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Abstract In geometric computer vision the trifocal
tensors are 3 × 3 × 3 tensors T by whose means three
different camera views of the same scene are related to
each other. In this paper we find two different sets of
constraints, in the entries of T , that must be satisfied
by trifocal tensors. The first set gives exactly the (clo-
sure of the) trifocal locus, i. e. all trifocal tensors, but
it is very big. The second set, although not complete
and still very big, has the property that it is possible
to extract from it a set of only eight equations that are
generically complete, i.e. for a generic choice of T , they
suffice to decide whether T is indeed trifocal. Note that
8 is the codimension of the trifocal locus in its ambient
space.

Keywords Multiple view geometry · Trifocal tensor ·
Constraints

1 Introduction

The trifocal tensor is the mathematical object by whose
means three different camera views of the same scene
are related to each other—for a detailed account of the
relevant theory, see [2], ch. 14 and 15, whose notations
we follow.
An open problem is finding the constraints for the tri-
focal tensors, which can be formulated as follows:
given a 3 × 3 × 3 tensor T = (tijk)i,j,k=1,2,3, find all
equations, in the coefficients tijk, that must be satisfied
by T to be a trifocal tensor, for a suitable configuration
of three cameras.
The straightforward solution, namely eliminating the
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parameters in the relations (6), section 4 below, is com-
putationally intractable, due to the many variables in-
volved, all of them in relations of second degree. So
that, to get the first set of constraints, we use a little of
group theory. We show that the set of trifocal tensors
is invariant under a suitable action of a group (corre-
sponding to a change of frames in the planes of cameras,
then we use some classical results describing the orbits
of this action to find the constraints.
Unfortunately, it turns out that the constraints so found
are “too many”, in fancier language this means that the
(closure of the) set of trifocal tensors is not a complete
intersection. Thus, by using elementary geometric argu-
ments, we also determine another set of constraints hav-
ing the “right number” of elements, namely eight, the
codimension of the trifocal locus in its ambient space.
This second set of constraints is not complete, but it
is generically complete, i.e. for a generic choice of a
3 × 3 × 3 tensor T , it suffices to decide whether T is
indeed trifocal.

The problem of finding constraints for trifocal tensors
has been tackled by several authors, cf. [3], [4], [5], main
differences with our results being as follows.
The constraints of Papadopoulo and Faugeras [4] do not
give a complete characterization of trifocal tensors, but,
just like the ones we find in section 4, a generically com-
plete one, in the sense described above; although of low
degrees (degrees three and six) their set of constraints
contains twelve polynomials, more than the the possi-
ble minimum, eight, corresponding to the codimension
of the set of all trifocal tensors.
Ressl’s constraints, see his PhD thesis [5], are similarly
generically complete, and have the “correct” number,
i.e. eight constraints; our set of constraints has the ad-
vantage of lower degrees, namely degrees three, five and
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six, as opposed to Ressl’s degrees three, five and eight.
Heyden’s paper [3] is different in its scope, as it covers
the whole field of multiple view constraints; in partic-
ular, concerning trifocal tensors, the constraints found
there are similar to those in [4], and the same observa-
tions apply, i. e. they are more than the codimension of
the trifocal tensor locus.
In conclusion, the main difference between our paper
and other known result is twofold: in the first place,
we exhibit a new generically complete set of eight con-
straints that arises from elementary geometric construc-
tions and whose polynomials are of lower degree; be-
sides, we give also another set of constraints (see the-
orem 23) that is complete–i.e. characterizes completely
the closure of the set of all trifocal tensors–even though
it consists of 36 polynomials, (of degrees three, nine and
twelve) instead of the eight polynomials of the generi-
cally complete set of constraints.

The organization of the paper is as follows.
In section 2 we recall the definition of the trifocal ten-
sor, we give the definition of the trifocal locus Θ, the
smallest algebraic variety containing all trifocal tensors,
and we give our main theorem getting a complete set
of constraints for Θ in a very simple way. In section 3
we define a rational trifocal map such that Θ is the clo-
sure of the image of this map; we define an equivariant
group action for the trifocal map, and we show that Θ

is (the closure of) an orbit of this action. Then we use
this fact to recover the same set of constraints with a
more abstract, but shorter, proof. At the end of this
Section we also relate Θ to a suitable Segre product in
Algebraic Geometry to give another proof that the tri-
focal locus has dimension 18 (see [2] p. 358).
In section 4 we derive another set of constraints start-
ing with the relations (6) giving the coefficients of a
trifocal tensor in terms of the entries of the matrices
representing the three cameras. Then we extract, from
this larger set, a subset of only eight constraints, by us-
ing arguments of linear algebra. Although not complete,
this set of eight constraints is generically complete, i. e.
the locus defined by it contains Θ as a component of
maximal dimension. Besides being much simpler, this
set seems also better suited for applications. At the end
of this section we also give a complete description of all
irreducible components of the larger set of constraints.
This description is useful to extract other sets of eight
constraints in case other sets are needed.
Section 5 is devoted to the conclusions.
In the Appendix we have collected some mathematical
definitions and results used in the paper.

2 A complete set of constraints for the Trifocal
tensor

We denote by K a field of characteristic zero; for our
purposes, K = R or C; also, we denote V := K3,W :=
K4.

Definition 21 A camera is a projection C from a point
P , the center of the camera,

C : P3 = P(W ) 99K P2 = P(V ).

A camera C comes from a (surjective) linear map, still
denoted by C, C : W → V , hence C ∈ V ⊗W ∗; since
the linear map is determined up to a nonzero factor, C

is actually an element of P(V ⊗ W ∗). Choosing coor-
dinates, C is represented by a 3 × 4 matrix of rank 3,
M ∈ M3×4(K),M = (mj

i ), i = 1, 2, 3, j = 1, 2, 3, 4.

We shall be more interested in the dual map C∗ : P2∗ =
P(V ∗) → P3∗ = P(W ∗), coming now from the dual (in-
jective) linear map C∗ : V ∗ → W ∗; of course C = C∗

as elements of V ⊗W ∗. In dual coordinates, C∗ is rep-
resented by M>, the transposed of M .
Given three cameras C∗, C ′∗, C ′′∗ : P(V ∗) → P(W ∗),
and three lines l, l′, l′′ ∈ P(V ∗), we say that they (the
lines) are concurrent if the planes π = C∗(l), π′ =
C ′∗(l′), π′′ = C ′′∗(l′′) ∈ P(W ∗) intersect along a line ` ⊂
P(W ); it is equivalent to: C(`) = l, C ′(`) = l′, C ′′(`) =
l′′.
The map

