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K-3 SURFACES
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Abstract. An explicit example of symplectic duality among two particular
K-3 surfaces is given. The example was considered by Iliev and Ranestad.
Here, by using projective and computer algebra methods, it is proved that the
two surfaces are in fact dominated by a 3-fold.

1. Introduction

In recent years, K-3 surfaces and the spaces of moduli of vector bundles over
them were investigated in great detail (see the fundamental [M1]). A lot of results
were obtained by considering abstract surfaces and sophisticated methods. However
K-3 surfaces can be also approached by using projective geometry.

In [I-R] the authors, among many other things, consider two particular types
of K-3 surfaces: S′, a generic section of the Lagrangian Grassmannian Σ ⊂ P9(C)
by a codimension 4 linear space, and S, the symplectic dual of S′, which is a
smooth quartic surface in P3(C). These two surfaces are related each other by
the following result (see th. 3.4.8 of [I-R]): let MS′(2, L, 6) be the moduli space
(modulo isomorphisms) of rank 2 stable vector bundles E over S′ such that the
Chern classes of E are: c1(E) = L and c2(E) = 6, where L is the hyperplane section
of S′; then S ' MS′(2, L, 6). The proof of this result is largely based upon the
projective construction of S and S′, which is a particular case of a more general
construction of varieties and their symplectic duals (see [I-R] p. 395).

The aim of this paper is twofold. Firstly we want to give explicit projective
constructions for S and S′, secondly we want to show that these K-3 surfaces are
in fact the target surfaces of two suitable surjective morphisms from a threefold Z.
The key point is that S can be considered as the base surface of one of the two
types of smooth conic bundles in P5(C) (see [B-O-S-S]). These conic bundles can
be explicitly constructed by using standard computer algebra techniques and their
description given in [D-M-S]. Moreover the construction can be performed in such
a way that it can be explicitly related to some incidence varieties defined in [I-R].
We want to stress that here ”explicitly” means that we are able to write down
polynomial equations. By using the above constructions, a little of Mori’s theory
and some properties of the syzygies of matrices we can prove the existence and the
properties of Z.
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The paper is organized as follows. In §3 we get explicit equations for any smooth
conic bundle X of degree 12 in P5(C) classified in [B-O-S-S] (see prop. 1). In §4,
after recalling many results contained in [I-R], we relate the previous construction
with the incidence relations I (see prop. 6) and J (see prop. 7) defined in [I-R]
and with the surfaces S and S′ (see prop. 8), moreover we get a result about
X (see prop. 9) useful in the sequel. In §5 we prove the existence of Z, of the
morphisms over S and S′ and we describe these morphisms (see prop. 11 and
12), moreover we get a map from S to MS′(2, L, 4) which is similar to the (more
general) map considered by prop. 3.4.1 of [I-R], (see prop. 13 and 14). In §6 we
give a specialization to P3(C) of the construction in [I-R].

Acknowledgments: I wish to thank prof. B. van Geemen for having put [I-R]
and all related matters to my attention.

2. Notation

Pr : r-dimensional projective space on C
Mt : transpose of the matrix M
W ∗ : dual of the C vector space W
KΥ : canonical divisor of the smooth variety Υ
X : 3-dimensional, degree 12, conic bundle in P5 considered in [B-O-S-S]
H : hyperplane divisor of X
p : X → S : the natural projection of X over a smooth K-3 surface S
V : 6-dimensional C vector space such that P5 = P5(V )
Ψ|D| : rational map, induced by some complete linear system |D|, from some Pr

to some Pr′

ΨP : for any point P ∈ Pr\(base locus of |D|), it is the closure in Pr of the fibre
of Ψ|D| which is contained in Pr\(base locus of |D|)

Sm(Υ) : set of smooth points of a scheme Υ
Υred : reduced scheme of a scheme Υ
Secd(Υ) : embedded variety of d-secant lines for the smooth subvariety Υ ⊂ Pr

Ai(Υ), Ai(Υ) : cycles of codimension i (resp. dimension i) in Υ modulo numerical
equivalence

ci(E) : i-th Chern class of the vector bundle E
P(E) : projectivization of the vector bundle E .

3. B-O-S-S conic bundle and its explicit equations

In [B-O-S-S] the authors classify all conic bundles in P5 = P5(V ). They proved
that there are only two such varieties, one of degree 9 and one of degree 12 (see
[B-O-S-S] p. 70). Here we consider the second one, let us call it X.

Theorem 1. Let V be a 6-dimensional vector space on C, let P5 be P5(V ). Let us
fix a non degenerate symplectic 2-form ω ∈ ∧2

V. Then:
i) there is an exact sequence of vector bundles over P5: 0 → Ω4

P5(5) → Ω2
P5(3) →

E → 0, where the injective map Ω4
P5(5) → Ω2

P5(3) is induced by ω and the cockernel
is the rank 5 vector bundle E over P5, generated by global sections, with c1(E) = 5,
h0(E) = 14, defined by Horrocks in [H];

ii) the degeneracy locus of 4 generic sections of E is a smooth, degree 12, 3-fold
X in P5 whose ideal IX has a standard presentation: 0 → O⊕4

P5 → E → IX(5) → 0;



3

iii) if we call K and H, respectively, the canonical bundle of X and the hyperplane
divisor, the rational map associated to the linear system |KX + H| is a morphism
p := Ψ|KX+H| : X → S, where S is a smooth quartic K-3 surface in P3, and every
fibre is a smooth plane conic.

Proof. For proving i) see [D-M-S], prop. 1.2, where E is called B(1). For proving
ii) and iii) see [B-O-S-S] p. 84 and 86.

Corollary 1. From the previous exact sequences defining E and IX it is possible
to get the following resolution for IX : 0 → O⊕4

P5 ⊕ Ω4
P5(5) → Ω2

P5(3) → IX(5) → 0
by means of the exterior powers of the cotangent bundle Ω1

P5 . The resolution can
be used, by a computer algebra system, to get an explicit system of generators for
IX , it turns that IX is generated by 10 quintics according to the tables at p. 87 of
[B-O-S-S].

Proof. For the first part see [B-O-S-S] p. 86, for the second part you can apply the
standard mapping cone technique (see for instance [D-E-S]).

Remark 1. It is well known that all symplectic, non degenerate, 2-form ω ∈ ∧2
V

are projectively equivalent (see for instance [B-O-S-S], proof of prop. 5.9), so that,
up to the choice of the coordinate system in P5, the variety X is determined only
by the choice of the 4 generic sections of E.

In the sequel we will prove some statements by using concrete calculations, so
that it will be useful to have a standard way to compute the above 10 quintics from
any 4 generic sections in H0(E). To this aim we will give an alternative method to
get the quintics.

Let us assume that V = < e1, e2,..., e6 > and V ∗ = < a, b, c, d, e, f > . Let us fix
once for all a coordinate system in P5 such that the generic point has coordinates
(a : b : c : d : e : f), ω = e1 ∧ e4 + e2 ∧ e5 + e3 ∧ e6 and ω∗ = a ∧ d + b ∧ e + c ∧ f.

In this way the symplectic, non degenerate, 2-form ω ∈ ∧2
V defines a contraction

¬ω :
∧5

V ∗ → ∧3
V ∗, and it can be extended to a morphism of vector bundles∧5

V ∗ ⊗O P5 →
∧3

V ∗ ⊗OP5, giving rise to an injective map ϕ : Ω4
P5(5) → Ω2

P5(3)
whose cockernel is E = B(1), as in [D-M-S] prop. 1.2.

Let us look at the following diagram (p. 131 of [D-M-S]), where the vertical
columns are given by the usual Koszul maps:

0 0
↑ ϕ ↑

Ω4
P5(5) → Ω2

P5(3)
↑ ↑

O⊕6
P5 =

∧5
V ∗ ⊗OP5 → O⊕20

P5 = (
∧3

V ∗)⊗OP5
↑ ↑

OP5(−1) = (
∧6

V ∗)⊗OP5(−1) → OP3(−1)⊕15 = (
∧4

V ∗)⊗OP5(−1)
↑ ↑
0 ....

As in [D-M-S] we have:
H0(E) ' Hom(OP5 , E) ' ∧3

V ∗/{Im(¬ω :
∧5

V ∗ → ∧3
V ∗)} '

ker(¬ω :
∧3

V ∗ → V ∗),
so that we can identify H0(E) with a suitable 14 dimensional subspace of

∧3
V ∗.

This subspace is defined by 6 linear relations < in
∧3

V ∗ depending upon ¬ω.



