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Introduction

Abstract

This review summarizes the pathogenetic role of naturally occurring mutations of G protein genes in
endocrine diseases. Although in vitro mutagenesis and transfection assays indicate that several G
proteins have mitogenic potential, to date only two G proteins have been identified which harbor
naturally occurring mutations, Gsa, the activator of adenylyl cyclase and Gi2a, which is involved in
several functions, including adenylyl cyclase inhibition and ion channel modulation. The gene
encoding Gsa (GNAS1) may be altered by loss or gain of function mutations. Indeed, heterozygous
inactivating germ line mutations in this gene cause pseudohypoparathyroidism type Ia, in which
physical features of Albright hereditary osteodystrophy (AHO) are associated with resistance to
several hormones, i.e. PTH, TSH and gonadotropins, that activate Gs-coupled receptors or
pseudopseudohypoparathyroidism in which AHO is the only clinical manifestation. Evidence suggests
that the variable and tissue-specific hormone resistance observed in PHP Ia may result from tissue-
specific imprinting of the GNAS1 gene, although the Gsa knockout model only in part reproduces
the human AHO phenotype. Activating somatic Gsa mutations leading to cell proliferation have
been identified in endocrine tumors constituted by cells in which cAMP is a mitogenic signal, i.e.
GH-secreting pituitary adenomas, hyperfunctioning thyroid adenomas and Leydig cell tumors.
When the same mutations occur very early in embryogenesis they cause McCune—Albright
syndrome. Although these mutations would in principle confer growth advantage, studies failed to
detect differences in the clinical and hormonal phenotypes, suggesting the existence of mechanisms
able to counteract the activation of the cAMP pathway. Activating mutations of Gi2a have been
identified in a subset of ovarian, adrenal and pituitary tumors, but their prevalence and significance
are still controversial. Finally, although Ga subunits are the only components of the heterotrimeric
GTP binding proteins which harbor known mutations, 3/ subunits should be considered possible
targets of genetic alterations as suggested by the frequent presence of B3 subunit variants in
patients with essential hypertension.
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while a number of mutant G proteins cause cell
transformation, as demonstrated by in vitro muta-

The majority of polypeptide hormones, all monoamine
neurotransmitters, prostaglandins and even ions, such
as Ca’*, signal their target cells through membrane
receptors belonging to a superfamily that share a
common structural and functional motif, i.e. a single
polypeptide with seven membrane-spanning domains,
and a common transduction mechanism, i.e. coupling
to G proteins. Therefore, G proteins play a key role in
relaying signals from the plasma membrane to
intracellular effectors. In the past few years, defects in
G protein-coupled signal transduction have been
identified as the cause of endocrine disorders (1-6).
In particular, several G protein-coupled receptors have
been demonstrated to be altered by loss or gain of
function mutations, leading to the clinical phenotype of
hormone defect or excess, respectively. Conversely,
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genesis and transfection assays, to date only two G
protein genes have been identified which harbor
naturally occurring mutations in endocrine disorders.
Moreover, mutations of the effector molecules seem to
occur even more infrequently in human diseases. This
review will briefly describe how G proteins activate
signal transduction and how mutations of these
proteins cause endocrine diseases.

G protein structure and function

Heterotrimeric guanine nucleotide binding proteins,
known as G proteins, form the superfamily of proteins
involved in the signal transduction from seven trans-
membrane receptors to intracellular effectors. They are
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heterotrimers composed of three distinct subunits, o, B
and vy, the functional specificity of each G protein
depending on the o subunit, which differs from one G
protein to another (7—9). The o subunit contains high
affinity binding sites for guanine nucleotide and has
intrinsic GTPase activity,. The « subunit guanine
nucleotide pocket consists of five distinct, highly
conserved stretches (G1-G5). The G1, G4 and G5
regions are important for the binding of GTP while the
G2 and G3 regions determine the intrinsic GTPase
activity of the a subunit. The GDP-bound form binds
tightly to By and is inactive, whereas the GTP-bound
form dissociates from By and serves as a regulator of
effector proteins. The receptor molecules cause the
activation of G proteins by affecting several steps of the
GTP cycle, resulting in the facilitation of the exchange
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of GTP for GDP on the « subunit. The duration of
subunit separation is timed by the rate of o subunit
mediated hydrolysis of GTP (Fig. 1). However, deactiva-
tion of G protein signaling pathways in vivo can occur
10- to 100-fold faster than the rate of GTP hydrolysis in
vitro, suggesting the existence of GTPase activating
proteins able to deactivate the o subunit. In fact, a
family of GTPase activating proteins termed RGS
(regulators of G protein signaling), that deactivates
several G proteins by allowing inactive heterotrimers to
reform, has been identified (10—12). It is worth noting
that a RGS protein able to deactivate the stimulatory
regulatory protein of adenylyl cyclase has not yet been
identified (12).

Although the Ga subunit family includes proteins
with different functions, unequivocal assignment of one

Figure 1 Schematic representation of G protein activation and signaling. Heterotrimeric G proteins are composed of three distinct
subunits «, B and v, the functional specificity of each G protein depending on the « subunit. The a subunit contains high affinity
binding sites for guanine nucleotides and have intrinsic GTPase activity. The GDP-bound form binds tightly to By and is inactive,

whereas the GTP-bound form dissociates from By and serves as a regulator of effector proteins. The receptor molecules cause the
activation of G proteins by facilitating the exchange of GTP for GDP on the « subunit. The duration of subunit separation is timed by
the rate of a subunit mediated hydrolysis of GTP. Finally, a family of GTPase activating proteins termed RGS (regulators of G protein
signaling) are able to deactivate several G proteins by allowing inactive heterotrimers to reform.
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Table 1 G protein signaling.

Ga subtype Downstream signal
Gsa Increased AC activity
Ca®* L-channel opening
K*-channel closing
Giy_za, Goa Reduced AC activity
Ca?* L-channel closing
K*-channel opening
Gg/11a Increased PLCR activity
Gisa Cytoskeleton rearrangement

Na*/H* antiporter

AC, adenylyl cylase; PLCB, phospholipase C.