T : P(V ∗)× P(V ∗) → P(V ∗),

is defined when the planes C ′∗(l′), C ′′∗(l′′) are different;
in this case the condition defining T is: T (l′, l′′) = l if
and only if l, l′, l′′ are concurrent.
The map T comes from a bilinear map, still denoted by
T : V ∗×V ∗ → V ∗; in other words, T ∈ V ⊗V ⊗V ∗ is a
tensor, called trifocal tensor. As in the case of cameras
above, trifocal tensors actually belong to P(V ⊗ V ⊗
V ∗) = P26.
Recall that a Zariski closed set is the zero-locus of any
finite set of polynomial equations in P26. Our aim is to
give a complete set of constraints for trifocal tensors in
P26 in the following sense: find a minimal (necessarily
finite) set of polynomial equations, defining a Zariski
closed set, which we will call the Trifocal Locus Θ, such
that every generic point of Θ is indeed a trifocal ten-
sor. Of course it is not possible to find a finite set of
polynomial equations in P26 such that a point is a tri-
focal tensor if and only if it belongs to the zero-locus
of the polynomials, because zero-loci are closed set (in
the Zariski topology), while to be a trifocal tensor is
an open condition, giving rise to an open set (in the
Zariski topology).
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To find the constraints we are aiming for, we will use
the fact that the group GL(V )3 acts naturally on V ⊗
V ⊗V ∗, the action being–basically–a change of basis in
the vector space V (for the definition of a group action,
see Appendix, III). This action was thoroughly investi-
gated in [7], whose results we will use.
We now give a brief summary of those results.
Given a tensor A ∈ V ⊗ V ⊗ V , in a fixed coordinate
system A is represented by a 3 × 3 × 3 numerical ten-
sor A = (aijk)i,j,k=1,2,3; in the notation of [7], we can
identify A with a trilinear form (on V ) F (x,y, z) =∑

ijk aijkxiyjzk, where x = (x1, x2, x3), y = (y1, y2, y3),
z = (z1, z2, z3) are three sets of three variables each.
The matrix Hx = (

∑
i aijkxi)i,j=1,2,3, associated to A

(or F ), is a 3×3 matrix whose entries are linear forms in
the variables xi; define X(x) := det(Hx), a cubic form
in the xi. Similarly, we consider the matrices Hy =
(
∑

j aijkyj)i,k=1,2,3 and Hz = (
∑

k aijkzk)j,k=1,2,3, and
define the corresponding cubic forms Y (y) := det(Hy)
and Z(z) := det(Hz).
The main results of [7] are:
(i) the projective classes of the plane cubics, given by
the following equations X(x) = 0, Y (y) = 0, Z(z) = 0
in P2, are invariants of the tensor A with respect to the
G3 action, defined in [7], on the trilinear form F ;
(ii) the projective classes of the plane cubics determine
the orbit of the tensor A.
To prove our main theorem we will need the following.

Lemma 22 A (non zero) homogeneous, real or com-
plex coefficients, degree 3, equation in two variables (t :
s) of the following type: at3 + bt2s + cts2 + ds3 has at
least a multiple root if and only if b2c2 − 4ac3 − 4b3d +
18abcd− 27a2d2 = 0.

Proof: Let f be the polynomial at3 + bt2 + ct + d.
Let us assume that a 6= 0. Then our equation has at
least a multiple root if and only if R(f, f ′) = 0 where
R is the usual resultant of polynomials. It is easy to
see that, in this case, R(f, f ′) = 0 if and only if b2c2 −
4ac3 − 4b3d + 18abcd− 27a2d2 = 0.

Let us assume a = 0 and let g be the polynomial bt2 +
ct+d. Then our equation has at least a multiple root if
and only if R(g, g′) = 0. It is easy to see that, if b 6= 0,

then R(g, g′) = 0 if and only if b2c2− 4b3d = 0. If b = 0
the relation is identically satisfied, but in this case, our
equation has the multiple root (1 : 0). ut

We can now prove our main theorem. The proof consists
in translating the results of [7] in the setting of trifocal
tensors.

Theorem 23 A complete set of constraints for the tri-
focal locus Θ is given by 10 equations of degree three,

20 equations of degree nine and 6 equations of degree
twelve on the 27 entries of a generic 3× 3× 3 tensor.

Proof: We will follow the conventions of [6], [7].
To give a description of the trifocal locus as the closure
of a suitable orbit of V ⊗ V ⊗ V ∗ we choose a generic
trifocal tensor and we identify the corresponding orbit,
showing that the GL(V )3–action introduced earlier is
the same as the one considered in [6], [7]. Then we de-
generate trifocal tensors to detect points in the closure
of the orbit not corresponding to trifocal tensors.
We fix once and for all a coordinate system (x, y, z, u) in
P3, such that the center of the first camera is (0, 0, 0, 1)
and u = 0 is the plane at the infinity, as in [2]. Then
we can assume that the matrices of the three cameras
have the following form:

M = [C|0], M ′ = [A|a4], M ′′ = [B|b4]

where C, A, B are 3× 3 matrices.
As we are dealing with a trifocal tensor we assume that:

(I) C,A, B are non singular matrices

(II) the centers of the cameras are distinct and in gen-
eral position in P3.

Choose three coordinate system on P(V ∗), denoted by
w,x, z, thinking of them as the (dual) coordinates in
the image planes of the three cameras, i.e. the coordi-
nates of the generic lines l, l′, l′′ in the three cameras
are w,x, z respectively; in this Section we denote by
P(V ∗), P(V ∗)′, P(V ∗)′′ the (dual) image planes of the
three cameras under consideration. Let y be the coor-
dinates of the generic element of P(V ).
According to [2], p. 357, three lines l, l′, l′′ are linked
by the trifocal relation if and only if the 4 × 3 matrix

N :=
[

C>w A>x B>z
0 a>4 x b>4 z

]
do not have maximal rank.

It means that there are (α, β, γ) 6= (0, 0, 0) such that
γn1 = αn2 + βn3

where ni are the columns of N.

By assumption (II) we know that a4 and b4 are not 0,

so that we can write the previous relation in the follow-
ing form, for a suitable γ (possibly 0):
γn1 = (b>4 z)n2 − (a>4 x)n3 i.e.
γC>w = (b>4 z)A>x−(a>4 x)B>z = (z>b4)A>x−(x>a4)B>z
so that the i−th coordinate of γC>w, i = 1, 2, 3, is
given by [γC>w]i = x>T iz with T i = aib>4 − a4b>i
(see [2], p. 357).
Now, if C = I3, γ 6= 0, for any pair of lines l′ ←→ x
and l′′ ←→ z the third corresponding line in P(V ) has
equation (up to a factor γ) y1(x>T 1z) + y2(x>T 2z) +
y3(x>T 3z) = 0. i.e.

x>[y1T
1 + y2T

2 + y3T
3]z = 0. (1)
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If C 6= I3, γ 6= 0, the third corresponding line has
equation, up to a factor γ:

x>[y′1T
1 + y′2T

2 + y′3T
3]z = 0, (2)

where y′ = C−1y. Note that (1) and (2) include also
the case γ = 0, so that they are equivalent to the trifo-
cal relation.
The conclusion is that the natural action of any (g1, g2, g3) ∈
GL(V )3 on the three cameras, i.e. the multiplication on
the left of the three matrices M, M ′,M ′′ by three non
singular (3, 3) matrices, is exactly the action of GL(V )3

on the trilinear form (1) considered by [7]: g1 is a linear
transformation on P(V ), i.e. on y coordinates, g2 is a
linear transformation on P(V ∗)′, i.e. on x coordinates,
and g3 is a linear transformation on P(V ∗)′′, i.e. on z
coordinates.
Any trilinear form of type (1) is determined by a triple
[T 1, T 2, T 3], and viceversa such a triple, up to multi-
plication by a non zero constant, fixes a trilinear form
as (1). On the other hand, we have seen that a trifocal
tensor, which is defined up to a non zero constant, de-
termines a suitable triple [T 1, T 2, T 3] up to a non zero
constant, i.e. a unique trilinear form as (1). From now
on we identify trifocal tensors and trilinear forms, both
denoted by a triple [T 1, T 2, T 3].
Let us choose any trifocal tensor (recall assumptions
(I) and (II)) and let us choose a suitable (g1, g2, g3) ∈
GL(V )3 such that the original trifocal tensor is trans-
formed in another one for which C = A = B = I3. In

this case we have: a4 =




b

c

d


 and b4 =




f

g

h


 for some

numbers b, c, d, f, g, h,

the center of the second camera is (−b,−c,−d, 1), the
center of the third camera is (−f,−g,−h, 1) and the

matrix




0 0 0 1
−b −c −d 1
−f −g −h 1


 has maximal rank.

