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Abstract

The 21st-century data-driven economy is rapidly evolving and large compa-
nies like Telecom operators are forced to adapt their business. They are shifting
their focus from traditional but exhausted connectivity provider market towards
a more services based market. Here competition is high, and other stakeholders
are trying to monopolize the data-driven world of personalized services. But,
Telecom operators are the custodians of Call Detail Records (CDRs), which
captures mobility activities and social ties of a large number of users. Recently
researchers observed that CDRs are the most valuable form of data to perform
user-centric analysis, especially when related to mobility and habits.

In this paper, we demonstrate that CDRs can be used to provide personal-
ized and timely services. Specifically, we show that it can be used to provide
a recommendation service, one of the most popular personalized services. In
addition, we demonstrate the advantage of leveraging human behavior charac-
teristics for such services. Our REGULA recommendation algorithm, that builds
on the analysis of human habits, outperforms the state of the art recommen-
dation algorithms. We advocate that Telecom operators can leverage CDRs to
provide personalized services in a data-driven world and can significantly alter
the landscape of timely and personalized services.
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1. Introduction

In the last decade, mobile phone technology has witnessed the fastest spread
of human technology and the number of mobile phone users in the world is
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expected to pass the five billion mark by 2019, with more than 2/3 of users
owning a mobile phone[1]. Consequently, the saturation of the market is very
close and has led to a radical change in the business model of Telecom companies.
Since there are no people without a cell phone plan, the Telecom companies are
just competing to acquire customers from their competitors. So recent years
have seen a continuous push by Telecom companies to acquire new customers
by offering lower prices and better communication services.

However, even this strategy has reached its limits and to attract new cus-
tomers Telecom companies are nowadays moving towards providing more ap-
pealing and personalized services, apart from providing basic communication
services. This is in line with the general evolution of this market. Even smart-
phone providers like Apple and Google have shifted their focus to provide ser-
vices like Apple Streaming Service rather than just selling smartphones because
of the decreasing growth rate in the number of smartphones being sold since
2016[2].

In this new competitive landscape, providing personalized services based
on people’s preferences is paramount to attract and retain new customers. The
preferences of people can be learned by leveraging customer data. In the process
of learning the preferences of people the Telecom operators are left behind by the
different Online Social Networks and Media (OSNEM) platforms like Facebook,
Twitter, Google, Instagram, etc. that analyze the big data collected from these
platforms.

In this paper, we demonstrate that Telecom operators can utilize the big
data they already have, i.e. Call Detail Records (CDRs). CDRs are a signif-
icant sink of data for analysis related to human mobility and sociality[3, 4].
They offer information about the cells (or regions) where a user performs some
actions, which is usually a good approximation to reconstruct their mobility pat-
terns and can effectively be used to provide time and location-aware services[5].
Further, CDRs give information about the direct communication links between
people, i.e., the social network of users, enhancing the ability to provide person-
alized services. The rise of 5G and networked IoT devices will provide Telecom
operators with large volume of data that can be further used to build analytical
capabilities on top of their network to provide new services.

Since CDR data can capture both the mobility, the interests and the so-
ciality of a large population [6, 7, 8], we show that CDRs can be leveraged to
build an implicit Location Based Social Network (LBSN), which is a well-known
type of OSNEMs (e.g., Foursquare, Facebook ) that are traditionally used to
provide personalized services. We call such implicit LBSN, CDR-based LBSN
and show that it can also be used to provide timely and personalized services.
An LBSN is typically a network formed by users who visit different places and
share information about such places with friends in their social network. LBSNs
capture both the spatial mobility of users by storing their location visits and
information related to their social ties. People typically utilize LBSNs, such
as Foursquare[9], to find popular places of interest close to their current loca-
tion and also to extract, from their social network, the most prominent places.
A CDR-based LBSN can be regarded as a network of users where: (i) there
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are different kinds of on-phone interactions from which we can infer social re-
lationships among people, (ii) from the spatiotemporal interaction records, we
can associate people to the places they visit. The CDR-based LBSN is built to
share the same LBSN modeling framework and provide a foundation for Telecom
operators seeking to provide innovative services.

We argue that without obtaining the precise location information of people,
Telecom operators can use a CDR-based LBSN to offer personalized and timely
services as traditionally performed on LBSNs. Providing people a list of relevant
new places to visit, accordingly to Kantar research [10], is the most popular
type of LBS app (46%), followed by finding restaurants (26%), finding friends
nearby (22%), checking public transportation (19%), and receiving special deals
or offers from retailers (13%).

We show that traditional LBSNs and CDR-based LBSNs share a common
model and thus we use our LBSN-designed model REGULA [11] to demonstrate the
feasibility to offer novel services in CDR-based LBSN. Specifically, we provide
the users with suggestion of novel places that can be visited, based on their
preferences and locations. REGULA distinguishes from traditional algorithms by
incorporating regular behaviors (e.g., people frequently visit a set of places [12]),
the temporal importance of location and the real social information centered
around the user. REGULA is based on five hypothesis about the behavior of
people, and we verify them to be consistent both in standard LBSN datasets
and in a CDR dataset.

An important aspect of this research direction, is the fact that these new
services could be provided by Telecom operators with no significant additional
legal and technical resources, as, for many operators, legal aspects are already
specified in the contract with the customer and readily available CDR data can
be used to offer better services.

We summarize our key contributions as follows:

• We introduce the CDR-based LBSN and formally define it. We also illus-
trate how to use the CDR data to build networks characterizing a CDR-
based LBSN.

• We identify a set of human traits that are consistent in both CDR and
LBSN data: a) people have regular visit patterns and explore locations
close to their usual places; b) people go to locations recently visited by
others, especially friends; c) people prefer to visit locations close to their
current location.

• We use our algorithm REGULA, which embeds the above traits to reduce the
search space for candidate locations and compare its performance against
other state-of-the-art algorithms used on traditional LBSNs. We show that
REGULA outperforms other competitors in terms of precision and recall.

• We provide a discussion on novel personalized services that can be pro-
vided with this approach.
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The rest of the paper is structured as follows. In Section 2, we present our
dataset and the preprocessing performed. Further, we introduce the CDR-based
LBSN and describe how to construct it, and the characteristics of such networks.
Then we present our assumptions on human behavior and show that they hold
in Section 3. We illustrate the applicability of state-of-the-art algorithms on
our CDR-based LBSN. Then we introduce our algorithm REGULA (in Section 4).
Section 5 presents the evaluation of REGULA with the CDR-based LBSN dataset
and its comparison with the state-of-the-art algorithms. In Section 6, we present
the related work in LBSN. We then discuss the potentials of this work, and we
conclude the paper along with future directions.

2. CDR Dataset

In our study, we leverage a large anonymized dataset of Call Detail Records
(CDRs) [13] capturing voice calls, short text messages (SMS) and Internet traffic
of about 1 million subscribers of an international mobile operator. The on-
phone activities contained in the dataset are restricted to the metropolitan area
of Milan for a period of 67 days, from March 26 to May 31, 2012. During
this two-month period, an overall amount of more than 63 millions phone-call
records, 20 million text records and more than 61 millions Internet activities
took place.