G protein to a single effector molecule has been only
achieved for some G proteins (13—15). To date, about
20 distinct o subunits have been cloned. According to
homologies in sequence and function, they can be
divided into four major subfamilies represented by Gsa,
Gia,, Gga and G12a. Proteins of the Gs class have been
defined as ubiquitous activators of all adenylyl cyclase
isoforms, whereas their effects on ion channel activity
are restricted to selected cell types. Members of the Gi
class, which includes several protein substrates for
pertussis toxin ADP ribosylation such as Gil-3 and Go,
are involved in adenylyl cyclase inhibition, ion channel
modulation and phosphatase activation. Subunits of
the Gq/11 class are putative mediators of phospho-
lipase C activation, whereas the current knowledge
about Gal2, 13 and Z is sparse (Table 1).

Five B subunits and 12 vy subunits have so far been
identified. Until recently the G protein o subunit alone
was thought to activate intracellular effectors, newer
evidence indicates that B and/or y subunits also play a
part in signal transduction. In fact, it has been
demonstrated that these subunits may activate specific
isozymes of both phospholipase C and adenylyl cyclase
(16). This additional mechanism of action of G proteins
seems to occur with high selectivity. For instance,

Table 2 Endocrine diseases resulting from G protein alterations.
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whereas B+ inhibits type I adenylyl cyclase activity, this
complex greatly potentiates the stimulatory effect of Gs
on both type II and IV adenylyl cyclase and is ineffective
on the other isozymes (17, 18). Moreover, among the
different B and -y subunits so far cloned, the By of the
Gi family seems to be frequently involved in the
modulation of intracellular effectors involved in cell
proliferation (19-21).

Abnormalities of G protein signaling
pathways

It has long been known that proteins involved in
signaling pathways are possible targets for mutations.
As previously demonstrated for nuclear hormone
receptors and growth factor receptors, it has been
proposed that components of G protein signaling
pathways may potentially be involved in the develop-
ment of neoplastic and non-neoplastic human diseases
(1-6, 22, 23). In fact, it has been demonstrated that
mutations in the genes encoding these proteins are
responsible for several human diseases presenting with
the clinical phenotype of hormone excess or defect. The
abnormal transduction may be due to mutations in the
genes encoding either G protein-coupled receptors or G
proteins or effectors. In Table 2 human diseases due to
G protein alterations are summarized. By contrast,
mutations of effector molecules seem to occur very
infrequently in human diseases. In particular, the
presence in invasive pituitary tumors of point muta-
tions of protein kinase C-a, an enzyme known to
importantly regulates cell growth and differentiation,
has been previously reported, but not confirmed by
subsequent screening studies (24, 25). Very recently, a
mutation in the regulatory subunit of the protein
kinase A gene has been identified in patients affected
with Carney complex type 1 (26) suggesting the
possible involvement of this kinase in the pathogenesis
of sporadic endocrine neoplasms, such as pituitary
tumors, that are included in this syndrome.

Gsa
Loss of function
Pseudohypoparathyroidism type la
Pseudohypoparathyroidism type Ib

Gain of function
Pituitary or thyroid adenomas
Leydig cell tumors
McCune—Albright syndrome

Gain or loss of function
Testotoxicosis with pseudohypo-
parathyroidism type la
Gi2a
Gain of function
Pituitary adenomas

Point mutations, deletions, insertions impairing any Gsa functional domain Germline

Alterations of GNAS1 locus imprinting probably leading to reduced Gsa Germline
expression; uncoupling GNAS1 mutation

Point mutation of Arg 201 or GiIn 227, inhibition of GTP hydrolysis Somatic

Point mutation of Arg 201, inhibition of GTP hydrolysis Somatic

Point mutation of Arg 201, inhibition of GTP hydrolysis Somatic

Point mutation of Arg385Ser, acceleration of GDP release and signal Germline
activation at 34 °C (testis); inactivation of Gsa at 37 °C (parathyroid)

Point mutation of Arg 179 or Gin 205, inhibition of GTP hydrolysis Somatic

Point mutation of Arg 179, inhibition of GTP hydrolysis Somatic

Adrenal cortex and ovary tumors
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The first indication that alterations in the structure
of G proteins could lead to development of disease was
suggested by the observation that the Vibrio cholerae
toxin possesses an ADP-ribosyl transferase activity, the
target amino acid for this reaction being Arg 201 in the
Gsa subunit. The ADP ribosylation of this residue and
the subsequent blockade of the intrinsic GTP-ase
activity induces the constitutive activation of Gsa,
leading to maintained and hormone-independent
activation of adenylyl cyclase. The constitutive activa-
tion of adenylyl cyclase in intestinal epithelial cells
results in increased secretion of electrolytes into the
bowel lumen and the subsequent watery diarrhea. In
vitro mutagenesis experiments confirmed that Arg 201
is a key component of the regulatory turn-off mechan-
ism of Gsa and a similar role is played by Arg residues
at equivalent positions in other G protein « subunits.
The pathogenetic toxin of Bordetella pertussis causes
ADP ribosylation of a cystein residue located in the
C-terminal tails of G proteins belonging to the Gia
family, resulting in reduced responsiveness to receptor
activation (15).

In the past few years, molecular biological
approaches have provided important insights into the
pathogenetic role of naturally occurring mutations in G
protein genes with consequent altered signal trans-
duction. The phenotypic expression of these mutations
depend on several determinants; in particular, muta-
tions may occur as germ-line mutations, affecting every
cell in which the gene is expressed vs somatic
mutations that lead to focal manifestations of the
disease. Moreover, G protein mutations may cause
either loss or gain of function, by inactivating or
activating signal transduction, leading to the clinical
phenotype of hormone defect or excess, respectively.

Inactivating mutations of the Gsa gene
(GNAS1)

Albright hereditary osteodystrophy and
pseudohypoparathyroidism

In 1942 Albright et al. described the first hormone
resistance syndrome, which they termed pseudo-
hypoparathyroidism (PHP) (27). They reported
patients with normal renal function, in which
hypocalcemia and hyperphosphatemia were associated
with elevation of serum PTH levels. These patients
also showed a reduced calcemic and phosphaturic
response to injected bovine parathyroid extract
compared with patients with primary hypopara-
thyroidism, leading to the hypothesis of a resistance
to PTH action. Moreover, these patients displayed a
constellation of physical features including short
stature, centripetal obesity, rounded face, short neck
and brachydactyly which is now referred to as
Albright hereditary osteodystrophy (AHO). In subse-
quent reports subcutaneous ossifications and mental
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retardation were also found to accompany the
majority of cases of AHO (28, 29). In contrast,
patients showing the physical features of AHO without
any evidence of PTH resistance were described by
Albright et al. ten years after their first report of PHP
(30). This new syndrome, which was termed pseudo-
pseudohypoparathyroidism (PPHP) may be present
either in kindreds in which PHP is present or as an
isolated defect. As more and more cases were
described it appeared that the majority of familial
PHPs were inherited in an autosomal dominant
manner (31-33).