If we compute the corresponding trilinear form we get:

T 1 =




f + b g h

c 0 0
d 0 0


 ,

T 2 =




0 b 0
f g + c h

0 d 0


 ,

T 3 =




0 0 b

0 0 c

f g h + d


 .

To find (in the list of [7], p. 689) the orbit in which the
trilinear form sits, we consider the three following plane
cubics: det(y1T

1 +y2T
2 +y3T

3) = 0, det(z1A
1 +z2A

2 +

z3A
3) = 0, det(x1B

1 + x2B
2 + x3B

3) = 0
where the 3× 3 matrices Ai are given by the first, sec-
ond, third columns of the matrices T i and the matrices
Bi are given by the first, second, third rows of the ma-
trices T i respectively. A straightforward computation
shows that det(y1T

1 + y2T
2 + y3T

3) ≡ 0, det(z1A
1 +

z2A
2 + z3A

3) = (fz1 + gz2 + hz3)2[(f + b)z1 + (g +
c)z2 + (h + d)z3] = 0, det(x1B

1 + x2B
2 + x3B

3) =
(bx1 + cx2 +dx3)2[(f + b)x1 +(g + c)x2 +(h+d)x3] = 0
i.e. one cubic is identically zero and the other two are
reducible, both being the union of a double line and
another line. The table of [7], p. 689 shows that this is
sufficient to identify the orbit. Let us call it O. Again
by [7], we can also pick a very simple representative of
this orbit, namely

T 1 =




1 1 0
0 0 0
0 0 0


 , T 2 =




0 0 1
1 0 0
0 0 0


 , T 3 =




0 0 0
0 0 0
1 0 0


 .

Now let us consider the closure of the orbit. If we drop

assumption (II), then the matrix
[

b c d

f g h

]
has rank 1

(or 0), hence the cubics det(z1A
1 + z2A

2 + z3A
3) = 0

and det(x1B
1+x2B

2+x3B
3) = 0 are reducible, both of

them as a triple line (or are identically zero). The cor-
responding trilinear forms (when non zero) belong to
other two orbits of [7]’s list, which are characterized by
the following type of (x,y, z) cubics: (triple line, zero,
triple line) and (zero, zero, zero).
(By zero we mean that the corresponding cubic is iden-
tically zero.)
If we drop assumption (I), it is easy to see that the
corresponding trilinear form is identically zero or it be-
longs to the orbit (zero, zero, zero). In any case the
trifocal locus, according to our definition, is the closure
of the orbit O, so to get a set of equations defining it
we can use the characterization of this orbit given by
[7].
In other words, a triple [T 1, T 2, T 3] (considered up to a
non zero common factor) belongs to the trifocal locus
(be careful: this does not mean that it corresponds to
a trifocal tensor) if and only if

det(y1T
1 + y2T

2 + y3T
3) ≡ 0 (3)

and

det(z1A
1 + z2A

2 + z3A
3) = 0

det(x1B
1 + x2B

2 + x3B
3) = 0

(4)

are reducible cubics, both the union of a double line
and another line.
Given a triple [T 1, T 2, T 3] as above, i.e. a point in P26,
(3) translates into 10 equations of third degree.
To satisfy (4), we require firstly, that both cubics be
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actually three concurrent lines, and then that two of
those lines be the same.
The condition that a cubic be three concurrent lines is
equivalent to ask to its Hessian being identically zero,
and this gives 10 equations of degree 9.

Now, a plane cubic, that is the union of three concur-
rent lines, actually contains a double line if and only if
its intersection with each of the three coordinate axes is
not three distinct points. Note that we need to control
all the axes because one, or even two, of them might be
a component of the cubic (or contain the triple point).
Thanks to lemma 22, this condition is equivalent to
three equations of degree 4 in the coefficients of the
cubic, hence of degree 12 in the entries of [T 1, T 2, T 3].
Since both cubics must be of this type, there are then
20 equations of degree 9 and six of degree 12.

We have thus proved that a complete set of equations
cutting out the trifocal locus in P26 is given by 10 equa-
tions of degree 3, 20 of degree 9 and 6 of degree 12. ut

Remark 24 We give an interpretation, in our setting,
of some properties of the orbit O, defined in the previ-
ous proof. According to the results in [7], we know that,
in this case, there are:
only two matrices y1T

1 + y2T
2 + y3T

3 having rank 1;
infinitely many matrices z1A

1 + z2A
2 + z3A

3 having
rank 1;
infinitely many matrices x1B

1 + x2B
2 + x3B

3 having
rank 1.
The first two matrices are those for which (y1, y2, y3) =
(b, c, d) and (y1, y2, y3) = (f, g, h); the two last sets are
given by matrices satisfying, respectively: fz1 + gz2 +
hz3 = 0 and bx1 + cx2 + dx3 = 0.
Recalling that any trilinear form in this orbit is a tri-
focal tensor, it is easy to see that the previous state-
ments have to be true: the line passing through the
center of the first and the second camera has the fol-
lowing point at the infinity (see [2]) (b, c, d, 0), hence
bx1 + cx2 + dx3 = 0 is precisely the pencil of planes in
P3 passing through this line, given in the coordinates
of P(V ∗)′. On the other hand the line passing through
the center of the first and the third camera has the
following point at the infinity (see [2]) (f, g, h, 0), thus
fz1 + gz2 + hz3 = 0 is precisely the pencil of planes in
P3 passing through this line, given in the coordinates
of P(V ∗)′′. Moreover the first two matrices with rank 1
correspond to the intersections of these lines with the
plane u = 0, which is the equation of P(V ) embedded
in P3, having chosen the center of the first camera as
(0, 0, 0, 1).