4 ALBERTO ALZATI

Moreover we have the following diagram:
0 0
↓ ↓

Im⊗OP5 Im∗⊗OP5(2)
↓ ↓

(
∧3

V ∗)⊗OP5 → (
∧2

V ∗)⊗OP5(1) ' (
∧

V 2)⊗OP5(1) → (
∧3

V )⊗OP5(2)
↓ ↓

H0(E)⊗OP5 → H0(E)∗ ⊗OP5(2)
↓ ↓
0 0

where Im := Im(¬ω :
∧5

V ∗ → ∧3
V ∗) and the horizontal map is the composi-

tion of the usual Koszul maps and the natural isomorphism
(
∧2

V ∗)⊗OP5(1) ' (
∧2

V )⊗OP5(1) induced by ω.
It follows that the horizontal map can be represented by a (14, 14) symmetric

matrix b2 whose entries belong to H0(P5, OP5(2)), (see [D-M-S] p. 132). As B is
self-dual (see [D-M-S], prop. 1.2), we have that: E = B(1) ' B∗(1) = [B(−1)]∗ =
[E(−2)]∗ = E∗(2), so that we also have the following commutative diagram:

H0(E)⊗OP5 → H0(E)∗ ⊗OP5(2)
↓ ↓
E ' E∗(2)
↓ ↓
0 0

hence, by introducing a C-vector space W of dimension 14, we can complete the
first diagram in the following way:

0 0 0
↑ ↑ ↑

0 → Ω4
P5(5) → Ω2

P5(3) → E → 0
↑ ↑ ↑

0 → ∧5
V ∗ ⊗OP5 → (

∧3
V ∗)⊗OP5 → H0(E)⊗OP5 → 0

↑ ↑ ↑
0 → (

∧6
V ∗)⊗OP5(−1) → (

∧4
V ∗)⊗O P5(−1) → W ⊗OP5(−1) → 0

↑ ↑ ↑
0 ... ...

where the vertical map W ⊗ OP5(−1) → H0(E) ⊗ OP5 is given by a (14, 14)
matrix L of linear forms in P5 whose columns are the syzygies of the columns of b2

(b2L = 0).
Note that, if we consider the mapping cone resolution given by the first diagram,

i.e.:
... → ∧5

V ∗ ⊗OP5 ⊕ (
∧4

V ∗)⊗OP5(−1) → (
∧3

V ∗)⊗OP5 → E → 0,

if we dualize it:
0 → E∗ → (

∧3
V )⊗OP5 →

∧5
V ⊗OP5 ⊕ (

∧4
V )⊗OP5(1) → ...

and if we recall that E∗(2) ' E, then we have that the sections of E can be
described as the syzygies of the (21, 20) matrix of the map (

∧3
V ) ⊗ OP5(2) →∧5

V ⊗ OP5(2) ⊕ (
∧4

V ) ⊗ OP5(3). If you compute such syzygies with a computer
algebra system you get a (20, 14) matrix, whose entries belong to H0(P5,OP5(2)),
and, by using the above 6 linear relations < to eliminate dependent rows, you can
get exactly the matrix b2 of [D-M-S].
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In the sequel we want to compare our calculations with the results contained in
[I-R], to this aim it is more useful to use a sligthly different form of the matrix b2

of [D-M-S]. So that we define the following symmetric matrix H which is a simply
manipulation of rows and columns of b2, i.e. it corresponds to a different choice for
a base in H0(E) :



0 h1 0 0 0 0 0 0 −d2 −de −df −e2 −ef −f2

h1 0 −a2 −ab −ac −b2 −bc −c2 0 0 0 0 0 0
0 −a2 0 0 0 f2 −ef e2 h2 ae af 0 0 0
0 −ab 0 − 1

2f2 1
2ef 0 1

2df −de bd − 1
2cf 1

2bf ae 1
2af 0

0 −ac 0 1
2ef − 1

2e2 −df 1
2de 0 cd 1

2ce − 1
2be 0 1

2ae af
0 −b2 f2 0 −df 0 0 d2 0 bd 0 h3 bf 0
0 −bc −ef 1

2df 1
2de 0 − 1

2d2 0 0 1
2cd 1

2bd ce − 1
2ad bf

0 −c2 e2 −de 0 d2 0 0 0 0 cd 0 ce h4

−d2 0 h2 bd cd 0 0 0 0 0 0 c2 −bc b2

−de 0 ae − 1
2cf 1

2ce bd 1
2cd 0 0 − 1

2c2 1
2bc 0 1

2ac −ab
−df 0 af 1

2bf − 1
2be 0 1

2bd cd 0 1
2bc − 1

2b2 −ac 1
2ab 0

−e2 0 0 ae 0 h3 ce 0 c2 0 −ac 0 0 a2

−ef 0 0 1
2af 1

2ae bf − 1
2ad ce −bc 1

2ac 1
2ab 0 − 1

2a2 0
−f2 0 0 0 af 0 bf h4 b2 −ab 0 a2 0 0




where h1 = ad+be+cf, h2 = ad−be−cf, h3 = −ad+be−cf, h4 = −ad−be+cf.
In this case, the matrix L of the syzygies for the columns of H is the following:




0 0 0 0 0 0 0 0 0 0 c 0 b a
f e d 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −c 0 0 −b 0 d
0 0 0 0 0 0 0 −b 0 −c 0 a d e
0 0 0 −c 0 −b 0 0 a b d 0 0 f
0 0 0 0 0 0 −c a 0 0 0 0 e 0
0 0 0 0 −c a b 0 0 0 e 0 f 0
0 0 0 a b 0 0 0 0 0 f 0 0 0
0 0 a 0 e 0 −f 0 0 0 0 0 0 0
0 a b −e −d 0 0 0 0 f 0 0 0 0
a 0 c 0 0 e d −f 0 −e 0 0 0 0
0 b 0 d 0 0 0 0 −f 0 0 0 0 0
b c 0 0 0 −d 0 0 e 0 0 f 0 0
c 0 0 0 0 0 0 d 0 0 0 −e 0 0




.

Now we can prove the

Proposition 1. Let us fix systems of coordinates in V,P5,H0(E) and a 2-form
ω as above, (hence H and L), then any generic (14, 4) matrix M of constants
corresponds to a generic choice of 4 elements in H0(E) and it is possible to get
a system of generators (10 quintics) for the ideal IX of the corresponding conic
bundle X in P5 depending only on M.

Proof. Let us pick a (14, 4) matrix M of constants and let us consider the exact
sequence of 1: 0 → O⊕4

P5 → E → IX(5) → 0 and the following diagram:
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:

0 0
↑ ↑

0 → O⊕4
P5 → E → IX(5) → 0
↑ ↑

0 → O⊕4
P5 → O⊕14

P5 ' H0(E)⊗OP5
↑ ↑
0 → OP5(−1)⊕14 ' W ⊗OP5(−1)

↑
...

where the injective map 0 → O⊕4
P5 → O⊕14

P5 is given by M and the vertical map
OP5(−1)⊕14 → O⊕14

P5 is given by L. In this way we have chosen 4 elements of H0(E)
and we have gotten a free resolution for IX(5) of this type:

... → OP5(−1)⊕14 ⊕O⊕4
P5 → O⊕14

P5 → IX(5) → 0

where the map OP5(−1)⊕14 ⊕ O⊕4
P5 → O⊕14

P5 is given by [L|M ]. In this case
H0(IX(5)) is given by the syzygies of the columns of the (18, 14) matrix [L|M ]t.
By any computer algebra system, as Macaulay, you can get 14 quintics as generators
for IX . The 14 quintics are in fact linearly dependent over C, so that the ideal is
generated only by 10 quintics among them.

4. The basic construction

In [I-R] the authors describe a very complicated construction by starting with a
6-dimensional C vector space V and a symplectic, non degenerate, 2-form ω ∈ ∧2

V ,
as in §3. They consider the 6-dimensional Lagrangian Grassmannian Σ ⊂ P13 of
isotropic (with respect to ω) projective planes in P5 = P(V ). Σ is one of the six
symmetric Legendre varieties (see table 2 of [M2]) and Σ is linked with the rank 5
vector bundle E over P5 considered in §3, because the fibre (' P4) of P(E) over any
point P ∈ P5 can be identified with the span of the smooth 3-dimensional quadric
QP in Σ parametrizing the isotropic planes passing through P .

Let S′ be a surface section of Σ with a generic P9. It is well known that S′ is
a smooth K-3 surface whose curve section is a canonical embedded curve of genus
9 and degree 16 in P8. One of the most important results contained in [I-R] (th.
3.4.8) is the proof of the existence of an isomorphism among the moduli space
MS′(2, L, 6) := {rank 2 vector bundles E over S′, having c1(E) = L (hyperplane
section) and c2(E) = 6} with a smooth K-3 surface S ⊂ P3, which is the intersection
of the degree 4 dual hypersurface of Σ in P13∗ with P9∗. It turns out that S is also
the base of a degree 12, smooth BOSS conic bundle X ⊂ P5 (see prop. 2.4.2 of
[I-R]) determined by the surface section of Σ .

Here we want to use the algebraic machinery introduced in §3 to give explicit
descriptions of some incidence relations considered in [I-R].

Let us consider the construction of [I-R]. Let us fix systems of coordinates in V,

P5, H0(E) and a 2-form ω ∈ ∧2
V , (hence H and L), as in §3. The form ω∗ gives

rise to a correlation Lω : V → V ∗, v → ω∗(v, ) ∈ V ∗, which is an isomorphism.
This isomorphism induces an isomorphism: Lω :

∧3
V → ∧3

V ∗ denoted in the
same way. Moreover ω∗ gives rise to a contraction ¬ω∗ :

∧3
V → V, so that

we have a linear subspace V14 ⊂ ∧3
V which is the kernel of ¬ω∗. Note that
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V ∗
14 = Lω(V14) = {w∗ ∈ ∧3

V ∗| w∗ ∧ω∗ = 0} ⊂ ∧3
V ∗. If we consider V = U0 ⊕U1

for fixed 3-dimensional subspaces U0, U1, we can decompose
∧3

V =
∧3

U0 ⊕
∧2

U0 ⊗ U1 ⊕ U0 ⊗
∧2

U1 ⊕
∧3

U1.