Each kind of event provides us with different types of information. Specifi-
cally, on-phone communications, such as calls and text messages, provide that,
when a user calls or sends a text message, the user IDs of sender and receiver,
the cell ID of the handling towers and the date and time of established contacts
are all recorded. The only difference between calls and texts is the duration;
in fact, calls may last from seconds to hours, making it possible to extract the
handling cellular tower of the callee at the end of the on-phone activity. Differ-
ently, the information about the network traffic concerns only the users doing
Internet activities, i.e. when and where they connect to Internet.

Despite the above differences, we cast all three kinds of event into a single
formalization. Regardless of the event type, each record in the dataset is de-
scribed by the 7-ple tCDR = 〈s, r, tstart, tend, d, locstart, locend〉, where s and r
respectively represent the sender and the receiver of the call/text 1,2, tstart is
the initial time of the activity (when the call starts or an SMS is sent), tend is
the ending time of the event, d is the duration and locstart is the serving cell
the user s is attached to when the activity get started or ended (locend). Note
that text message and Internet activity has null duration d and empty tend and
locend fields, while Internet activity also has the field receiver r set to null.

Due to data confidentiality policies, we are not able to access the type and
content of the Internet connection data; not enabling us to develop content-

1Customers’ anonymity is guaranteed by a surrogate key which identifies each user.
2Customers’ privacy is guaranteed as customers’ data are used only for improving services,

if agreed in contract.
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based services [14], and to infer social relationships mediated by instant mes-
saging applications, such as WhatsApp or Facebook Messenger. In our case, the
latter point is not a limitation since the CDRs which we are using here, span
a period when the amount of text messages equals instant messaging one 3.
So, through voice calls and SMSs, we are still able to capture the relationships
mediated by mobile phones.

2.1. CDR-based Location Based Social Network

Call Detail Records represent a valuable data source which enables us to
capture the social relationships among the operator’s customers. In fact, they
are considered an essential tool to analyze social dynamics of a large population.
Also, CDRs provide the location of the users, enhancing the connection between
communications mediated by mobile devices and habits and relationships in the
real world. So, mobile phone data are the most valuable form of data to perform
user-centric analysis, especially when related to mobility and sociality.

The combination of social networking and geographic information is also
typical of location-based social networks (LBSN), so we can cast our CDRs
dataset into the LBSN modeling framework. Usually, LBSNs are characterized
by three graphs: i) a location-location graph which expresses a different kind of
relationships among the locations visited by the users; ii) a user-location graph,
modeling and summarizing the visit patterns of the users; and iii) a user-user
graph that represents the relationships between users.

In this work, we focus on the last two networks. Specifically, we define
the graph G = (U,L,Ef , Em), where U and L represent the set of users and
serving cells/locations, respectively. Ef ⊆ U ×U is the set of links representing
social relationships between users, and Em ⊆ U × L contains the links which
indicate a person u ∈ U has been attached to the cell loc ∈ L at least once
in two months. To better describe the visit patterns of the locations in L, we
introduce a mapping v that associates to each link e = (u, loc) ∈ Em a list of
the timestamps when the user u has visited the location loc, transforming Em

into a temporal network. The above definition includes both the user-location
graph and the user-user graph and supports the algorithm we will introduce in
the following sections. In the following, we will also describe how we infer the
user-user graph Ef from call and text message records, and how we define the
set Em by examining call, text message and Internet activities.

2.2. Building the friendship graph

Text message and call records are the primary data source to infer the social
interactions mediated by on-phone communications; interactions which are go-
ing to form the friendship graph (U,Ef ). However, deciding whether or not an
interaction has a social value depends on the purpose of communication. In fact,
calls or text messages are noisy due to advertisements and commercial messages

3https://www.agcom.it/documents/10179/2681146/AGCOM+-+Annual+Report+2012 02

The communications sector in Italy/de68cbc2-0860-42c2-9915-4102dff2feb1
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or communications issued by call centers and ask for a pre-processing to extract
the relevant interactions only. To this aim, we apply a bunch of heuristics to
filter out ’not-social’ traits. First, according to the literature on mobile phone
data cleaning [15, 16, 17, 18], we keep only reciprocated communications, i.e.,
there is a link from A to B if and only if A calls B and vice-versa. Further-
more, we filter out spurious and not persistent interactions by discarding the
pairs of users whose sum of call duration is less than one minute or whose total
number of on-phone interactions is lower than 4. Second, we filter out calls/-
texts involving other mobile operators’ customers. This way we eliminate the
bias given by the limited amount of information on the interactions/locations of
extra-operator customers. After the cleansing process, we obtain the undirected
graph (U,Ef ) made up by about 460,000 customers and 1,430,000 connections,
which generate almost 7 millions calls, 317.000 hours of conversations and 2
million texts.

In previous works [4], we have observed that the so built friendship graph
exhibits typical characteristics of social networks: it is a scale-free network that
exhibits small-world properties and tightly clustered groups; the same structural
characteristics revealed by traditional LBSN social networks [19].

2.2.1. Building the user-location graph

The realization of the user-location graph (U,L,Em) relies on all the three
types of record. Unlike the creation of Ef , we exploit all the records so that
we obtain the mobility traces of the operator’s customers as much detailed
as possible. Specifically, we extract the locations of the callee/caller at the
beginning and at the end of the call, the locations of the sender/receiver of the
text message and the position of the user when s/he reaches a fixed amount of
data traffic. By these data we create the set of the locations L, corresponding
to all the cells visited by at least one user, and define the temporal connections
(u, loc) in Em.

The mobile operator has provided the location of the above activities in
terms of area names of the zones , i.e. a group of cells, but without information
about cells coverage area and their exact positioning [20]. Thus, to estimate
the effective cell size distribution, we applied the following method. First, we
obtained the position of the cells by querying the LocationAPI web-service of-
fered by UnwiredLabs4, which provides the cell center along with the estimating
error. For half of the cells the estimation error returned by the service is below
300 meters, but the service does not release any detail on the algorithm they
use to infer the location of the cells. Second, we assume each cell celli being a
circle with center ci and coverage radius ri since we do not have any informa-
tion about the strength of the signals and the interference caused by buildings.
Then, we compute ri as half the average distance between ci and the centers of
the cells surrounding celli. In Figure 1 we report the cumulative distribution
function (CDF) of the cell radius as a function of the cell position. Due to the

4Website http://unwiredlabs.com/
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Figure 1: The cumulative distribution functions of the radius of the cells in the three city
regions.

concentric topology of Milan, we group cells into three city regions: the inner
circle of 3 Km radius - the city center; a second ring from 3 Km to 4 Km from
the city center; and a third ring, in the range of 4 Km to 5 Km. We detect
538, 143, and 88 cells inside each region, respectively. The figure shows that the
radius of the cells increases as we move farther from the city center, in fact, the
average radius of the inner circle, second ring, and third ring are 217, 325 and
446 meters, respectively.

Given this small coverage radius, we can provide a good approximation of the
mobile user’s position. In fact, unlike most of the previous localization studies
which derive location by cell towers covering as wide as a few kilometers zones,
in the city space cells have a very small coverage, of one or very few hundred
meters, that approximately corresponds to a building block.

