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Abstract. The main goal of this paper is to give a general algorithm to
compute, via computer algebra systems, an explicit set of generators of the
ideals of the projective embeddings of ruled surfaces, i.e. projectivizations of
rank two vector bundles over curves, such that the fibres are embedded as
smooth rational curves.

There are two different applications of our algorithm. Firstly, given a very
ample linear system on an abstract ruled surface, our algorithm allows to
compute the ideal of the embedded surface, all the syzygies, and all the al-
gebraic invariants which are computable from its ideal as, for instance, the
k-regularity. Secondly, it is possible to prove the existence of new embeddings
of ruled surfaces.

The method can be implemented over any computer algebra system able to
deal with commutative algebra and Gröbner-basis computations. An imple-
mentation of our algorithms for the computer algebra system Macaulay2 (cf.
[G-S]) and explicit examples are enclosed.

Introduction and Notation

Let E be a rank 2 vector bundle over a smooth, genus q, curve C. It is known that
any such vector bundle E, regarded as a sheaf, is an extension of invertible sheaves.
If E is a normalized vector bundle, i.e. H0(C, E) 6= 0 but H0(C, E ⊗ G) = 0 for
any line bundle G of negative degree, then E fits into a short exact sequence

(0.1) 0 → OC → E → L → 0,

and L = det(E).
We consider the geometrically ruled surface X := P(E), endowed with the nat-

ural projection p : P(E) → C. In this case Pic(X) ∼= Z ⊕ p∗Pic(C), where Z is
generated by the tautological divisor of X, i.e. a divisor C0, image of a section
σ0 : C → X with minimal self-intersection. According to this notation, every di-
visor on X is linearly (resp. numerically) equivalent to aC0 + p∗B where B is a
degree b divisor of C (resp. aC0 + bf , where f is the numerical class of a fiber of
p).

We choose a very ample divisor A on X and we consider the polarized ruled
surface (X, A), i.e., X embedded in Ph0(X,A)−1 by |A|: we aim to give an algorithm
to compute a set of generators of its ideal IX in the ring S(V ) := ⊕i≥0S

i(V ), the
symmetric algebra of V = H0(X,A). The algorithm requires the knowledge of the
following data: a set of generators of the ideal IC of any embedded image of C in
some projective space; the divisor B (as Weil divisor on C); and the extension class
giving E (in turn, we will need to give a specific morphism between two modules
corresponding to the extension class given by the equation (0.1)).

Ampleness conditions for the divisor A are classical and well known (cf. e.g. [H]).
In particular, by the Nakai’s criterion, denoting with e := − deg E the invariant of
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X, an ample divisor A is numerically equivalent to aC0 + bf with a ≥ 1 and b > ae
if e ≥ 0 or b > ae/2 if e < 0. On the contrary the very ampleness condition for A
has to be checked case by case with some criteria, e.g. Reider’s criterion (cf. [R])
or by looking at the image of X by |A|.

Let K be the base field. Our main result is the following theorem, the algorithm
being included in its proof:

Main Theorem. (char K = 0 or q ≤ 1 for k > 1). Let C ⊂ Pm be a smooth
curve C of genus q, B a divisor on C and L a line bundle over C. Consider a
normalized rank 2 vector bundle E ∈ Ext1(L,OC) over C given by an extension
0 → OC → E → L → 0 and suppose that, for some positive integer k, the divisor
A = kC0 + p∗B on the surface X = P(E) is very ample.

Then there is an algorithm yielding a set of generators of the ideal IX of the
embedded X in Ph0(X,A)−1 = P(H0(X, A)∗) by |A|.

A few words about the algorithm. We already listed at the beginning the data
required by the algorithm. To be more precise, the algebraic data needed by the
algorithm are:

(1) the ideal IC of the embedded curve C ⊂ Pm;
(2) three divisors on C: B, an auxiliary effective divisors D, satisfying some

technical conditions (see (1.3) and (3.1)), such that D −B is effective and
|L⊗OC(D)| 6= ∅, and another auxiliary divisor D′ ∈ |L⊗OC(D)|;

(3) an element in Ext1S(I∗D′ , I∗D).
Let us see how these algebraic data are related to the data at the beginning. Let S be
the coordinate ring of C. The first technical condition for D, i.e., (1.3), will guaran-
tee that the graded S-module H0

∗ (C, E⊗OC(D)) = ⊕i≥0H
0(C,E⊗OC(D)⊗OC(i))

is an extension in Ext1S(H0
∗ (C, L⊗OC(D)),H0

∗ (C,OC(D))). We will moreover see
that H0

∗ (C, L ⊗ OC(D)) = I∗D′ and H0
∗ (C,OC(D)) = I∗D. Therefore, there is a

1:1 correspondence between the elements in Ext1S(I∗D′ , I∗D) as in (3) and the vector
bundles E ∈ Ext1(L,OC).

The technical conditions for D will be explicitly given and we will see that it
is always possible to determine a minimal degree for D such that they will hold.
Notice also that the polarized surface (X, A) is independent of the choices of the
projective model for C, of D, and of D′ ∈ |L−D|.

We also remark that two assumptions in the Main Theorem can be replaced by
computational checks: the assumption char K = 0 (if q > 1) and the very ampleness
assumption for A = kC0 + p∗B.

The restriction on the characteristic in the statement of the main theorem for
k ≥ 2 is required only to guarantee the k-normality of an isomorphic image of X
involved in the algorithm and depending on the choice of D. In finite characteristic
the algorithm is still valid modulo performing a computational check of the k-
normality and eventually changing the choice of D (see remark (3.6)).

Even without the very ampleness assumption for A, the algorithm computes the
ideal of the image of X by the rational map φ|A| associated to |A|. A computational
check that φ|A|(X) is a smooth surface of degree A2 and that |A| has empty base
locus ensures then that φ|A| is an embedding (see remarks (3.7) and (3.8)).

The algorithm is straighforward in the case of scrolls, when k = 1. Instead, in
the case k ≥ 2 it firstly computes a suitable scroll and then its image by a rational
map associated to a suitable linear system. Hence it is useful to divide the main
theorem into two steps. In section 1 we will give and prove theorem A, concerning
the case of scrolls. In section 3 we will give and prove theorem B, concerning the
cases k ≥ 2. The main theorem will follow from theorems A and B.
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In sections 2 and 4 we will give applications of the algorithm to study some
properties of surfaces whose existence is known. In section 2 we describe a family
of scrolls of degree 8 with sectional genus 2 (cf. [C]) and a family of scrolls of degree
6 with sectional genus 1, while in section 4 we describe conic bundles of degree 8
with sectional genus 3, cubic bundles of degree 9 with sectional genus 4 and a ruled
surface having cubic fibres.

In section 5 we describe some varieties related to ruled surfaces with conic fibres.
In section 6 we use our algorithm to construct some embedded surfaces whose

existence was not known. To do this, we will consider a large set of ruled surfaces
X treated in [Li, §3]. There the author proved the very ampleness of some divisors
L0 ≡ aC0 + bf by applying Reider’s criterion in a convenient way, but she was
unable to decide whether also the subsystems given by L = L0 −

∑t
1 pi are very

ample for low values of t and generic choices of the points pi’s. This amounts to
ask whether some projections of (X,L0) are smooth. By our algorithm we will be
able to get a set of generators for the ideal of (X,L0), to project (X,L0) from some
random points on it, and then to test directly whether such projections are smooth.

In this way we prove that there exist geometrically ruled surfaces X, over genus
q curves, of invariant e, such that the linear systems |L| in the following table are
very ample. X will be embedded by |L| as a surface of degree d and sectional genus
g = 7.

g d h0(L) q |L| e t

(9) 7 18− t 12− t 1 3C0 + 3f −∑t
1 pi 0 1 ≤ t ≤ 5

(10) 7 16− t 10− t 1 4C0 −
∑t

1 pi −1 2 ≤ t ≤ 3
(11) 7 15− t 9− t 1 5C0 −

∑t
1 pi −1 1 ≤ t ≤ 2

(13) 7 16− t 9− t 2 2C0 + 2f −∑t
1 pi −2 t = 2

(13′) 7 16− t 9− t 2 2C0 + 3f −∑t
1 pi −1 1 ≤ t ≤ 2

There are other methods to get explicit equations of embedded ruled and (non
ruled) surfaces, but they work only for low codimension and they do not allow to
have some control over the “geomety” of the polarized surface (the curve C, the
extension giving E, and the divisor B).