As
∧2

U1 ' U∗
1 ' U0 (where the second isomorphism is given by L−1

ω ) we have
that every (non zero) element w∗ of

∧3
V ∗ gives rise, by restriction, to a bilinear

map U0 × U0 → C which is symmetric if and only if w∗ ∈ V ∗
14 (see [I-R] p. 387). I.

e. we can associate a conic to any point of P(V ∗
14).

For convenience of the reader in the next four propositions we recall some of the
results of [I-R]:

Proposition 2. The symplectic group Sp(3,C) acts naturally on P13 := P(V14)
and the stratification of the orbits is given by the following subvarieties of P13 :

1) F, a smooth hypersurfaces of degree 4 in P13;
2) Ω := Sing(F ), a singular variety of dimension 9 and degree 21; the ideal of Ω

is generated by 14 forms of degree 3: the partial derivatives of the polynomial of F ;
3) Σ ⊂ P13, the Lagrangian Grassmanian of isotropic (with respect to ω∗) pro-

jective planes in P5 := P(V ); Σ is Sing(Ω), it has dimension 6 and degree 16; the
ideal of Σ is generated by 21 forms of degree 2.

Moreover: Σ is a linear section of the usual Grassmannian G(3, 6) in P(
∧3

V ). F
is the tangential variety of Σ, i.e. the union of the tangent spaces at points of Σ, and
it is isomorphic with the dual hypersurface of Σ. In the dual space P13∗ := P(V ∗

14)
we have dual varieties F ∗ ⊃ Ω∗ ⊃ Σ∗ with the same properties, in particular F ∗ is
the dual variety of Σ and it is a smooth degree 4 hypersurface.

Proof. See §2.3 of [I-R].

Proposition 3. For any point w∗ ∈ P13∗, w∗ ∈ F ∗\Ω∗ the associated conic (see
above) is a smooth conic, hence if we cut F ∗ with a generic linear subspace A ' P3,
so that the intersection with Ω∗ is empty, we get a smooth quartic surface S which
is the base of a conic bundle X. These conic bundles are exactly those considered
in [B-O-S-S].

Proof. For the first part see proposition 2.3.3 of [I-R], for the second part see §2.4
of [I-R], see also [D-M-S].

Proposition 4. Σ is a V OADP, i.e. a variety with one apparent double point.
More precisely: for any generic point w ∈ P13 there is only one secant line to
Σ passing through w; if w ∈ P13\F we have exactly a secant line at two distinct
points, if w ∈ F\Ω we have exactly only one tangent line, if w ∈ Ω\Σ the secant
lines span a P4 and the entry locus of w (the set of points of Σ which are the
intersections between Σ and the secant lines passing through w) is a 3-dimensional
smooth hyperquadric Σ∩ P4.

Proof. See th. 2.3.2 and prop. 2.5.1 of [I-R].

Proposition 5. For any point P ∈ P5 = P(V ) the isotropic planes passing through
P are parametrized a 3-dimensional quadric QP ⊂ Σ. The 4-dimensional linear
span P4

P of QP is P(EP ), the projectivization of the fibre of E over P.

Proof. For the first part see lemma 2.4.1 of [I-R], for the second part see [I-R] p.
390-391.
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Now we are ready to get some consequences of our machinery. Let us consider
the following incidence variety (called IP at p. 390 of [I-R]):

I := {(w, P ) ∈ P13 × P5| w ∈ P4
P }.

Proposition 6. Let us fix coordinates (x1 : x2 : ... : x14) in P13 and let us consider
the (1, 14) matrix Lx := [x1 x2 ... x14], and the (1, 14) matrix CLx := [x1 x2 x3

2x4 2x5 x6 2x7 x8 x9 2x10 2x11 x12 2x13 x14]. Then:
i) a set of equations for I is given by LxL = 0, where L is the matrix defined in

§3,
ii) a set of equations for Σ is given by: CLxH[CLx]t = 0, identically with respect

to (a : b : c : d : e : f), where H is the matrix defined in §3.
Proof. Let us recall that P13 = P(V14) with V14 = ker(¬ω∗ :

∧3
V → V ), so that

H0(P13,OP13(1)) can be identified with H0(E) = ker(¬ω :
∧3

V ∗ → V ∗) = V ∗
14.

Let us recall that, for any point P ∈ P5, the 14 columns of the matrix H(P ),
where H is the matrix defined in §3, can be considered as the coordinates of 14
points of P13 and the linear span of these 14 points is P4

P . As HL = LtH = 0 we
have that the linear span of the 14 rows of [L(P )]t is (P4

P )∗ so that P4
P = {x ∈

P13|[L(P )]t(Lx)t = 0} = {x ∈ P13|LxL(P ) = 0}. Letting P to vary in P5 we have
that a set of equations for I is given by LxL = 0, so that i) is proved.

To prove ii), let us recall matrix H. The columns of H correspond to a set of
generators for H0(E) ⊂ ∧3

V ∗ by considering the 6 relations <. If we choose a base
for

∧3
V ∗ as in [I-R] < u, z, xij , yij , i, j = 1, 2, 3 > the relations < are given by:

xij = xji and yij = yji. If we adjoin 6 suitable columns to H we have a (14, 20)
matrix H′ such that from H′ we can get a (21, 20) matrix H′ of linear forms giving
a morphism

∧3
V ∗ ⊗OP19 → S2(V ∗)⊗OP19 of vector bundles on P19 (see [D-M-S]

p. 133 where the trick is used for b2 in P13). If we fix coordinates (u1 : ... : u20) in
P19, to determine H′ we have to consider the product H[u1 ... u20]t then we have to
consider the coefficients of the 21 quadratic forms generating S2(V ∗). Now it is easy
to see that a set of generators for the usual Grassmannian G(3, 6) ⊂ P19 is given
by [u1 ... u20]H′[u1 ... u20]t = 0, identically with respect to (a : b : c : d : e : f),
so that a set of generators for Σ is given by imposing the 6 relations < in P19.
Alternatively we can use directly H, getting from it a (21, 14) matrix of linear
forms H giving a morphism H0(E) ⊗OP13 → S2(V ∗) ⊗OP13 of vector bundles on
P13 (see [D-M-S] p. 133). However, in this case, we have to use the different matrix
CLx to satisfy relations <. Note also that the columns of H have only one syzygy
(as you can prove by any computer algebra system): a (14, 1) vector given by the
14 cubic forms defining Ω (see [D-M-S] p. 133). These forms are the gradient of a
polynomial defining F, which is the tangent developable for Σ (see [D-M-S], prop.
1.3).

By using H in this way, we get a set of quadratic forms generating the same
ideal IΣ considered by [I-R] if we translate their coordinates in the following way:

(u : z : x11 : x12 : x13 : x22 : x23 : x33 : y11 : y12 : y13 : y22 : y23 : y33) ≡
≡ (x1 : x2 : x3 : x4 : x5 : x6 : x7 : x8 : x9 : x10 : x11 : x12 : x14).

From proposition 6 we have the following:
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Corollary 2. Let I be the incidence variety defined above. The projection of I
over P5 is surjective, the fibres are all linear of dimension 4 and dim(I) = 9. The
projection of I over P13 is surjective over the 9-dimensional, degree 21, variety Ω;
the generic fibre is a point over Ω\Σ and a plane over Σ.

Proof. By definition and by proposition 5 we know that I = P(E), hence we have
the first part of corollary 2. By proposition 6 we know set of generators for the
ideals of Σ, Ω and F in P13. By projecting I in P13 (by a computer algebra system
as Macaulay for instance), we get exactly a set of generators for Ω and you can
verify directly the description of the generic fibres.

Now let us consider an other incidence variety, introduced in [I-R] (p. 394):
J := {(P,w∗) ∈ P(V )× P(V ∗

14)| P4
P ⊂ P12

w∗}
where P12

w∗ is the hyperplane of P(V14) corresponding to w∗.

Proposition 7. Let us fix coordinates (y1 : y2 : ... : y14) in P13∗ and let us consider
the (1, 14) matrix Ly := [y1 y2 ... y14]. Then a set of equations for J is given by
LyH = 0, where H is the matrix defined in §3.
Proof. From proposition 6 we know that, for any P ∈ P5, H(P )[Lx]t are the coor-
dinates in P13 of the generic point of P4

P . Hence the condition: {LyH(P )[Lx]t = 0
identically with respect to x1, x2, ... , x14} implies that P4

P ⊂ P12
w∗ for the fixed hy-

perplane w∗ = (y1 : y2 : ... : y14), so that J is defined by the conditions LyH = 0.

Corollary 3. Let J be the incidence variety defined above. The projection of J over
P5 is surjective, all the fibres are linear spaces of dimension 8 and dim(J) = 13.
The projection of J over P13∗ is surjective over the degree 4, hypersurface F ∗ ' F ;
the generic fibre is a smooth conic.