The identification of the PTH receptor and its signal
transduction pathway (35, 36) has lead us to a better
understanding of PHP pathophysiology. Since the PTH
receptor is coupled to Gs and therefore activates cAMP
formation, measurement of serum and urinary cAMP
levels after the injection of bovine PTH permitted the
differentiation of PHP type I, in which a blunted cAMP
response is observed, from PHP type II in which the
cAMP response to PTH is conserved but a deficient
phosphaturic response indicates a defect distal to cAMP
generation in target cells (Table 3). Moreover, PHP type
I now refers to a heterogeneous group of disorders with
AHO clinical manifestations that can be differentiated
by the presence (PHP Ia and PHP Ic) (37—-41) or
absence (PHP Ib) (39, 42) of resistance to hormones
other than PTH that act via Gs coupled receptors, such
as TSH and gonadotropins. Patients with PHP Ia have a
partial deficiency (about 50%) of Gs activity in the
membranes of various cell types (erythrocytes, fibro-
blasts, platelets, etc.), due to a reduction in mRNA and
protein levels (38—40) whereas this defect is absent in
patients with PHP Ic (42—44) (Table 3). Patients with
PPHP generally coexist with PHP Ia in the same family
(43) and have the same ~50% deficiency of Gs activity
in cell membranes (44, 45). However, in contrast to
their relatives with PHP Ia, patients with PPHP show a
normal response of urinary cAMP to exogenous PTH
(44). Clinical features of PPHP can also be found in
families in which PHP Ia is absent, thus presenting as
an isolated defect. In these cases diagnosis of PPHP is
particularly difficult as many features of AHO are quite
unspecific or are present in other disorders, some of
which ascribed to specific chromosomal defects, as for
the small terminal deletions on chromosome 2 in
AHO-like syndrome (46—438).

Table 3 Classification of pseudohypoparathyroidism.

AHO Hormone resistance GNASI defect
PHP la Yes Multiple Yes
PPHP Yes None Yes
PHP Ib No PTH Yes
PHP Ic Yes Multiple No
PHP 1l No PTH No

PHP, pseudohypoparathyroidism; PPHP, pseudopseudohypoparathyroidism.
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Genetic analysis of GNAS1 gene

PHP type Ia and PPHP

In 1990 Pattern et al. (49) detected and described the
first heterozygous inactivating mutation in the gene
encoding the Gsa (GNAS1), responsible for PHP type Ia
in one family. The genetic defect in the majority of
patients with PHP Ia and in their relatives with PPHP
has been then confirmed by the identification of
multiple heterozygous loss of function mutations
within this gene (50-65).

The human GNAS1 gene maps to 20q13 (66) and
contains 13 exons, its cDNA spanning a region of about
1.2 kb. Figure 2 shows the functional domains encoded
by the gene. Mutations have been localized in the entire
coding region of the gene, each mutation being usually
associated to a single kindred. All exons can be affected
by loss of function alterations, with the exception of exon
3, where no mutations have been detected to date. This is
not surprising given the alternative splicing patterns
observed and the lack of conservation with other «
subunits, suggesting that mutations within exon 3 might
have little or no clinical consequence. On the other hand,
mutations in exon 1 are probably underestimated in the
literature, as the extremely GC-rich nature of the
flanking sequences has precluded its analysis by many
authors. Considering the type of mutations, small
insertions/deletions and amino acid substitutions pre-
dominate, but nonsense mutations and point muta-
tions that lead to altered translation initiation or
aberrant mRNA splicing have also been documented.

An intriguing missense mutation (54, 67) localized
within the highly conserved G5 region of the Gsa, has
been identified in two unrelated males who presented
with AHO, PTH resistance and testotoxicosis (54). This
substitution (A366S) leads to constitutive activation of
adenylyl cyclase by causing accelerated release of GDP,
thus increasing the fraction of active GTP-bound Gsa.
However, while this mutant protein is stable at the
reduced temperature of the testis, it is thermolabile at
37 °C, resulting in reduced Gsa activity in almost
tissues and AHO phenotype. In females, where it has
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never been detected, it would be expected to only give
rise to AHO.

Although each mutation is usually associated to a
single kindred, a mutational hot-spot involving 20% of
all mutations so far described has been identified within
exon 7 (51, 63-65, 68, 69). It is a 4 bp deletion which
coincides with a defined consensus sequence for arrest
of DNA polymerase «, a region known to be prone to
sporadic deletion mutations (69, 70). In most cases it
has been found as a de novo mutation, thus represent-
ing a recurring new mutation rather than a founder
effect. Moreover, four families have been found to carry
mutations within exon 5, affecting prolines 115 and
116 (58, 63-65), while three different insertion/
deletions have been found to be clustered at nucleotides
1106-1108 in exon 13 (65). Alterations in exon 5 are
predicted to disrupt the highly conserved domain of
Gsa that interacts with adenylate cyclase, while exon
13 is responsible for the interaction with the receptor
(71). Given the relatively small number of kindreds
with PHP Ia described in the literature (about 60),
these particular regions seem to undergo mutational
changes with a significant frequency, probably repre-
senting two new potential mutational hot-spots in
GNASI.

In families in which PHP Ia and PPHP coexist,
mutations in GNAS1 can be detected in all the affected
members, i.e. members affected with either PHP Ia or
PPHP. On the contrary, no mutation in the GNAS1
coding sequence has ever been found in families in
whom sporadic or familial PPHP was the only clinical
manifestation (48, 63, 64). These results support the
view that PHP Ia and isolated PPHP may represent two
genetically distinct entities, even if the possibility that a
defect may exist in the promoter region or in other
regulatory intronic sequences of GNAS1 cannot be
completely excluded.

