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Nakajima-Zwanzig versus time-convolutionless master equation for the non-Markovian
dynamics of a two-level system
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We consider the exact reduced dynamics of a two-level system coupled to a bosonic reservoir, further
obtaining the exact time-convolutionless and Nakajima-Zwanzig non-Markovian equations of motion. The system
considered includes the damped and undamped Jaynes-Cummings model. The result is obtained by exploiting
an expression of quantum maps in terms of matrices and a simple relation between the time evolution map
and the time-convolutionless generator as well as the Nakajima-Zwanzig memory kernel. This nonperturbative
treatment shows that each operator contribution in Lindblad form appearing in the exact time-convolutionless
master equation is multiplied by a different time-dependent function. Similarly, in the Nakajima-Zwanzig master
equation each such contribution is convoluted with a different memory kernel. It appears that, depending on the
state of the environment, the operator structures of the two sets of equations of motion can exhibit important
differences.
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I. INTRODUCTION

The study of open quantum systems is a wide research
area of interest to various scientific communities, ranging from
physicists to chemists and mathematicians. Its basic theoretical
framework is well understood when a Markovian description
can be applied [1,2], but despite important work [2,3], a
lot remains to be clarified and understood when considering
non-Markovian dynamics, which is often mandatory for a
realistic approach, also coping with strong coupling between
system and environment. Recently a lot of research work has
been devoted to the subject [4–24]. On the one hand, it is
not fully clear which is the most general operator structure
of non-Markovian equations of motion, which do provide
a well-defined time evolution and, in particular, preserve
complete positivity. On the other hand, one would like to
link, in a possibly intuitive way, operator structures giving a
sensible dynamical evolution with microscopic information on
the physics of the system of interest. For the Markovian case
both these approaches, phenomenological and microscopic,
are well understood and successfully applied. The result by
Gorini et al. [25,26] provides a robust framework in which
to envisage a possible ansatz for the evolution equations,
while the Markov approximation is often connected with
weak coupling, thus making microscopic approaches more
manageable. The non-Markovian case is much more subtle
and involved, and results at the same level of generality are
still not available. Moreover, building on the intuition gained
for the Markovian case sometimes leads to inconsistencies and
pitfalls. Indeed in the non-Markovian setting the formation
of correlations between system and environment becomes
of utmost importance, also because of the disappearance of
a clear-cut separation of time scales between system and
environment. The very assumption of a factorized state at some
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point in time, necessary to provide a well-defined dynamics
in terms of the degrees of freedom of the system only, cannot
always be reasonably assumed. To meet these challenges is a
formidable task, whose success would lie in relaxing the too
strong approximations involved in a Markovian assumption,
still coming to a manageable theoretical description for the
system of interest. To pursue this far-reaching goal it can be
useful as an intermediate step to consider situations in which
an exact characterization of a non-Markovian dynamics can
be obtained.

In this article we discuss a realistic physical model, simple
enough to be exactly treated in detail but already showing
typical non-Markovian features. In particular, we not only
derive the exact equations of motion, which provide the
counterpart to the Lindblad structure of a Markovian model,
but also obtain a clear-cut connection to the microscopic
approach via the two standard Nakajima-Zwanzig and time-
convolutionless techniques. This work should help to provide
a better understanding of typical non-Markovian features in
simple but realistic models. We consider a two-level system
coupled first to a single mode of the radiation field and later
to a bath of harmonic oscillators, via a Jaynes-Cummings
type of interaction. By exploiting the knowledge of the exact
unitary evolution, and therefore of the reduced dynamics,
as well as a suitable matrix representation of the dynamical
maps, we can exhibit the exact time-convolutionless and
Nakajima-Zwanzig equations of motion. It will appear that
such equations are given by a sum of Lindblad terms, each
multiplied or convoluted with a different time-dependent
function. Moreover, the operator structure of these two sets of
equations are shown to be generally different, also depending
on the environmental state. These exact results, with a clear-cut
connection to a microscopic perturbative derivation, should
guide the development of a correct intuition for the approxi-
mate treatment of more involved non-Markovian systems.

The article is organized as follows. In Sec. II we derive
the map giving the exact reduced dynamics for the Jaynes-
Cummings model, further introducing a simple representation
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of the map as a matrix with respect to a convenient basis
of operators. In Sec. III we point out the simple relations
connecting the time evolution map to the time-convolutionless,
time-dependent generator and the Nakajima-Zwanzig memory
kernel, respectively. These relationships are most easily
expressed in matrix form. The corresponding matrices are
evaluated for the reduced dynamics of our two-level system,
further coming back to the operator expression of the master
equations and giving the explicit result for a bath in the vacuum
state. In Sec. IV we put forward a similar analysis for the
damped two-level system, referring to previous results and
comparing with the undamped case.