Proof. Obviously, for any P ∈ P5, the fibre over P is given by the hyperplanes
containing P4

P . On the other hand by a computer algebra system (as Macaulay for
instance) a direct calculation gives F ∗ and you can verify directly the description
of the generic fibres. The transformation {yi = 2xi i = 4, 5, 7, 10, 11, 13, yi = xi

i 6= 4, 5, 7, 10, 11, 13} proves that F ' F ∗.

Remark 2. By proposition 3 the fibres of J over the points w∗ ∈ F ∗\Ω∗ are the
smooth conics which are fibres of the conic bundles considered in [B-O-S-S]. To get
one of these conic bundles you have to cut F ∗ with a generic P3 ⊂ P13∗.

Corollary 4. Let I and J be the above incidence varieties. Let Π be an isotropic
plane in P5. Let wΠ be the corresponding point in Σ and let w∗Π be Lω(wΠ). Then
Π gives rise to:

- a dimension 6, degree 13, genus 6, variety ΠI ⊂ Ω which is a cone, of vertex
wΠ, over the intersection of Σ with the hyperplane corresponding to w∗Π and a cubic
hypersurface;

- a dimension 10, degree 12, genus 19, variety ΠJ ⊂ F ∗ which is the complete in-
tersection of F ∗, its polar variety with respect w∗Π, and the hyperplane corresponding
to wΠ.

Proof. As Σ is a homogeneous variety it suffices to prove corollary 4 for one point
of Σ, i.e. for one isotropic plane in P5. Then the proof is simply an application of
direct calculation by using propositions 6 and 7. Note that ΠI = P(E|Π), so that
its numerical characters also follows from Proposition 2.5.4 of [I-R].
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Proposition 8. Let us choose two generic linear dual spaces: A ⊂ P(V ∗
14) = P13∗,

B ⊂ P(V14) = P13, of dimension 3 and 9.respectively. Let M be the (14, 4) matrix
of constants defining A. Let us consider S := A∩F ∗ and S′ := B ∩Σ. Then S and
S′ are two smooth K-3 surfaces whose Picard group is generated by the hyperplane
divisor and S is the Sp(3)-dual of S′, isomorphic to MS′(2, L, 6). If we construct
X as in §3 by using M, we get that the base surface is exactly S.

Proof. Obviously S is a smooth K-3 surface with Pic(S) ' Z. The same is true for
S′ thanks to proposition 2.5.9 of [I-R]. The isomorphism S ' MS′(2, L, 6) ( where
L is the hyperplane divisor) follows from theorem 3.4.8 of [I-R].

Now, let us define a conic bundle X as in §3 starting from M. Let us recall that
M corresponds to a choice of 4 generic sections of E and that X is the degeneracy
locus of such sections in P5. Let a ≡ (x : y : z : u) the generic point in A and let
JX := {(P, a) ∈ P5 × B| P4

P ⊂ P12
a } = {(P, a) ∈ P5 × A| [x y z u]MtH(P ) = 0} =

{(P, a) ∈ P5 × A| H(P )M [x y z u]t = 0} as H is symmetric. Then the projection
of JX into P5 is the degeneracy locus of the 4 sections corresponding to M, i.e. X,
and the projection of JX into A is a smooth quartic surface which is the base of the
conic bundle X, according to remark 2. It is easy to prove, by direct calculation,
that this quartic surface in A ' P3 is exactly S.

Remark 3. As B is generic, P4
P ∩B is a point for generic P ∈ P5. It can be shown

that X = {P ∈ P5| dim(P4
P ∩B) ≥ 1}.

Proposition 9. Let X be a conic bundle as in §3 and let C be any fibre of p,
spanning a plane < C > ⊂ P5. Then, for any C, < C > ∩X is a reducible scheme
given by C and by a 0-dimensional scheme of length 6. For generic C, it is given by
C and by 6 distinct points which are the intersections of 4 distinct lines in general
position on < C > .

Proof. First of all we have that < C > ∩X is given by C and a 0-dimensional
scheme, otherwise we would have at least a point x on X such that two different
fibres of X would pass through x and this is not possible. Now, let Ξ be a smooth
hyperplane section of X containing C. There is the following exact sequence of
normal bundles: 0 → NC|Ξ → NC|X → (NΞ|X)|C → 0. We have NC|X = OP1 ⊕OP1
and NC|Ξ = OP1(ν) where ν = C2 in H∗(Ξ). Moreover NΞ|X ' H|Ξ as Ξ ≡ H

(hyperplane section of X) in Pic(X), so that deg[c1(NΞ|X)|C ] = H2C = 2, hence
ν = −2. Let Ξ′ be another smooth hyperplane section of X containing C.
Ξ′ ∈ |H|Ξ − C|, hence H|Ξ − C is an effective divisor on Ξ and h0(Ξ,H|Ξ − C) > 0
as we can choose Ξ′ in a web of hyperplanes containing < C > . It follows that the
length of the 0-dimensional above scheme is: (H|Ξ−C)2 = (H|Ξ)2− 2H|ΞC +C2 =
H2Ξ − 2H2C + ν = 12 − 4 − 2 = 6. For a generic fibre the points are all distinct
and, by using the set of equations for J of proposition 7, a direct calculation shows
that they are the intersections of 4 distinct lines in general position on < C > .

To conclude §4 we give some facts, that can be proved by direct calculation, and
whose importance will be evident in the sequel. Let us consider the restriction to
S′ of the projection of I. For any generic point of S′ the fibre is a plane, projecting
as a plane in P(V ), (remember that the generic fibre is a point only for points
of Ω\Σ and here we are on Σ). If we cut X with this plane we get a smooth
plane quintic. Moreover if we project into A such plane quintics, by using J, we
get singular curves which are complete intersection of S and cubic surfaces with 4
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singular points. These cubic surfaces belong to the linear system of cubic surfaces
cut on A by the linear system of P(V ∗

14) given by the 14 partial derivatives of F ∗.
Viceversa, if we project into B a smooth conic, which is a fibre of X, we get a
hyperplane section of S′.

Remark 4. If you have any smooth quartic surface S in P3 it is natural to ask if
S can be the base of a conic bundle like X. The answer is yes if you can choose
coordinates in P3 such that S is a linear section of F ∗, fixed by the [I-R] construction,
depending on the choices of coordinates in V and ω.

5. The concrete linkage translating the symplectic duality

Around the construction in [I-R] there are at least two interesting birational
maps. The first one is well known: the 14 partial derivatives of the equation of
F gives an involutory birational map γ : P(V14) → P(V ∗

14), γ−1 is given by the 14
partial derivatives of the polynomial of F ∗. Obviously the base locus of γ is Ω and
the exceptional divisor is F (see [D-M-S], p. 131).

Here we want to consider another interesting birational map.
First of all we need to study the normal bundle NX|P5 .

Proposition 10. Let NX|P5 be the normal bundle of X in P5. Let C be a generic
fibre of X and recall that Pic(X) = < H, K >. Let h be the class of a hyperplane
in P5 in such a way that H = h|X . Let ∆ := P(N ∗

X|P5), let τ be the tautological
divisor of ∆ and let π : ∆ → X be the natural map. Then:

i) c1(NX|P5) = 6H + K, c2(NX|P5) = 12H2.
ii) (NX|P5)|C = OP1(4)⊕OP1(6).
iii) π∗H4 = 0; π∗H3τ = 12;π∗H2τ2 = −76; π∗Hτ3 = 324; τ4 = −996.

Proof. i) Let us consider the exact sequence: 0 → TX → (TP5)|X → NX|P5 → 0. As
c1(TX) = −K and c1(TP5) = − 6h, we have c1(NX|P5) = 6H +K. As codP5(X) = 2
we have: c2(NX|P5) = X|X = (deg(X))h2

|X = 12H2.

ii) As C ⊂ X ⊂ P5, we have the following exact sequence of normal bundles:

0 → NC|X → NC|P5 → (NX|P5)|C → 0. (∗)
As C ' P1, (NX|P5)|C = OC(α) ⊕ OC(β) for some integers α and β, moreover

C is a complete intersection in P5 so that NC|P5 = OC(1)⊕3 ⊕ OC(2). Now, let
S̃ be the pull-back, by p : X → S, of a generic smooth hyperplane section of S

such that S̃ ⊃ C. S̃ is a smooth ruled surface in P5 and C ⊂ S̃ ⊂ X, so that we
have 0 → NC|eS → NC|X → (NeS|X)|C → 0. NC|eS = OC because C is a fiber of

p|eS . NeS|X = S̃|eS ≡ 4C (recall that deg(S) = 4 and that C is a generic fibre of p),
hence (NeS|X)|C = OC . Therefore NC|X = OC ⊕OC . Now we can write (∗) in the
following way:

0 → OP1 ⊕OP1 → OP1(2)⊕3 ⊕OP1(4) → OP1(2α)⊕OP1(2β) → 0.