2.3. Discussion

Although CDRs and LBSNs share a common model, they present a few
differences which may affect applications typical of LBSNs. The first difference
lies on how data about locations are sampled. In LBSNs the location can be
linked to published contents (geo-tagged media based) - passively by the device
or explicitly by a user’s labeling - or the venue is the key point of the service
(point-location based) and the subject of all the user’s activities, e.g., Foursquare
or Yelp. By contrast, CDR data are not point-location based - the serving cell
is an additional information released by the billing system. Neither they are
geo-tagged-media based, since they do not focus on specific content or interest,
such as photos, videos; and users do not explicitly set the location.

Second, there are differences about the precision of the localization and the
role of locations within the system. As for the former, in most LBSN the
geo-localization is GPS-based, thus providing high precision and the possibility
to associate a specific interest to the position of the user. By contrast, the
localization in CDRs has a cell-granularity which makes the identification of the
semantic of the location more difficult.
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As for the role of locations, LBSNs are social- and purpose-driven platforms
and locations are the key points to identify an interest common to many people
and to promote offline/online social relationships. Conversely, the location in
CDRs is a side-information of calls, text messages and Internet traffic. In this
case, the platform is not built around the concept of location rather the system
exploits this information to manage the services it offers.

3. Timely and personalized services in CDR

In the previous section, we have shown how CDR and typical LSBN share
the same model. We thus advocate that the timely and personalized services
performed on LBSNs, can be applied on CDRs (CDR-based LBSN), leveraging
on their rich mobility information. However, to the best of our knowledge,
CDRs have not yet been exploited for such services. We can argue that this is
because in most of existing CDRs the granularity of user’s localization was too
large to provide any relevant service.

We are going to introduce 5 hypothesis. In some forms, some of them where
demonstrated already several years ago, either in general, or for CDR, or both.
This is the case for H1 and H2, demonstrated in the general case in [21, 22, 23]
and for CDR in [3], or H4, demonstrated in general in several works, as discussed
in [24]. In the other cases, as far as we know, such hypotheses have not been
demonstrated, but are observations derived by human psychological behaviour.

In order to quantify such LBSN nature of CDR, we present an analysis of the
main characteristics of two standard LBSN datasets, Gowalla and Brightkite,
and compare them with the characteristics of our CDR-based LBSN.

3.1. Observations from datasets

In this section, we analyze our CDR-based LBSN dataset and compare it
with two standard and publicly available LBSN datasets, Gowalla and Brightkite [25],
that contain check-in records of people, to understand their regular mobility pat-
terns and temporal behavior. Based on multiple studies [21, 12] about human
mobility patterns, we formulate and test the following five hypothesis:

H1: Regularity - Users regularly (or habitually) visit a set of locations i.e.,
their Frequently Visited Locations (FVLs).

H2: Vicinity - Users visit places in the vicinity of their FVLs.

H3: Recency - Users are more likely to go to places that were visited recently
by others.

H4: Sociality - Users are more likely to go to places that were visited recently
by their friends.

H5: Inertia - Users are more likely to go places geographically close to their
present location.
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Table 1: Symbols

Symbol Description
U,L, T user set, location set, check-in time set (in days)
u, l user u ∈ U , location l ∈ L
t(u,l) time at which u visited location l, t(u,l) ∈ T
C set of all check-ins {< u, l, t(u,l) >}
Ef set of all friendship links between U users
G friendship graph of U users and Ef edges
V Lu unique locations visited by user u, V Lu ⊆ L
V Llastk

u lastk locations visited by user u, V Llastk
u ⊆ V Lu

FV Lu frequently visited locations of user u, FV Lu ⊆ L
Pu(l) Preference of user u ∈ U for location l ∈ L
Fu friends of user u, Fu ⊆ U
V Lf , f ∈ Fu locations visited by the friends of user u
llast The last location visited by a user llast ∈ L
RT time of recommendation (in days)
K number of recommended locations
ts(u, l) temporal score assigned by user u to location l
ts(l) aggregated temporal score of location l
TS set of aggregated temporal scores for all L
ds(u, l) distance score assigned by user u to location l
fs(u, l) friendship score assigned by user u to location l
rs(l) recommendation score assigned to location l

d(l, l̂) distance between locations l ∈ L and l̂ ∈ L
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Formally, we can define our assumptions as follows. Given a set U of people,
with the set of friends Fu for user u ∈ U , and a set L of locations visited in the
period T . Further definitions of symbols are given in Table 1.

H1: Regularity - ∀u ∈ Û , Û ⊆ U, Û � Û c

Pu(l) > Pu(l′) l ∈ FV Lu, l
′ /∈ FV Lu, FV Lu ⊆ L

H2: Vicinity - ∀u ∈ Û , Û ⊆ U, Û � Û c

min
lf∈FV Lu

(d(l, lf )) < min
lf∈FV Lu

(d(l′, lf )) ⇒ Pu(l) > Pu(l′)

H3: Recency - ∀u ∈ Û , Û ⊆ U, Û � Û c

l ∈ V Lû, û ∈ U & l′ /∈ V Lū,∀ū ∈ U ⇒ Pu(l) > Pu(l′)

H4: Sociality - ∀u ∈ Û , Û ⊆ U, Û � Û c

l ∈ V Lf & l′ /∈ V Lf , f ∈ Fu ⇒ Pu(l) > Pu(l′)

H5: Inertia - ∀u ∈ Û , Û ⊆ U, Û � Û c

d(l, llast) < d(l′, llast), llast ∈ V Lu ⇒ Pu(l) > Pu(l′)

Table 2 presents the characteristics of the two standard LBSN datasets:
Gowalla and Brightkite, and our CDR-based LBSN dataset. To validate
our hypothesis, we conducted tests at different points in time. When a test
is conducted at time t, a subset of complete dataset up to time t is used to
evaluate the hypothesis. For Gowalla, the analysis was conducted at days
t = {90, 120, .., 510} and for Brightkite at t = {90, 120, .., 870}. For our CDR-
based LBSN dataset, the analysis was conducted on two days t = {30, 45}. For
all tests on LBSN datasets, we only consider users who have at least one new
check-in in next 30 days, i.e., [t, t + 30). The filter to select users in Gowalla
and Brightkite is low because the dataset was collected over a long period (>
2 years) and some users join or leave the network during this collecting period.
For all tests on our CDR-based LBSN dataset, we consider only users, who have
at least 10 check-ins in next 15 days. The threshold to select users in CDR-based
LBSN is higher because the dataset spans a shorter period (2 months).

3.1.1. H1: Regularity

Large-scale studies [21] on human mobility patterns have shown that humans
exhibit regular mobility patterns, i.e., they visit a few set of locations repetitively
like a favorite pizzeria, McDonald’s near home, etc. We refer to any location
that a user has visited more than once as one of her/is relevant Frequently
Visited Location (FVL). Figure 2 shows the fraction of users with at least one
FVL at different testing times in Gowalla, Brightkite and CDR-based LBSN
datasets. We observe that a significant number of users regularly visit at least
one or more set of locations. Further, in Gowalla and Brightkite datasets, we
find that the fraction of users with at least one FVL increases with time, that
suggests that users tend to regularly visit the same set of locations.
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Table 2: Dataset Characteristics

Gowalla Brightkite CDR-based LBSN

Covered Period of Check-ins 569 Days 929 Days 68 Days
Number of Users 196,591 58,228 468,466
Number of Locations 1,280,956 772,933 901
Number of Check-ins 6,264,203 2,627,870 118,752,518
Number of Friendship Links 950,327 214,078 1,432,938
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Figure 2: For each snapshot of dataset at different times (days), fraction of users with atleast
one FVL in Gowalla, Brightkite and CDR-based LBSN datasets.