II. JAYNES-CUMMINGS MODEL AND EXACT
REDUCED DYNAMICS

A. Time evolution mapping

We consider a two-level system coupled to a single mode
of the radiation field according to the total Hamiltonian

H = HS + HE + HI , (1)

where the system Hamiltonian is given by

HS = ω0σ+σ−, (2)

with ω0 the transition frequency and σ+ = |1〉〈0| and σ− =
|0〉〈1| the raising and lowering operators of the two-level
system. The Hamiltonian for the single mode of the radiation
field is given by

HE = ωb†b, (3)

where the creation and annihilation operators b† and b obey
the standard bosonic commutation relation. The coupling is in
the Jaynes-Cummings form,

HI = g(σ+ ⊗ b + σ− ⊗ b†), (4)

so that the considered model can describe, for example, the
interaction between a two-level atom and a mode of the radia-
tion field in electric dipole and rotating-wave approximation.
Working in the interaction picture with respect to the free
Hamiltonian HS + HE ,

HI (t) = g(σ+ ⊗ bei�t + σ− ⊗ b†e−i�t ), (5)

with

� = ω0 − ω (6)

the detuning between the system and the field mode, it is
possible to obtain the exact dynamics generated by the total
Hamiltonian (see, e.g., Ref. [27]) and, therefore, the reduced
dynamics of the two-level system. We express the result
exhibiting the unitary evolution operator which, in the basis
{|1〉,|0〉}, is given by the following matrix, whose entries are
operators in the Fock space of the radiation field

U (t) =
(

c (n̂ + 1,t) d (n̂ + 1,t) b

−b†d† (n̂ + 1,t) c† (n̂,t)

)
, (7)

where the following operators have been introduced:

c (n̂,t) = ei�t/2

[
cos

(√
�2 + 4g2n̂

t

2

)
− i�

sin
(√

�2 + 4g2n̂ t
2

)√
�2 + 4g2n̂

]
, (8)

d (n̂,t) = −iei�t/22g
sin

(√
�2 + 4g2n̂ t

2

)√
�2 + 4g2n̂

, (9)

with n̂ = b†b the number operator. The unitarity of U (t) is
granted because of the easily verified relation

c† (n̂,t) c (n̂,t) + n̂d† (n̂,t) d (n̂,t) = 1. (10)

Given the unitary evolution of the whole bipartite system, one
can obtain the reduced dynamics of the two-level atom simply
by taking the partial trace with respect to the environmental
degrees of freedom. If the initial state of the system and envi-
ronment is factorized, the map giving the reduced dynamics is
completely positive and takes the form

ρ(t) = TrE[U (t)ρ (0) ⊗ ρEU †(t)]

≡ �(t)ρ (0) . (11)

Taking U (t) as in Eq. (7) and considering an environmental
state commuting with the number operator, [ρE,n] = 0, so
that, in particular, both the vacuum and a thermal state can be
dealt with, one comes to the following explicit expression for
the action of the map �(t):

ρ11(t) = ρ00 (0) [1 − α(t)] + ρ11 (0) β(t),

ρ10(t) = ρ10 (0) γ (t),
(12)

ρ01(t) = ρ01 (0) γ ∗(t),

ρ00(t) = ρ00 (0) α(t) + ρ11 (0) [1 − β(t)] .

The effect of the interaction with the bath is contained in the
time-dependent coefficients α(t), β(t), and γ (t), which are
given by the following expectation values over the state of the
environment ρE :

α(t) = 〈c† (n̂,t) c (n̂,t)〉E,

β(t) = 〈c† (n̂ + 1,t) c (n̂ + 1,t)〉E, (13)

γ (t) = 〈c (n̂,t) c (n̂ + 1,t)〉E.

B. Matrix representation

Now that we have obtained the completely positive map
�(t) giving the exact reduced time evolution of the considered
two-level system, we shall express it for later convenience in
matrix form with respect to a suitable basis of operators in
the Hilbert space C2, following [28]. Indeed, having fixed a
basis {Xl}l=0,1,2,3 of operators in C2, orthonormal according
to TrS[X†

kXl] = δkl , a linear map 
 can be expressed in this
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basis according to


ρ =
∑
kl

LklTrS[X†
l ρ]Xk, (14)

where the matrix of coefficients Lkl uniquely associated with
the map is given by

Lkl = TrS[X†
k
 (Xl)]. (15)

Here and in the following we use Greek or calligraphic letters
to denote maps and Roman letters to indicate the corresponding
matrix. The convenient choice of basis for our calculations,
to later recast the relevant maps in operator form, is given
by {Xl}l=0,i ≡ { 1√

2
1, 1√

2
σi}, where σi denote the usual Pauli

operators. This choice leads to the following expression for
the matrix Fkl(t) associated with the time evolution map �(t):

F (t) =

⎛⎜⎜⎜⎝
1 0 0 0

0 γR(t) γI (t) 0

0 −γI (t) γR(t) 0

β(t) − α(t) 0 0 β(t) + α(t) − 1

⎞⎟⎟⎟⎠ ,

(16)

where the coefficients defined in Eq. (13) appear, and we
denote by R and I the real and imaginary parts of a given
function:

γ = γR + iγI .

This strategy of associating matrices with maps, already
pursued in [28], which transforms the composition of maps
in matrix multiplication, will turn out to be very convenient
for obtaining the expressions of exact equations of motion
leading to the dynamics described by Eq. (12).

III. EXACT NAKAJIMA-ZWANZIG AND
TIME-CONVOLUTIONLESS MASTER EQUATIONS

A. General expression in terms of the time evolution map

With the aid of the knowledge of the exact time evolution,
and using the representation of maps in terms of matrices, we
now explicitly obtain two kinds of exact equations of motion

for the reduced system’s dynamics. We first consider a master
equation in differential form with a generator local in time,
that is, the time-convolutionless master equation. Assuming
the existence of such a generator KTCL(t), it should obey the
equation

ρ̇(t) = KTCL(t)ρ(t), (17)

which, due to ρ(t) = �(t)ρ (0), is satisfied upon identifying

KTCL(t) = �̇(t)�−1(t) (18)

or, in terms of matrices,

KTCL(t) = Ḟ (t)F−1(t), (19)

holding, provided the inverse does exist.
On a similar footing one can consider a master equation in

integrodifferential form, given by a suitable memory kernel,
corresponding to the Nakajima-Zwanzig master equation.
In this case the memory kernel KNZ(t) should obey the
convolution equation