3 The Trifocal Map

In this section we give an alternate proof of theorem 23
by defining a suitable map, the trifocal map, and show-
ing that Θ is the closure of the image of this map; thus
the theorem follows immediately form the results of [7].
The definition of the trifocal map requires some prelim-
inaries though.
We start by choosing coordinates in V, T is a 3× 3× 3
tensor with coefficients in K, i.e. T = (tijk), i, j, k =
1, 2, 3. Since the choice of coordinates in V (and in W )
determines the matrices M = (mh

g ),M ′ = (m′q
p ),M ′′ =

(m′′s
r ), g, p, r = 1, 2, 3, h, q, s = 1, 2, 3, 4, (whose trans-

posed matrices represent the cameras C∗, C ′∗, C ′′∗ re-
spectively), we want to express the coefficients t as func-
tions of the m,m′,m′′.
Let us fix coordinates in V and W . Let l = ã, l′ =
b̃, l′′ = c̃ ∈ K3, then the corresponding planes are
C∗(l) = ã1m>

1 + ã2m>
2 + ã3m>

3 , C ′∗(l′) = b = M ′>b̃,
C ′′∗(l′′) = c = M ′′>c̃ ∈ K4—recall that M, M ′,M ′′

are 3 × 4 matrices and especially M =




m1

m2

m3


. Now

T (b̃, c̃) = ã if and only if the planes C∗(l), C ′∗(l′), C ′′∗(l′′)
intersect along a line, if and only if M>ã,b, c are lin-
early dependent, if and only if ã1, ã2, ã3 are solutions of
the 4× 5 homogeneous linear system

ã1m1 + ã2m2 + ã3m3 + λb + µc = 0.

These solutions are given by the determinants of the
4 × 4 minors, especially ãi = ε(irs) det(mr ms b c),
where {i, r, s} = {1, 2, 3} and ε(irs) = ±1 is the sign of

the permutation
(

1 2 3
i r s

)
(see Appendix, I). Choosing

as ã, b̃, c̃ the canonical basis vectors of K3, we get the
entries of the tensor T . We can collect the previous
arguments in the following proposition.

Proposition 31 The entries of the trifocal tensor T ,
relative to the matrices

M =




m1

m2

m3


 ,M ′ =




m′
1

m′
2

m′
3


 ,M ′′ =




m′′
1

m′′
2

m′′
3


, are

tijk = ε(irs) det




mr

ms

m′
j

m′′
k


 i, j, k = 1, 2, 3. (5)

In a more intrinsic fashion, to give the previous corre-
spondence we can define the trifocal map

T : (V ⊗W ∗)3 → V ⊗ V ⊗ V ∗.

To describe T let us define:
1) the “diagonal” map δ : V ⊗W ∗ → (V ⊗W ∗)⊗2 such
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that δ(z) = z ⊗ z;
2) the natural multiplication map µ : (V ⊗ W ∗)⊗2 →
∧2V⊗∧2W ∗, defined on decomposable tensors by µ((v⊗
w)⊗(v̄⊗ w̄)) := v∧ v̄⊗w∧ w̄ and then extended by lin-
earity (for a definition of wedge product, see Appendix,
II);
3) the composition σ := µ ◦ δ : V ⊗W ∗ → V ∗ ⊗ ∧2W ∗

(since dim V = 3, there is a canonical identification, up
to a nonzero factor ∧2V ' V ∗);
4) the natural multiplication map µ̂ : V ∗⊗∧2W ∗×(V ⊗
W ∗)2 → (V ⊗ V ⊗ V ∗) ⊗ ∧4W ∗, given by µ̂(v ⊗ w1 ∧
w2, v̄ ⊗ w̄, ṽ ⊗ w̃) := (v̄ ⊗ ṽ ⊗ v) ⊗ (w1 ∧ w2 ∧ w̄ ∧ w̃),
extended by linearity. Since dim W = 4, by using again
the canonical identification ∧4W ∗ ' K, we get in fact
µ̂ : V ∗ ⊗ ∧2W ∗ × (V ⊗W ∗)2 → V ⊗ V ⊗ V ∗.
Now we can describe T with the following proposition.

Proposition 32 For any (C∗, C ′∗, C ′′∗) ∈ (V ⊗W ∗)3

we have:
T (C∗, C ′∗, C ′′∗) = µ̂(σ(C∗), C ′∗, C ′′∗).

Proof: Choose lines l′, l′′ ∈ P2, i.e. l′, l′′ ∈ P(V ∗),
then C ′∗(l′), C ′′∗(l′′) ∈ P(W ∗) are planes whose in-
tersection is the line of P3 represented by C ′∗(l′) ∧
C ′′∗(l′′) ∈ ∧2W ∗. The projection C : W → V induces
the map ∧2C : ∧2W → ∧2V i.e. ∧2C ∈ ∧2V ⊗ ∧2W ∗.
This map, restricted to the respective Grassmannians,
(varieties parametrizing lines in projective spaces) is
the projection from lines of P3 to lines of P2. By using
the canonical identification ∧2V ' V ∗, it is easy to see
that ∧2C = (σ(C∗)). Thus, the image of the lines l′

and l′′ (with respect to the trifocal map T determined
by C,C ′, C ′′) is the image of the line C ′∗(l′) ∧ C ′′∗(l′′)
with respect to the map ∧2C, hence, again with the
identification ∧4W ∗ ' K, the map T is represented by
the tensor µ̂(σ(C∗), C ′∗, C ′′∗). ut

The trifocal map induces a rational map, still re-
ferred to as trifocal map,

T : (P(V ⊗W ∗))3 → P(V ⊗ V ⊗ V ∗).

Note that the trifocal locus Θ is nothing else than the
closure (in the Zariski topology) of the image of the
trifocal map, i.e.

Θ = ImT.

As before, the problem of finding conditions for being
a trifocal tensor is thus to determine the ideal of Θ,
i.e. to find the equations of the trifocal locus in P26. As
before, the key point is to use group actions
The map T is invariant under the natural action of the
group Γ := GL(W ∗) on P(V ⊗W ∗); it is also covariant
under the action of the group G3 := GL(V )3 in the
following sense: an element of G3 acts on (V ⊗W ∗)3 in
the natural way, while it acts on V ⊗V ⊗V ∗ as follows.
The dual action of G on V ∗ is, up to a constant factor,

given by u∧ v 7→ ug ∧ vg, via the natural identification
∧2V = V ∗ (recall that dim V = 3). Choosing coordi-
nates in V , and the corresponding dual coordinates in
V ∗, an element g ∈ GL(V ) is represented by a 3 × 3
matrix, say g = (g1 g2 g3) (column vectors). An ele-
ment of GL(V ∗), denoted by g∗, is represented by the
matrix g∗ = (g2 ∧ g3 g3 ∧ g1 g1 ∧ g2) with respect to
the dual coordinates in V ∗.
Using this representation and (5), it is straightforward,
albeit quite tedious, to verify that the map T is indeed
G3–covariant.
These remarks and the following theorem will allow us
to use the results about G3–action (on V ⊗3), contained
in [6], [7].

Theorem 33 The trifocal locus Θ is (the closure of)
an orbit of the GL(V )3–action (on V ⊗ V ⊗ V ∗) previ-
ously considered.

Proof: Let M1,M2, M3 be the matrices denoted by
M, M ′,M ′′ in proposition 31. Any generic T ∈ Θ is
of type T = T(M1,M2,M3), with Mi ∈ V ⊗ W ∗. Let
g = (g1, g2, g3) be any element in G3. As the action is
covariant, T g = T(Mg1

1 ,Mg2
2 ,Mg3

3 ), hence T g is still a
trifocal tensor; in other words, ImT is G3-invariant.
Conversely, given Mi ∈ V ⊗ W ∗, i = 1, 2, 3, repre-
senting three cameras in general position, their centers
are three points Pi = kerMi in P3 = P(W ) in general
position—i.e. not collinear. Thus, there is σ ∈ Γ such

that P σ
1 =




0
0
0
1


 , P σ

2 =




0
1
0
−1


 , P σ

3 =




0
0
1
−1


, hence

N1 := Mσ
1 is a matrix whose fourth column is zero and

Nj := Mσ
j , j = 2, 3, are matrices whose j-th and fourth

columns are equal. Since rkNi = rkMi = 3, there are
gi ∈ G such that Di := Ngi

i , i = 1, 2, 3 is of the follow-
ing type:

D1 =




1 0 0 0
0 1 0 0
0 0 1 0


 , D2 =




1 0 0 0
0 1 0 1
0 0 1 0


 , D3 =




1 0 0 0
0 1 0 0
0 0 1 1


 .