PHP Ib

PHP 1Ib refers to a condition characterized by renal
resistance to PTH in the absence of other endocrine or

GTP conformational change
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Figure 2 Schematic representation of the 13 exons composing the Gsa gene, together with its functional domains (AC: adenylyl
cyclase activity domain; GPCR: G-protein coupled receptor interaction domain). Exon 3, which is shaded in the flgure is subjected to
alternative splicing. The figure also shows the inactivating (circles) and activating (stars) mutations detected up to now in this gene;
the triangle in exon 13 represents an inactivating mutation which has been recently described in a patient with PHP type Ib.

www.eje.org



548 A Lania and others

physical abnormalities and in the presence of a normal
Gsa activity in cells that can be easily sampled (39, 41,
72, 73). The defect is usually sporadic but occasionally
is familial, with a pattern of transmission consistent
with an autosomal dominant one (72). The urinary
cAMP response to exogenous PTH is blunted (39),
implicating a defect in the signaling pathway proximal
to cAMP generation. Selective resistance of target
tissues to PTH and normal Gsa activity had pointed
at mutations in the PTH receptor type 1 gene as
possible candidates to explain the disease. However,
molecular studies failed to detect genetic alterations in
the coding exons and promoter region of the gene, as
well as its mRNA (74-76). Moreover, neither in
humans nor in mice does inactivation of one PTH1
receptor allele does end in PTH resistance (77, 78).

Linkage analysis has recently (79) mapped the
genetic locus for PHP Ib to a small region of
chromosome 20q13.3 in four unrelated families.
Since GNASTI is located in this region, the possibility
that some patients with PHP Ib have inherited a
GNAS1 mutation that leads to a selective defect in
PTH-dependent signaling has been put forward.
Alternatively, another gene very close to GNASI1
could be responsible for the disease. Both these
hypotheses have been confirmed by recent studies. A
unique mutation in exon 13 of the GNAS1 gene, the
exon responsible for the interaction with the receptor,
that caused autosomal dominant PTH resistance in
three brothers with PHP Ib, but which was clinically
silent in their mother and maternal grandfather, has
been described (79). This mutant Gsa (Alle 382),
when expressed in vitro, was unable to couple to the
PTH 1b receptor but was able to interact normally
with other Gs-coupled receptors such as LH, TSH and
B-adrenergic receptors, thus explaining the phenotype
of the patients. However, the prevalence of GNASI1
mutations as a cause of PHP Ib is unlikely to be high,
since screening studies on several families with this
disorder failed to find mutations in the coding
sequence of this gene (81).

Another pathogenetic mechanism as a cause of
PHP Ib has been proposed by Liu et al. (82). They
identified a region upstream of the Gsa promoter,
which is normally methylated on the maternal allele
and unmethylated on the paternal allele (see below),
which was unmethylated on both alleles in all 13
patients with PHP Ib studied. Unmethylation allows an
alternative exon 1 (exon 1A), normally expressed only
from the paternal allele, to be expressed biallelically in
PHP Ib patients. Therefore, PHP Ib would be associated
with an abnormal expression of exon 1A, leading to a
decreased Gsa expression in renal proximal tubules,
that normally express Gsa only from the maternal
allele. Little or no effect is seen in other tissues, where
Gsa is expressed from both parental alleles. How an
alteration in the imprinting of exon 1A could alter the
expression of GNAS1 remains to be explained.

www.eje.org
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PHP Ic

This term refers to a small subset of patients with all the
clinical and biochemical features of PHP Ia (generalized
hormone resistance and AHO), without evidence of
reduced Gsa activity (38—39). The molecular defect
responsible for this disease, that may involve any
component of the proximal cAMP pathway (adenylyl
cyclase, Gi, phosphodiesterases)) has not been
established yet.

PHP 11

Patients affected with PHP II show clinical evidence of
PTH resistance with a normal urinary cAMP response
to the injection of exogenous PTH but a blunted
phosphaturic response to the same hormone (83), thus
indicating a defect distal to cAMP production in the
PTH-mediated transduction pathway. To date, there is
no evidence of the specific alterations responsible for
this disorder.

It has also been hypothesized that in most cases PHP
IT may be an acquired defect secondary to vitamin D
deficiency (84), as suggested by the observation that
calcium and vitamin D replacement is able to normalize
the phosphaturic response to PTH in these patients
(81, 84).

GNAS1 and imprinting

Two questions arise when studying families whose
members are affected by PHP Ia and PPHP. Firstly, why
apparently identical Gsa deficiency associated to the
same GNAS1 mutation can lead to variable phenotypic
expression, in particular in terms of presence or
absence of generalized hormone resistance in PHP Ia
and PPHP, respectively. Secondly, why PHP Ia patients
display a resistance to some (PTH, TSH and
gonadotropins) but not all hormones that activate
the Gs-coupled pathway.

Genomic imprinting of the GNAS1 gene has been
proposed as a potential mechanism to explain the
occurrence of PHP Ta and PPHP in patients with GNAS
1 mutations since it is now clear that, with one
exception (85), only maternal transmission of GNAS1
mutations leads to the complete expression of the
disease (PHP Ia), while paternal transmission of
the same mutations is associated with PPHP in
the offspring (86, 87). Moreover, genomic imprinting
would be limited mainly to tissues in which there is a
parent-of-origin specific difference in hormone respon-
siveness, such as the renal proximal tubule and the
thyroid. Genomic imprinting is an epigenetic phenom-
enon affecting a small number of genes by which one
allele (maternal or paternal) undergoes, either during
the embryogenesis or in the post-natal period, a partial
or total loss of expression (88). DNA methylation is the
critical phenomenon for both the initiation and the
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maintenance of imprinting and virtually all imprinted
genes known to date have regions in which CpG
dinucleotides are differentially methylated between the
paternal and maternal alleles. Through the creation of
uniparental disomies and partial disomies (89) at least
11 imprinted regions in the mouse genome have been
identified. Indeed, GNAS1 in the mouse (Gnasl) maps
within a region on distal chromosome 2 presumed to
have more than one imprinted genes, as indicated by
the distinct and opposite phenotypes resulting from
maternal and paternal uniparental disomies of this
region (90). Generation of mice with a null allele of
Gnasl (91) gave strength to this hypothesis. In fact,
while homozygous Gsa deficiency is embryonically
lethal, heterozygotes with maternal (m—/+) or
paternal (+/p—) inheritance of the Gnasl null allele
have distinct phenotypes: m—/+, but not +/p—, show
resistance to PTH, while both have a normal maximal
physiological response to vasopressin. Moreover, Gsa
expression studies demonstrated a reduced expression
in the renal cortex, but not in the renal inner medulla
(site of action of vasopressin) in m—/+ mice, as
expected on the basis of clinical observations in PHP
Ia. More recently, a study demonstrated the exclusive
maternal expression of this gene in the renal proximal
tubule, but not in other segments of the nephron (92).
Interestingly, expression studies gave evidence of
paternal imprinting also in brown and white adipose
tissue, suggesting that the obesity observed in m—/+
mice, as well as in humans with AHO, may be the
consequence of markedly reduced Gsa expression in
adipose tissue. Moreover, m—/+ newborns have wide,
square-shaped bodies, subcutaneous edema and higher
birth weights; at 6-21 days after birth, most of these
mice develop ataxia, tremor imbalance and difficulties
in breathing, probably due to a delayed development of
the cerebellar cortex, and then die. Surprisingly, +/p—