Indeed, if X has codimension 2, i.e. X ⊂ P4, then there exist two sheaves F
and G with rkG = rk F + 1 and a map Φ : F → G such that the Eagon-Northcott
complex defined by the maximal minors of Φ identifies cokerΦ with the ideal sheaf
of X. The sheaves F and G are then constructed starting from the cohomology table
of IX . This constructing method was introduced in [DES] and it is largely used
to construct surfaces in P4 (c.f. also [DS] for a further description and a nearly
up-to-date list of references). If X has codimension 3, this type of construction
can be still performed using the Pfaffian complex instead of the Eagon-Northcott
complex: if X is a codimension 3 subcanonical scheme in P5 a locally free resolution
of its ideal sheaf is still known (c.f. [W]).

A final remark. The algorithm requires the knowledge of the embedded curve
C which is the base of the ruling of the surface. If instead, in an example, we
do not have a projective model of C there is the further mathematical problem
to construct such a model, at least for a random curve C (random in its moduli
space). There is no general method to determine embedded curves at random, but
it is a classical topic how to parametrize curves of low genus (g ≤ 10) by using
nodal plane models and an explicit method to parametrize smooth space curves up
to genus 14 is known and illustrated in [S-T].

We use the computer–algebra program Macaulay2 ([G-S]) to implement the al-
gorithms and the examples.
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Notation Table
K base field, usually C (but also finite fields are considered)
Pn projective n-dimensional space over K
P(E) projectivization of the rank 2 vector bundle E over a smooth curve C,

C0 is its tautological divisor, p : P(E) → C the natural projection, and
f the numerical class of a generic fibre of p

ci(E) i-th Chern class of E
Fe,q ruled surface of invariant e := − deg[c1(E)] ≥ −q over a smooth, genus

q, curve C
≡ numerical equivalence
∗ means duality
|D| linear system of effective divisors linearly equivalent to the divisor D
IW (IW ) ideal (ideal sheaf) of a projective variety W ⊂ Pn

KW canonical divisor of a smooth variety W
g(W ) sectional genus of a smooth variety W ⊂ Pn

H0
∗(W,F)

⊕
t≥0 H0(W,F ⊗OW (t)) for any sheaf F on W ⊂ Pn

M̃ sheaf of OW -modules associated to any S-module M , where S is the
coordinate ring of a smooth variety W

S(V ) ⊕n≥0S
n(V ) symmetric algebra of the vector space V

S(E) ⊕n≥0S
n(E) symmetric OW -algebra of the vector bundle E over a va-

riety W
µ(E) deg E/ rk E, slope of the vector bundle E
µ−(E) min{µ(Q)|E → Q → 0}

1. Construction of scrolls

In this section we develop an algorithm to compute a set of generators of the
ideal of embedded scroll surfaces:

Theorem A. Let C ⊂ Pm be a smooth curve C of genus q, B be a divisor on
C and L a line bundle over C. Consider a normalized rank 2 vector bundle E ∈
Ext1(L,OC) over C given by an extension 0 → OC → E → L → 0 and suppose
that the divisor A = C0 + p∗B on the surface X = P(E) is very ample, where
p : P(E) → C is the natural projection.

Then there is an algorithm yielding a set of generators of the ideal IX of the
embedded X in Ph0(X,A)−1 = P(H0(X, A)∗) by |A|.

A description of the explicit form of the data required by the algorithm is given
in the introduction, immediately after the statement of the Main Theorem.

At first, let us point out the basic idea of the method. Let IC be the ideal of
the curve C in Pm = Proj(R), where R = K[x0, .., xm], and let S := R/IC be
the coordinate ring of C ⊂ Pm. Our strategy will be to get a presentation of the
S-module M defined as

M := H0
∗ (C, E ⊗OC(B)) = ⊕i≥0H

0(C,E ⊗OC(B + iH)),

where H is a hyperplane divisor of C ⊂ Pm. Then we will apply a straightforward
computation to get a set of generators of IX . Details will be given later in the proof
of the theorem. The short exact sequence (0.1) implies the exactness of

(1.1) 0 → OC(B) → E ⊗OC(B) → L⊗OC(B) → 0,

from which we will derive the desired presentation of M .

Now, we give here some Lemmas needed for the proof of the theorem.
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Lemma 1.1. Let IC be the ideal of a smooth curve C in a projective space Pm and
let S be the coordinate ring of C. Let D be an effective divisor on C. Then the
S-modules H0

∗ (C,OC(D)) and (ID)∗ := HomS(ID, S) are naturally isomorphic as
(graded) S-modules, where ID ⊂ S is the ideal of the divisor D.

Proof. Let us recall the following well-known result on local cohomology (cf. [E,
Thm. A4.1]). Let S be a graded noetherian ring with degree 0 part a field, m
the maximal ideal generated by the degree 1 part of S and M a finitely generated
graded S-module. Then there is a natural exact sequence

0 → H0
m(M) → M → ⊕i≥0H

0(Proj S, M̃(i)) → H1
m(M) → 0,

where Hi
m(M) denotes the i-th local cohomology group of M with respect to m.

By using this sequence, whenever W ⊂ Pm is a variety, S is its coordinate ring,
and M is any graded S-module, one obtains that M ∼= H0

∗ (W, M̃) if H0
m(M) =

H1
m(M) = 0. Moreover a sufficient condition for obtaining the two vanishings

H0
m(M) = H1

m(M) = 0 is that depth(m,M) ≥ 2 by [H, Ch. III, Ex. 3.4 and 3.3].
For more details and related results, see [G] (in particular Prop. 2.2 and Thm. 3.8).

In our case W = C, S := K[x0, . . . , xm]/IC is the coordinate ring of the curve C
in Pm, m := (x0, . . . , xm) is the image of the irrelevant ideal of K[x0, . . . , xm] in S,
and M = (ID)∗. Recall that S is the coordinate ring of an affine cone over a curve,
and therefore ID, as well as (ID)∗, is not necessarily a projective S-module, since
it may be not locally free if you localize it at the vertex of the cone. Therefore we
proceed as follows.

Firstly, notice that depth(m, S) = 2 and that a regular sequence for S is also
a regular sequence for ID, since ID is a submodule of S, thus depth(m, ID) ≥
depth(m, S) = 2 and ID = H0

∗ (C,OC(−D)).
Secondly, we claim that, if t1, . . . , td ∈ m is a regular sequence for S, then it is also

a regular sequence for (ID)∗ = Hom(ID, S). We argue by contradiction. Suppose
that ti is a 0-divisor for (ID)∗ mod (t1, . . . , ti−1). Then there esists a non-zero
morphism ϕ ∈ (ID)∗ mod (t1, . . . , ti−1) s.t. tiϕ = 0 mod (t1, . . . , ti−1). Take an
x ∈ ID s.t. ϕ(x) 6= 0 in S/(t1, . . . , ti−1): from tiϕ(x) = 0 in S/(t1, . . . , ti−1) we get
that ti is a 0-divisor in S/(t1, . . . , ti−1), a contradiction. Moreover t1, . . . , td ∈ m,
hence we have (t1, . . . , td)(ID)∗ 6= (ID)∗. Indeed, if this is not the case, then
m(ID)∗ = (ID)∗ and therefore there exists an element r ∈ m such that (1−r)(ID)∗ =
0, cf. [E, Cor. 4.7]. In particular, considering the inclusion ι : ID → S, we have
(1− r)ι = 0 and therefore 1− r is a 0-divisor in S. Since S is an integral domain, it
follows that r = 1, which is absurd since r ∈ m. We conclude that depth(m, (ID)∗) ≥
depth(m, S) = 2 and therefore we get (ID)∗ = H0

∗ (C, ˜[(ID)∗]) = H0
∗ (C,OC(D)). ¤

Lemma 1.2. Let S be a commutative ring, F and G be two S-modules with free
resolutions:

F • : · · · → F3
φ3−−→ F2

φ2−−→ F1
φ1−−→ F0

φ−→ F → 0,

G• : · · · → G3
ψ3−−→ G2

ψ2−−→ G1
ψ1−−→ G0

ψ−→ G → 0.

Then any morphism ϕ ∈ HomS(F1, G0) satisfying ψ ◦ ϕ ◦ φ2 = 0, i.e. inducing a
morphism in HomS(kerφ,G) = HomS(im φ1, cokerψ1), determines an extension
M ∈ Ext1S(F, G) and, conversely, any extension is determined by such a morphism.

Moreover, the module M ∈ Ext1S(F, G) corresponding to ϕ has presentation
(

φ1 0
ϕ ψ1

)
: F1 ⊕G1 → F0 ⊕G0.