ρ̇(t) = (KNZ ◦ ρ) (t), (20)

so that in view of Eq. (11), one has the relation

K̂NZ(u) = u1 − �̂−1(u), (21)

where the hat denotes the Laplace transform, and therefore in
matrix representation,

K̂NZ(u) = u1 − F̂−1(u). (22)

It immediately appears that, given the time evolution map from
the relationships Eqs. (19) and (22), one can directly obtain
the generator of the master equation in time-convolutionless
form or the memory kernel for the Nakajima-Zwanzig form,
respectively, without resorting to the evaluation of the whole
perturbative series. Obviously, given the exact time evolution,
one does not need the equations of motion. Nevertheless, an
exact comprehensive study as is feasible in this case allows
us, as we shall see, to point out general features, serving as a
guide for phenomenological or approximate treatments.

Starting from Eqs. (16) and (19), one obtains for the model
of interest

KTCL(t) =

⎛⎜⎜⎜⎜⎜⎝
0 0 0 0

0 Re
[

γ̇ (t)
γ (t)

]
Im

[
γ̇ (t)
γ (t)

]
0

0 −Im
[

γ̇ (t)
γ (t)

]
Re

[
γ̇ (t)
γ (t)

]
0

[1−2β(t)]α̇(t)−[1−2α(t)]β̇(t)
β(t)+α(t)−1 0 0 β̇(t)+α̇(t)

β(t)+α(t)−1

⎞⎟⎟⎟⎟⎟⎠ , (23)

and the expression is well defined provided the
determinant

det F (t) = |γ (t)|2 [α(t) + β(t) − 1] (24)

is different from 0.

On a similar footing one can consider the Laplace transform
of Eq. (16), given by the matrix F̂ (u) with determinant

det F̂ (u) = [γ̂R
2 (u) + γ̂I

2(u)]

[
α̂(u) + β̂(u)

u
− 1

u2

]
, (25)

and using Eq. (22) one further obtains
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K̂NZ(u) =

⎛⎜⎜⎜⎜⎜⎝
0 0 0 0

0 u − γ̂R (u)
γ̂R

2(u)+γ̂I
2(u)

γ̂I (u)
γ̂R

2(u)+γ̂I
2(u) 0

0 − γ̂I (u)
γ̂R

2(u)+γ̂I
2(u) u − γ̂R (u)

γ̂R
2(u)+γ̂I

2(u) 0
u2[α̂(u)−β̂(u)]

1−u[α̂(u)+β̂(u)] 0 0 2u−u2[α̂(u)+β̂(u)]
1−u[α̂(u)+β̂(u)]

⎞⎟⎟⎟⎟⎟⎠ , (26)

which, upon inverse Laplace transform, provides the exact
Nakajima-Zwanzig integral kernel. As it appears, working
with the matrix representation has proved very convenient
for easily obtaining the maps fixing the differential and
integrodifferential equations of motion for the model, given
by Eqs. (17) and (20), respectively, in terms of the completely
positive time evolution map, Eq. (12).

B. Operator expression

We now recast the obtained maps, providing a time-local
generator and memory kernel, in operator form, for better
comparison with previous work and appreciation of the
difference in the obtained expressions. This is easily done
by observing that a matrix of the form

A =

⎛⎜⎜⎜⎝
0 0 0 0

0 Er Ei 0

0 −Ei Er 0

X 0 0 Y

⎞⎟⎟⎟⎠ (27)

in the basis { 1√
2
1, 1√

2
σi} corresponds in operator form to the

map

Aρ = iEi [σ+σ−,ρ] + 1
2 (X − Y )

[
σ+ρσ− − 1

2 {σ−σ+,ρ}]
− 1

2 (X + Y )
[
σ−ρσ+ − 1

2 {σ+σ−,ρ}]
+ 1

4 (Y − 2Er ) [σzρσz − ρ], (28)

whose last term can be written in alternative ways according
to the identities

σzρσz − ρ = 4
[
σ+σ−ρσ+σ− − 1

2 {σ+σ−,ρ}]
= 4

[
σ−σ+ρσ−σ+ − 1

2 {σ−σ+,ρ}] . (29)

Exploiting this result one obtains the exact time-
convolutionless master equation describing the reduced
dynamics of a two-level atom coupled, according to the
Jaynes-Cummings model, to a single mode of the radiation
field, which is of the form Eq. (17), with KTCL(t) given by

KTCL(t)ρ = iIm

[
γ̇ (t)

γ (t)

]
[σ+σ−,ρ]

+ [α(t) − 1] β̇(t) − β(t)α̇(t)

β(t) + α(t) − 1

[
σ+ρσ− − 1

2
{σ−σ+,ρ}

]

+ [β(t) − 1] α̇(t) −α(t)β̇(t)

β(t) + α(t) − 1

[
σ−ρσ+ − 1

2
{σ+σ−,ρ}

]
+ 1

4

{
β̇(t) + α̇(t)

β(t) + α(t) − 1
− 2Re

[
γ̇ (t)

γ (t)

] }
[σzρσz − ρ].