3.1.2. H2: Vicinity

Prior analysis done by other researchers on different LBSN datasets has
shown that people exhibit a lot of inertia and are unwilling to travel long dis-
tances from their current location [22, 23]. These works also show that more
than 70% of new check-in locations are within 10km of the previous check-in
location. Based on these studies, and on the fact that people spend most of their
time in the FVLs [21, 3], we hypothesize that people usually tend to explore
new locations that are close to their frequently visited locations such as places
close to their favorite pizzeria, etc. We call a location “new” for a person when
such location has never been visited by this person before. Formally:

∀u ∈ U, l ∈ L is new for u if l /∈ V Lu

We test this hypothesis by measuring the fraction of users with new check-ins
around their FVLs.

Figures 3, 4 and 5 present the fraction of users who have visited at least
one new location within a fixed range of their FVLs in Gowalla, Brightkite and
CDR-based LBSN datasets. We observe that more than 80% of users visit lo-
cations close to their FVLs in CDR-based LBSN dataset. While in Gowalla
and Brightkite datasets the fraction of users that visit locations close to their
FVLs keeps growing with time. In order to reduce the impact that could be
generated by well-known ping-pong effects that characterize mobile device as-
sociations to base stations, we further repeated the analysis while removing
the neighbourhood of the FVL base stations. What we found is a very similar
distribution, demonstrating that such effect has a very minor impact for recom-
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Figure 3: For each snapshot of dataset at different times (days), fraction of users with new
check-ins within a distance of 1km from their FVLs at different times (days) in Gowalla,
Brightkite and CDR-based LBSN datasets.
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Figure 4: For each snapshot of dataset at different times (days), fraction of users with new
check-ins within a distance of 2.5km from their FVLs at different times (days) in Gowalla,
Brightkite and CDR-based LBSN datasets.

mendation. Therefore, we can utilize this observation to provide more timely
and personalized services, for example to give correct recommendations to users
by suggesting them new locations around their FVLs.

3.1.3. H3: Recency

We hypothesize that people go to new places that were recently visited by
others. To test this hypothesis, we measure the number of new check-in locations
that were visited by others at most m days back. The maximum possible value
of m for Gowalla, Brightkite and the CDR-based dataset is the duration of the
period they cover, i.e., 569, 929 and 68 days respectively (see Table 2).

Figure 6 presents the most recent day of visit for all new check-ins in Gowalla
and Brightkite datasets. We observe that a significant number of users go to
places that were visited by others in the last 30 days. Therefore, we can say that
users mostly ignore locations that were visited a long time back. This analysis
confirms, if necessary, the importance of time while providing more timely and
personalized services.

In our CDR-based LBSN dataset, we observe that all users go to places that
were visited by others in the previous day. Since the ratio of the number of users
to the number of location is very high (519), i.e., on an average each location
was visited by around 519 users, the probability that a user had visited a given
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Figure 5: For each snapshot of dataset at different times (days), fraction of users with new
check-ins within a distance of 5km from their FVLs at different times (days) in Gowalla,
Brightkite and CDR-based LBSN datasets.
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Figure 6: Most recent day of visit for all new check-ins.

location on the previous day is very high. Thus, while confirming Gowalla and
Brightkite analysis, the distribution is not significant.

3.2. H4: Social Strength

Humans are social animals and heavily influenced by their friends and family.
We conducted tests to check whether a user in our CDR-based LBSN dataset is
affected by her/is social network friends. Specifically, we measure the percentage
of users visit new places after their friends have visited them.

Figure 7 presents how friends influence the choice of new places visited by a
user. For each user, we find out the total number of unique new location visits
and then measure what percentage of them were recently visited by their friends.
We observe that a significantly large number of users have gone to at least one
new location that was previously visited by their friends. Among them, the
number of users who do not visit a single location after their friends is only about
2% of the total number of users i.e., 688,302. Even if this number is very low,
in order to avoid a causality relationship, in Section 5, we use a holistic scoring
function that takes into account friendship, temporal and distance scores.

3.3. H5: Inertia

Our last hypothesis is that people exhibit a lot of inertia and often tend to
go to nearby places. For example, tourists are more likely to eat close to the
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Figure 7: Distribution of users who have visited a new location after their social friends.
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Figure 8: Distribution of how far do people travel to visit new locations.

monuments or other attractions they visit. Thus, in addition to our hypothesis
that people move closer to their FVL (H2), we argue that, when they are offered
a new service, they are going to accept if this requires a minimal effort. For
example, in the case of recommendation for new place to visit, they are likely
to go there if the place is geographically close to their present location. We
conducted tests where, for each new location visited by a user in our CDR-
based LBSN dataset, we measure its geographical distance from locations visited
before to see whether they exhibit inertia or not.

Figure 8 presents a distribution of distance traveled for a new location visit
by users in Gowalla, Brightkite, and our CDR-based LBSN dataset. We observe
that almost 90% of new locations visited by users in CDR-based LBSN are
within a range of less than 10km. Further, more than 84% of new locations
visited by users in Gowalla and Brightkite are within a range of less than 10km.
It confirms our hypothesis that people prefer going to places geographically close
to their present location.

Having validated our hypothesis on our CDR-based LBSN dataset along with
two major LBSN datasets, we can state that CDR-based LBSNs have similar
characteristics to standard LBSNs for timely and personalized services purposes.
We then formulate, from the five hypothesis, the following observations.

We use these five observations to develop our recommendation model REGULA
that will be used as example of timely and personalized service for Telecom
operators.
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Observation 1 People regularly visit a certain set of places (i.e., frequently
visited locations).

Observation 2 People usually visit places in the vicinity of their frequently
visited locations.

Observation 3 People usually visit places recently visited by others.

Observation 4 People usually go to places visited by their friends.

Observation 5 People usually go to places close to their own recently
visited places.

4. REGULA: Recommendation Algorithm

As discussed in the introduction, the primary objective of this work is to
demonstrate that CDR-based LBSN datasets can be used to provide timely and
personalized services. As example of such services, we use recommendation,
which is a typical service in LBSNs, and we obtain precise and accurate recom-
mendations by exploiting the specific features described in Section 3. Therefore,
after we have shown that CDR-based LBSNs are qualitatively and quantitatively
LBSNs, we want to demonstrate that we can apply standard recommendation
algorithms to recommend new places or regions a person is more likely to visit.
For this reason, we present in this section our recommendation model REGULA
that we will compare with state-of-the-art algorithms. The original algorithm,
presented in [11], was designed to get benefits from the presented hypotheses,
but in a limited scenario with fixed parameters. Here we relax such constraints,
and produce a more exhaustive analysis, performing a grid search of each pa-
rameter within a range, and measuring its impact on the performance metrics.
Specifically, we provide such extensive evaluation to measure the impact of the
different features of REGULA on the recommended performance for CDR-based
LBSN.