Proof. The proof is standard. For completeness, since this proof is important to
implement our algorithm, we shortly repeat it here (for some references cf. [G-H,
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pag. 722] or [E, Ex. A3.26]). Consider the module K = kerφ. The short exact

sequence 0 → K → F0
φ−→ F → 0 induces by duality

HomS(F0, G) → HomS(K,G) → Ext1S(F, G) → Ext1S(F0, G) = 0.

Therefore Ext1S(F, G) ∼= HomS(K, G)/HomS(F0, G).

In the same way the short exact sequence 0 → kerφ1 → F1
φ1−−→ K → 0 gives

0 → HomS(K, G) → HomS(F1, G) → HomS(kerφ1, G). Hence HomS(K, G) is
the kernel of the second map and we can identify HomS(K, G) with the set of
morphisms η ∈ HomS(F1, G) whose restriction to kerφ1 is zero or equivalently,
since kerφ1 = im φ2, whose composition η ◦ φ2 is zero. Since F1 is projective, the
surjectivity of G0 → G gives the surjectivity of HomS(F1, G0) → HomS(F1, G).

Conversely, a morphism ϕ ∈ HomS(F1, G0) satisfying the hypothesis determines
by composition a morphism η ∈ HomS(F1, G) satisfying η ◦φ2 = 0 which therefore
is an element of HomS(K, G): its equivalence class in HomS(K,G)/ HomS(F0, G)
determines an extension M ∈ Ext1S(F, G), as desired.

To compute a presentation of such an extension M , let us denote with ι the
inclusion K → F0, and with ϕ′ ∈ HomS(K, G) the morphism induced by ϕ. Then
the module M is the quotient (F0 ⊕ G)/ im(ι ⊕ ϕ′), which is the cokernel of the

morphism
(

φ1 0
ϕ ψ1

)
: F1 ⊕G1 → F0 ⊕G0. ¤

Lemma 1.3. Let W ⊂ Pm be a smooth algebraic variety and let E be a locally free
sheaf on W . Denote by S := K[x0, . . . , xm]/IW the coordinate ring of W in Pm.
Suppose further that the tautological bundle τP(E) = OP(E)(1) of P(E) is very ample.
Then, given a presentation of the S-module M := H0

∗ (W, E), there is an algorithm
yielding a set of generators of the ideal IP(E) of the embedded variety P(E) by the
complete linear system |τP(E)|.
Proof. Notice that H0(P(E), τP(E)) = H0(W, E) and let h0(W, E) = n + 1. The
embedding ι associated to |τP(E)| comes with a map of sheaves of rings ι# : OPn →
i∗OP(E)(1), induced by mapping n+1 new variables y0, . . . , yn to a basis of H0(W, E) =
H0(P(E), τP(E)). The ideal sheaf ĨP(E) is the kernel of this map.

Let M ′ ⊂ M be the S-submodule generated by a basis of H0(W, E). If φ is the
given free presentation of M , we can compute a free presentation φ′ of M ′:

M1
φ′−−→ M0 → M ′ → 0,

where rk M0 = n+1 and the generators of M0 map to the chosen basis of H0(W, E).
Let us consider in S[y0, . . . , yn] the ideal I given by

(1.2) I :=
(
y0 . . . yn

) · φ′,
where, by abuse of language, we use again φ′ to denote the matrix associated to the
map φ′. The ideal IP(E) is given by the polynomial relations among the {y0, . . . , yn}
in the saturation of I with respect to the ideal (x0, ..., xm) ⊂ S[y0, . . . , yn]. There-
fore, IP(E) can be obtained by saturating I with respect to the ideal (x0, ..., xm) and
intersecting this new ideal with the subring K[y0, . . . , yn]. ¤

Remark 1.4. Equation (1.2) yields a presentation, as a S[y0, . . . , yn]-module, of the
S-algebra generated by H0(W, E) in S(H0

∗ (W, E)). If M is generated by H0(W, E),

then M admits a presentation ⊕s
j=0S(−lj)

φ−→ ⊕n
i=0S → M → 0 and the S-algebra

S(H0
∗ (W, E)) has a presentation

⊕s
j=0S[y0, . . . , yn](−lj)

(...,
∑n

i=0 yiφij ,... )−−−−−−−−−−−−→ S[y0, . . . , yn] → S(H0
∗ (W, E)) → 0.
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If this is not the case, i.e. M is not generated by the minimal degree part, let
⊕s

j=0S(−lj)
φ−→ ⊕n

i=0S(−hi) → M → 0 be a presentation of M . Then the S-algebra
S(H0

∗ (W, E)) has still a presentation as above, but now the the ring S[y0, . . . , yn] is
weighted, yi having weight hi.

Remark 1.5. (char K = 0 or q ≤ 1). Let us assume that W = C ⊂ Pm is a smooth
projective curve of genus q and E is a vector bundle over C. If µ−(E) ≥ 2q and
deg(OC(1)) ≥ 2q and moreover one of these two inequalities is strict, then H0(C, E)
generates H0

∗ (C, E) as S-module, where S denotes the coordinate ring of C in Pm.

Proof. This is a direct application of Theorem 2.1 of [Bu]: under these assumptions
the map H0(C,E)⊗H0(C,OC(t)) → H0(C,E ⊗OC(t)) is surjective ∀t ≥ 0.

Proof of Thm. A. Let S be the coordinate ring of C in Pm and let H be the divisor
induced on C by a hyperplane section of Pm. Recall the assigned exact sequence
in the statement: 0 → OC → E → L → 0 and let D be any effective divisor on C
such that D −B is effective, |L⊗OC(D)| 6= ∅, and

(1.3) H1(C,OC(D + jH)) = 0 ∀j ≥ 0.

Note that by choosing the degree of D big enough, it is always possible to find such
a divisor D.

By condition (1.3) there is a short exact sequence of S-modules

0 → H0
∗ (C,OC(D)) → H0

∗ (C, E ⊗OC(D)) → H0
∗ (C,L⊗OC(D)) → 0,

implying that H0
∗ (C, E⊗OC(D)) can be obtained as an extension in Ext1S(H0

∗ (C, L⊗
OC(D)),H0

∗ (C,OC(D))).
Since |L ⊗ OC(D)| 6= ∅, there exists an effective divisor D′ ∈ |L ⊗ OC(D)|.

Applying Lemma 1.1 to the divisors D and D′, we easily get explicit free resolutions
of the S-modules H0

∗ (C,OC(D)) = I∗D and H0
∗ (C, L⊗OC(D)) = I∗D′ .

Given the two resolutions of I∗D and of I∗D′ , since H0
∗ (C,E⊗OC(D)) is an exten-

sion in Ext1S(I∗D′ , I∗D), we can apply Lemma 1.2 to get a presentation of H0
∗ (C,E⊗

OC(D)). The tensorization of H0
∗ (C, E⊗OC(D)) with ID−B = H0

∗ (C,OC(−D+B))
yields an S-module M ′ whose associated coherent sheaf is E ⊗B.

With a computer algebra system we compute a presentation of the module of the
global sections of the coherent sheaf associated to M ′: this is precisely the module
M := H0

∗ (C,E ⊗OC(B)) = H0
∗ (C, M̃ ′).

Finally, from a presentation of M , Lemma 1.3 explains how to get a set of
generators of IX , where X = P(E) is embedded by the very ample divisor A =
C0 + p∗B (the tautological divisor of P(E ⊗OC(B))).

The algorithm based on the above considerations is therefore the following:
(1) choose on C ⊂ Pm an effective divisor D satisfying (1.3) and such that

D −B is effective, |L⊗OC(D)| 6= ∅;
(2) choose a divisor D′ ∈ |L ⊗ OC(D)| and, from the ideal of C and from L,

compute S and a set of generators of the ideals ID and ID′ (as S-modules);
(3) identify the extension in Ext1S(ID′ , ID) corresponding to the given extension

of E as an element in Ext1(L,OC) ∼= Ext1(L⊗OC(D),OC ⊗OC(D)) and
compute a presentation of the module N = H0

∗ (C,E⊗OC(D)) as explained
in Lemma 1.2;

(4) compute a presentation of M ′ = N ⊗ ID−B = H0
∗ (C,E ⊗OC(D))⊗ ID−B ;

(5) compute a presentation of M = H∗
0 (C, M̃ ′), which is the module H0

∗ (C, E⊗
OC(B)) and proceed as explained in Lemma 1.3 to compute a set of gen-
erators of IX .