(30)

In a similar way one has for the Laplace transform of the
memory kernel KNZ(t), appearing in the exact Nakajima-
Zwanzig master equation, Eq. (20), the expression

K̂NZ(u)ρ = i
γ̂I (u)

γ̂R
2(u) + γ̂I

2(u)
[σ+σ−,ρ]

+ u[uα̂(u) − 1]

1 − u[α̂(u) + β̂(u)]

[
σ+ρσ− − 1

2
{σ−σ+,ρ}

]

+ u[uβ̂(u) − 1]

1 − u[α̂(u) + β̂(u)]

[
σ−ρσ+ − 1

2
{σ+σ−,ρ}

]

+ 1

4

{
u2[α̂(u) + β̂(u)]

1 − u[α̂(u) + β̂(u)]
+ 2

γ̂R(u)

γ̂R
2(u) + γ̂I

2(u)

}
× [σzρσz − ρ]. (31)

Despite being exact, these expressions are quite cumbersome,
since the functions given in Eq. (13)—which, together with
their Laplace transform, determine the structure of these
operators—depend on the specific expression of the environ-
mental state. It is therefore convenient to consider a specific
choice, allowing for a more detailed evaluation.

C. The vacuum case

If the radiation field is in the vacuum state, the functions
given in Eq. (13) simplify considerably, since α(t) → 1, while
β(t) becomes a function of γ (t) according to β(t) → |γ (t)|2.
The function γ (t) for the vacuum case is given by the
expression

G1(t) = ei�t/2

[
cos

(
�1t

2

)
− i

�

�1
sin

(
�1t

2

)]
, (32)

where the superscript recalls that we have a single mode of the
radiation field, while �1 =

√
�2 + 4g2. These results for the

vacuum case greatly simplify the expression of the obtained
master equations and, inserted in Eq. (24), show that the time-
convolutionless master equation off-resonance is always well
defined.
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Indeed the time-convolutionless master equation for the
vacuum case simply reads

KVac
TCL(t)ρ = + iIm

[
Ġ1(t)

G1(t)

]
[σ+σ−,ρ]

− 2Re

[
Ġ1(t)

G1(t)

] [
σ−ρσ+ − 1

2
{σ+σ−,ρ}

]
,

(33)

corresponding, as expected, to a Lindblad structure with
time-dependent coefficients. Exploiting Eq. (32), one has the
explicit expression

KVac
TCL(t)ρ = −ig2�

1 − cos (�1t)

�1

[
cos2

(
�1t

2

)
+ �2

�2
1

sin2

(
�1t

2

) ]−1

[σ+σ−,ρ] + 2g2 sin (�1t)

�1

×
[

cos2

(
�1t

2

)
+ �2

�2
1

sin2

(
�1t

2

) ]−1

×
[
σ−ρσ+ − 1

2
{σ+σ−,ρ}

]
, (34)

where, in particular, one directly sees that the coefficient in
front of the dissipative term on the right-hand side of Eq. (34)
periodically takes on negative values, so that it describes a truly
non-Markovian behavior and a Markovian approximation is
not justified even for long times.

The choice of the vacuum as bath state brings in important
simplifications also for the expression of the Nakajima-
Zwanzig memory kernel, whose Laplace transform reads

K̂Vac
NZ (u)ρ

= +i
Ĝ1

I (u)

Ĝ1
R

2
(u) + Ĝ1

I

2
(u)

[σ+σ−,ρ]

+
[

1 − uẑ1(u)

ẑ1 (u)

] [
σ−ρσ+ − 1

2
{σ+σ−,ρ}

]

− 1

4

⎡⎣1 − uẑ1(u)

ẑ1(u)
+ 2

⎛⎝u − Ĝ1
R(u)

Ĝ1
R

2
(u) + Ĝ1

I

2
(u)

⎞⎠⎤⎦
× [σzρσz − ρ], (35)

where

z1(t) = |G1(t)|2. (36)

Taking into account the explicit result Eq. (32), one obtains,
after some calculations, the following compact expression for
the memory kernel:

KVac
NZ (τ ) ρ

= −ig2 sin (�τ ) [σ+σ−,ρ] + 2g2 cos(
√

�2 + 2g2τ )

× [
σ−ρσ+ − 1

2 {σ+σ−,ρ}] − 1
2g2[cos(

√
�2 + 2g2τ )

− cos (�τ )][σzρσz − ρ], (37)

which is always well defined, even on-resonance. These
results already allow for a few important remarks. We first
notice that the different operator contributions in Lindblad

form appearing in the various time-local and integral kernels
are multiplied by different time-dependent functions. This
lesson, already learned in other models [15,20,29,30], tells
us that as a general rule non-Markovian dynamics cannot be
obtained from Markovian expressions by simply taking the
convolution with a single integral kernel or multiplying by
a single time-dependent function. This fact has often been
overlooked when seeking non-Markovian integrodifferential
master equations [31–34], sometimes leading to unphysical
behaviors. More than this, for the same model different sets
of non-Markovian equations of motion can have different
operator structures, as it appears upon comparison of, for
example, the time-convolutionless and the Nakajima-Zwanzig
results for the vacuum Eqs. (33) and (37). This fact was
already noticed in [20], but the present analysis shows that
this asymmetry depends on the choice of environmental state.
For the present model it only appears in connection with
the vacuum state. Indeed, while the disappearance of the
term corresponding to excitation of the two-level system is
obvious on physical grounds, when considering the vacuum
as the bath state, the vanishing of the coefficient in front
of the dephasing term σzρσz − ρ is a peculiar feature of the
time-convolutionless master equation.