Obviously 2α+2β = 10 and, as (∗) does not split, 2α ≥ 4 and 2β ≥ 4, so we are
done.

iii) From i) we have: c1(N ∗
X|P5) = −6H − K, c2(N ∗

X|P5) = 12H2, so that the
Wu-Chern relation for τ is: τ2 = −π∗(6H + K)τ − 12π∗H2. Then iii) follows from
the facts: dim(X) = 3, H3 = K3 = 12, HK2 = −12, H2K = 4 (see [B-O-S-S] p.
87) and from the previous relation.
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Proposition 11. Let us fix a couple of linear spaces A and B as in §4. In this way
we have a conic bundle X as above. Let σ : W → P5 be the blow up of P5 along
X. Let h be the class of a hyperplane in P5, let ∆ = P(N ∗

X|P5) be the exceptional
divisor for σ and let π : ∆ → X the natural map. W is a smooth 5-dimensional
variety such that Pic(X) = < σ∗h, ∆ > . Let Ψ : P5 −− > P9 be the rational map
defined by the 10 quintics defining X and let Φ : W → P9 be the morphism induced
by Ψ. Then:

i) it is possible to identify P9 ' B and Ψ is a birational map among P5 and the 5-
dimensional intersection Φ(W ) = B∩Ω. The exceptional loci of Ψ are, respectively,
X and S′ = Sing(B ∩Ω). Φ is the map associated to the linear system |5σ∗h−∆|;

ii) there is a smooth divisor Y ⊂ W such that Y = P(U|S′), where U is the
universal bundle over Σ, and the natural map ψ : Y → S′ coincides with Φ|Y ;

iii) W is a smooth Fano variety and its Mori’s cone is generated by two extremal
rays corresponding to Φ and σ;

iv) on Z := Y ∩∆ two maps are defined:
- p ◦ π|Z : Z → X → S is such that the generic fibre is the double covering of a

plane conic, (branched at 12 distinct points)
- Φ|Z : Z → S′ is such that the generic fibre is a smooth plane quintic.

Proof. i) From A and B we can get 14 quintics in P5 (not linearly independent)
among which we can choose 10 quintics to generate IX as in §4 and to define Ψ and
Φ. By a computer algebra system, as Macaulay for instance, it is easy to prove that
the matrix of the first syzygies of the 14 quintics is a (14, 14) matrix R = [R0|R1]
where R0 is a (14, 4) matrix of constants and R1 is a (14, 10) matrix of linear forms
having rank 9. More precisely, for any P ∈ P5, rank[R1(P )] < 9 if and only if
P ∈ X. Moreover it is possible to identify the target space of Ψ′ (the rational map
induced by the 14 quintics) with P(V14) = P13 in such a way that:

- (x1 : x2 : ... : x14) are the coordinates of the generic point w ∈ P13,
- w ∈ B if and only if [x1 x2 ... x14]R0 = 0
- B is the target space of Ψ and Φ.
Now, let us consider Ψ : P5−−− > B. As R1 is a matrix of linear forms we have

that X satisfy condition K5 (see [V]), then Ψ is an embedding out of Sec5(X) and
the closure of any positive dimensional fibre of Ψ is a linear space in P5 intersecting
X along a hypersurface of degree 5 (see [A-R] prop.1 and [V]), moreover the graph
GΨ of Ψ in P5 ×B is given by (see [A] prop. 3):

[x1 x2 ... x14]R1 = [x1x2...x14]R0 = 0.

By direct calculation now it can be shown that:
- GΨ is the restriction of I to P5 ×B, hence Φ(W ) = B ∩ Ω
- the fibre of Ψ over a point w ∈ B ∩Ω is a plane in P5, intersecting X along a

plane quintic, if and only if w ∈ S′, otherwise the fibre is a point.
To get i) now it suffices to recall that S′ = B ∩ Σ and Σ = Sing(Ω). Obviously

Φ = Φ|5σ∗h−∆|, note that, by using proposition 10 iii) and by recalling that σ∗h|∆ =
π∗H, ∆|∆ = −τ , we have that (5σ∗h−∆)5 = 21 = deg(Ω).

ii) By using GΨ in P5×B, by direct calculation, it can be shown that the union
of all positive dimensional fibres of Ψ is a hypersurface Y of degree 8, singular along
X, so that there exists a positive integer x such that linear system |8σ∗h−x∆| 6= ∅
and (5σ∗h−∆)4(8σ∗h− x∆) = 0. By using prop. 10 iii) as above we have x = 2.
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Now let us consider the restriction I of I to X × S′. As we have seen in i), the
projection ψ : I → S′ is the natural map of the projectivization of a rank 3 vector
bundle over S′, the fibres of ψ are isotropic planes in P5, so that I = P(U|S′). By
blowing up P5 at X, as I ⊂ GΨ we have that there exists a smooth divisor Y ' I
in W and Y is the only divisor contracted by Φ, so that Y is the only element of
|8σ∗h− 2∆| and ψ = Φ|Y . Note that, by direct calculation, it is easy to see that for
any generic point P ∈ X the fibre of I over P is the line P4

P ∩ B, the intersection
of this line with Σ is: P4

P ∩ Σ ∩ B = QP ∩ (P4
P ∩ B) i.e. a couple of points in QP .

Hence the line P4
P ∩B is a secant line for S′ and the intersection points with S′ give

rise to two isotropic planes in P5 passing through P. These planes cut X along two
plane quintics and the blow up of P5 along X separates the two plane quintics.

iii) Obviously Pic(W ) = < σ∗h,∆ >, so that the Picard number of W is 2. Let
f be the numerical class of a fibre of π, then we can assume that A1(W )⊗R ' R2

is generated by σ∗h4 and f, so that any 1-cycle in A1(W ) ⊗ R can be written as
ασ∗h4 + βf with α, β ∈ R. Note that KW f = (−6σ∗h + ∆)f = (−6σ∗h + ∆)|∆f =
(−6π∗H−τ)f = −1 and KW σ∗h4 = (−6σ∗h+∆)σ∗h4 = −6, so that KW (ασ∗h4 +
βf) = −6α−β, hence the polyhedral part of the (two dimensional) Mori’s cone is in
the half-plane where β ≥ −6α. Due to the existence of 5-secant lines to X in P5 we
have that the 1-cycle σ∗h4−5f is effective and KW (σ∗h4−5f) = −1, moreover the
pull back in W of all these lines are contracted by Φ and cover Y, so that σ∗h4−5f
generates a rational extremal ray. Another rational extremal ray, corresponding to
σ, is generated by f, so Mori’s cone is < [f ]⊗R+, [σ∗h4−5f ]⊗R+ >, it coincides with
its polyhedral part and it is entirely contained in the half-plane where β ≥ −6α. It
follows that W is a smooth Fano variety (see [D], th. 1.27).

iv) Let us consider the intersection Z := Y ∩∆. As (8σ∗h− 2∆)|∆ = 2τ + 8π∗H
we have that Z = 2τ +8π∗H in Pic(∆) = < π∗H, π∗K, τ > . If we define ρ := π|Z :
Z → X we have that ρ is a double covering of X. To find the ramification divisor Rρ

we recall that K∆ = (KW + ∆)|∆ = (−6σ∗h + 2∆)|∆ = −6π∗H − 2τ , KZ = ρ∗K +
Rρ = (K∆ + Z)|Z = (2π∗H)|Z , hence Rρ = −π∗K|Z + (2π∗H)|Z = π∗(2H −K)|Z .
It follows that the branching divisor of ρ is Db = 4H−2K in Pic(X). Any conic C,
fibre of p, is numerically equivalent to 1

4 (H+K)2 in A2(X), so that the fibres of p◦ρ
are double coverings, of a smooth plane conic, branched at 1

4 (H +K)2(4H−2K) =
12 points. Note that the Riemann-Hurwitz formula implies that these curves have
genus 5. If we project these curves in P9 ' B by Φ we get curves of degree 16, in
fact {π∗[ 14 (H +K)2]|Z}(τ +5π∗H)|Z = 1

4π∗(H +K)2(τ +5π∗H)(2τ +8π∗H) = 16.

On the other hand, if we project Z in P9 ' B by Φ, we obviously get a fibration
over S′ such that any fibre is a plane quintic, the section of the fibre of ψ with Y,
in fact, by recalling that Φ|Z is given by the linear system |τ + 5π∗H|Z , we have:
[(τ + 5π∗H)|Z ]3 = 0 and 1

16 [(τ + 5π∗H)|Z ]2(π∗H)|Z = 5.

From proposition 11 we know that ρ = π|Z : Z → X is a double covering and
Z ⊂ Y = P(U|S′). The following proposition tells us that ρ is given by the restriction
to Z, of a map induced by a linear system in Y.

Proposition 12. Let Y = P(U|S′) be the variety introduced by proposition 11, let T
be its tautological bundle and let L be the generator of Pic(S′). Then the morphism
ρ = π|Z is induced by the linear system |T | restricted to Z while none of the divisors
D ∈ Pic(Y ) is such that p ◦ ρ is given by |D||Z .
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Proof. First of all we want to determine Pic(Y ) and the class of Z inside it. Let us
recall that Pic(S′) = < L >, where L is the hyperplane section of S′, by [I-R] prop.
2.5.9, so that Pic(Y ) = < T,ψ∗L > and Z = µT+λψ∗L in Pic(S′) for some integers
λ and µ. Let F be the numerical class of a (two dimensional) fibre of ψ. Obviously
Z|F T|F = 5 as the fibres of ψ|Z are plane quintics, hence 5 = (µT + λψ∗L)|F T|F
= µ T 2F = µ and Z = 5T + λψ∗L. To find λ we need some informations about
U|S′ .