As the trifocal map T is Γ -invariant and G3-covariant,
it follows that, for the generic trifocal tensor T ∈ Θ, T =
T(M1,M2,M3) = T(N1, N2, N3) = T(Dh1

1 , Dh2
2 , Dh3

3 ) =
T(D1, D2, D3)(h1,h2,h3) = ∆(h1,h2,h3), where hi = g−1

i

and ∆ := T(D1, D2, D3).
We have shown that, on a dense open subset of Θ, the
action of G3 is transitive, so the proof is complete. ut

The previous proof also shows that the set of trifocal
tensors is the orbit the tensor ∆ := T(D1, D2, D3),
with the Di defined above. ∆ = (di

jk) can be explic-
itly computed using (5)—see also (7) below. Writing
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∆i := (di
jk)jk, i = 1, 2, 3, we have:

∆1 =




0 −1 0
0 0 0
1 0 0


 , ∆2 =




0 0 0
0 −1 0
0 1 0


 , ∆3 =




0 0 0
0 0 0
0 −1 1


 .

As we have seen in Section 2 (see the proof of theo-
rem 23), the action of G3 on the trilinear form F con-
sidered in [7], corresponds to the action of G3 on the
tensor T considered in theorem 33. Then we can de-
tect the orbit of Θ by constructing the trilinear form
associated to a particular element of ImT and by using
the classification of [7]. For instance, if we consider the
tensor ∆ = (dijk)—we now write dijk = di

jk—we get
X(x) ≡ 0, Y (y) = y2

3(y3 − y2), Z(z) = z2
2(z3 − z2).

Looking at the table of [7] p. 689, we see that there
is a unique orbit with these invariants—it is the one
corresponding to the entry in the second row and last
column in that table.
Hence, a numerical tensor A is a trifocal tensor if and
only if the associated cubics are of the following types:
X(x) is identically zero and both Y (y) and Z(z) are re-
ducible, each one being the union of a double line and
another line.
To translate these conditions into equations on the en-
tries of A we recall that the coefficients of X(x), Y (y), Z(z)
are in turn homogeneous polynomials of degree three in
the entries tijk of A, thus X(x) ≡ 0 amounts to impose
that all these 10 coefficients are zero, i.e. ten cubic equa-
tions.
The requirement that Y (y) is the union of a double line
and another line is equivalent to the following two con-
ditions:
(i) Y (y) has a triple point (so that the curve is reducible
into 3 concurrent lines) and
(ii) given any three non concurrent lines, e.g. the coor-
dinate lines (in P2), each of them has at least a double
intersection with the curve Y (y).
Condition (i) translates into imposing that Hessian of
Y (y) be identically zero. The Hessian being in this case
a form of degree three (in y), whose coefficients are ho-
mogeneous polynomials of degree nine in the tijk, con-
dition (i) is eventually equivalent to ten equations of
degree nine.
Condition (ii) is equivalent, by lemma 22, to three equa-
tions of degree 4 in the coefficients of Y (y), hence of
degree 12 in the tijk. Clearly the number of equations
arising from conditions (i) and (ii) must be doubled,
taking into account Z(z).
In this way we have (re)-proved our main theorem in a
shorter way and without any calculation.

We now relate briefly the trifocal locus to a particular

Segre embedding. In this way we will prove that its di-
mension is 18 by a different count of parameters with
respect to the strategy used in [2] p. 358.
Let X be the Segre embedding of the product P2 × P2

into P8. Any point in P8 can be viewed as a 3 × 3
matrix and the Segre variety is exactly the locus of
matrices having rank ≤ 1. The tangent variety TX is
the cubic hypersurface which is the locus of matrices
having rank ≤ 2. We can consider any T i as a point
in this P8 and the set T = y1T

1 + y2T
2 + y3T

3 as
a plane in this P8. If [T 1, T 2, T 3] is a trifocal tensor
then we know that T i = aib>4 − a4b>i . It means that
we have chosen a point (a4,b4) ↪→ a4b>4 ∈ P2 × P2

⊂ P8, three points in the plane P2 × b4 ⊂ P8 i.e.
(ai,b4) ↪→ aib>4 , three points in the plane a4 × P2

⊂ P8 i.e. (a4,bi) ↪→ a4b>i , and one point on each
line 〈(ai,b4), (a4,bi)〉 ↪→ 〈aib>4 ,a4b>i 〉 ⊂ P8 i.e. T i =
aib>4 −a4b>i . Hence the plane T = y1T

1 +y2T
2 +y3T

3

is contained in the tangent space of X at (a4,b4), (and
a fortiori in TX) which is the P4 ⊂ P8 spanned by
the two planes P2 × b4 and a4 × P2 intersecting only
at (a4,b4). As we know that in T there are only two
matrices having rank 1, we have that the plane T in-
tersects X only at two points (one in P2 × b4 and one
in a4 × P2).
Conversely, a plane in P8 which is contained in only one
tangent P4 at a point of X and intersecting X only at
two points gives rise to a trifocal tensor, so that the tri-
focal locus is also the (Zariski) closure of (the set given
by the union of) these planes.
This description of the trifocal locus can be used to
compute its dimension. Recall the choices made to get
a trifocal tensor: a point (a4,b4) ∈ P2×P2, three points
on a4×P2, three points on P2×b4, a point on each line
〈(ai,b4), (a4,bi)〉, hence there are 4+3×2+3×2+3 =
19 parameters. As the trifocal tensors are defined up to
a non zero constant, the dimension of the trifocal locus
is then 18 (see [2] p. 358).

4 Other Constraints for the Trifocal Tensor

In this Section, we determine a second set of constraints
for trifocal tensors, other than the ones coming from
theorem 23, by means of geometric arguments. What
we actually do is to give a set of equations defining a
subvariety Ω in P(V ⊗V ⊗V ∗) = P26, which contains Θ.
Then we describe how Θ sits inside Ω as an irreducible
component of maximal dimension. The payoff is that
only eight equations are needed to define “almost all”
trifocal tensors—see corollary 44 below.