G protein mutations in endocrine diseases 549

mice also show an abnormal phenotype, characterized
by lower birth weight and decreased fat mass, failure to
suckle milk, severe hypoglycemia resulting in early
lethality (93).

These observations provide evidence that the vari-
able and tissue-specific hormone resistance observed in
PHP Ia may result from tissue-specific imprinting of the
GNAS]1 gene, although the Gsa knockout model is only
in part an analogue of the human AHO phenotype. In
addition, even if the inheritance pattern of AHO is
consistent with imprinting of the GNAS1 paternal
allele, expression studies on RNA from various human
fetal tissues have failed to demonstrate monoallelic
expression of this gene (94). However, these negative
results obtained in fetal tissues may at least in part be
due to the fact that imprinting of the paternal allele
might be a process beginning and evolving in post-
natal life (87). This is in line with the recent
observation that Gsa is monoallelically expressed in
human normal pituitary (95).

Recent studies on the GNAS1 locus indicate that this
region is extremely complex, with multiple alternatively
spliced transcripts encoding multiple protein products
in man as well as in mouse (Fig. 3). By using
alternative promoters and first exons, the GNASI1
locus gives rise not only to the Gsa gene, but to at
least three other gene products, i.e. XLas (extra large
as-like protein), a Golgi-specific isoform of Gsa, and
NESP55 (neuroendocrine secretory protein 55), that
are oppositely imprinted (96, 97). While the former is
expressed from the paternal allele, with its promoter
methylated on the maternal one, the latter is expressed
from the maternal allele, its promoter being methylated
on the paternal one. Both proteins have been found
primarily expressed in neuroendocrine tissues and their
function is largely unknown (100, 101). A third
alternative promoter and first exon (exon 1A) is located

DIS 3’

—> —

Antisense Transcript

Figure 3 Genomic organization of human
GNASH1 locus. The figure shows four

—INESP|[XLos { 1A — Maternal allele alternative first exons which splice into exon

2, generating four different transcripts: Gsa,
NESP55, XLas and an unknown gene
product from exon 1A. Exons 2—13 are
common to all transcripts, even if they are not
translated in NESP55. The shaded box
indicates also the different expression of

allele (arrows stay for presence of transcrip-
tion). Finally, an antisense transcript has
been recently described and demonstrated to
be imprinted in the maternal allele, thus being
expressed only in the paternal one.

= = —  Paternal allele
NESP ‘ XLCLS 1A transcripts in maternal rather than paternal
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2.5 kb upstream of Gsa exon 1 and probably generates
untranslated transcripts of unknown function with a
pattern of expression similar to that of Gsa (101-103).
In the mouse, differential methylation in this region is
established during gametogenesis, being present in
oocytes and absent in spermatozoa and it is then
maintained throughout pre- and postimplantation devel-
opment, thus constituting a methylation imprint mark,
which may possibly be important for the tissue-specific
imprinting of Gsa, whose promoter is, on the contrary,
unmethylated (104). Finally, the maternally methylated
region upstream of the Xlas exon gives rise to a spliced
poly-adenylated antisense transcript, which spans the
upstream NESP5 5 region (105). This antisense transcript
is imprinted and expressed only from the paternal allele,
thus suggesting that it may have a specific role in
suppressing in cis the activity of the paternal NESP55, as
it has been already described for other imprinted loci,
such as the murine Igf2r locus (106).

In conclusion, the organization and regulation of the
GNASI1 locus, as well as the clinical significance of the
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different transcripts originating from it, are still
insufficiently understood and specifically targeted
knockout mice lacking one or more of these alternative
first exons will help to solve some of these questions.

Activating mutations of G proteins

Mutations of the Gsa gene (GNAS1):
gsp oncogene

The first clue to the possible existence of activating
mutations of G protein genes as a cause of human
neoplasia arose from the identification of a subset of
GH-secreting pituitary adenomas characterized by high
levels of in vitro GH release, intracellular cAMP
accumulation and membrane adenylyl cyclase activity
(107). The presence of GNAS1 mutations leading to the
constitutive activation of Gsa was hypothesized on the
basis of high adenylyl cyclase levels in basal conditions
which were not further stimulated either by agents
known to directly activate Gsa such as GTP and
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GTP hydrolisis
GIn227Arg
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CAMP responsive gene —
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Figure 4 Schematic representation of gsp oncogene. Somatic mutations of GNAS1 gene replacing either Arg 201 with Cys or His or
Ser, or GIn 227 with Arg or Leu have been identified in a subset of endocrine tumors. By inhibiting the intrinsic GTPase activity, these
mutations cause constitutive activation of adenylyl cyclase (AC), leading to increased cAMP formation and proteinkinase A activation.
The proteinkinase A (PKA) induced phosphorylation of the cAMP responsive element binding protein CREB facilitates its traslocation

to the nucleus and activation of cAMP-responsive gene transcription.
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fluoride, or by peptides operating through Gs-coupled
receptors, such as GHRH (107). The subsequent
analysis of DNA from these tumors revealed amino
acid substitutions in exons 8 and 9, replacing either
Arg 201 with Cys, His or Ser, or Gln 227 with Arg or
Leu (108-110) (Fig. 4). Although in vitro mutagenesis
studies have documented a number of possible acti-
vating substitutions in GNAS1 gene, these two residues
are the only location for mutations so far identified.
When transfected into S49 cyc-cells, mutant Gsa
showed a 30-fold decrease in intrinsic GTPase activity.
Indeed both residues are known to be important in GTP
hydrolysis (108). Arg 201 is the residue that is ADP-
ribosylated by cholera toxin, this covalent modification
resulting in hormone-independent activation of adeny-
lyl cyclase due to GTPase inhibition. Similarly, in vitro
mutagenesis experiments confirmed that the Gln 227
residue is involved GTP hydrolysis. Therefore, these two
mutations cause constituitive activation of cAMP
formation by inhibiting the turn-off mechanism of
Gsa. Since somatotrophs belong to a set of cells that
recognizes cAMP as a mitogenic signal, Gsa may be
considered the product of a proto-oncogene that is
converted into an oncogene, designated gsp (for Gs
protein) in selected cell types.