Given the check-in history C of U users at L locations, the goal of REGULA

is to recommend a list of K new locations (out of L) to any user u. In this
section, we first describe three functions used to assign scores to all L locations.
Later, we present our REGULA algorithm that utilizes these scoring functions to
provide location recommendations. The symbols used in the scoring functions
are given in Table 1.

4.1. Temporal Scoring Function

Our temporal function to assign score to a location l by user u is given by
the following equation:

ts(u, l) =

{ t(u,l)

RT l ∈ V Lu

0 l ∈ L \ V Lu
, ts(u, l) ∈ [0, 1]
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Let us assume that we have the check-in history of a user a ∈ U . User a
has visited locations p ∈ L and q ∈ L at timestamp t(a,p) and t(a,q) respectively
(t(a,p) < t(a,q)). Based on the Observation 3 (refer to Section 3.1), the recently
visited location q must be assigned a higher score compared to location p. Since
t(a,q) is greater than t(a,p) the above equation ensures that the temporal score
assigned to location q is greater than location p. Therefore, our generalized
temporal scoring function ensures that locations that were visited in distant
past are assigned smaller scores compared to recently visited locations.

The aggregated temporal score of a location l driven from all user check-ins,
can be computed as follows:

ts(l) =
∑
∀u∈U

ts(u, l) , ts(l) ∈ [0, |U |] (1)

4.2. Distance Scoring Function

Utilizing Observation 5, the distance scoring function assigns scores to loca-
tions based on the distance to last few check-ins of a user. Let V LK

u be the set
of last K locations visited by user u. The following equation gives the function
to assign a score to location l by user u:

ds(u, l) =

{
0 l ∈ V Lu

1
min

l′∈V Llastk
u

dist(l′,l) l ∈ L \ V Lu
(2)

dist(l′, l)− Euclidean distance between locations l′ and l

This distance scoring function ensures that new locations closer to the last K
visited locations of user u are assigned higher scores compared to other locations.

4.3. Friendship Scoring Function

Utilizing Observation 4, this function assigns scores to locations based on
check-in history of the friends of a user. Our friendship function to assign score
to location l by user u is given by the following equation:

fs(u, l) =

{
0 l ∈ V Lu∑

v∈Fu
(
t(v,l)

RT · α
t(v,l)
RT ) l ∈ L \ V Lu

(3)

α > 0, a constant weighting factor

This friendship scoring function ensures that new (or unvisited) locations
visited by friends of a user u are assigned higher scores compared to other
locations.

Finally, for every user u we define a recommendation score assigned to any
unvisited location l as follows:

rs(u, l) = ts(l) + fs(u, l) + ds(u, l) l ∈ L \ V Lu (4)
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Graph
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Figure 9: The overall process to recommend locations using REGULA at time t

The pseudo-code of REGULA recommendation algorithm is depicted in Algo-
rithm 1. Based on Observation 1, we first find out the most frequently visited
locations (FVLs) of a user u (Line 3). Later, for each FVL, we obtain a list of all
unvisited locations within a certain geographical region or bounded box (Line
9) (Utilizing Observation 2 ). Further, for every unvisited location lk of u, we
compute the temporal score (Line 12). Since each unvisited location is within a
bounding box around FVL, we increment the temporal score of each unvisited
location with the temporal score of associated FVL (Line 14). For every unvis-
ited location, we also compute the distance score (Line 16) and friendship score
(Line 19). The final recommendation score (rs(lk)) assigned to lk is the sum of
three scores: 1) aggregated temporal score, 2) distance score and, 3) friendship
score (Lines 12-19). Top N locations with highest scores (rs(lk) are recom-
mended to a user. Figure 9 presents the complete recommendation process of
REGULA.

5. Evaluation

In this section, we demonstrate that CDR-based LBSNs can be successfully
used for a timely and personalized service such as recommendation, and that
taking into consideration the five observations we presented in Section3 is ad-
vantageous. To do so, we present the quantitative evaluation of REGULA and
compare its performance with other algorithms in recommending a location to
users based on our Call Detail Records. In particular, we show that the regular
mobility habits of a person and distance to a recommended location significantly
impacts the accuracy of the recommendations.

We evaluated the performance on our CDR-based LBSN dataset (refer to
Table 2). Since we have the temporal mobility of users, we evaluated sequentially
on two different days: 30th and 45th. The training data considered for a test
on day t are all locations visited in the interval of (0, t). The testing data was
all locations visited in the interval of [t, t + 15days). In each test, REGULA was
used to provide K locations to every user who has at least one new check-in in
the testing data.
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1: REGULA (u, TS,C,G,K,B,M, lastk)
Input : user u ∈ U ; Set of temporal scores TS := {(l, ts(l)}, l ∈ L; Set

of all check-ins C; Friendship Graph, G = (U,Ef ); K: Number
of recommended locations: ; B : Bounding box size; M :
Maximum number of FVLs; lastk : Number of last locations

Output: A set of K recommended locations, R

2: Set Bounded Box size D = B(in km)
3: Get M most frequently visited locations of u using C, Lfvl

4: Get direct friends of u using G, Fu

5: Get lastk locations visited by u using C, V Llastk
u

6: R = ∅
7: foreach l′ ∈ Lfvl do
8: if l′ ∃ TS then
9: Get unvisited locations in bounded box of size D around l′,

Box(l′, D)
10: foreach lk ∈ Box(l′, D) do
11: /* Assign temporal score of lk */

12: rs(lk) = TS.ts(lk)
13: /* Add temporal score of FVL l′ */

14: rs(lk) = rs(lk) + TS.ts(l′)
15: /* Compute and add distance score of lk using

Equation 2 */

16: rs(lk) = rs(lk) + ds(u, lk)
17: /* Compute and add friendship score of lk using

Equation 3 */

18: if Fu 6= ∅ then
19: rs(lk) = rs(lk) + fs(u, lk)
20: end
21: if {(lk, rs(lk))} ∈ R then
22: Update R if new rs(lk) is larger
23: else
24: R← R ∪ {(lk, rs(lk))}
25: end

26: end

27: end

28: end
29: Sort R in descending order of scores rs(lk)
30: R← Get top N locations in R
31: return R

Algorithm 1: Pseudo Code of REGULA Recommendation Algorithm
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We evaluated the performance of REGULA using two widely used metrics i.e.,
precision at k (p@k) and recall at k (r@k) and are defined as,

p@k =
1

N

N∑
u=1

|Su(k) ∩ Vu|
k

, r@k =
1

N

N∑
u=1

|Su(k) ∩ Vu|
|Vu|

Su(K) is the set of top K locations recommended to a user u and Vu is
the set of locations visited. p@K metric measures how many locations (out of
K recommendations) were visited by users. r@k metric captures how many
locations visited by the user were part of the recommendation. We also would
like to highlight that, as the precision and recall of a recommender system are
defined as the average precision and recall over all the users, the recommenda-
tions provided by the system to a user does not change in a given instance of
evaluation. Thus, there is no variance of such metrics in the set of locations
recommended to a given user.