The map T is invariant under the natural GL(W ∗)–
action on P(V ⊗W ∗), hence given any three matrices
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M, M ′, M ′′, it is possible to choose coordinates (in W ∗)
such that M has the form

M =




1 0 0 0
0 1 0 0
0 0 1 0


 ;

writing M ′ = (aj
i ),M

′′ = (bj
i ), i = 1, 2, 3, j = 1, 2, 3, 4,

equation (5) becomes ([2])

tijk = ai
jb

4
k − a4

kbi
j i, j, k = 1, 2, 3. (6)

At this point, finding the equations of Θ is seemingly
straightforward, just eliminate the a’s and b’s in (6).
Computationally, this elimination is quite intractable,
so we shall find the equations of the trifocal locus by
means of geometric arguments.
Slicing the tensor T with respect to the index i, we
get three 3 × 3 matrices T i, i = 1, 2, 3, explicitly T i =
(tijk)j,k=1,2,3.
Now, a 3× 3 matrix is actually an element of K3 ⊗K3,
so from (6) follows

T i = ai ⊗ b4 − a4 ⊗ bi, i = 1, 2, 3. (7)

Thinking of a and b as column and row vectors respec-
tively, i.e. a are 3×1 matrices and b are 1×3 matrices,
(7) can be written as a sum of products of matrices in
the form (cf. [2] p. 357)

T i = aib4 − a4bi i = 1, 2, 3. (8)

Lemma 41 Let H, K be vector spaces, dim H = dim K =
2, and let u ∈ H, v ∈ K, χ ∈ H∗, ω ∈ K∗ be nonzero
elements such that kerχ = 〈u〉, kerω = 〈v〉.
A tensor S ∈ H ⊗K is of type S = p ⊗ v + u ⊗ q, for
suitable p ∈ H, q ∈ K, if and only if χ · S · ω = 0.

Proof: One implication is obvious: if S = p⊗v+u⊗q,
then χ · S · ω = χ(p)ω(v) + χ(u)ω(q) = 0.
Conversely, let h ∈ H, k ∈ K be such that {h, u} and
{k, v} are bases of H and K respectively, then S can
be written as S = κh⊗ k +λh⊗ v +µu⊗ k + νu⊗ v, so
κχ(h)ω(k) = χ · S · ω = 0; it follows that κ = 0, hence
S = λh⊗v+µu⊗k+νu⊗v = (λh)⊗v+u⊗ (µk+νv).

ut
Lemma 42 Let T be a generic element in Θ. For T i

as in (7), let Ri and Ci be the subspaces of K3 generated
by the row and column vectors of T i respectively. Then
the following equations are satisfied.
(i) Three cubic equations:

detT i = 0, i = 1, 2, 3. (9)

(ii) 54 equations of degree six:
let ti

p• be the p–th row of T i, then

det(t1
p1• ∧ t1

q1• t2
p2• ∧ t2

q2• t3
p3• ∧ t3

q3•) = 0, (10)

for all 1 ≤ pi < qi ≤ 3, i = 1, 2, 3; similarly,

det(t1
•r1

∧ t1
•s1

t2
•r2

∧ t2
•s2

t3
•r3

∧ t3
•s3

) = 0, (11)

where ti
•r is the r–th column of T i.

(iii) 108 quintic equations:

(tj
•p ∧ tj

•q) · T i · (tk
r• ∧ tk

s•) = 0, (12)

for any i, j, k, p, q, r, s = 1, 2, 3, with j 6= i k 6= i p 6=
q r 6= s.

Proof: (i) Since Ri = 〈bi,b4〉, then dim Ri ≤ 2.
Therefore, as dimRi = dim Ci ≤ 2 means that T i, as a
3× 3 matrix, has rank ≤ 2, so det T i = 0.
(ii) Since a4 belong to all three Ri, then dim R1 ∩
R2 ∩R3 ≥ 1—recall that the intersection of three bidi-
mensional subspaces of K3 in general position is the
null space; similarly dim C1 ∩ C2 ∩ C3 ≥ 1. Note that
dim R1 ∩ R2 ∩ R3 ≥ 1 implies that the Ri’s are lin-
early dependent—as planes in K3. Since Ri, as element
of the dual space K3∗, is represented by ti

p• ∧ ti
q•, for

any choice of p 6= q, where ti
p• is the p–th row of T i,

the linear dependence translates into (10); considering
columns, one gets (11).
(iii) The conclusion follows from lemma 41. In fact, fix
for instance i = 1, H = R2 and K = C2, then t2

p• ∧ t2
q•

is a linear functional vanishing on a4, (but not neces-
sarily on a1); similarly t1

•r ∧ t1
•s is a linear functional

vanishing on b4, (but not necessarily on b1), so we can
apply lemma 41, then equations (12) are satisfied for
1 = 1, j = k = 2, and so on. ut

Now we can prove the following

Theorem 43 Let Ω be the subvariety of P26 defined by
equations (9)—(12), then the trifocal locus Θ is an ir-
reducible component, of maximal dimension, of the va-
riety Ω.

Proof: Θ is irreducible because it is rational. Thanks
to lemma 42 we know that an open subset U of Θ is
contained in Ω, which is itself a closed set in P26. Then
Θ, being the (Zariski) closure of U , is contained in Ω

too. By direct calculation (eight random generators are
algebraically independent) it is easy to see that dim(Ω)
is 18 at most, hence Θ is a component of maximal di-
mension. ut

Theorem 43 tells us that Θ is an irreducible component
of Ω, of maximal dimension. We will describe all com-
ponents of Ω, but we postpone this long and somehow
wearisome task until the end of this section. However
we want to observe that an important consequence of
the analysis of the components is that, to describe the
trifocal locus Θ, we do not need the full set of three
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cubic, 54 sextic and 108 quintic equations given above,
equations that cut out the bigger variety Ω anyway. It is
possible to do it, at least generically, using just the right
number of equations, namely eight, and two open con-
ditions, i.e. inequalities, of degree four. It means that
in such a way we obtain a (Zariski) open subset of Θ,
i.e. almost all trifocal tensors.
The idea is to take all three cubic equations (9), one
each of the sextic equations of (10) and (11), and three
quintic equations among (12), one for each of the slices
T i; to these one adds, as inequalities, two suitably cho-
sen 2 × 2 minors of the matrices (t1

•p1
∧ t1

•q1
t2
•p2

∧
t2
•q2

t3
•p3
∧t3

•q3
) and (t1

r1•∧t1
s1• t2

r2•∧t2
s2• t3

r3•∧t3
s3•).

For example, we take, besides (9), the following sextic
equations

det(t1
1• ∧ t1

2• t2
1• ∧ t2

2• t3
1• ∧ t3

2•) = 0,

det(t1
•1 ∧ t1

•2 t2
•1 ∧ t2

•2 t3
•1 ∧ t3

•2) = 0,
(13)

and quintic equations

(t2
1• ∧ t2

2•) · T 1 · (t2
•1 ∧ t2

•2) = 0,

(t1
1• ∧ t1

2•) · T 2 · (t3
•1 ∧ t3

•2) = 0,

(t1
1• ∧ t1

2•) · T 3 · (t2
•1 ∧ t2

•2) = 0;

(14)

we denote the quartic inequalities by

F (t) 6= 0, G(t) 6= 0 (15)

where: F (t) is the 2 × 2 minor of the matrix (t1
1• ∧

t1
2• t2

1• ∧ t2
2• t3

1• ∧ t3
2•), induced by first and second

rows and first and second columns; G(t) is the 2 × 2
minor of the matrix (t1

•1 ∧ t1
•2 t2

•1 ∧ t2
•2 t3

•1 ∧ t3
•2),

induced by first and second rows and second and third
columns.