¤
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Remark 1.6. Suppose that |B| and |L ⊗ B| contain effective divisors D ∈ |B| and
D′ ∈ |L⊗B|, and that deg B > 2q−2 or h1(C,OC(B+jH)) = 0 ∀j ≥ 0. Then in the
proof of the theorem we can choose D = B, i.e. the module M = H0

∗ (C,E⊗OC(B))
can be directly obtained as extension in Ext1S((ID′)∗, (ID)∗).

Remark 1.7. The theorem can be used to obtain examples of scroll surfaces by
considering random effective divisors D, D′ with fixed degrees such that deg D >
2q−2 and a random extension class in Ext1S((ID′)∗, (ID)∗). Defining L as the sheaf
OC(D′−D), the previous extension class determines an element in Ext1S(L,OC) ∼=
H1(C, L∗) and the condition deg D > 2q − 2 = 0 ensures that every extension in
Ext1S(L,OC) can be obtained starting from an extension in Ext1S((ID′)∗, (ID)∗).

2. Some examples of “interesting” ruled surfaces

In this section we will construct some examples of “interesting” ruled surfaces
by applying Theorem A, where by “interesting” we mean that these surfaces have
some particular properties. We will use the computer algebra system Macaulay2 to
execute all the computations described in the algorithm of Theorem A. In order to
get the whole module M = H0

∗ (C, E⊗OC(B)), rather than the submodule M ′, we
will use the corresponding implemented command in the computer algebra system
Macaulay2. If this command is not available in the computer algebra system under
use, the practical computation may have some difficulties, but, in any case, there
is no problem when the assumptions in the Remark (1.6) are valid because the
assumptions allow us to choose D = B.

2.1. First example. Let C be a smooth curve of genus 2. Let E be a normalized
rank 2 vector bundle of degree 2, so that we have the following exact sequence:

0 → OC → E → L → 0
where L = det(E) = c1(E), deg L = 2. Let B be any degree 3 divisor of C. On the
surface X = P(E) we can consider the divisor A = C0 +p∗B ≡ C0 +3f. A is a very
ample divisor, whatever B is chosen, h0(X,A) = h0(C, E ⊗ B) = 6 and it embeds
X in P5 as a smooth scroll of degree 8 (see [I-2]); g(X) = 2. It is easy to see that
X is 2-normal if and only if it is not contained in a quadric.

About this surface we have the following proposition (see [A-B-B-1]):

Proposition 2.1. Let X be the surface above. X is contained in a rank 4 quadric
cone whose vertex is a 4-secant line for X and therefore X is not 2-normal.

Note that in [A-B-B-1] the proposition is proved by using geometric arguments
and it is not considered the k-normality of X for k ≥ 3 or the problem to determine
a free resolution of the ideal IX . Some more information about X can be found in
[C], the article which suggested to us to approach the problem.

We now explicitly describe how to construct such an example by applying the
algorithm in Theorem A. The first step is to get a projective model of a smooth
curve C of genus 2. Following the method described in [S-T] for obtaining projective
space models of general curves of genus 11, we choose a random space curve C of
genus 2 and degree 5 by the function (see the proof of Lemma 6.3):
randomGenus2Curve = (R) -> (

correctCodimAndDegree:=false;

while not correctCodimAndDegree do (

I=ideal syz transpose random(R^{-2,2:-3},R^{2:-4});

correctCodimAndDegree=(codim I==2 and degree I==5););

I);

We check the smoothness of C by means of the jacobian criterion:
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isSmoothSpaceCurve = (I) -> (

singI:=I+minors(2,jacobian I);

codim singI==4);

Proceeding in the construction of the starting data of the algorithm, we also
need to choose t random points on C. This step can be performed by separating
the points of a good hyperplane section (on a non algebraically closed field it can
happen that these points are not separated):
randomPoint = (C) -> (

R:=ring C;

isSinglePoint:=false;

while not isSinglePoint do (

hypsection:=C+ideal random(R^1,R^{-1});

pt:=(decompose hypsection)#0;

isSinglePoint=(degree pt==1););

pt);

randomPoints = (C,t) -> (

pt:=randomPoint C;i:=t-1;

while i!=0 do (pti=randomPoint C;pt=intersect(pt,pti);i=i-1;);

pt);

We are now ready to explicitly compute such an example by following the al-
gorithm of Theorem A: we choose a random smooth genus 2 curve C ∈ P3 as
explained above, we apply random choices for D, D′, N ∈ Ext1(H0

∗ (D′),H0
∗ (D)),

B and, finally, we compute a set of generators of the ideal of X embedded via the
linear system |A| = |C0 + p∗B| corresponding to our random choices.

The following input lines computes the ideal C of such a random curve C:
K=ZZ/101;

R=K[x_0..x_3]

C=randomGenus2Curve R

isSmoothSpaceCurve(C)

betti res C

We choose L and B as effective divisors of degree 2 and 3 respectively. By
Remark 1.6, we can therefore choose D = B. The points of an effective divisor
are chosen via the function randomPoints(), which returns their ideals Ldual and
Ddual in P3. Their intersection is called D’dual.

Ldual=randomPoints(C,2)

Ddual=randomPoints(C,3)

D’dual=intersect(Ldual,Ddual)

We then compute the S-modules H0
∗ (D) and H0

∗ (D
′), called resp. DS and D’S.

S=R/C

DSdual=substitute(Ddual,S);DS=Hom(DSdual,S);

D’Sdual=substitute(D’dual,S);D’S=Hom(D’Sdual,S);

We compute a presentation phi of a random module N in Ext1(H0
∗ (D

′),H0
∗ (D))

as explained in Lemma 1.2. For this purpose, we define the function randomExt()

randomExt = (A,B) -> (

phia:=presentation A;

phib:=presentation B;

Homom:=Hom(image phia,coker phib);

phiab:=homomorphism random(Homom,S^1);phiab=matrix phiab;

phiNull:=0*random(target phia,source phib);

phi:=(phia||phiab)|(phiNull||phib);

coker phi)

and we apply this function to D’S and DS.
N=randomExt(D’S,DS)
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As explained in the proof of Theorem A, the choice of N as extension class in
Ext1(H0

∗ (D
′), H0

∗ (D)) corresponds to the choice of a bundle E as extension class
in Ext1(L,OC) such that N = H0

∗ (C,E ⊗OC(D)).
We should now compute M ′ = N⊗ID−B and M = H0

∗ (M̃
′). Here these two steps

are not needed because of our choice D = B, and so M = N = H0
∗ (C, E⊗OC(D)).

However, given a module N , the command to compute H0
∗ (Ñ) is:

M=HH^0((sheaf N)(>=0));

We are now ready to compute an explicit set of generators of the ideal IX of
X ⊂ P5. We proceed as explained in the proof of Lemma 1.3 and we define for this
purpose the function scrollIdeal():
scrollIdeal = (M) -> (

phi=presentation prune image basis(0,M);

T=K[y_1..y_(numgens target phi)];

R:=ring phi;TR:=T**R;

Phi:=substitute(phi,TR);

IS:=ideal(substitute(vars T,TR)*Phi);

J:=saturate(IS, ideal substitute(vars R,TR));

ideal mingens substitute(J,T))

Note that the first line computes a presentation of the submodule generated by the
elements of degree 0 of M , i.e. by H0(C,E ⊗ OC(B)) (in this example this step
is not needed by Remark 1.5 since deg C = 5, hence M is generated in degree 0).
The ideal IX is called J in the script.

According to our random choices of C, D = B, D′, and N , the resulting surface
X ⊂ P5 is computable by the following lines and has the following properties (a
line beginning with oNN is the output line number NN of the program)

J=scrollIdeal(M)

dim J, degree J

o26 = (3, 8)

codim (J+minors(3,jacobian J))

o27 = 6

betti res J

o28 = total: 1 8 15 13 6 1

0: 1 . . . . .

1: . 1 . . . .

2: . 6 7 . . .

3: . 1 8 13 6 1

In particular, X is a smooth surface of degree 6 and IX has free resolution

0 ← IX ←

O(−2)
⊕

6O(−3)
⊕

O(−4)

←
7O(−4)
⊕

8O(−5)
← 13O(−6) ← 6O(−7) ← O(−8) ← 0.