5.1. Evaluation of REGULA

We vary the parameters of our REGULA model and measure its impact on the
performance metric. The different parameters of REGULA are:

1. FV L – The number of Frequently Visited Locations control the regions
from where candidate locations are selected. We perform a grid search
over FVL ∈ {10, 20, 30, 40, 50} and measure its impact on the performance
metrics.

2. bbox – The Bounding box (bbox) represents a rectangular region of inter-
est. Bounding boxes placed around every FVL capture the set of candidate
locations. Therefore, the total number of candidate locations to rank de-
pends on the size of Bounding Box. A larger bounding box will capture
more candidate locations than compared to a smaller bounding box. We
perform a grid search of bounding box size over bbox ∈ {1km, 2.5km, 5km}
and measure its impact on the performance metric. The bounding box size
is the diagonal length of the rectangle.

3. lastk – This parameter controls how many of the locations visited in recent
past contribute to the distance score of a candidate location (refer to
Section 3.1.3). We perform a grid search over lastk ∈ {10, 20, 30, 40, 50}
and measure its impact on the performance metrics.

4. α – It controls the impact of friendship ties between users on the ranking of
candidate locations. We perform a grid search over α ∈ {10, 50, 100, 200}
and measure its impact on the performance metrics.

For each experiment, we vary any of the above four independent parameters,
together with K - the number of locations recommended to a user u and measure
its impact on the performance metric. Results of experiments performed on the
30th day and 45th day are shown in Figures 10, 12, 14 and Figures 11, 13, 15
respectively.
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In the following sections, we demonstrate that REGULA can utilize information
about the frequently visited locations of a user to provide better recommenda-
tions compared to the baseline algorithms. We also show that considering new
locations within a small distance from the FVLs lead to better recommenda-
tions.

5.1.1. Impact of FV L on Precision

Figures 10 and 11, show how the performance of REGULA varies for different
FVLs and a fixed bounding box of 1km. They also show the difference in
performance when lastk is varied from 10 to 50. For brevity, we only show the
performance when lastk is 10 or 50 (for all intermediate values of lastk refer to
Figures in Appendix). We observe that for a fixed K as the number of FVLs is
increased from 10 to 50, the set of candidate locations obtained within a fixed
bounding box increases along with difficulty to correctly rank them. Adding
more FVLs increases the noise to rank candidate locations. The phenomena
behind this effect have been presented in Barabasi’s work [21]: people tend
to be inertial. Therefore, they will hardly visit places far away from current
location. Thus, places that are close to far away FVLs are unlikely to be visited.
Further, when we increase the number of locations recommended K, the total
number of locations that need to be ranked correctly also increases. Therefore,
as expected, we observe that with increasing K the performance decreases,
independently from the other parameters.

In Figures 12, 13 we show the performance of REGULA for different FVLs
and a fixed bounding box of size 2.5km. When K is varied from 5 to 30, we
observe a significant change in the pattern of performance of REGULA compared
to the 1km bounding box. For a user with a certain number of FVLs, when the
bounding box size is increased from 1km to 2.5km the number of potential un-
visited locations of user increases because a bigger bounding box around FVL
will contain more number of candidate locations than compared to a smaller
one. Analyzing our CDR-based LBSN dataset, we observe that, on an average,
each user in the tests conducted on 30th and 45th day have visited 15 locations,
that is: the average value of |Vu| is 15. When K increases from 5 to 10, REGULA’s
performance improves because it can correctly rank the top-k locations. How-
ever, when K is increased beyond 10, the performance reduces because, as we
said above, with a higher value of K the total number of locations that need to
be correctly ranked increases, but the 2.5km bounding box is unable to capture
all potential candidate locations.

In Figures 14, 15 we show the performance of REGULA for different FVLs and
a fixed bounding box of size 5km. We observe that there is no difference in
performance for different FVLs because the 5km bounding box captures all the
potential candidate locations for all users. Therefore, whether we consider 10
or 50 FVLs of a user the total number of candidate locations to rank is same,
as the large 5km bounding box already includes all unvisited locations. When
K is increased from 5 to 15 the performance of REGULA increases because
it can correctly rank the top-K locations. Since each user in our CDR-based
LBSN dataset has visited on an average 15 locations, the theoretically best
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Figure 10: Performance of REGULA on CDR-based LBSN for different FVLs, α=10,
Box=1km, and 30 days for training.

performance will be at K = 15, where the set of recommended locations and
visited locations could be same. Therefore we observe the best performance of
REGULA when K is 15. Beyond 15, the performance of REGULA drops because the
intersection between the set of recommended locations and visited locations is
maximum at 15, while the increase in K or number of recommended locations
negatively impacts the performance.
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Figure 11: Performance of REGULA on CDR-based LBSN for different FVLs, α=10,
Box=1km, and 45 days for training.

5.1.2. Impact of Bounding Box on Precision

We highlight here the impact of distance that is reflected by the bounding
box parameter (bbox) already seen in the previous subsection by fixing FV L =
10, α = 10 and lastk = 10, which are the values for which we observed best
results. Figure 16 shows how the performance of REGULA varies with the size of
the bounding box for experiments performed on 30th and 45th day. As the size
of the bounding box (bbox) is increased from 1km to 5km the total number of
candidate locations within the bounding box increases. It is also evident from
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Figure 12: Performance of REGULA on CDR-based LBSN for different FVLs, α=10,
Box=2.5km, and 30 days for training.
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Figure 13: Performance of REGULA on CDR-based LBSN for different FVLs, α=10,
Box=2.5km, and 45 days for training.

our analysis (refer to figure 3) related to Vicinity hypothesis (H2) that shows
that as the size of the bounding box is increased the number of users with a new
location around their FVLs increases. An increase in the size of the bounding
box also increases the percentage of unrelated locations in the candidate set that
are very far from the places regularly visited by the user. Locations that are far
away from the FVLs might be closer to the lastk recently visited locations that
lead to a rise in the distance score (Equation 2) and an increase in the overall
recommendation score (Equation 4) assigned to it. An increase in the bounding
box increases the noise in the overall ranking of candidate locations. Thus, a
smaller bounding box will lead to a reasonable number of candidate locations
that can be ranked efficiently.
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Figure 14: Performance of REGULA on CDR-based LBSN for different FVLs, α=10,
Box=5km, and 30 days for training.
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Figure 15: Performance of REGULA on CDR-based LBSN for different FVLs, α=10,
Box=5km, and 45 days for training.

5.1.3. Impact of Last Visited Locations lastk on Precision

From Figures 10-15, we observe that REGULA performs best when we consider
a small number of recently visited locations lastk. Increase in the parameter
lastk adversely impacts the performance because locations visited in the distant
past reduces the impact of locations that were visited most recently. Therefore
the performance of REGULA reduces as lastk is increased from 10 to 50.