Functional studies of gsp oncogene

Studies on cell lines transfected with mutant Gsa
yielded important insights into the series of events
resulting from the activation of cAMP cascade. Indeed,
at variance with the phenotype induced by the
activation of the classical oncogenes, the specific path-
ways activated by cAMP stimulate both growth and
specialized functions. Indeed, the transcription of a
variety of common cAMP-responsive genes, including
the immediate early genes such as c-fos, c-jun and jun B,
are enhanced by the expression of mutant Gsa (111).
Moreover, mutant Gsa stimulates GH and PRL promoter
activity in GH3 cells expressing this protein (112). As
far as the mitogenic effect of gsp mutations is concerned,
the introduction of mutant Gsa results in enhanced
function and growth of selected cell types in which the
cAMP cascade activates proliferation processes. In
particular, Swiss 3T3 fibroblasts carrying mutant Gsa
show a mitogenic activity higher than that of wild-type
cells, as indicated by the low serum concentration
required for growth (113). The introduction of the
GIn227Leu mutation in FRTL-5 thyroid cells is sufficient
to induce a TSH-independent proliferation (114).
Similarly GH3 cells expressing this mutation show
enhanced proliferation and GH and PRL secretion
(115). Although these results suggest that the expres-
sion of mutationally activated Gsa is sufficient to bypass
the requirement for the specific growth factor and
promotes autonomous cell growth of specific cell types,
most of these effects were observed only when cAMP
hydrolysis was blocked by phosphodiesterase (PDE)
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inhibitors (113, 114). Indeed, the presence of mutant
Gsa is accompanied by a concomitant increase in PDE
activity and expression, likely as a result of the feedback
mechanism by which cAMP controls the expression of
its own degrading enzymes (113, 114, 116, 117). The
impact of cAMP hydrolysis on the phenotype produced
by the expression of mutant Gsa is indicated by the
observation that phosphodiesterase blockade results in
a further stimulation of both cAMP levels and
proliferation in different cell systems (116-118).

gsp Oncogene in pituitary adenomas

Several screening studies confirmed that approximately
30-40% of GH-secreting adenomas is associated with
gsp mutations, that most frequently replace Arg 201
(wild-type codon TGC) with Cys (mutant codon TGT).
Some ethnic differences in the occurrence of these
mutations seem to exist due to the considerably low
prevalence (5—-10%) reported in Japanese acromegalic
patients (119-123). The presence of Gsa mutations is
not exclusive to GH-secreting adenomas, although its
frequency in the other pituitary adenomas is definitely
low. Indeed, the gsp oncogene has been observed in
0-13% of non-functioning pituitary adenomas (124,
125) while a single study reports its presence in 5% of
ACTH-secreting adenomas (126). These mutations are
somatic in origin as indicated by the presence of wild-
type Gsa in the peripheral blood leukocytes from
affected patients and dominant, as indicated by the
presence of both mutant and wild-type Gsa in genomic
DNA from the tumor.

Several in vivo studies indicate no difference in age,
sex, clinical features, duration of the disease or cure
rate in patients with or without gsp mutations
(119-121, 123, 127). However, tumors expressing
gsp mutations are most frequently very small in size,
consistent with the hypersecretory activity of tumoral
somatotrophs. Due to the constitutive activation of
cAMP formation, patients with gsp-positive tumors do
not increase plasma GH levels after GHRH whereas
they respond to agents acting via a cAMP-independent
pathway. Moreover, these patients show a high
sensitivity to the inhibitory action of long-acting
somatostatin analogues, an effect not associated with
increased expression of somatostatin receptor sst2 and
sst5 in the tumor (127-129).

Since gsp mutations would in principle confer growth
advantage, the low growth rate of tumors with these
mutations probably reflects the existence of mechan-
isms able to counteract the activation of the cAMP
pathway. Over the last few years, some of these
mechanisms have been unveiled. Recent studies
demonstrated that, in analogy with the upregulation
of PDE in FRTL5 expressing mutant Gsa, in gsp-positive
tumors PDE activity is about 7-fold higher than that
observed in wild-type tissues, this effect being mainly
due to the increased expression of cAMP-specific PDE4
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(Fig. 5) (117, 130). Moreover, gsp-positive tumors
highly express two nuclear transcription factors that
are final targets of the cAMP-dependent pathway and
are positively regulated by cAMP signaling, i.e. the
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Figure 6 Representative immunoblotting with antibodies to Gsa
in gsp-positive and -negative tumors. Tumors with gsp oncogene
are characterized by a reduced or undetectable expression of
Gsa protein. This is probably due to the increased rate of
degradation of the instable dissociated « subunit, since the same
reduction is observed when gsp negative cells are treated with
cholera toxin, an agent known to block GTPase activity and to
induce constitutive activation of adenylyl cyclase, by ADP-

ribosylating Arg 201 in Gsa.
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Figure 5 Phosphodiesterase hyperactivity
and overexpression in GH-secreting tumors
with gsp oncogene. a) Tumors with gsp
oncogene (on the right) show significantly
higher activity of phosphodiesterases (PDE),
particularly the cAMP-specific PDE4 isoform,
than tumors without this alteration (on the
left). b) By RT-PCR analysis it appears that
the increased PDE activity observed in gsp
positive tumors (+) is mainly due to the
induction of cAMP specific PDE4C and
PDE4D genes transcription. Therefore, the
presence of mutant Gsa is accompanied by a
concomitant increase in PDE activity and
expression, as a result of the feedback
mechanism by which cAMP controls the
expression of its own degrading enzymes.