Corollary 44 Let I be the ideal generated by the eight
polynomials (9), (13) and (14), then it defines the tri-
focal locus Θ, outside the hypersurface F (t)G(t) = 0.

Proof: If T is a tensor in the locus of I but outside
F (t)G(t) = 0, i.e. satisfying both inequalities (15), then
T satisfies conditions (16) and (17), so we can repeat the
argument, already used for T ∈ Ω satisfying (16) and
(17), and conclude that T is a trifocal tensor indeed.

ut

Thus Θ is the (Zariski) closure of V (I)/V (FG), hence
it is the zero locus of the quotient ideal J := (I : FG)
(see [1] p. 193); explicitly

Corollary 45 The quotient ideal J := (I : FG) cuts
exactly the trifocal locus Θ.

We now proceed to describe all the components of Ω.
Our strategy is the following.

Let T be any tensor belonging to Ω. If T satisfies the
following two conditions:

rk T i = 2, i = 1, 2, 3 (16)

dim R1 ∩R2 ∩R3 = dim C1 ∩ C2 ∩ C3 = 1. (17)

then T is in Θ.
If T does not satisfy either of them, we prove that: ei-
ther T is in Θ (by showing that T can be written as
in (7)), or T gives rise to an irreducible component of
Ω (other than Θ), whose dimension we determine. We
search for these components in two steps: first we drop
(16), then we drop (17), while upholding (16).

To begin with, let us interpret (9)–(17) geometrically.
Equations (9) mean that all vector spaces Ri and Ci,
subspaces of K3, have dimension ≤ 2; dropping condi-
tion (16) means that dim Ri = dim Ci ≤ 1 for some i.
In equations (10), the terms ti

p• ∧ ti
q•, via the canon-

ical identification K3 ∧ K3 = K3∗, is a linear function
mi whose kernel is Ri, in case dim Ri = 2; otherwise
mi = 0. Equations (10) mean that, if all spaces Ri have
dimension two, they share a common one–dimensional
subspace, i.e. they form a pencil; if some mi = 0, then
(10) are automatically satisfied.
Dropping condition (17), while upholding condition (16),
implies that dim R1∩R2∩R3 = 2, hence the row spaces
R1, R2, R3 coincide.
Similar considerations apply to (11); we denote by ni

the linear function ti
•r∧ti

•s, whose kernel is the column
space Ci.
Equations (12) now become mj · T i · nk = 0; besides
being trivial when nj or mk is zero (i.e. when Rj or Ck

is one–dimensional), it is also automatically satisfied if
Rj = Ri or Ck = Ci.

We show now that a T ∈ Ω satisfying (16) and (17) is
in Θ.
Since T ∈ Ω satisfies (16), there are suitable ti

•pi
∧

ti
•qi

6= 0, representing the subspaces Ci ⊆ K3; from (10)
now follows that dim C1 ∩C2 ∩C3 ≥ 1, hence there are
al ∈ K3, l = 1, ..., 4 such that, for all i = 1, 2, 3, Ci =
〈ai,a4〉; the same argument, applied to the row vec-
tors, shows that, for suitable bl, Ri = 〈bi,b4〉 where
Ri ⊆ K3 are the two–dimensional subspaces generated
by the columns.
Since (17) is satisfied, then Ci 6= Cj for some j, hence
there exists a nonzero tj

•p ∧ tj
•q, for suitable p, q, and it

represents an element of C∗i whose value is zero on a4,
but not on ai; similarly, for the columns, there exists
a nonzero tk

r• ∧ tk
s•, which, as an element of R∗i , van-

ishes on b4, but not on bi. Now, the condition of the
lemma 41 is fulfilled because of (12), hence all T i are
of the form T i = ai ⊗ b4 − a4 ⊗ bi, thus T ∈ Θ.
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Now we enumerate all other components of Ω, and we
start by dropping condition (16).
(i) Assume that only one of the T i has rank one; to fix
ideas, let rk T 1 = 1, rk T 2 = rk T 3 = 2, i.e. dim R1 =
dim C1 = 1, dim R2 = dim C2 = dim R3 = dim C3 = 2.
A tensor T = (T i), with T i ∈ Ci ⊗ Ri satisfying (12),
satisfies in particular mi · T 1 · nj = 0, i, j = 2, 3, hence
R1 ⊆ R2 ∩ R3 or C1 ⊆ C2 ∩ C3; we suppose that
R1 ⊆ R2 ∩ R3, the other case being equivalent. There
are several subcases to consider.
(i)a If R2 6= R3 and C2 6= C3, let b4 ∈ R2 ∩ R3, then
T 1 = a1⊗b4, where C1 = 〈a1〉—recall that dim C1 = 1.
Since (12) gives also m3 · T 2 · n3 = 0, and m3, n3 are
the linear functions χ, ω of lemma 41, then T 2 is of
type T 2 = a2 ⊗ b4 − a4 ⊗ b2, where a4 ∈ C2 ∩C3, and
similarly T 3 = a3⊗b4−a4⊗b3. It means that T ∈ Θ,
so in this case there is no new component.
(i)b If R2 6= R3 but C2 = C3, then, as in the pre-
vious case, T 1 = a1 ⊗ b4. However, since C2 = C3,
m3 vanishes on C2, hence lemma 41 does not apply, so
T 2 ∈ C2 ⊗ R2 with no restriction, and analogously T 3

is any element of C3 ⊗R3. We have then a component,
whose parameters are: two each for R2, R3; none for
R1 = R2 ∩ R3; two for C1; two for both C2 = C3; one
for T 1 ∈ C1 ⊗ R1; four each for T i ∈ Ci ⊗ Ri, i = 2, 3.
Total is 17 parameters, then we have a component of
dimension 16.
(i)c If R2 = R3, since tensors having form T i ∈ Ci ⊗
Ri, i = 1, 2, 3 are among those of case (v) below, then
no new component arises in this case.
(ii) Assume rk T 1 = rk T 2 = 1, rk T 3 = 2, i.e.
dim R1 = dim R2 = dim C1 = dim C2 = 1, dim R3 =
dim C3 = 2. It follows that m1 = n1 = m2 = n2 = 0,
while m3 and n3 are nonzero. A tensor T = (T i) with
T i ∈ Ci ⊗ Ri satisfies (9)–(11); to satisfy (12) too, i.e.
m3 ·T i ·n3 = 0, i = 1, 2, it must happen that: Ri ⊂ R3

and Cj ⊂ C3, with {i, j} = {1, 2}; or Ri ⊂ R3 i = 1, 2;
or Ci ⊂ C3 i = 1, 2.
Let us consider the various subcases.
(ii)a Let R1 ⊂ R3 and C2 ⊂ C3, then the tensors
T i ∈ Ci ⊗ Ri have already been accounted for in case
(i)a.
Indeed, let R1 = 〈b4〉 ⊆ R3 = 〈b3,b4〉 and let R2 =
〈b2〉 ; define R′1 := R1, R′2 := R1+R2 = 〈b2,b4〉, R′3 :=
R3 and C ′1 := C1, C ′2 = C ′3 := C3; then T i ∈ Ci ⊗ Ri