IV. DAMPED TWO-LEVEL SYSTEM

A. Exact master equations for the bath in the vacuum state

The technique used in Sec. III to obtain the time-
convolutionless and Nakajima-Zwanzig equations of motion
for a model whose evolution is known, by exploiting the
representation of maps in terms of matrices, is applicable for a
detailed study of simple models. We exploit it now for a variant
of the model considered in Sec. II, in which the environmental
Hamiltonian is a collection of harmonic oscillators,

HE =
∑

k

ωkb
†
kbk, (38)

and the interaction Hamiltonian is replaced by

HI =
∑

k

(gkσ+ ⊗ bk + g∗
k σ− ⊗ b

†
k). (39)

For a Lorentzian spectral density this model corresponds to
the damped Jaynes-Cummings model. The time evolution map
for this model, considering the special case of an environment
in the vacuum state, has been obtained in [35] and can be
expressed as

ρ11(t) = ρ11(0)|G(t)|2,
ρ10(t) = ρ10(0)G(t),

(40)
ρ01(t) = ρ01(0)G∗(t),

ρ00(t) = ρ00(0) + ρ11(0)[1 − |G(t)|2],

where ρ(t) = �DVac(t)ρ (0), since we are considering the
damped model with the bath in the vacuum state. The function
G(t) is the solution of the equation

d

dt
G(t) = −

∫ t

0
dt1f (t − t1) G (t1) , G (0) = 1, (41)
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with f (t) the two-point correlation function given by

f (t − t1) = eiω0(t−t1)〈0|
∑

k

gkbke
−iωkt

∑
j

g∗
j b

†
j e

iωj t1 |0〉

=
∑

k

|gk|2 ei(ω0−ωk)(t−t1), (42)

corresponding to the Fourier transform of the spectral density.
Starting from Eq. (40) and exploiting the same strategy used

in Sec. III, one immediately obtains, for the matrix represen-
tation of the time-convolutionless generator, the expression

KDVac
TCL (t)

=

⎛⎜⎜⎜⎜⎜⎜⎝

0 0 0 0

0 Re
[

Ġ(t)
G(t)

]
Im

[
Ġ(t)
G(t)

]
0

0 −Im
[

Ġ(t)
G(t)

]
Re

[
Ġ(t)
G(t)

]
0

2Re
[

Ġ(t)
G(t)

]
0 0 2Re

[
Ġ(t)
G(t)

]

⎞⎟⎟⎟⎟⎟⎟⎠ ,

(43)

so that the master equation in operator form reads

KDVac
TCL (t)ρ = +iIm

[
Ġ(t)

G(t)

]
[σ+σ−,ρ] − 2Re

[
Ġ(t)

G(t)

]
×

[
σ−ρσ+ − 1

2
{σ+σ−,ρ}

]
, (44)

which confirms the result obtained in [2]. One can also
determine the expression of the Nakajima-Zwanzig memory
kernel, whose Laplace transform is given by

K̂DVac
NZ (u)

=

⎛⎜⎜⎜⎜⎜⎝
0 0 0 0

0 u − ĜR(u)
ĜR

2(u)+ĜI
2(u)

ĜI (u)
ĜR

2(u)+ĜI
2(u)

0

0 − ĜI (u)
ĜR

2(u)+ĜI
2(u)

u − ĜR(u)
ĜR

2(u)+ĜI
2(u)

0

uẑ(u)−1
ẑ(u) 0 0 uẑ(u)−1

ẑ(u)

⎞⎟⎟⎟⎟⎟⎠ ,

(45)

where we have used the notation

z(t) = |G(t)|2 , (46)

leading to the master equation

K̂Vac
NZ (u)ρ = +i

ĜI (u)

Ĝ2
R(u) + Ĝ2

I (u)
[σ+σ−,ρ]

+
[

1 − uẑ(u)

ẑ (u)

] [
σ−ρσ+ − 1

2
{σ+σ−,ρ}

]
− 1

4

[
1 − uẑ (u)

ẑ(u)
+ 2

(
u− ĜR(u)

ĜR
2(u) + ĜI

2 (u)

)]
× [σzρσz − ρ]. (47)

B. Role of the correlation function

We now show that this constructive approach leads to the
same result as obtained by a suitable ansatz in [20], where

the detailed connection with the perturbative expansion via
projection operator techniques was also considered. We first
have to recall the relation in Laplace transform between the
function G(t) and the function f (t). Indeed, for the case
of a two-level system interacting with an environment of
oscillators in the vacuum state, all functions appearing in the
non-Markovian equations of motion can be related to a single
correlation function of the model, given by Eq. (42).

To fully exploit this fact in order to express the memory
kernel in the most compact and transparent way, let us observe
that, according to Eq. (41), one has

f̂ (u) = Ĝ∗(u)

|Ĝ(u)|2 − u, (48)

so that in view of the fact that, for real u,

Re[ĥ(u)] = R̂eh(u) (49)

together with

Im[ĥ(u)] = Îmh(u), (50)

the functions

f̂I (u) and − ĜI (u)

ĜR
2(u) + ĜI

2(u)
(51)

do coincide on the real axis and, therefore, due to the
identity principle, in the common region of analyticity. A
corresponding result holds for the functions

f̂R(u) and
ĜR(u)

ĜR
2(u) + ĜI

2(u)
− u, (52)

so that the matrix representing the Nakajima-Zwanzig kernel
can be rewritten in a more compact way as

K̂DVac
NZ (u) =

⎛⎜⎜⎜⎜⎝
0 0 0 0

0 −f̂R(u) −f̂I (u) 0

0 f̂I (u) −f̂R (u) 0
uẑ(u)−1

ẑ(u) 0 0 uẑ(u)−1
ẑ(u)