Moreover, X is contained in only one quadric hypersurface Q, which is a rank 4
quadric cone having a 4-secant line L as vertex, according to Proposition 2.1:

Q=(gens J)_{0}

rank jacobian transpose jacobian Q

o30 = 4

singQ=ideal Q+ideal jacobian Q

L=saturate(singQ)

codim(L+J),degree(L+J)

o33 = (5, 4)

The k-normality of X can be investigated by computing the difference be-
tween the dimension of the degree k part of the coordinate ring of X ⊂ P5 and
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h0(X,OX(k)) = −1 + 4k2 + 3k. According to the notation in the script, the co-
ordinate ring of X is T/J, and the function hilbertFunction(i,J) returns the
dimension of its degree i part. Thus the following line computes the Hilbert func-
tion of the coordinate ring of X up to degree 10:

apply(0..10,i->hilbertFunction(i,J))

o34 = (1, 6, 20, 44, 75, 114, 161, 216, 279, 350, 429)

For k = 1 this difference is zero, while for k = 2 this difference is 1. Hence X is 1-
normal but not 2-normal. Proceeding in this way, one can check that X is k-normal
for any k = 3, . . . , 10. Since it is known that any surface of the type considered
in this example is not 2-normal, but it is k-normal for k ≥ 11 (see [A-B-B-1]), the
above example shows that the general surface of this type is in fact k-normal for
k ≥ 3.

Remark 2.2. Given the ideal of a non-degenerate surface X ⊂ Pr of degree d, it
follows from the Castelnuovo bound that X is k-normal for k ≥ k0 = d− 2 + r, cf.
[La]. The k-normality for k < k0 can then be checked by computing the Hilbert
function of X up to degree k0 − 1.

2.2. Second example. Let C be a smooth curve of genus 1. Let E be a normalized
rank 2 vector bundle of degree 0. Then we have one of the following cases:

(1) E = OC ⊕OC and P(E) = C × P1

(2) E = OC ⊕ L, where L 6= OC but deg L = 0
(3) E is given by the unique not trivial extension 0 → OC → E → OC → 0.

Let us call Xi for i = 0, 1, 2 the three surfaces P(E). It is known that, if we
consider any degree 3 divisor B over C, Xi is embedded in P5 by A = C0 + p∗B ≡
C0 + 3f as a smooth scroll surface of degree 6 (see [I-1]) and g(Xi) = 1. Moreover,
C0 ' C is embedded as a smooth plane curve of degree 3 and h0(X0, C0) = 2,
h0(Xi, C0) = 1 for i = 1, 2.

About this surface we have the following proposition (see [A-B-B-2]):

Proposition 2.3. Every Xi is projectively normal and it is contained exactly in
only one net of quadrics Λi ' P2. Moreover: i) Λ0 contains only rank 4 quadrics
whose line vertex is generically disjoint from X0; in Λ0 there is a smooth plane curve
' C whose points correspond to the quadrics of Λ0 whose vertex is contained in X0.
ii) The generic quadric of Λ1 is smooth; the only singular quadrics in Λ1 have rank
4 and they are parametrized by a smooth plane curve C ' C; the discriminat divisor
in Λ1 ' P2 is a reducible plane sextic D = 2C. iii) The generic quadric of Λ2 has
rank 5; the only rank 4 quadrics in Λ2 are parametrized by C0: in fact their vertices
are lines, tangent to C0 with multiplicity 2.

Since here q = 1, we can take a smooth plane cubic as C. Moreover, in order to
satisfy the assumptions of Theorem A and Remark 1.6, we can choose D = B and
D′ as effective divisors of degree 3, with L = OC(D′ −D). We then compute the
modules H0

∗ (D) and H0
∗ (L⊗OC(D)), called resp. DS and D’S:

K=ZZ/101;

R=K[x_0..x_2]

C=ideal random(R^1,R^{-3})

codim (C+ideal jacobian C)

Ddual=randomPoints(C,3)

D’dual=randomPoints(C,3)

S=R/C

DSdual=substitute(Ddual,S);DS=Hom(DSdual,S);

D’Sdual=substitute(D’dual,S);D’S=Hom(D’Sdual,S)

2.2.1. Case 0. E = OC ⊕OC . Here M = DS⊕ DS:
M=DS++DS
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and we proceed as in the previous example. IX0 has free resolution:

0 ← IX0 ← 3O(−2)⊕ 4O(−3) ← 2O(−3)⊕ 9O(−4) ← 6O(−5) ← O(−6) ← 0.

The resolution of IX0 shows that X0 is contained in a net of quadrics, which we
denote Λ0, and it suggests that these quadrics have 2 independent linear relations
among them. Indeed, it is straigthforward to check that Λ0 is the space generated by
the 2×2 minors of the 3×2 matrix of linear forms given by the morphism 3O(−2) ←
2O(−3) appearing in the above resolution. Moreover, the ideal generated by Λ0

defines a smooth scroll of dimension 3 and degree 4 in P5.
We verify that Λ0 contains only rank 4 quadrics by checking that, in a space of

parameters P2 for Λ0, the locus where the 6 × 6 matrix representing the generic
quadric has rank ≤ 4 (resp. ≤ 3) is the whole P2 (resp. empty).

Then it is possible to compute the vertex locus in P2 × P5 of the net of quadrics
Λ0 and the locus G ⊂ P2 of the quadrics Γ0 whose vertex line is contained in X0,
checking that indeed this is a smooth plane cubic. The fact that the curve G is
isomorphic to C is a geometric consequence of the construction, since each vertex
line is a line of the scroll X0, which projects in a point of C.

2.2.2. Case 1. Here M is again a direct sum, namely M = DS⊕ D′S:
M=DS++D’S

and we proceed as in the previous example. IX1 has free resolution:

0 ← IX1 ← 3O(−2)⊕ 2O(−3) ← 9O(−4) ← 6O(−5) ← O(−6) ← 0.

As in the previous subcase, we can compute the matrix representing a generic
quadric in the net Λ1 and the discriminant divisor. Then we can check that it is
indeed the square of a cubic form G and that the singular quadrics, parametrized
by G, have all rank 4.

We want to point out that, for all the constructed examples of surfaces X1,we
got the following nice geometric configuration, not shown by Proposition 2.3 and
completely unexpected. The locus Y1 of the lines in P5, which are vertices of the
singular quadrics in the net Λ1 of quadrics containing X1, is again a geometrically
ruled surface of degree 6. According to the classification in Proposition 2.3, Y1 is
of the same type as X1. Moreover, the intersection X1 ∩ Y1 consists of two plane
cubic curves lying in disjoint planes, one of them being C0, the tautological divisor
of P(E).

In order to compute C0, we start by defining a function to compute the ideal of
the fiber in P5 of an effective divisor over C.
pullbackIdeal = (I) -> (

R:=ring I;TR:=ring IS;

J:=substitute(I,TR)+IS;

J=saturate(J,ideal substitute (vars R, TR));

ideal mingens substitute(J,T))

With this function we compute the ideal H corresponding to the divisor p∗(D) (3
lines). The ideal C0 of C0 may be computed as the quotient of the ideal of a
hyperplane section of X1 containing p∗(D) by H, the ideal of p∗(D):

H=pullbackIdeal(Ddual)

C0=(ideal H_0+J):H

2.2.3. Case 2. Here M is an extension in Ext1(DS, DS), where DS is the module
constructed as in Case 0 corresponding to an effective divisor D of degree 3. We
apply the function randomExt() defined in section 2.1:

M=randomExt(DS,DS)

Then we proceed as in the previous example. IX2 has free resolution:

0 ← IX2 ← 3O(−2) ← 2O(−3) ← 9O(−4) ← 6O(−5) ← O(−6) ← 0.
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As in the previous case, we can compute the matrix representing a generic quadric
in the net Λ2, we can check that all the quadrics have rank ≤ 5, and we can compute
the divisor of the rank 4 quadrics in Λ2, a smooth cubic G.

According to Proposition 2.3, it is possible to check that the vertex of any rank
4 quadric in Λ2 is a line tangent to X2 at a point of C0.

Again, there is a nice geometric configuration, not shown by Proposition 2.3
and completely unexpected. The locus Y2 of the lines in P5, which are vertices of
the singular quadrics in the net Λ2 of quadrics containing X2, is a geometrically
ruled surface of degree 6. According to the classification in Proposition 2.3, Y2 is
of the same type as X2. Moreover, the intersection X2 ∩ Y2 consists of the cubic
C0 counted twice. Therefore a vertex of a quadric in Λ2 is a line L tangent to X2

at the point of C0 given by the intersection of L with C0.

3. Embeddings with fibers of higher degree

In this section we develop a method to construct explicitly the ideals of surfaces
which are P1-bundles over a smooth curve C, embedded in such a way that every
fibre is a rational curve of degree k ≥ 2. In other words, we consider polarized
surfaces (X,A), where X := P(E) as in §1 and A = kC0 + p∗B is very ample. We
aim to prove the following:

Theorem B. (char K = 0 or q ≤ 1). Let C ⊂ Pm be a smooth curve C of genus q,
B a divisor on C and L a line bundle over C. Consider a normalized rank 2 vector
bundle E ∈ Ext1(L,OC) over C given by an extension 0 → OC → E → L → 0 and
suppose that, for some positive integer k, the divisor A = kC0 +p∗B on the surface
X = P(E) is very ample.