5.1.4. Impact of Social Ties (α) on Precision

We performed multiple experiments on 30th and 45th day to study the
impact of friendship ties by varying α. We perform a grid search of α over
α ∈ {10, 50, 100, 200} and found that the performance of REGULA does not vary
meaningfully. Therefore we conclude that the variable α used to compute the
impact of friendship score on the recommendation does not have a significant in-
fluence on the overall performance. The poor impact of the friendship relations
on the recommendation of new locations in a CDR-based LBSN w.r.t. LBSNs
may be the consequence of the different nature of the two social networks. Since

23



5 10 15 20 25 30
0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

Training period: 30 days

K − Number of locations recommended

P
re

ci
si

o
n

 

 

Box − 5km

Box − 1km

Box − 2.5km

(a)

5 10 15 20 25 30
0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

Training period: 45 days

K − Number of locations recommended

P
re

ci
si

o
n

 

 

Box − 5km

Box − 1km

Box − 2.5km

(b)

Figure 16: Performance of REGULA on CDR-based LBSN for different size of Bounding Box,
α=10, FVL=10, lastk=10, and 30/45 days for training.

typical LBSNs are interest- and social-driven platforms, the check-in activities
are strongly influenced by friends’ behaviors. A factor which is further empha-
sized by the gamification mechanisms these platforms implement and promote.
On the other hand, the social interactions captured by CDR data express dif-
ferent purposes, from a common interest to formal or essential communications,
so just a few relationships may influence the mobility patterns of an individual.

Finally, based on the performance results presented in this section, we ob-
serve that the precision of REGULA in CDR-based LBSNs, which ranges between
4e−2 to 6e−2 (k = 10), is comparable with traditional recommendation in LB-
SNs. As presented in [11], precision ranges between 1e−3 to 2e−2 (k = 10) for
large LBSN datasets. Thus, we can conclude that, in addition to sharing sim-
ilar characteristics with traditional LBSNs, CDR-based LBSNs can effectively
be used for recommendation services.

5.2. Comparison of REGULA with reference recommendation models

To show the importance of the five observations in Section3, we compare the
performance of REGULA, which is based on them, with the following standard
factorized based recommendation models:

• LibFM [26] is a factorization based model that estimates interactions
between users and locations by means of a product of vectors, whose
factors derived from the user-location visits. The users and the loca-
tions vectors lie in the same latent space. The product between a user
and a location vectors represent the preference of such user for this lo-
cation. In our evaluation, we perform a grid search of factor size over
Factors ∈ {16, 32, 64, 128, 256} to select the best parameters.

• GeoMF [27] is another factorization based model that augments the user’s
and location’s latent factors to incorporate the spatial constraints. Ma-
trix Factorization (MF) based models assume that each user and location
can be mapped to joint latent factor space and the preference of a user
for a location can be approximated by their dot product in the latent
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factor space. In GeoMF the authors augment the latent factors of user
with latent factors of locations visited by them and augment the latent
factors of locations with latent factors of influential locations. REGULA
incorporates geographical constraint using the distance score. Further,
GeoMF does not incorporate time information in the matrix factorization
for location recommendation, while REGULA incorporates temporal in-
formation in all the three scoring functions. In our evaluation, we perform
a grid search of factor size over Factors ∈ {16, 32, 64} to select the best
parameters. We restrict the factor size to 64 due to memory constraints
in the execution of GeoMF.

5.2.1. LibFM model

Figure 17 shows the performance of LibFM for the different number of rec-
ommended locations K. Based on our experiments we observe that LibFM
assigns very similar scores to all the candidate locations of a user. Since there
are only 900 locations in our CDR-based LBSN dataset, LibFM is unable to
utilize the limited number of interactions between user and locations in train-
ing data, to correctly score the candidate locations in testing data. As K is
varied from 5 to 30 the probability for a visited location to be part of the top
k increases that leads to an increase in precision. However, the performance
of LibFM is still very low than compared to REGULA. Based on our additional
experiments we observe that precision of LibFM reduces beyond K = 50.
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Figure 17: Precision of LibFM on CDR-based LBSN.

5.2.2. GeoMF Model

In Figure 18, we show the performance of GeoMF for the different number
of recommended locations K. Similar to standard recommendation algorithms
that rank all unvisited locations in the training data of a user, as K increases
the precision reduces because of the increased in difficulty to correctly rank
the top K locations. As K is increased from 5 to 30, we do not observe a
proportional increase in the number of visited locations that are part of the top
K recommendations. We find that GeoMF performs best when a latent factor
of size 32 models every user and location.
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Figure 18: Precision of GeoMF on CDR-based LBSN.

5.2.3. Comparison of algorithms in CDR-based LBSNs

In Figures 19 and 20, we compare the performance of REGULA, LibFM, and
GeoMF for experiments performed on 30th and 45th day. For true comparison,
we select the best parameters for each algorithm i.e., for REGULA {bbox = 1km,
FV L = 10 and lastk = 10}; for GeoMF {Factors = 32}; for LibFM {Factors =
128}. When we recommend 5 locations to each user, i.e., K = 5, REGULA

performs six times better than LibFM and two times better than GeoMF. When
K is increased from 5 to 30, REGULA still outperforms GeoMF, but we observe
a reduction in the performance gap because 1km bounding box of REGULA does
not capture all potential candidate locations.
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Figure 19: Comparison between the precision of REGULA, LibFM and GeoMF for their best
parameters i.e., for REGULA bbox = 1km, FV L = 10 and lastk = 10; for GeoMF Factors = 32;
for LibFM Factors = 128

5.3. Discussion

In this Section, we aimed to confirm the validity of using CDR data for
timely and personalized services, and to quantify the importance of the five
observations on human behaviour for this task. We used as example of such
services the recommendation service. In order to provide a complete under-
standing of the impact of each observation, we have measured the impact of
different independent parameters of our REGULA model on the task of recom-
mending new locations to users of a CDR-based LBSN. We measured the per-

26



5 10 15 20 25 30

K - Number of recommended locations

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

R
ec

al
l

Training period: 30 days

REGULA

GeoMF

LIBFM

5 10 15 20 25 30

K - Number of recommended locations

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

R
ec

al
l

Training period: 45 days

REGULA

GeoMF

LIBFM

Figure 20: Comparison between the recall of REGULA, LibFM and GeoMF for their best
parameters i.e., for REGULA bbox = 1km, FV L = 10 and lastk = 10; for GeoMF Factors = 32;
for LibFM Factors = 128

formance of REGULA based on two standard metrics precision and recall. This
demonstrated the effectiveness of using CDR-based LBSN for such timely and
personalized service, and gave a qualitative measure of the benefit of basing
the strategy on the five observations on human behaviour. Further, in order to
give a quantitative measure of this benefit, we compare REGULA with reference
recommendation algorithms, i.e., LIBFM and GeoMF and we show that REGULA
outperforms them.

6. Related Work

To the best of our knowledge, this is the first work addressing timely and
personalized services for Telecom operators. Some state-of-the-art, given the
service used to validate our concept, can be given for recommendation services
or for place recommendation.