⎞⎟⎟⎟⎟⎠ ,

(53)

leading indeed to the integral kernel first obtained in [20],

KDVac
NZ (τ ) ρ = −ifI (τ ) [σ+σ−,ρ]

+ k1 (τ )
[
σ−ρσ+ − 1

2 {σ+σ−,ρ}]
− 1

4 [k1 (τ ) − 2fR (τ )] [σzρσz − ρ], (54)

where we have set

k̂1(u) = 1 − uẑ (u)

ẑ(u)
. (55)

For the case of a single mode the correlation function
considered in Eq. (42) explicitly becomes

f 1(t) = g2ei�t , (56)

where the superscript again stresses the fact that a single mode
is considered. The solution of the integrodifferential Eq. (41)
is then exactly given by the function G1(t) introduced in
Eq. (32). As should be, Eqs. (33) and (35) are obtained from
Eqs. (44) and (47) under the replacement G(t) → G1(t), which
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corresponds to the special choice of a single-mode bath. At the
same time it is clear that the explicit coefficients appearing in
Eq. (37) can indeed be expressed using the real and imaginary
parts of Eq. (56), as well as the inverse Laplace transform of

k̂1
1(u) = 1 − uẑ1 (u)

ẑ1(u)

= 2g2 u

u2 + �2 + 2g2
, (57)

which is given by

k1
1 (τ ) = 2g2 cos(

√
�2 + 2g2τ ). (58)

C. Additional term for the thermal bath

It is to be stressed that the possibility of expressing
all relevant functions appearing in time-convolutionless and
Nakajima-Zwanzig master equations with reference to the
single correlation function f (t) is a special feature of
the two-level system coupled to the vacuum. Indeed while
the results in Sec. III for the vacuum are a special case of the
model considered in Sec. IV, the more general situation of a
thermal bath can be explicitly considered for the case of the
reduced dynamics of the Jaynes-Cummings model, showing
that the expectation values of various operators as in Eq. (13)
have to be specified to give the exact equations of motion.

In Sec. III we have shown that the time-convolutionless
generator has a different operator structure with respect to
the Nakajima-Zwanzig memory kernel only for the case of
the vacuum, as it appears upon comparing Eqs. (33) and
(37), while this is no longer true for a thermal state. This
strongly suggests that the asymmetry in the operator structure
of Eqs. (44) and (54) is also due to this special choice of the
bath state. To check this fact, in the absence of the exact time
evolution map, one has to calculate the time-convolutionless
master equation relying on the standard perturbative technique
[2], considering terms up to fourth order. The necessity to go
up to the fourth perturbative order is immediately clear upon
looking at the interaction Hamiltonian, Eq. (39), and observing
that the dephasing term, as it appears from Eq. (29), involves a
quadrilinear contribution in the raising and lowering operators
σ+ and σ−. This task is accomplished in the Appendix, leading
to the result

KD
TCL(t)ρ = iImγs(t) [σ+σ−,ρ]

+ γ+(t)
[
σ+ρσ− − 1

2 {σ−σ+,ρ}]
+ γ−(t)

[
σ−ρσ+ − 1

2 {σ+σ−,ρ}]
+ 1

4γd (t)[σzρσz − ρ], (59)

and the detailed expression of the various coefficients in terms
of two- and four-point correlation functions of the system is
given in Eq. (A22) in the Appendix.

This result shows that indeed the disappearance of the
dephasing term in the time-convolutionless master equation
for the vacuum is a very special feature of this choice of bath.
Once again, the operator structure of non-Markovian equations
of motion is strongly dependent on the details of both the bath
and the interaction terms.

V. CONCLUSIONS

In this article we have obtained the exact time-
convolutionless, time-local master equation and Nakajima-
Zwanzig integrodifferential master equation for a two-level
system coupled to a single bosonic mode, considering a generic
bath state. This has been possible, thanks to the knowledge
of the exact dynamics, and corresponds to the result which
can be obtained by resumming all terms in the corresponding
perturbative techniques. The path followed here—to associate
matrices with maps and to consider the direct relation
between the time evolution map and the time-local generator,
as well as the memory kernel—is, however, much more
straightforward. The result shows that, in a realistic model,
each operator contribution in Lindblad form has its own
time-dependent function, responsible for the non-Markovian
behavior, so that a simple multiplication or convolution of the
Markovian result with a single phenomenologically guessed
function will generally not work. Furthermore, the operator
structures of the equations of motion in the two cases can
differ greatly, also depending on the state of the bath. In
particular, it has been shown that a dephasing term, which is
always present in the Nakajima-Zwanzig equations of motion,
disappears for the time-convolutionless case for a bath in
the vacuum state. This has been checked for the undamped
two-level system, thanks to the exact solution, and for the
damped case by calculating the fourth-order contribution to
the time-convolutionless perturbation expansion.

We would like to stress that, at variance with [20], the
present approach is constructive and model independent, not
relying on a tentative ansatz. Indeed it has allowed us to cope
with a general bath initial state, which, in turn, leads to the ap-
pearance of various environmental correlation functions, rather
than a single one. In particular, we have shown that the lack of
the dephasing term in the time-convolutionless generator of the
two-level system dynamics is a peculiarity of the vacuum state,
while in [20] it was conjectured that this was a special feature
of the time-convolutionless generator, without showing the
dependence of this fact on the choice of environmental state.
This is an explicit example of how the choice of the initial
state for the environment influences the operator structure of
the non-Markovian master equation. Note that, at variance
with the disappearence of the gain term, this result cannot be
guessed on the basis of physical intuition only. Still, at variance
with the Markovian case, the presence of each operator term is
crucial for preserving complete positivity of the time evolution.