Then there is an algorithm yielding a set of generators of the ideal IX of the
embedded X in Ph0(X,A)−1 = P(H0(X, A)∗) by |A|.

A description of the explicit form of the data required by the algorithm is given
in the introduction, immediately after the statement of the Main Theorem.

Let us say a few words about the algorithm which we are going to present. We
adopt here the choice to proceed in a geometric way as clear and straighforward as
it is possible rather than to optimize the computational aspect. This choice allows
us an easy implementation, but it may be computationally not a good one: for
example, the computational complexity could be a problem for large values of k
(see Remark 3.5). We also point out that the restriction on char K = 0 (if q > 1)
can be bypassed with a computational check (see Remark 3.6).

Firstly, let us develop a technical criterium needed in the sequel. We recall the
following theorem of Butler:

Theorem 3.1. [Bu, Thm. 5.1A] (char K = 0 or q ≤ 1). Let E be a vector bundle
over a smooth projective curve C of genus q, p : E → C the projection, and let
X = P(E). If Z is a (−1) p-regular line bundle over X with µ−(p∗Z) > 2q, then
Z is normally generated.

We will use this result in the form of the following corollary:

Corollary 3.2. (char K = 0 or q ≤ 1). Let E be a vector bundle over a smooth
projective curve C of genus q, p : E → C the projection, and let X = P(E). If
µ−(E) > 2q, the tautological divisor τ of X is very ample and X ⊂ P(H0(X, τ)∗)
is projectively normal.

Proof. It is well known that the condition µ−(E) > 2q implies that the tautological
divisor τ of X is very ample, cf. Lemma 1.12 of [Bu]. Since τ is very ample, it is
enough to prove that X is normally generated in P(H0(X, τ)∗).
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For this we apply Theorem 3.1. We recall that a divisor Z is called (−1) p-
regular if, for every fibre F of p over C, Hi(F, Z|F (−1 − i)) = 0, for all i > 0. In
our case these groups are Hi(Ph,OPh(−i)) = 0, where h = rk E − 1, hence τ is
automatically (−1) p-regular. For the second condition of Theorem 3.1, we remark
that µ−(p∗τ) = µ−(E). ¤

Now we are ready to give the required criterium.

Proposition 3.3. (char K = 0 or q ≤ 1). Let E be a vector bundle over a (smooth)
curve C of genus q and let D be an effective divisor of degree d on C. If the condition

(3.1) µ−(E) + d > 2q

is satisfied, the divisor C0 + p∗(D) is very ample on X = P(E) and the image X ′

of X, given by the linear system |C0 + p∗D|, is projectively normal.

Proof. Just apply Corollary 3.2 to E′ := E ⊗ OC(D) and recall that µ−(E′) =
µ−(E) + d. ¤

Remark 3.4. Condition (3.1) is not an evident numerical condition, since it is not
clear how to compute µ−(E) for a given vector bundle E.

However, if the genus q of the curve C satisfies q ≥ 2, the set of points in
Ext1(L,OC) parametrizing a semi-stable vector bundle E is a Zariski open set, see
the classical [N-S, Thm. 2]. Hence for a general choice of such an extension the
corresponding E is semistable and µ−(E) = µ(E) = −e/2.

For the case q = 1, it is known that if E is indecomposable then E is semi-stable.
If instead E is decomposable, say E = L⊕L′, then µ−(E) = min(deg(L), deg(L′)),
see [A-B-B-3, Lemma 2.8]. In the case q = 0, E is necessarily of the type E =
O(a)⊕O(b) and µ−(E) = min(a, b).

Proof of Thm. B. Chose an effective divisor D on C of degree d such that D − B
is effective, |L ⊗OC(D)| 6= ∅, and satisfying conditions (1.3) and (3.1). Note that
this is always possible by choosing the degree of D big enough. By Proposition
(3.3), the divisor C0 + p∗(D) on the surface X = P(E) is very ample. Let X ′ ⊂ Pr

be the image of the embedding ι : X = P(E) ↪→ Pr given by |C0 + p∗(D)|, where
r = h0(C0 + p∗(D))− 1. By applying Theorem A (with the same choice of D), we
can obtain a set of generators of the ideal IX′ of X ′ ⊂ Pr.

Let R be a section of the sheaf i∗p∗OC(kD − B) and let H be the hyperplane
divisor of Pr. Since R is an effective divisor of X ′ we have

0 → IX′ → IR → IR, X′ → 0,

where IR, X′ is the relative ideal sheaf of R in X ′.
Notice that the surface X ′ is projectively normal by Proposition 3.3. Therefore

H1(Pr, IX′(kH)) = 0 and the above sequence, tensorized with OPr (kH), gives

0 → H0(Pr, IX′(kH)) → H0(Pr, IR(kH)) → H0(Pr, IR, X′(kH)) → 0.

Since IR, X′(kH) = OX′(kH −R) ∼= OX(kC0 + p∗(B)) = OX(A), we have

H0(X,A) ∼= H0(Pr, IR(kH))
H0(Pr, IX′(kH))

.

Let f0, . . . , fn be a set of polinomials in H0(Pr,OPr (k)) whose equivalence classes
form a basis of this quotient space (n = h0(X,A)− 1). The image of X under the
linear system |A| is then given in the following way: if y0, . . . yn are indeterminates
and V is the coordinate ring of X ′ ⊂ Pr, the ideal IX is the kernel of the map
K[y0, . . . , yn] → V obtained by sending yi to [fi], the class of fi in V .

The algorithm based on the above considerations is therefore the following:
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(1) choose on C ⊂ Pm an effective divisor D satysfying conditions (1.3) and
(3.1) and such that D −B is effective, |L⊗OC(D)| 6= ∅;

(2) choose a divisor D′ ∈ |L ⊗ OC(D)| and, from the ideal of C and from L,
compute S and a set of generators of the ideals ID and ID′ (as S-modules);

(3) identify the extension in Ext1S(ID′ , ID) corresponding to the given extension
of E as an element in Ext1(L,OC) ∼= Ext1(L⊗OC(D),OC ⊗OC(D)) and
compute a presentation of the module N = H0

∗ (C,E⊗OC(D)) as explained
in Lemma 1.2;

(4) proceed as explained in Lemma 1.3 to compute a set of generators of I ′X ,
where X ′ is the embedding of P(E) by |C0 + p∗(D)|;

(5) for each point P ′ (with multiplicity) of a fixed element of |kD−B|, compute
the ideal of the fiber of X ′ over such point. This ideal can be computed in
the same way used to compute I ′X , as explained in Lemma 1.3, but adding
to the relations, besides the ones coming from the presentation of N , also
the generators of the ideal of the point P ′ (with multiplicity);

(6) the intersection of all the ideals computed in the previous step gives the
ideal IR of the divisor R ∈ |i∗p∗OC(kD −B)|;

(7) compute a set of homogeneous polynomials of degree k f0, . . . , fn whose
equivalence classes form a basis of H0(Pr, IR(kH))/H0(Pr, IX′(kH));

(8) compute the ideal of X as the kernel of the map K[y0, . . . , yn] → S which
sends yi to the equivalence class of fi in the coordinate ring S of X ′.

¤
Remark 3.5. In the previous algorithm, a difficult point is to compute the system of
hypersurfaces of degree k in Pr through deg(kD−B) lines of the scroll X ′. We do
not know how hard is this task computationally when k or the degree of D increase.

Remark 3.6. The assumption char K = 0 (if q > 1) of Theorem B can be replaced
by a computational check.

Proof. This assumption ensures that the scroll X ′, corresponding to a choice of D
as in the proof of Theorem B, is k-normal. Therefore the assumption is not required
if X ′ is k-normal.

Once the auxiliary divisor D is chosen and the resulting surface X ′ is determined,
the k-normality of X ′ can be computationally checked. If X ′ is not k-normal, change
D and repeat the check. ¤
Remark 3.7. Even without the very ampleness assumption on A = kC0 + p∗B, the
algorithm of Theorem B still holds for computing the ideal of the image of X by
the rational map φ|A| associated to |A| (even for k = 1).