is also an element of C ′i ⊗R′i i = 1, 2, 3; but the config-
uration of spaces R′i and C ′i satisfies the conditions of
case (i)a, so the claim follows.
The upshot is that the tensors of this case all lie in the
component already seen in case (i)a.
(ii)b Let R1, R2 ⊂ R3—the case C1, C2 ⊂ C3 is com-
pletely similar; arguing as in the previous case, one sees
that tensors under consideration now are among those

of case (i)c, and again there is no new component.
(iii) Assume that all rk T i = 1. This means that all
spaces Ri and Ci are one-dimensional, so T i ∈ Ci⊗Ri is
of type T i ∈ ai⊗bi, with ai ∈ Ci and bi ∈ Ri i = 1, 2, 3.
Arguing again along the lines of case (ii)a, we see that
such tensors are among those described in case (i)b, so
they belong to that component.
(iv) The case rk T i = 0 for some i gives no new compo-
nents, because the tensors satisfying this conditon ac-
tually belong to the component for which rk T i = 1, all
other conditions remaining unchanged. E.g. if rk T 1 =
0, rk T 2 = rk T 3 = 2, with R2 6= R3 and C2 = C3, it is
easy to see that the corresponding tensors are among
those described in case (i)b above, because they satisfy
the additional condition T 1 = 0.

We now assume condition (16) and drop condition (17).
(v) Suppose dim R1∩R2∩R3 = 2, dim C1∩C2∩C3 = 1.
In this case, T i ∈ Ci ⊗ Ri i = 1, 2, 3 do not necessarily
satisfy (7), so another component of Ω pops out.
The parameters of this components are: two for the
spaces R1 = R2 = R3; five for the spaces C1, C2, C3,
because they belong to a pencil; four each for T 1, T 2, T 3.
Dimension of the component is 18.
Clearly, there is another component of dimension 18,
arising from the symmetric case dim R1 ∩ R2 ∩ R3 =
1, dim C1 ∩ C2 ∩ C3 = 2.
(vi) Suppose dim R1 ∩R2 ∩R3 = dim C1 ∩C2 ∩C3 = 2,
write R = Ri, C = Ci, i = 1, 2, 3.
Tensors in this case are among those already accounted
for in case (v), so no new component arises.

Summing up, Ω has three components of dimension 18,
one being Θ, the other two coming from case (v), and
six components of dimension 16, arising from case (i)b.

5 Conclusions

In this paper we produced two new sets of constraints
for the trifocal tensors. The first one consists of 36 poly-
nomial equations of degree 3, 6 and 12 defining a closed
algebraic variety in P26 which is the closure of the set of
trifocal tensors, i. e. the smallest algebraic variety con-
taining this set. To the best of our knowledge, it is the
only complete set of constraints existing in literature.
Moreover every constraint has a simply interpretation
in terms of the geometry of the three involved cameras.
The key idea is to consider a suitable action of a group
on the set of trifocal tensors and the to apply known
results about this action.
The second set of constraint consists of a large collec-
tion of polynomial equations, obtained by elementary
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geometric arguments. In this case, the closure of the
set of trifocal tensors is only an irreducible component
of the algebraic variety defined by the polynomial con-
straints in P26, however it is possible to pick (in many
different ways) only 8 equations, to get a generically
complete set of constraints. This is very similar to other
sets of constraints already published, but compared to
them, our set is given by the minimal number of equa-
tions and they have lower degrees.

Appendix

We collect here the definitions of some less common
mathematical concepts used throughout the paper.

I. Sign of a permutation.
A permutation (of n objects) σ is a bijective function
from the set {1, 2, 3, . . . n − 1, n} of the first n posi-
tive integers into itself; we denote σ(k) = σk and σ =(

1 2 . . . n

σ1 σ2 . . . σn

)
; the set (actually it is a group) of all

n! such permutations is denoted Sn. An inversion oc-
curs whenever σj > σk for some j < k; the mini-
mum number of inversions for a permutation σ is zero,

when σ =
(

1 2 . . . n

1 2 . . . n

)
, the maximum is n(n−1)

2 , for

σ =
(

1 2 . . . n

n n− 1 . . . 1

)
; a permutation σ is even or odd

if it contains an even or odd number of inversions. The
sign ε(σ) is +1 or −1 if σ is even or odd.
Here we use the signs of the six permutations of {1, 2, 3};
of them three are even, namely

(
1 2 3
1 2 3

)
,

(
1 2 3
2 3 1

)
,

(
1 2 3
3 1 2

)
,

and have sign +1; the remaining three
(

1 2 3
2 1 3

)
,

(
1 2 3
3 2 1

)
,

(
1 2 3
1 3 2

)

are odd, with sign −1.

II. Wedge product
The tensor product a⊗ b of two vectors a,b is a n× n

matrix T = (tpq), with entries tpq = apbq, p, q = 1, . . . , n

The wedge product a ∧ b is defined by

a ∧ b := a⊗ b− b⊗ a,

i.e. it is a a n × n matrix W = (wpq), with entries
wpq = apbq − bpaq, p, q = 1, . . . , n; the set of all wedge
products a∧b,a,b ∈ Kn generates a subspace Kn∧Kn

of Kn⊗Kn, having dimension n(n−1)
2 ; notice that, in the

case of R3, the wedge product R3 ∧ R3 has dimension

three, so it can be canonically identified with R3, and,
under this identification, a∧b coincides with the usual
cross product a× b.
In general, the wedge product of k vectors, k ≤ n, is
defined by

a1 ∧ · · · ∧ ak :=
∑

σ∈Sk

ε(σ)aσ1 ⊗ · · · ⊗ aσk
.

The set of all k–wedge products generate a subspace
∧kKn of ⊗kKn, having dimension

(
n

k

)
=

n(n− 1)(n− 2) · · · (n− k + 1)
1 · 2 · 3 · · · k .

Note that in the case of Rn, the wedge products ∧n−1Rn

and ∧nRn, having dimension n and one respectively,
can be canonically identified with Rn and R.

III. Group action
Let V be a space and let G be a group. We say that G

acts on V if every g ∈ G is an isomorphism g : V → V

and they satisfy the following:
(i) 1G = idV , i.e the unit of G is the identity on V ,
when viewed as isomorphism of V ; and
(ii) (gh)(v) = g(h(v)), for any g, h ∈ G, v ∈ V, i.e. the
product of elements of G coincides with the composi-
tion of functions, when the same elements are viewed
as functions of V.

Most important for us is the case when V = Kn is the
space of vectors and G = GL(V ) is the group of non-
singular n×n matrices (with entries in K); S act on V

via

M(v) := Mv

for all M ∈ G,a ∈ V , i.e. the action is the usual product
of a matrix and a vector.
GL(V ) acts also on any tensor product of V , e.g. M(v⊗
w) := Mv ⊗Mw.

The orbit of an element v of V , denoted Gv or vG, is
the set

Gv := {w ∈ V |∃g ∈ G : gv = w}.

If a group G acts on a space V , then V admits a par-
tition into orbits, i.e. there is a family of orbits whose
union is V and pairwise intersections are empty. If there
is a topology on V , orbits are not closed, in general, but
only locally closed, i.e. every orbit is the intersection of
a closed set and an open set.
When V = Kn, as in our case, only the closure of an
orbit, and not the orbit itself, can be described as a
Zariski closed set, i.e. the zero locus of a finite set of
polynomials.
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