The approach pursued is quite straightforward, even though,
to obtain the exact expressions, it relies on the knowledge
of the full time evolution, which obviously is feasible only
for exceptional cases. The detailed analysis of such cases,
however, proves quite useful in understanding the basic
features of a non-Markovian description; in particular, it puts
into evidence the strict relationship between the different
quantities which appear in the evolution equations, showing
that phenomenological ansatze are in general not easily
feasible. Furthermore, the connection to the microscopic
perturbative derivation techniques, as outlined here, can help in
determining the operator structure of the dynamical equations.
This structure can sometimes be unveiled calculating the
first perturbative contributions, thus restricting the number
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of ansatze necessary to consider a sound phenomenological
model.

Non-Markovian effects arise because of the formation
of non-negligible correlations between a system and its
surrounding environment, typically arising in the presence
of strong coupling. These correlations in turn imply that
a factorized state cannot always be realized, so that the
study of the dynamics of correlated initial states becomes of
great significance. This long-standing topic has recently seen
important advancements [36–43], and we plan to address it in
future research work, looking at simple but realistic models,
such as the one considered in this article, for general signatures
of the effect of initial correlations. In the case of correlated
initial states in general systems, however, one can no longer
obtain a closed evolution for the degrees of freedom of the
reduced system only, so that to achieve a useful description of
the dynamics, one possibly has to enlarge the set of degrees of
freedom, partly including information from the environment.
This of course would have important consequences on the
initial states which are experimentally accessible, since the
initial preparation would then also imply a partial measurement
of the reservoir.
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APPENDIX

We consider here the contributions up to fourth order of
the time-convolutionless projection operator technique for the
damped two-level system considered in Sec. IV. We assume
for the environment an equilibrium state ρE , which commutes
with the number operator, and we use the standard projection
operator

Pw = TrE (w) ⊗ ρE, (A1)

where w denotes a state of system and environment.
The time-convolutionless perturbative expansion can be ob-

tained by repeated action of the projection operator considered
previously and of the superoperator

L(t)w = −i [HI (t),w] , (A2)

where HI (t) is the interaction picture expression correspond-
ing to Eq. (39), given by

HI (t) = σ+(t) ⊗ B(t) + σ−(t) ⊗ B†(t), (A3)

with

σ±(t) = e±iω0t (A4)

and

B(t) =
∑

k

gkbke
−iωkt . (A5)

The contributions to second and fourth order for the time-
convolutionless generator then read [2]

K2(t) =
∫ t

0
dt1PL(t)L(t1)P (A6)

and

K4(t) =
∫ t

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3[PL(t)L(t1)L(t2)L(t3)P

−PL(t)L(t1)PL(t2)L(t3)P
−PL(t)L(t2)PL(t1)L(t3)P
−PL(t)L(t3)PL(t1)L(t2)P], (A7)

respectively. Using these expressions one immediately ob-
tains the operator form of the contributions to the time-
convolutionless master equation for the reduced dynamics
according to

K(2)
TCL(t)ρ = TrE

{∫ t

0
dt1L(t)L(t1)ρ ⊗ ρE

}
(A8)

and

K(4)
TCL(t)ρ = TrE

{∫ t

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3

× [PL(t)L(t1)L(t2)L(t3)Pρ ⊗ ρE

−PL(t)L(t1)PL(t2)L(t3)Pρ ⊗ ρE

−PL(t)L(t2)PL(t1)L(t3)Pρ ⊗ ρE

−PL(t)L(t3)PL(t1)L(t2)Pρ ⊗ ρE]

}
. (A9)

We recall that such high-order contributions are needed to
check the appearance, for an environmental state different from
the vacuum, of the dephasing term σzρσz − ρ, which involves
expressions with altogether four raising and lowering operators
of the two-level system.

The second-order contribution Eq. (A8) can be expressed
by means of the following two correlation functions:

f (t − t1) = eiω0(t−t1)TrE{B(t)B†(t1)ρE}
=

∑
k

|gk|2 ei(ω0−ωk)(t−t1)〈nk + 1〉E, (A10)

which corresponds to Eq. (42) if the bath is in the vacuum
state, and

g(t − t1) = e−iω0(t−t1)TrE{B†(t)B(t1)ρE}
=

∑
k

|gk|2 e−i(ω0−ωk )(t−t1)〈nk〉E, (A11)

which vanishes in the vacuum. In terms of these functions, one
has

PL(tα)L(tβ)Pρ ⊗ ρE

= −[f (tα − tβ)σ+σ−ρ + f ∗(tα − tβ)ρσ+σ−
+g(tα − tβ)σ−σ+ρ + g∗(tα − tβ)ρσ−σ+
−2Ref (tα − tβ)σ−ρσ+ − 2Re g(tα − tβ)σ+ρσ−] ⊗ ρE.

(A12)

This result is sufficient to obtain the time-convolutionless
master equation up to second order; indeed upon inserting
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Eq. (A12) into Eq. (A8), one obtains

K(2)
TCL(t)ρ = −i [fI (t) + gI (t)] [σ+σ−,ρ]

+ 2fR(t)
[
σ+ρσ− − 1

2 {σ−σ+,ρ}]
+ 2gR(t)

[
σ−ρσ+ − 1

2 {σ+σ−,ρ}] , (A13)

where we have set

f(t) =
∫ t

0
dt1f (t − t1) (A14)

and

g(t) =
∫ t

0
dt1g(t − t1), (A15)

denoting, as usual, the real and imaginary parts with the
subscripts R and I , respectively.

