomechanical BAE measurements for any sideband resolution
and even in the strong coupling regime. While in our discus-
sion ideal detection efficiency was assumed when illustrating
the results, we stress that our framework incorporates the im-
pact non-unit efficiency of the monitoring process; this addi-
tional limitation (fundamental for experimental implementa-
tions) can be readily assessed with the expressions derived in
the present work. Another source of imperfection may come
from non-negligible delay time in the feedback loop. We plan
to tackle delayed feedback in future works.

Our results are directly relevant for ultra-sensitive force and
displacement measurements, e.g. gravitational wave detec-
tion [87], applications to quantum information processing [31]
as well as fundamental studies on the effects of quantum de-
coherence [88-90].

Our analysis could be extended to the multimode optome-
chanical systems consisting of two mechanical resonators
coupled to a common cavity mode, for the deterministic gen-
eration of mechanical EPR entanglement and multipartite en-
tanglement [20, 47]. Finally, besides optomechanics, our re-
sults also apply to QND measurements in hybrid quantum sys-
tems [16, 22, 91, 92] and cavity-coupled atomic ensembles,
e.g. for deterministic generation of spin squeezing [14].
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Appendix A: Gaussian formalism for optomechanical
Hamiltonian

In this appendix we report the matrices entering into Egs.
(2), (3), (5) and (6), and corresponding to the optomechanical
BAE setup described in Sec. III.

The corresponding unconditional and conditional dynamics in
interaction picture respect to H, are described respectively by



the master equation

dounc

dt = EQunc (A1)
= —i[Hint, Ounc] + KD[a] ounc (A2)
+5(1 + 1)D[bowne + D[ Jowne,  (A3)
and by the stochastic master equation
do. = Locdt + /nrH[—id)o. dw , (A4)

with a continuous photocurrent Iy (£)dt = —/2nk (V). dt +
dw, and where we have defined the superoperator #[0]o =
00+ 00" —Tr[p(O+0")) . The matrices A, D, E, and B can
be derived by following the formalism introduced in [68, 69],
or analogously in [70]. We start by presenting the scenario
where the RWA can be performed, and the optomechanical
Hamiltonian reads

Hine = _gXQa
_Og 0
- T2
A= —gsin(2wp,t) 0
g(1 4 cos(2wnt)) 0

Appendix B: Derivation of Lyapunov equation for the excess
noise matrix 3

Let us consider the following stochastic evolution of the
first moment vector
d5, = Av,dt + v (B1)
r. = Ar, —.
V2
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The corresponding matrices are

-5 0 0 0
0 -2 g 0
— 2
A= 0o 0 —3 0 |
g 0 0 -3
k0 0 0
0 0 0
D= 00 v(2rn+1) 0 ’
00 0  ~2a+1)
B:E:

In the regime where the RWA does not apply and thus the
optomechanical Hamiltonian is described by Eq. (12),

Hint (1) = —9X |Q (1 + cos(2wpmt)) + Psin(2wmt)|,

the drift matrix A is the only matrix that changes its form, it
becomes time-dependent and it reads

0 0
g(1 + cos(2wit)) gsin(2wp,t)
~7 Ow
0 —3

(

Our goal is to derive the evolution equation for the excess
noise matrix X, defined in Eq. (8) as

S = El{r., i }] - {E[r, E[F{]}. (B2)

By deriving the first term respect to time, and by exploiting
Ito calculus, one obtains

d(B[{F., 17 }]) = E[{dr., 70 }] + E[{Fc, dr.}] + E[{dr., dr;}]

where we have exploited the Wiener increments property

= AE[{r., ! }] dt + E[{r., T, }JAdt +V (]E {

{dw,dw '}
2

v

E[{F., 7 }] + E[{F., 5 AT + va) dt,

(

{dw,dw'}/2 = 1dt.
The second term on the other hand yields
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d ({Efe.), BET)}) = {Blde.), B[]} + (B[], Elde]]}
- (A{E[m, E[f!]} + {E[r.], E[ﬂ]}fﬂ) dt .

By combining the two equations, we finally find the Lyapunov
equation for the excess noise matrix

% — A+ AT VYT, (B3)

As a consequence, given the evolution of the first moment
vector 1. ruled by either Eq. (15) for Markovian feedback, or
Eq. (32) for Bayesian feedback, one finds that the evolution
for the excess noise matrix 3 is given respectively by Eq. (16)
or Eq. (39).
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