Proof. Perform steps (1)-(7) of the algorithm described in Theorem B and compute
a set of homogeneous polynomials f0, . . . , fn of degree k whose equivalence classes
form a basis of H0(X,A) ∼= H0(Pr, IR(kH))/H0(Pr, IX′(kH)): on X ′ the map
associated to |A| corresponds to the rational map (f0 : . . . : fn) and step (8)
computes the ideal of the image of X by φ|A|. ¤
Remark 3.8. Given a divisor A = kC0+p∗B, it is possible to decide computationally
whether this divisor is very ample.

Proof. As explained in the above remark, apply the algorithm of Theorem B and
compute the image of X, say Y , by the rational map φ|A| associated to |A|. The
point is to determine computationally whether φ|A| is an embedding.

This can be done in the following way: φ|A| is an embedding if and only if Y is
a smooth surface of degree A2 and |A| has empty base locus. Indeed, assume that
Y is smooth of degree A2 and that φ|A| is a morphism. Then φ|A| is a birational
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morphism and, since X is a minimal surface being geometrically ruled, a posteriori
φ|A| is an isomorphism (the case X = F1,0 has to be considered separately).

These conditions can easily be checked computationally: the base locus of A
is determined by the vanishing set of (f0, . . . , fn) on X ′, while the dimension,
smoothness, and degree of Y are directly computable from its ideal. ¤

4. Examples of ruled surfaces with higher degree fibers

4.1. An example of conic bundles. Let C be a smooth curve of genus 1. Let E
be a normalized rank 2 vector bundle of degree 1 which is given by the only non
trivial extension:

0 → OC → E → OC(P ) → 0
where det(E) = c1(E) = OC(P ) and P is a fixed point of C. Let Q be any other
point of C, eventually Q = P . It is known that, on the surface X = P(E), the
divisor A = 2C0 + p∗Q ≡ 2C0 + f is very ample, whatever Q is chosen, h0(X, A) =
h0(C, S2(E) ⊗ OC(Q)) = 6 and A embeds X in P5 as a smooth ruled surface of
degree 8, whose fibres are embedded as smooth plane conics (see [I-1]); g(X) = 3.
In this case, C0 is embedded as a smooth plane cubic and h0(X, C0) = 1.

We now apply the algorithm of Theorem B to compute a set of generators of
the ideal IX . We set B = Q and we can choose D = Q + Q′, where Q′ is a further
point, so that D −B is effective and 2D −B = Q + 2Q′.

We fix a choice of a smooth plane cubic curve C ⊂ P2, named C, and of three
points p, q, q’, which correspond respectively to the three points P, Q,Q′ on C.

Let S be coordinate ring of C. The necessary steps to compute a presentation
of the S-module M = H0

∗ (C, E ⊗OC(D)) are as usual:
K=QQ;

R=K[x_0..x_2]

C=ideal (x_0*(x_2)^2-x_1*(x_1+x_0)*(x_1+2*x_0))

p=ideal (x_1,x_2);q=ideal (x_1,x_0);q’=ideal (x_1+x_0,x_2);

Ddual=intersect(q,q’);

D’dual=intersect(p,Ddual)

S=R/C

DSdual=substitute(Ddual,S);DS=Hom(DSdual,S);

D’Sdual=substitute(D’dual,S);D’S=Hom(D’Sdual,S);

M=randomExt(D’S,DS)

We then compute the ideal J of X ′ ⊂ P4, the embedding of P(E) by the linear
system |C0 + p∗(D)| as explained in section 2:

J=scrollIdeal(M) --ideal of X’

X ′ is a smooth surface (of degree 5), and IX′ has free resolution:
0 ← IX′ ← 5O(−3) ← 5O(−4) ← O(−5) ← 0.

The next step is to compute IR, where R is the pullback on X ′ of the divisor
2D −B = Q + 2Q′ ∈ Div(C).

q’squareFiber=pullbackIdeal(q’^2)

qFiber=pullbackIdeal(q)

A=intersect(q’squareFiber,qFiber); betti A

o30 = generators: total: 1 7

0: 1 .

1: . 6

2: . 1

We now perform the step (7) of the algorithm in the proof of Theorem B, i.e., we
compute a set of homogeneous polynomials of degree 2 f0, . . . , fn whose equivalence
classes form a basis of the quotient space H0(Pr, IR(2H))/H0(Pr, IX′(2H)). The
resolution of I ′X shows that X ′ is not contained in any quadric. Therefore, in this
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case, the vector space H0(Pr, IR(2H))/ H0(Pr, IX′(2H)) is just H0(P4, IR(2H)),
the space of quadrics of P4 passing through the fibers over Q + 2Q′:

Q=super basis(2,A) --the linear system |2H-2D+B|

Finally, we compute X as the image of X ′ via the embedding given by the linear
system of quadrics Q obtained above:

Z=K[z_0..z_5];S’=T/J;f=map(S’,Z,substitute(Q,S’))

I=ker f --ideal of X

The ideal I will be the ideal of the surface X. It is straighforward to check that
X ⊂ P5 has degree 8 and IX has resolution:

0 ← IX ← O(−2)⊕ 8O(−3) ← 15O(−4) ← 8O(−5) ← O(−6) ← 0.

The Hilbert function of X is given by:

h0(X,OX(t)) = 1, 6, 20, 42, 72, 110, 156, 210, 272, 342 . . . for t = 0, 1, 2 . . .

4.2. A ruled surfaces with cubic fibres. Let C be a smooth curve of genus 1.
Let E be a normalized rank 2 vector bundle of degree 1 which is given by the only
non trivial extension:

0 → OC → E → OC(P ) → 0

where det(E) = c1(E) = OC(P ) and P is a fixed point of C. On the surface
X = P(E), the divisor A = 3C0 is very ample: the numerical criterion of Reider is
satisfied (cf. [R]). h0(X, A) = h0(C, S3(E)) = 6 and A embeds X in P5 as a smooth
ruled surface of degree 9, whose fibres are embedded as twisted cubics (see [I-1]);
g(X) = 4. In this case, C0 is embedded as a smooth plane cubic as h0(X, 2C0) = 3.

We have B = 0 and we can choose D = Q + Q′, where Q,Q′ are any couple of
points. The divisor 3D −B is then 3D = 3Q + 3Q′.

We fix a choice of a smooth plane cubic curve C ⊂ P2, named C, and of three
points p, q, q’, which correspond respectively to the three points P, Q,Q′ on C.
Let S be coordinate ring of C. The necessary steps to compute a presentation of
the S-module M = H0

∗ (C, E⊗OC(D)) are as usual. For shortness, we perform the
same choices as in (4.1) and we start with the ideal J.

We now compute the ideal IR, where R is the pullback on X ′ of the divisor
3D −B = 3Q + 3Q′ ∈ Div(C):

qcubeFiber=pullbackIdeal(q^3)

q’cubeFiber=pullbackIdeal(q’^3)

A=intersect(qcubeFiber,q’cubeFiber); betti A

o42 = generators: total: 1 11

0: 1 .

1: . .

2: . 11

Since the ideal J of X ′ contains a five dimensional space of cubics, we need to find
a set of representatives cubics Q for a basis of the quotient space H0(Pr, IR(3H))/
H0(Pr, IX′(3H)):

a3=super basis(3,A)

j3=super basis(3,J)

Q=super basis (3,ideal a3/ideal j3)

Q=matrix(T,entries Q)

Finally, we compute X as the image of X ′ via the embedding given by the linear
system of cubics Q obtained above:

Z=K[z_0..z_5];S’=T/J;f=map(S’,Z,substitute(Q,S’))

I=ker f --ideal of X
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The ideal I will be the ideal of the surface X. It is straighforward to check that
X ⊂ P5 has degree 8 and IX has resolution:

0 ← IX ← 11O(−3) ← 18O(−4) ← 9O(−5) ← O(−6) ← 0.

The Hilbert function of X is given by:

h0(X,OX(t)) = 1, 6, 21, 45, 78, 120, 171, 231, 300, 378, 465 . . . for t = 0, 1, 2 . . .

Remark 4.1. The projective normality of the previous surface is proved in the rather
long Proposition 4.6 of [B-DR]. As a preparatory lemma, in [B-DR] the authors
proved that the projective normality of X is equivalent to the 2-normality of X,
which is equivalent to the fact that X does not lie on any quadric (cf. Lemma 4.3).
This property can be immediately verified for any constructed example, by looking
at the resolution of IX .

5. some varieties related to conic bundles

5.1. Let D be a degree d effective divisor of C satisfying (3.1) and E′ = E⊗OC(D).
We want to describe shortly some varieties related to P(E′) and their geometric
correlations.