Recommendation in LBSNs The most popular recommender systems uti-
lize variants of Collaborative Filtering (CF) techniques to recommend places and
two most commonly used filtering methods are Location-Based and User-Based
Collaborative filtering [28]. However, these collaborative filtering algorithms do
not exploit complete information of users in an LBSN as they do not take into
account social network based information. Specifically, a location recommender
system for LBSN can utilize both the location history of all users and their social
ties to provide more accurate and quicker recommendations. It will also help
businesses to identify their potential customers and provide incentives based on
their personal and social interests. Some recent works started to develop sys-
tems for traditional LBNSs taking into account also some behavioral and social
aspects of people. LORE [29] focuses on exploiting sequential movement pattern
of users to provide better recommendations in LBSN. The work done by Hao et
al. [22] utilizes friendship and distance to a new location to provide recommen-
dations. However, these works do not take into account temporal importance of
recommended locations, i.e., they do not distinguish between old and new (in
the time domain) popular locations. In [30] authors present a time-aware rec-
ommender system but do not take into account friendship ties to recommended
location.
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Factorization based models are found to perform better than collaborative
filtering algorithms[31]. These models have become popular after outperform-
ing filtering based methods in the NetFlix competition [32]. LibFM [26] is a
standard factorization based model that characterizes users and locations by
a vector of factors inferred from the user-location visits. The vectors are in
the same latent space and, the preference of a user for a location is modeled
as an inner product in that space. GeoMF [27] is another factorization based
model that augments the user’s and location’s latent factors to incorporate spa-
tial constraints because people mobility patterns tend to cluster around specific
locations.

Recently, some proposed works, [33] and [34], utilize different Deep Neural
Networks to provide recommendations of movies/items on web portals. The
work in [35] provided a first example of location recommendation with Deep
Neural Networks.

Place recommendation in CDR datasets. While all these algorithms
have been applied to tradition LBSNs to recommend new venues or locations,
to the best of our knowledge CDRs data have never been used to cope with this
task. In fact, studies on forecasting the users’ mobility through CDRs data have
focused on the prediction of the next cell/location a user will visit to handle and
manage more efficiently the cellular network infrastructure. From the seminal
work by Song et al. [36] on the predictability of human mobility extracted from
a CDR dataset, a plethora of methods have been proposed to solve the next
location prediction task. Most of them are based on the sequential pattern of
the location visits of a single user, commonly modelled by a k-order Markov
chain [37, 38]; whereas other predictors include the location histories of other
users to solve the cold-start problem [39, 40, 41, 42]. Although some of the
previous methods can predict unvisited locations, they are mainly adopted in
the prediction of the cell a user will visit next or in the next time interval.

Human mobility and social behaviors from CDR data. In the last
ten years the availability of a few CDR datasets resulted into an abundant liter-
ature on human mobility and sociality of large populations. Here we focus only
on results which confirm and validate the five traits we introduced in Section
3. We refer readers to more organic and exhaustive literature reviews covering
both mobile phone data analysis [16] and methodological and technological as-
pects [13].
The people’s propensity of frequently visiting a small numbers of locations and
exploring places close to them has been confirmed by many studies on the reg-
ularity of human mobility. For instance, Song et al. [36] have shown that the
characteristics of human mobility can be reproduced by a model mixing the
frequent visits of a pool of locations and the exploration of new places. Csáji
et al. [43] have identified the same trait in a CDR dataset in Portugal and
found that the average number of frequently visited locations is 2, as confirmed
in Papandrea et al.’s work [3]. Finally, Bagrow et al. [44] have introduced the
idea of ’habitats’ to capture daily and weekly mobility regularity based on the
frequency of visit of locations.
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The strict interplay between people interacting by mobile devices and their ge-
ographical proximity - which results into our fourth hyphotesis - has been the
subject of a few recent studies. For instance, the work of Phithakkitnukoon et
al. [45] has shown that most of the places a person visits are close to their friends
locations, while Calabrese et al. [46] and Wang et al. [47] that the frequency of
between users is highly correlated with their frequency of calls and proposed a
few mobility features to improve the performance of link recommendation algo-
rithms. Here we explore the opposite direction, in fact we exploit the sociality
of the operator customers to recommend new places to visit, i.e. we use some
social aspects to influence people’s mobility.

7. Discussion

In Section 5, we have demonstrated the plausibility of using CDR data for
timely and personalized services, and we have also shown the better perfor-
mance of the REGULA algorithm that is based on the five observations on human
behaviour described in Section 3. This opens for a novel and quite unexplored
field for Telecom operator services. Two important factors make this field very
promising:

• Privacy : CDR-based services are much less privacy invasive than GPS-
based ones. Currently, with the new GDPR, for the latter it will be very
difficult to be compliant with them.

• Competitive Costs: The costs associated to gathering data to build CDR-
based LBSNs is very low. In fact such data are already automatically
gathered with the traditional communication services provided by Telecom
operators.

Finally, we also notice that such data would be complemented and reinforced,
once a given service is started and running, by the service-specific data. The
service specific data and CDR data would provide strategic advantage to Tele-
com operator that offers such a given service. This is particular important to
build the friendship graph, as we described in Section 2.2. In this work, as we
were using 2012 traces, we had the possibility to use SMS, in addition to calls,
for this task. However, SMS is no longer very used. But, as indicated above,
this problem will be overcome by service-specific data.

8. Conclusion and Future Work

CDR data is the most available and representative set of information on
human behavior that include both physical and social data. CDR is one of
the most secure and regulated data that is also legally accessible to Telecom
operators as they ensure that the data storage and analysis is compliant to the
strict government regulations as Telecom industry already comply with them.
Further, this data is available to Telecom operators because most of the privacy
and security regulations are already included in the operators’ contracts.

29



At the same time, Telecom operator’s business model is rapidly moving to-
wards providing timely and personalized services. We anticipate a challenging
research direction on such services for Telecom operators, built upon a method-
ology that uses CDR as traditional LBSNs. To support this promising approach,
we first demonstrated that we could build an LBSN from CDR: the CDR-based
LBSN. We then proved that CDR data could be efficiently used for such timely
and personalized services: we have used some state-of-the-art algorithms on
our CDR-based LBSN and shown that we can recommend a new location with
similar performances to standard LBSNs.

We also showed that such timely and personalized services are better built
considering some specific characteristics of human behavior, and we demon-
strated the superior performance of this approach. Among recommendation al-
gorithms employed, our REGULA algorithm has shown much better performances
due to its capacity of better fostering the social and the proximity knowledge.
As we have illustrated in Section 3.1, the mobility patterns of people, and con-
sequently also LBSNs and CDR-based LBSN, present the characteristics of Reg-
ularity, Vicinity, Recency, Social Strength and Inertia. REGULA has been built to
take advantage of such characteristics, and the benefits are evident as REGULA

can recommend better locations than other state-of-the-art algorithms.
We predict that timely and personalized services from Telecom operators

are going to be the next frontier of this decade and our work opens a novel and
very rich research direction.
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Figure 21: Performance of REGULA on CDR-based LBSN for different FVLs, α=10,
Box=1km, and 30 days for training.
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Figure 22: Performance of REGULA on CDR-based LBSN for different FVLs, α=10,
Box=1km, and 45 days for training.
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Figure 23: Performance of REGULA on CDR-based LBSN for different FVLs, α=10,
Box=2.5km, and 30 days for training.
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Figure 24: Performance of REGULA on CDR-based LBSN for different FVLs, α=10,
Box=2.5km, and 45 days for training.
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Figure 25: Performance of REGULA on CDR-based LBSN for different FVLs, α=10,
Box=5km, and 30 days for training.
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Figure 26: Performance of REGULA on CDR-based LBSN for different FVLs, α=10,
Box=5km, and 45 days for training.
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