Let Ω(i, j, k) the Schubert cycle of the usual Grassmannian G(3, 6) given by
planes intersecting linear spaces in P5, respectively of dimension i, j, k, along linear
spaces of dimension, respectively, 0, 1, 2. By 2.4 of [I-R] we know that τ1 := c1(U∗) =
Ω(2, 4, 5)|Σ = −c1(U) and τ2 := c2(U∗) = Ω(1, 4, 5)|Σ = c2(U), moreover S′ = τ4

1 in
A2(Σ) because τ1 is the class of a hyperplane section of Σ, and τ2

1 = 2τ2 in A4(Σ).
Hence c1(U|S′) = c1(U)|S′ = −τ1|S′ = −L and c2(U|S′) = c2(U)|S′ = τ2|S′ =
τ2τ

4
1 = 1

2τ6
1 = 1

2 deg(Σ) = 8. It follows that the Wu-Chern relation for U|S′ is:
T 3 = −ψ∗LT 2 − 8FT and KY = −3T − ψ∗L (recall that S′ is a K-3 surface).

Now let us consider K3
Z . As KZ = (KY + Z)|Z = (2T + (λ− 1)ψ∗L)|Z we have

K3
Z = (2T +(λ−1)ψ∗L)3(5T +λψ∗L). On the other hand, by prop. 11 iv), we know

that KZ = 2(π∗H|Z) by considering Z ⊂ ∆, hence K3
Z = 8(π∗H)3(2τ + 8π∗H) =

16 · 12 by using proposition 10. The only integer value for which (2T + (λ −
1)ψ∗L)3(5T + λψ∗L) = 16 · 12 is λ = 1. The conclusion is that Z = 5T + ψ∗L in
Pic(Y ).

By proposition 11, ii), we have that KY = (KW + Y )|Y = (2σ∗h − ∆)|Y =
(2σ∗h)|Y −Z. By considering KY and Z in Pic(Y ) as above we have: −3T −ψ∗L =
(2σ∗h)|Y − (5T + ψ∗L), so that σ∗h|Y = T. As ρ is obviously given by |σ∗h|Y | we
get the first part of proposition 12. Note that (T|Z)3 = T 3Z = 24 = deg(ρ) deg(X).

To get the second part of the proposition let us suppose, by contradiction, that
there exists a divisor D = aT +bψ∗L such that p◦ρ is given by |D|. Then we would
have (D|Z)3 = D3Z = (aT + bψ∗L)3(5T +ψ∗L) = 0, but it is easy to see that there
are rational values a, b such that (D|Z)3 = 0 only if a = 0. On the other hand p ◦ ρ
is given by |π∗(H +K)|Z |, so that we would have π∗(H +K)|Z = (bψ∗L)|Z for some
b, but it is not possible: as σ∗h|Y = T we have π∗(H)|Z = T|Z , so that we would
have: 16 = π∗(H +K)2π∗H(2τ +8π∗H) = π∗(H +K)2|Zπ∗(H)|Z = (bψ∗L)2|ZT|Z =
= (bψ∗L)2T (5T + ψ∗L) = 5 · 16 · b2 and this is a contradiction.

Next proposition allows to define a map from S to a suitable moduli space of
vector bundles over S′.

Proposition 13. Let C be any conic which is fibre of p as above. Let R be the
ruled surface P((N ∗

X|P5)|C) in ∆, then:
i) Φ(R) is a surface, rational scroll, of degree 10 in B ' P9;
ii) Φ(R) intersects S′ along a degree 16 curve Γ which is a singular hyperplane

section of S′ of genus 5;
iii) for generic C, Γ has exactly 4 singular double points: the intersections of S′

with the curve on Φ(R) which is the image of the fundamental section of R.

Proof. i) To prove i) for the generic C we can use direct calculation by using a
computer algebra system and the algebraic description of the incidence relation I
(see prop.6) restricted to C ×B. In the general case let us recall that (N ∗

X|P5)|C =
OP1(−4)⊕OP1(−6) by prop. 10 ii), so that, by using Hartshorne notation (see [Ha],
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V.2), the invariant of the rational ruled surface R is e = 2 and its tautological divisor
is C0 − 4f where C0 is the numerical class of the fundamental section (isomorphic
to C), and f is the numerical class of any fibre (note that no confusion can arise
with the numerical class of the fibres of π because they are in fact fibres of the
same morphism). The morphism Φ|R is given by |τ +5π∗H||R. Obviously τ |R is the
tautological divisor of R, i.e. C0− 4f, while π∗H|R = 2f because R = 1

4π∗(H +K)
in A2(∆), so that Rπ∗H = 1

4π∗(H + K)π∗H = 2f in ∆. Hence Φ|R is given by a
subsystem of |C0 +6f |. Such divisors are very ample on R (see [Ha] p. 380) and the
complete linear system embeds R as a smooth surface of degree (C0 + 6f)2 = 10 in
P11, however, in our case, Φ(R) ⊂ P9 so that Φ|R is given by a proper subsystem
of |C0 + 6f |.

ii) To study Γ we recall that S′ = Φ(Z) so that Γ = Φ(Z∩R). As Z = 2τ +8π∗H
in ∆, we have that Z cuts on R a curve Γ which is linearly equivalent to 2C0 + 8f,
hence deg(Γ) = (2C0 +8f)(C0 +6f) = 16 = deg(S′) and 2g(Γ)−2 = (−2C0−4f +
2C0 + 8f)(2C0 + 8f) = 8 =⇒ g(Γ) = 5. As Pic(S′) = < L > we have that Γ is a
hyperplane section of S and, as the sectional genus of S′ is 9, we have that Γ must
be singular.

iii) Let R̃ be the numerical class of R in W, let PC be the numerical class
of the pull back of the plane < C > in W, then PC = σ∗h3 − R̃. We want to
study the restriction of Φ to PC . As Φ is given by |5σ∗h − ∆| the degree of
the image of the surface in P9 is (σ∗h3 − R̃)(5σ∗h − ∆)2. It is immediate to see
that (σ∗h3)(5σ∗h − ∆)2 = 13 by standard calculation, while R̃(5σ∗h − ∆)2 =
R(5π∗H + τ)2 = 1

4π∗(H +K)(5π∗H + τ)2 = 10, by restricting the calculation to ∆
and by using proposition 10. Therefore (σ∗h3 − R̃)(5σ∗h−∆)2 = 3 = deg[Φ(PC)].

Let us recall that, for generic C, < C > is a plane intersecting X along C and
at 6 distinct points, say P1, ..., P6, which are the intersections of 4 distinct lines
l1, ..., l4, (see prop. 9). The rational map Ψ, restricted to < C >, is given by a
linear system of plane quintics whose base locus must be {C, P1, ..., P6}. By the
existence of the lines li we have that the moving part M of the linear system is
given by all plane cubics passing through {P1, ..., P6}. So that Φ(PC) is a rational
cubic surface, the image of the morphism, defined by the pull back of M on the
blow up of < C > ' P2 at {P1, ..., P6}. Obviously < Φ(PC) > = P3 and Φ(PC) is a
singular cubic surface having 4 double points where the lines li contract. Moreover
the image C ′ of the pull back of C is a rational, degree 6, curve on Φ(PC) which is
singular exactly at the double points of Φ(PC) because C is cut by any li at two
distinct points of < C >, say Pli and P ′li (recall that C is generic).

Now let us recall the degree 8 hypersurface Y in P5 considered in the proof of
proposition 11, ii). Y is the union of all 5-secant lines to X and is singular along
X. The intersection Y∩ < C > is a reducible plane octic, whose components are:
C (double), l1, ..., l4. because any li is in fact a 5-secant line for X. As we have seen
above that any li is contracted by Φ, we know that any li belongs to one, and only
one, of the plane quintics whose pull back in W are fibres of Φ|Y . Let us consider
Pli , we have that one of the two plane quintics passing through Pli is reducible into
li and a residual plane quartic. The same is true for P ′li . Therefore the two fibres
of ∆ over Pli and P ′li are sent by Φ into two intersecting lines in B ' P9. The
conclusion is that Φ(R) has 4 double points, the 4 points C ′ ∩ Φ(R), and they are
4 singular points for Γ because they are also on S′ ∩ Φ(R).
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Remark 5. For generic C the proof of prop. 13, iii), can also be done by direct
calculation, by using the algebraic description of the incidence relation I (see prop.
6) restricted to C × B. However the above proof shows that for any C the corre-
sponding hyperplane section Γ of S′ is singular along a length 4 subscheme of S′.
Moreover this subscheme is given by 4 distinct double points when Y∩ < C > is
given by 4 distinct lines, other than the double C.

But this is indeed the case because [Y∩ < C >]\C := Cr is a plane curve of degree
4 having a 0-scheme of length 6 as singular locus (by prop. 9) and not containing
any component of degree ≥ 2, otherwise on < C > there would be some k-secant
line for X with k ≥ 6 and this is not possible: such line would be in X and this is
not possible by prop. 9.