To consider the fourth-order contribution one has to
evaluate the four terms given in Eq. (A9). The last three terms
on the right-hand side can be obtained by applying twice the
result of Eq. (A12), thus obtaining

PL(t)L(tα)PL(tβ)L(tγ )Pρ ⊗ ρE

= [−4σ+ρσ−{Re f (t − tα)Re g(tβ − tγ )

+ Re g(t − tα)Re g(tβ − tγ )}
− 4σ−ρσ+{Re g(t − tα)Re f (tβ − tγ )

+ Re f (t − tα)Re f (tβ − tγ )}
+ σ+σ−ρf (t − tα)f (tβ − tγ )

+ ρσ+σ−f ∗(t − tα)f ∗(tβ − tγ )

+ σ−σ+ρg(t − tα)g(tβ − tγ )

+ ρσ−σ+g∗(t − tα)g∗(tβ − tγ )

+ σ+σ−ρσ+σ−{2Re[f (t − tα)f ∗(tβ − tγ )]

+ 4Re g(t − tα)Re f (tβ − tγ )}
+ σ−σ+ρσ−σ+{2Re[g(t − tα)g∗(tβ − tγ )]

+ 4Re f (t − tα)Re g(tβ − tγ )}
+ σ−σ+ρσ+σ−{f ∗(t − tα)g(tβ − tγ )

+ g(t − tα)f ∗(tβ − tγ )}
+ σ+σ−ρσ−σ+{g∗(t − tα)f (tβ − tγ )

+ f (t − tα)g∗(tβ − tγ )} ⊗ ρE, (A16)

where the relations σ 2
+ = σ 2

− = 0 have been repeatedly used,
together with the assumption [ρE,nk] = 0.

The first term on the right-hand side of Eq. (A9) instead
requires the introduction of a four-point correlation function,
which is given by

h(ta,tb,tc,td )

= eiω0(ta−tb+tc−td )TrE{B(ta)B†(tb)B(tc)B†(td )ρE}, (A17)

with B (t) as in Eq. (A5). An explicit evaluation of
PL(t)L(t1)L(t2)L(t3)Pρ ⊗ ρE together with the repeated use
of Eq. (A16) then leads to the desired result, which can

be obtained with a straightforward, though very lengthy,
calculation. The fourth-order contribution reads

K(4)
TCL(t)ρ = i [pI (t) + rI (t) + vI (t)] [σ+σ−,ρ]

+ t(t)
[
σ+ρσ− − 1

2 {σ−σ+,ρ}]
+ u(t)

[
σ−ρσ+ − 1

2 {σ+σ−,ρ}]
+ 1

4 [q(t) + s(t) + 2vR(t)] [σzρσz − ρ],

(A18)

where, in analogy with the notation of Eqs. (A14) and (A15),
we use the Fraktur character to denote the triple integral over
time of the function with the corresponding Roman letter; for
example,

p(t) =
∫ t

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3p(t,t1,t2,t3). (A19)

The functions determining the coefficients appearing in
Eq. (A18) are given in terms of the already introduced two-
and four-point correlation functions of the model according to
the expressions

p(t,t1,t2,t3) = −
∑
αβγ

f (t − tα)f (tβ − tγ ) + h(t,t1,t2,t3)

q(t,t1,t2,t3) = −2
∑
αβγ

{Re[f (t − tα)f ∗(tβ − tγ )]

+ 2Re g(t − tα)Re f (tβ − tγ )

− Re h(tα,t,tβ,tγ )}
r(t,t1,t2,t3) = g(t − t2)g(t1 − t3) + g(t − t3)g(t1 − t2)

+ f (t1 − t)f (t3 − t2) − h(t1,t,t3,t2)

s(t,t1,t2,t3) = −2
∑
αβγ

{Re[f (t − tα)f (tγ − tβ)]

+ 2Re f (t − tα)Re g(tβ − tγ )

− Re h(t,tα,tγ ,tβ)}
t(t,t1,t2,t3) = 2

∑
αβγ

{Re[f (t − tα)f (tγ − tβ)]

+ Re[g(t − tα)g(tβ − tγ )]

+ 2Re f (t − tα)Re g(tβ − tγ )

− Re h(t,tα,tγ ,tβ)}
+ 2{Re[f (t1 − t)f (t3 − t2)]

− Re[g(t − t1)g(t2 − t3)] − Re h(t1,t,t3,t2)}
u(t,t1,t2,t3) = 2

∑
αβγ

{Re f (t − tα)Re f (tβ − tγ )

+ 2Re g(t − tα)Re f (tβ − tγ )

− Re h(tα,t,tβ,tγ )}
− 2Re h(t,t1,t2,t3)

v(t,t1,t2,t3) = 2
∑
αβγ

{f (tα − t)f (tγ − tβ) − h(tα,t,tγ ,tβ)},

(A20)
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where the following summation convention has been used:∑
αβγ

ψ(tα,tβ,tγ ) = ψ(t1,t2,t3) + ψ(t2,t1,t3) + ψ(t3,t1,t2).

(A21)

Including terms up to fourth order, one therefore has the
expression Eq. (59) with time-dependent coefficients given by

the identifications

γs(t) = −f(t) − g(t) + p(t) + r(t) + v(t),

γ+(t) = 2fR(t) + t(t),
(A22)

γ+(t) = 2gR(t) + u(t),

γd (t) = q(t) + s(t) + 2vR(t).
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