cAMP-responsive element binding protein (CREB) and
the inducible cAMP early repressor (ICER). The
increased expression of the repressor transcription factor
ICER, that competes with the binding of CREB to CREs,
may inhibit the transcription of several cAMP responsive
genes, including CREB itself (131). This counteracting
mechanism is consistent with a previous report indicat-
ing elevated levels of phosphorylated, hence activated,
CREB in GH-secreting adenomas, independently of the
presence or absence of gsp mutations (132). Finally,
although no differences in Gsa mRNA levels have been
reported in tumors with or without gsp mutations, the
mutant protein is present in very low amounts, probably
because of the increased rate of degradation of the
instable dissociated a subunit (128, 133; Fig. 6). The
recent report that the monoallelic expression of Gsa
from the maternal allele found in the normal pituitary
(95) is relaxed in somatotroph tumors with and without
gsp mutations suggests the existence of another
mechanism, i.e. loss of GNAS1 imprinting, able to
amplify the cAMP pathway independently of the
presence or not of gsp mutations.

gsp Oncogene in thyroid neoplasms

Following the identification of gsp mutations in
GH-secreting adenomas, mutations involving the same
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two hot-spots in the GNAS1 gene have been identified
in hyperfunctioning thyroid adenomas (134). This
finding is consistent with the key role of the cAMP
pathway in mediating TSH action on both thyroid
hormone secretion and thyrocyte proliferation. The
frequency of gsp mutations in thyroid hot nodules is
variable from one series to another, ranging from 5 to
30%, and is definitely lower than that of TSH receptor
gene mutations (135, 136). Therefore, the main
alterations that constitutively activate the cAMP path-
way in thyrocytes are mutations in the TSH receptor
while in somatotrophs there are mutations in the Gsa
gene. As occurs in GH-secreting adenomas with gsp
mutations, the phenotype of thyroid adenomas carry-
ing mutant Gsa or TSH receptor is different from that
predicted on the basis of in vitro models. In fact, it has
been observed that in tumors with these mutations the
expression of the activated, phosphorylated form of
CREB is not increased when compared with that of the
paired normal thyroid tissue, but decreased (137). It is
likely that the increase in PDE activity and expression
that occur in these adenomas may participate in
determining the loss of activation of the cAMP
dependent signaling (118). Mutant Gsa may also be
present with low frequency (<10%) in hypofunctioning
thyroid adenomas (cold nodules) as well as in
differentiated thyroid adenocarcinomas (138). In parti-
cular, gsp mutations were detected in a subset of
papillary and follicular carcinomas selected on the basis
of high adenylyl cyclase activity in basal conditions not
further stimulated by TSH (139). No gsp mutations
have been detected in anaplastic carcinoma. The data
collected from the different studies indicate that
whereas gsp oncogene may be considered as an initiator
for a minority of hyperfunctioning thyroid adenomas,
its role in thyroid tumorigenesis is much less certain.

gsp Oncogene in McCune—Albright syndrome

The identification of activating mutations in the
GNASI1 gene in patients with McCune—Albright syn-
drome (MAS) has provided clear evidence that the
activation of the cAMP pathway is associated with
hyperfunction and hyperplasia of cells other than
pituicytes and thyrocytes. This syndrome is a sporadic
disorder characterized by polyostotic fibrous dysplasia,
café-au-lait skin hyperpigmentation and autonomous
hyperfunction of several endocrine glands, such as
gonads, pituitary, thyroid and adrenal cortex, i.e.
glands sensitive to trophic agents acting through the
cAMP-dependent pathway. Mutations of the Gsa gene
have been detected in all affected subjects and Arg 201
is the only location so far reported. Mutant Gsa is
expressed in the affected endocrine organs as well as in
tissues not classically involved in MAS, the highest
proportion of mutant alleles being found in regions of
abnormal proliferation (140, 141). This mosaic dis-
tribution is consistent with the hypothesis that this
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syndrome is due to a somatic mutation in Gsa gene
occurring as an early postzygotic event. Therefore, the
time of occurrence of GNAS1 mutations seems to be an
important factor in determining the nature of the
disease. Due to the ubiquitous expression of Gsa, late
occurring mutations cause focal disease such as
acromegaly and toxic thyroid adenomas, while when
the same mutations occur very early in embryogenesis
they cause disorders with widespread manifestations,
such as McCune—Albright syndrome (MAS). It is
tempting to speculate that activating germ-line
mutations of Gsa would be incompatible with life (23).

Recent studies have provided insights into the
pathological role of mutant Gsa in non-endocrine
organs involved in MAS. It has been shown that
melanocytes from the café-au-lait spots of MAS patients
have high mRNA levels of tyrosinase gene, probably
responsible for alteration in skin pigmentation (142).
As far as fibrous dysplasia is concerned, high levels of
c-fos expression, presumably a consequence of
increased adenylyl cyclase activity, have been detected
in bone lesions from all MAS patients studied,
consistent with the bone disorders present in trans-
genic mice overexpressing c-fos proto-oncogene. More-
over, transplantation of skeletal progenitor cells
obtained from fibrous dysplastic marrow of patients
with MAS into immunocompromised mice caused
abnormal ossicle formation, resembling human fibrous
dysplasia (143, 144). Interestingly, lesion development
required the coexistence of normal cells and cells with a
mutant allele, thus reproducing the mosaic distribution
of Gsa mutations that characterizes the syndrome.
Finally, substitutions at Arg 201 of GNAS1 gene have
also been found in isolated fibrous dysplasia occurring
outside of the context of typical MAS (144).

gsp Oncogene in other endocrine disorders

Other endocrine organs have been screened for gsp
mutations since they contain cell types in which cAMP
is a positive growth stimulus, such as the endocrine
pancreas, the parathyroid, the adrenal gland and the
gonads. No Gsa mutation has so far been identified in
hyperfunctioning neoplasia from the pancreas, the
parathyroid or the adrenal glands, the only exception
has been an Arg 201 to Cys substitution in the
genomic DNA from nodular adrenal hyperplasia in an
infant with Cushing’s syndrome (145, 146). By
contrast, Arg 201 to Cys changes were found in a
significant proportion (4 of 6) of ovarian and testicular
stromal Leydig cell tumors, that had caused hormonal
hypersecretion resulting in virilization and gyneco-
mastia in female and male patients, respectively (147).
As reported for other endocrine neoplasias with gsp
mutations, there was no evidence of clinical or
hormonal differences between patients with gsp-
positive and -negative tumors (147).
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Mutations of the Gi2a gene