Proposition 14. Let S and S′ as above. For any point s ∈ S it is possible to
define a rank 2 vector bundle Es over S′ with c1(Es) = L and c2(Es) = 4, i.e. an
element of MS′(2, L, 4).

Proof. Let us fix s, hence a conic C := p−1(s) in X. By prop. 13 and remark 5 from
C we get a hyperplane section Γ of S′ and a length 4 0-dimensional subscheme U
in S′ given by 4 distinct points. As |KS′ − Γ| = | − L| = ∅ by th 3.13 of [D-L] we
have the existence of a rank 2 vector bundle E′

s and an exact sequence as follows:
0 → OS′ → E′

s → IU ⊗ OS′(−L) → 0; by tensorizing it with OS′(L) we get:
0 → OS′(L) → Es := E′

s⊗OS′(L) → IU → 0 and now c1(Es) = L and c2(Es) = 4,
i.e. Es ∈ MS′(2, L, 4).

6. A specialization of the previous construction

In this section we want to see how to specialize the construction in [I-R] in the
case n = 4, (it can be shown that the construction can not be generalized for n ≥ 8).
Let us fix two dual bases: V = < e1, e2, e3, e4 > = U0⊕U1 = < e1, e2 > ⊕ < e3, e4 >
and V ∗ = < x1, x2, x3, x4 > . Let us choose ω∗ ∈ ∧2

V ∗ (symplectic) as follows:
ω∗ = x1 ∧ x3 + x2 ∧ x4, so that the induced isomorphism Lω : V → V ∗ is given by:
(e1, e2, e3, e4) → (−x3,−x4, x1, x2). Let us put U⊥

0 := Lω(U0) = < x3, x4 > and
U⊥

1 := Lω(U1) = < x1, x2 > so that V ∗ = U⊥
1 ⊕ U⊥

0 and we have:∧2
V ∗ =

∧2
U⊥

1 ⊕ (U⊥
1 ⊗ U⊥

0 )⊕∧2
U⊥

0 , while
∧2

V =
∧2

U0 ⊕ (U0 ⊗ U1)⊕
∧2

U1.

Let us choose the standard dual bases for
∧2

V :
< e1 ∧ e2, e1 ∧ e3, e1 ∧ e4, e2 ∧ e3, e2 ∧ e4, e3 ∧ e4 > and for

∧2
V ∗ :

< x1 ∧ x2, x1 ∧ x3, x1 ∧ x4, x2 ∧ x3, x2 ∧ x4, x3 ∧ x4 > .
Let us consider the base for

∧2
V as coordinates on

∧2
V ∗, as in [I-R], and let us

call them (a, b, c, d, e, f) for simplicity. We have that the coordinates in the previous

decomposition of
∧2

V ∗ can be arranged, as in [I-R], as follows: (a,

[ −d b
−e c

]
, f).

To any element w∗ ∈ ∧2
V ∗ we can associate a bilinear form U0 × U0 → C, as in

[I-R], in the following way: given w∗ we have an element of U⊥
1 ⊗U⊥

0 , but U⊥
1 = U∗

0

and U⊥
0 ' U∗

0 by using −(Lω)−1 so that we have an element of U∗
0 × U∗

0 and we
are done. Analogously, to any element w ∈ ∧2

V we can associate a bilinear form
U∗

0 × U∗
0 → C, as in [I-R], in the following way: given w we have an element of

U0⊗U1, but U1 ' U0 so that we have an element of U0×U0 and we are done. The

two bilinear forms are represented by the same matrix
[ −d b
−e c

]
.
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There is a contraction ¬ω∗ :
∧2

V → C, whose kernel V5 is a 5-dimensional
subspace of

∧2
V. The dual space of the kernel, V ∗

5 ⊂ ∧2
V ∗, is given by those

elements w∗ ∈ ∧2
V ∗ having coordinates (a, b, c, d, e, f) such that: b+e = 0, i.e. the

previous (2, 2) matrix must be symmetric. In fact w∗ ∈ V ∗
5 if and only if ω∗∧w∗ = 0.

In this way we can associate a conic in P1 to any point of P(V ∗
5 ) (and P(V5)). If

we consider the standard equation af − be + cd = 0 of G(2, 4) ⊂ P5 = P(
∧2

V ), we
have that the linear section of G(2, 4) with P(V5) is the Lagrangian Grassmannian
Σ of the isotropic lines of P3 := P(V ), with respect to the chosen symplectic form,
i.e. the smooth quadric in P4 = P(V5) of equation af + b2 + cd = 0.

It is immediate to see that for any point u ∈ Σ (take for instance (1 : 0 : 0 : 0 : 0))
the tangent space at u to Σ intersects Σ along a quadric cone of P3 having u as
vertex. If you take a point w ∈ Tu(Σ) and if you consider the conic in P1 associated
to w, as we have seen before, we have that the rank of this conic is 0, 1, 2 according
to the fact that w = u, w ∈ Tu(Σ) ∩ Σ, w ∈ Tu(Σ)\Σ.

For any point P ∈ P3 let us consider the symplectic lines, with respect to ω∗,
passing through P. They are parametrized by a line P1

P contained in Σ ⊂ G(2, 4)
(for instance, for P ≡ (1 : 0 : 0 : 0) you have the line a = b = d = 0 in P4). Then
we can define two incidence relations as in [I-R]:

I := {(w, P ) ∈ P4 × P3|w ∈ P1
P } J := {(P,w∗) ∈ P3 × P4∗|P1

P ⊂ P3
w∗}

where P3
w∗ is the hyperplane of P4 corresponding to w∗. If we consider the pro-

jection I → P3 we get that I is P(E) where E is a rank 2 vector bundle over P3. To
recognize E we can remark that the situation is similar to that one in [I-R], but, in
that case, E is self-dual, so that the authors use a dual construction with respect
to that one described in [D-M-S]. Here we have to follow the original construction
of [D-M-S].

The symplectic form ω∗ ∈ ∧2
V ∗ defines a null correlation bundle N over P3

0 → OP3(−1) → Ω1
P3(1) → N → 0

(see [D-M-S], p. 130, see also [O-S-S] p. 76). The vector bundle N is self-dual,
in fact, by dualizing the previous sequence, we have

0 → N ∗ → TP3(−1) → OP3(1) → 0,

so that det(N ∗) = OP3 , hence N ∗ ' N . The vector bundle N plays the role
of the vector bundle B in [D-M-S], in fact both of them have no sections. As in
[D-M-S], let us define E := N ⊗ OP3(1), note that h0(P3, E) = 5, note also that
H0(P3, E) = Hom(OP3(−1),N ) ' ker(¬ω :

∧2
V → C) = V5 as in [D-M-S] p. 132,

so that E is the vector bundle we are looking for.
We have the following diagram for E

0 0
↑ ↑

0 → OP3 → Ω1
P3(2) → E → 0

↑ ↑
OP3 → O⊕6

P3 = (
∧2

V ∗)⊗OP3
↑ ↑
0 OP3(−1)⊕4 = V ∗ ⊗OP3(−1)

↑
OP3(−2)

↑
0
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where the map OP3 → O⊕6
P3 = (

∧2
V ∗) ⊗OP3 is given by the dual of ω and the

vertical maps are the usual Koszul maps.
By the mapping cone theory we get a free resolution of E :
.... → OP3 ⊕OP3(−1)⊕4 → O⊕6

P3 → E → 0. By dualizing and twisting:

0 → E∗(2) → OP3(2)⊕6 → OP3(2)⊕OP3(1)⊕4 → ....

Now let us recall that E = N (1), so that E∗(2) = N ∗(1) ' N (1) = E . So that the
sections of E can be identified with the syzygies of the (5, 6) matrix representing the
map OP3(2)⊕6 → OP3(2)⊕OP3(1)⊕4. This matrix is easy to compute because it is
the transpose of the matrix representing the mapping cone map OP3⊕OP3(−1)⊕4 →
O⊕6
P3 , however to get a more symmetric matrix we can proceed as in [D-M-S] p. 132.

The sections of E can be identified with the columns of the matrix representing the
composite map:

∧2
V ∗ → V ∗ ' V → ∧2

V

where the isomorphism is given by L−1
ω and the other maps are the usual Koszul

maps. If we choose coordinates (x : y : z : u) in P3 we have that the first matrix is



−u −z −y 0 0 0
x 0 0 −z −u 0
0 x 0 y 0 −u
0 0 x 0 z u


 ,

the second matrix is




0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0


 and the third matrix is the transpose

of the first one. If we make the computation we get the following (6, 6) matrix,
analogous to the matrix b of [D-M-S]:




0 xy −x2 y2 −xy −(xz + yu)
−xy 0 −xu yz 0 −zu
x2 xu 0 −(xz − yu) −xu −u2

−y2 −yz (xz − yu) 0 yz z2

xy 0 xu −yz 0 zu
(xz + yu) zu u2 −z2 −zu 0




.

Of course we have to consider the splitting of
∧2

V into V5 and its complement.
In consequence of the choice of the coordinates in V5, here we have to ignore the
5th column and the 5th row of b, so that we get the analogous of the matrix b2 of
[D-M-S], which is antisymmetric and of rank 2:

b2 =




0 xy −x2 y2 −(xz + yu)
−xy 0 −xu yz −zu
x2 xu 0 −(xz − yu) −u2

−y2 −yz (xz − yu) 0 z2

(xz + yu) zu u2 −z2 0




.

Let us remember that (a : b : c : d : f) are the coordinates in P4 = P(H0(P3, E)).
Then, for any point P ≡ (x : y : z : u) ∈ P3, b2

[
a b c d f

]> gives the
coordinates of the generic point of P1

P in P4. Let us determine, by a computer
algebra system as Macaulay, the matrix L of the syzygies of the columns of b2 :



19

L =




0 0 z −u
u z −y x
−z 0 0 y
0 u x 0
x y 0 0




,

L is a (5, 4) matrix of linear forms such that b2L = [0]. Now, for any point
P ≡ (x : y : z : u) ∈ P3, to get the equations of the line P1

P in P4 it is sufficient to
consider [

a b c d f
]L = [0] . (∗∗)

In fact (b2

[
a b c d f

]>)>L =
[

a b c d f
]
(b2)>L =

= − [
a b c d f

]
b2L = 0.

The equations (∗∗) are:
ub− zc + xf, zb + ud + yf , za− yb + xd, ua− xb− yc

and these are the equations of I, of dimension 4. The projection of I in P3 is
surjective and the fibre over any point P ∈ P3 is the line P1

P of Σ. It is well known
that P3 is the Fano variety of a 3-dimensional smooth hyperquadric, in this way we
have given an explicit description of the variety.

On the converse, if we project I in P4 by using a computer algebra system, as
Macaulay, we get exactly the Lagrangian Grassmannian Σ: af + b2 + cd = 0. For
any point w ∈ Σ ⊂ P4 the set of lines passing through w and contained in Σ gives a
2-dimensional quadric cone (having w as vertex and contained in Tw(Σ)), however
the fibre of I over w is a line in P3, parametrizing the lines of the cone. For instance,
if you take the point w = (0 : 0 : 0 : 0 : 1), the cone is: a = f = b2 + cd = 0, and
the fibre in P3 is the line: x = y = 0.

Let us choose (a′ : b′ : c′ : d′ : f ′) as coordinates in P4∗, then
[

a′ b′ c′ d′ f ′
]
b2

[
a b c d f

]> = 0
implies that the hyperplane corresponding to (a′ : b′ : c′ : d′ : f ′) ∈ P4∗ contains

all the points of P1
P . Hence

[
a′ b′ c′ d′ f ′

]
b2 = [0] gives the equations for

J :
−b′xy + c′x2 − d′y2 + f ′(xz + yu) = 0
a′xy + c′xu− d′yz + f ′zu = 0
−a′x2 − b′xu + d′(xz − yu) + f ′u2 = 0
a′y2 + b′yz − c′(xz − yu)− f ′z2 = 0
−a′(xz + yu)− b′zu− c′u2 + d′z2 = 0.
If we project J in P4∗ by using a computer algebra system, as Macaulay, we

get that the projection is surjective. In fact, as we have seen above, the set of
fibres of P(E), projected in P4, gives rise to all lines of Σ, so that every hyperplane
w∗ of P4 contains some lines of Σ, hence some fibres of P(E). For generic w∗ the
section with Σ consists of a smooth 2-dimensional quadric, so that it contains two
distinct rulings of lines of Σ. Hence the generic fibre over w∗ is given by two lines
of P3, each one parametrizing one of the two rulings. For instance, if we choose
w∗ = (0 : 1 : 0 : 1 : 0), i.e. the hyperplane b + d = 0, we get the two lines:
y = z− u = 0 and z = x + y = 0. If w∗ is tangent to Σ, then the fibre is given by a
double line whose points correspond to the lines of the 2-dimensional cone w∗ ∩Σ.

On the converse, if we project J in P3 we get that the projection is surjective
too, but now the fibre over any point P ∈ P3 is the plane in P4∗ given by the
hyperplanes of P4 containing the line P1

P .
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To complete the analogy with the construction of [I-R] we should find a va-
riety in P3 corresponding to the conic bundle in P5 of [B-O-S-S] which was the
locus where 4 generic section of E were dependent. Here rank(E) = 2 so that we
have only to deal with the locus of degeneracy of two generic sections, i.e. with
c1(E) = det(E) = OP3(2). In fact if we choose two generic sections of E and we
determine the degeneracy locus by a computer algebra system as Macaulay we
get a smooth quadric of P3. For instance, if we consider the random (5, 2) ma-

trix R :=
[

0 4 0 4 0
2 4 4 0 5

]>
and we multiply b2R, we get a (5, 2) matrix giving

two random sections for E . Their degeneracy locus is the smooth quadric QR:
xy + y2 − 2xz + 2yz − 5

2z2 + 2xu + 2yu + 5
2zu.

The matrix R determines the plane PR : b+d = 2a+4b+4c+5f = 0 of P4 cutting
Σ along a smooth plane conic CR : a = b = e = cd + d2 − 2cf + 2df − 5

2f2 = 0.

It is easy to see that QR = {P ∈ P3| P1
P ∩ PR 6= ∅} = {P ∈ P3| P1

P ∩ CR 6= ∅}.
Let us study the restriction of I to CR × P3a little: if we fix any point w ∈ CR

the fibre over w of the restriction of I is the same as the fibre of I : a line lw
parametrizing the lines of Σ passing through w, but obviously lw ∈ QR. For any
point H ∈ lw there is a line of QR (belonging to the other ruling of QR with respect
to the ruling containing lw) parametrizing other lines of Σ intersecting CR. More
precisely, if we consider the pencil P1

R given by the hyperplanes of P4 containing
the plane PR we have that the exists a double covering σ : lw ' P1 → P1

R such that,
for any generic hyperplane π ∈ P1

R, σ−1(π) is given by two points of lw for which
there pass two lines of QR (belonging to the other ruling of QR with respect to the
ruling containing lw) parametrizing the lines of Σ, intersecting CR, belonging to
the two rulings of the smooth 2-dimensional quadric π ∩ Σ. The two ramification
points of σ correspond to the two hyperplanes of P1

R which are tangent to Σ, in
these cases π ∩ Σ is a 2-dimensional quadric cone and the lines of these cones are
parametrized by one line only of QR for any cone (the two lines belong to the other
ruling of QR with respect to the ruling containing lw). For instance, if we choose
w = (4 : −1 : −1 : 1 : 0), lw is the line: z − u = x + y + 4u = 0. If we choose the
two points H = (1 : −1 : 0 : 0) and H ′ = (−4 : 0 : 1 : 1) on lw we have that for H
and H ′ there passes, respectively, the two lines: z = x + y = 0 and: y = z − u = 0
of QR (other than lw of course), these lines parametrize the lines of Σ, intersecting
CR, contained in the smooth 2-dimensional quadric π ∩ Σ (a line for each ruling),
where π is the hyperplane: b + d = 0.

The matrix R determines also a line LR in P4∗ by considering its columns as
the coordinates of two points in P4∗. LR is the dual of PR. If we take (s : t) as
coordinates in LR and we consider the relation:

[
s t

]
R>b2 = [0] we get the

restriction of J to QR×LR. For any point w∗ ∈ LR the fibre of the restriction of J
is the same as the fibre of J : it is given by two lines in P3, but obviously the lines
belong to QR. Moreover, as the hyperplane w∗ contains PR, we know that these
two lines belong to the other ruling of QR with respect to the ruling containing lw :
when w∗ = (0 : 1 : 1 : 0) (i.e. w∗ is the hyperplane b + d = 0) the two lines are
z = x+y = 0 and y = z−u = 0 as above. On the other hand, for any point P ∈ QR

the fibre is given by a single point of LR. In fact the fibre of J over P is given by
the hyperplanes of P4 containing P1

P , but here we are looking for the hyperplanes
of P4 containing P1

P and PR. As P1
P intersects transversely CR = PR ∩ Σ we find

only one hyperplane.
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We can summarize up the situation as follows: if we fix a random matrix R
as above we get a smooth quadric QR ' P1 × P1 ⊂ P3, a smooth conic CR ⊂ Σ
and a line LR ⊂ P4∗ identified with the pencil P1

R of hyperplanes of P4 containing
the span of CR. QR is equipped with a couple of maps: ψ : P1 × P1 → CR is the
usual projection onto one factor, say the first one, and the fibre over any w ∈ CR

is the line lw ; ϕ : P1 × P1 → LR is the composition of the usual projection onto
the second factor and a double covering σ, the fibre over the generic w∗ ∈ LR is
a couple of distinct lines of QR, belonging to the other ruling of QR with respect
to the ruling containing lw. There are exactly two distinct branching points on LR

corresponding to the two hyperplanes of P1
R tangent to Σ.

Note that, to complete the analogy with the construction of [I-R], we should
consider only the intersection of LR with the dual hypersurface of Σ. In this case
the intersection is given by the two branching points of σ, so that the fibre over
the intersection is a couple of double lines: in fact a (reducible) conic bundle of
dimension 1.

A final remark: let us consider E(1), in this case c1[E(1)] = OP3(4), so that the
degeneracy locus of two generic sections of E(1) is a smooth quartic surface in P3,
i.e. a K-3 surface.
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