Taking into account that all G proteins have a common
mechanism of binding and hydrolyzing GTP and share
highly conserved primary structures in regions corre-
sponding to Arg 201 and GIn 227 of Gsa, it was
predicted that other G proteins would be converted into
oncogenes by GTPase-inhibiting mutations. At present,
the Gsa gene is the only gene that has been identified as
a target for activating or inactivating mutations that
unequivocally cause endocrine diseases (Table 2). In
fact, neither activating nor inactivating mutations of
Gq, the G protein involved in the activation of the
Ca?*—calmodulin protein kinase C-dependent pathway
have been identified yet (148). Conversely, discordant
data on mutations of Gi2 protein are present in the
literature. In fact, screening studies of human tumors
for mutations of the Gi2a gene revealed aminoacids
substitutions of Arg 179 (corresponding to the Arg 201
of the Gsa gene) to His in ovarian sex cord stromal
tumors and adrenal cortex tumors. In particular, the
mutant Gi2a (gip 2 oncogene) was detected in two
granulosa cell tumors and one thecoma from 10
ovarian tumors. However, this data was not confirmed
by subsequent screening studies (149). Similarly, two
subsequent studies failed to detect Gi2a mutations in
adrenal cortex adenomas and carcinomas (150, 151).
Finally, a different mutation replacing Gln 205
(corresponding to the GIn 227 of the Gsa gene) with
Arg was reported in three of 22 non-functioning
pituitary adenomas. Interestingly, two of these tumors
also had concomitant gsp mutations, with a para-
doxical result in terms of cAMP generation considering
that Gsa and Gi2a genes have opposing effects on
adenylyl cyclase activity (Table 1).

The possible oncogenic potential of the constitutive
activation of Gi2a gene is difficult to ascertain since
Gi2a is involved in the activation of multiple and
probably not fully understood intracellular pathways. It
has been demonstrated that the mutant Gi2a (gip 2
oncogene) induces the constitutive inhibition of adeny-
lyl cyclase and reduction of cytosolic calcium in
transfected cells (152). However, the gip2 oncogene
may affect pathways other than the cAMP or the
Ca**—calmodulin cascades. In fact, it has been demon-
strated that Gi-coupled receptors are able to activate
the MAP kinase pathway (21, 153) and that, in certain
cell systems, the expression of constitutively active Gia
causes cell transformation (154, 155). The mechanism
through which gip2 induces cell proliferation is
probably mediated by MAPK activation (153-155).

G-protein 33 variant in essential
hypertension

The observation of an increased activity of a Na*/H"
exchanger in blood cells of a subgroup of hypertensive
patients that was consistent with abnormal signaling
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by Gi proteins resulted in the identification of substitu-
tion in the gene encoding the G protein B3 subunit
(GNB3) (156). This substitution causes an aberrant
splicing of 33 mRNA and production of a small subunit
that lacks 41 residues in the middle of the amino acid
sequence and is constitutively active. Although the
mechanisms by which the small B3 increases Gi-
dependent hormone responses are uncertain, this
variant seems to be present in 53% of patients with
hypertension and 44% of normotensive subjects,
suggesting that the variant allele substantially
increases the risk of hypertension (156). If future
studies confirm that the G protein B3 variant con-
tributes to the incidence of hypertension, this will have
important implications for understanding pathogenesis
of the disease and for improving its treatment (157).

Conclusions

It is well established that proteins involved in signal
transduction are targets for naturally occurring muta-
tions resulting in human diseases. Admittedly, defects
in G proteins almost always result in endocrine
disorders, the only exception being inactivating muta-
tions of Gta, that mediate rod-cell responses to photons
in inherited congenital night blindness (158). Since
much evidence indicates that several G proteins are
involved in cell growth regulation, it is likely that
additional endocrine disorders will be found to be
caused by G protein defects. To date, however, GNAST is
the only gene encoding a G protein that has been
identified as a target for mutations that unequivocally
cause endocrine diseases. Indeed, inactivating germ
line mutations of this gene cause AHO and pseudo-
hypoparathyroidism while activating somatic muta-
tions lead to the proliferation of endocrine cells in
which cAMP is a mitogenic signal. Although in the
recent years screening studies have detected the
presence of new inactivating or activating mutations
of GNAS1 gene and established their prevalence in the
different diseases, several questions arise when study-
ing the genotype—phenotype relationships. In particu-
lar, why apparently identical Gsa deficiency associated
with the same GNAS1 mutation can lead to the
presence or absence of generalized hormone resistance,
and why the resistance is limited to some hormones,
i.e. PTH, TSH and gonadotropins, while others that
equally activate the Gs-coupled pathway are un-
affected. Although evidence suggests that the variable
and tissue-specific hormone resistance observed in PHP
Ia may result from tissue-specific imprinting of the
GNAS1 gene, the Gsa knockout model is only in part
analogous to the human AHO phenotype and other
studies are needed to understand the molecular basis of
this disorder. Activating mutations of GNAS1 gene
would in principle confer growth advantage in the
selected cell types in which cAMP acts as a mitogenic
signal, and on this basis these mutations were
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referred to as gsp oncogene. However, studies carried
out on several neoplasias carrying this oncogene, i.e.
GH-secreting pituitary adenomas, hyperfunctioning
thyroid adenomas and Leydig cell tumors, failed to
detect differences in the clinical and hormonal pheno-
types. Therefore, the low growth rate of tumors with
these mutations probably reflects the existence of
mechanisms able to counteract the activation of the
cAMP pathway, that are still insufficiently understood.
Similarly, the prevalence and significance of Gi2a
mutations are still controversial. Moreover, although
this review has focused on Ga subunits because they
have been well studied and harbor known mutations,
studies on B/v subunits should be particularly fruitful,
due to the increasing appreciation of the importance of
these components in signal transduction. In this
respect, it has been reported that patients with essential
hypertension frequently have a B3 subunit variant
which is constitutively active. Although the impact of
the short 33 on hormone signaling is not known, it has
been suggested that this polymorphism may contribute
to hypertension. Finally, the identification of naturally
occurring mutations of G proteins has already had
major implications for understanding the structure and
function of these signaling proteins. Unfortunately, the
implications of identifying G protein mutations for
diagnosis and treatment of endocrine disorders are, as
yet, rather limited.
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