Let us define E1 := S2(E′) and let us consider the image X1 of the 3-fold P(E1)
in Ps := P(H0(C, E1)∗) ⊂ PN via the linear system given by the tautological divisor
T1 of E1: as D satisfies (3.1), it is easy to see that S2(E′) is very ample by Lemma
1.12 of [Bu], because µ−(S2(E′)) = 2µ−(E′) > 4q.

On the other side, let X ′ ⊂ Pr be the image of P(E′) embedded via its tau-
tological bundle, i.e. via |C0 + p∗(D)|, which is very ample because D satisfies
(3.1). Let X ′′ be the image of X ′ under the 2-Veronese embedding ν : Pr ↪→ PN ,
where N =

(
r+2
2

) − 1, i.e. the image of X under the composition ν ◦ ι where ι is
the embedding of X in Pr. Then X ′′ is the image of X via the map associated to
the linear system |2C0 + p∗(2D)|. Algebraically, the map is given as follows. Let
y0, . . . , yr be a basis of H0(C, E′): then y2

0 , y0y1, . . . , y
2
r is a basis of S2(H0(C,E′))

and, defining zi,j for i ≤ j as a set of coordinates for PN , the composition ν ◦ ι is
given by mapping zi,j to the product yiyj , considered as an element in OP(E′)(2).

We want to describe a method to compute a set of generators of the ideal of the
image X1 of P(E1) and also of the ideal of the image X ′′ of P(E). Notice that X ′′

is a surface contained in X1. Indeed, the projective normality of X ′ (see the proof
of Thm. B) implies the exactness of the sequence

(5.1) 0 → H0(Pr, IX′(2)) → H0(Pr,OPr (2)) → H0(X ′,OX′(2)) → 0,

where H0(Pr,OPr (2)) ∼= S2(H0(C, E′)) and H0(X ′,OX′(2)) ∼= H0(C,S2(E′));
hence S2(H0(C, E′)) surjects to H0(C,S2(E′)).

For sake of simplicity, let us now assume that C ⊂ Pm satisfies

(5.2) deg(C) ≥ 2q + 1,

so that C is projectively normal too and its coordinate ring is S = ⊕t≥0H
0(C,OC(t)).

Then H0
∗ (C, E′) is generated by H0(C, E′), as graded module over S. In fact,

by the above assumptions, we have deg(OC(t)) ≥ 2q for t ≥ 1 and µ−(E′) > 2q,
and the surjectivity of the natural map H0(C, E′)⊗H0(C,OC(t)) → H0(C,E′(t))
is an application of Theorem 2.1 of [Bu]. In the same way H0(C,S2(E′)) generates
the module H0

∗ (C, S2(E′)).

We now describe how to determine the equations of X1. As first step, notice that
S2(H0

∗ (C, E′)) surjects to H0
∗ (C, S2(E′)). Indeed, since S2(H0(C, E′)) surjects to

H0(C, S2(E′)) and H0(C, S2(E′)) generates H0
∗ (C, S2(E′)) by (5.2), the images of

y2
0 , y0y1, . . . , y

2
r in H0

∗ (C, S2(E′)) is a set of generators of this module.
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Let the following one be a free presentation of the S-module H0
∗ (C, E′):

(5.3) M2 → M1 → H0
∗ (C, E′) → 0.

Then S2(H0
∗ (C, E′)) has a free presentation

(5.4) (M2 ⊗M1)
φ−→ S2M1 → S2(H0

∗ (C, E′)) → 0,

where, according to the notation introduced at the beginning of this subsection,
S2M1 is the free S-module with generators zi,j for i ≤ j and the map S2M1 →
S2(H0

∗ (C, E′)) is determined by sending zi.j to the element corresponding to yiyj

in S2(H0
∗ (C, E′)).

We now compute the polynomials in K[zi,j ] which are zero in S(H0
∗ (C, S2E′)).

Let N be the set of elements
∑

αi,jzi,j ∈ S2M1 (αi,j ∈ K) such that
∑

αi,jyiyj ∈
H0(Pr, IX′(2)). By (5.1), the symmetric algebra S(H0(C,S2(E′))) is isomorphic to
the symmetric algebra S(V ), where V is the vector space S2(H0(C,E′))/N . Hence
a polynomial g(zi,j) ∈ S(S2M1) whose image is nonzero in S(S2(H0

∗ (C, E′))) is
zero in S(H0

∗ (C, S2(E′))) if and only if g is in the ideal generated by N .
A basis of N over K can be computed in the following way. By following our

algorithm we compute IX′ and a basis of H0(Pr, IX′(2)), and for each element∑
αi,jyiyj (written with i ≤ j) in this basis we consider the corresponding element∑
αi,jzi,j ∈ S2M1: the set of all these elements forms a basis of N .

We are therefore able to get a set of generators of the ideal of X1 ⊂ PN in the
following way. In the ring K[zi,j , x0, ..., xm] we multiply the matrix associated to
the map φ in (5.4) with a row vector given by the variables zi,j (by considering
their exact order), and we consider the ideal generated by these elements and by
the linear forms in N . Then we saturate this ideal with respect to the irrelevant
ideal (x0, . . . , xm) and we consider the intersection of this ideal with the subring
K[zi,j ]. Note that X1 is degenerate if H0(Pr, IX′(2)) 6= 0: X1 lies in the Ps ⊂ PN

given by the linear equations coming from N , obtained from H0(Pr, IX′(2)).

The ideal of the surface X ′′ can be obtained by adding to the ideal of X1 the
forms of degree 2 (in the zi,j) lying in the kernel of the map

S2(S2(H0(C, E′))) → S4(H0(C, E′)).

Indeed, these forms generate the ideal of the Veronese image of Pr in PN .
In terms of sheaves on C, we have the following exact sequence:

0 → L → S2(S2(E′)) → S4(E′) → 0,

where L is a line bundle, being E′ of rank 2. The quadratic forms obtained above
are global sections of L. We call these quadrics the relative Veronese quadrics, since
they give fiberwise the ideal of the Veronese embedding P1 → P2.

Remark 5.1. If deg(C) ≤ 2q and C ⊂ Pm is not projectively normal, then we
can still find explicit equations of X1, by arguing as already done in the proof of
Lemma 1.3. Indeed, instead of the presentation (5.3), we can take a presentation
of the submodule M ′ ⊂ H0

∗ (C, E′) generated by H0(C, E′) and the corresponding
presentation φ of the submodule generated by S2(H0(C, E′)) in S2(H0

∗ (C, E′)).
Since X ′ is projectively normal, S2(H0(C,E′)) surjects to H0(C, S2(E′)) and we
can proceed as above.

5.2. An alternative algorithm for conic bundles. From the short exact se-
quence 0 → OC → E → L → 0 one can derive two other short exact sequences
where E1 fits, namely:

(5.5) 0 → E ⊗OC(2D) → E1 → L2 ⊗OC(2D) → 0
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and

(5.6) 0 → OC(2D) → E1 → E ⊗ L⊗OC(2D) → 0.

In fact, we have 0 → E ⊗ OC → S2(E) → S2(L) → 0, which can be rewritten
as 0 → E → S2(E) → L2 → 0 and from this sequence we can proceed in two
ways: either we tensorize with OC(2D) and we get (5.5), or we dualize it and we
get 0 → L−2 → S2(E∗) → E∗ → 0, where L−i denotes the i-th tensor power of L∗.
Since E∗ ∼= E ⊗ L∗, we obtain (5.6) by tensorizing with L2 ⊗OC(2D).

Here we want to use (5.6). If µ−(E) + 2d > 2q − e, then by Lemma 1.12 of [Bu]
E ⊗L⊗OC(2D) is very ample and its tautological bundle τ defines an embedding
Σ of P(E). The sequence (5.6) implies both T1|Σ = τ and Σ ∈ |T1 − p1

∗(2D))|,
where p1 is the projection of X1 to C (X1 is the image of P(E1) by the tautological
divisor T1 of E1, see the beginning of subsection 5.1). If furthermore d > q − 1,
then h1(C, 2D) = 0 and Σ is linearly normal in X1.

We can also proceed by using Σ to compute a set of generators of the ideal IX ,
where, as usual, X denotes the image of P(E) via the map associated to the linear
system |A| in Theorem B for the case k = 2. In this case, further conditions on D
are needed. Let us suppose that D satisfy, besides the (already required) conditions
µ−(E) + d > 2q, µ−(E) + 2d > 2q − e and d > q − 1, the further condition

(5.7) H0(C, L2 ⊗OC(4D −B)) 6= 0.

Consider a divisor D′ ∈ |L ⊗ OC(2D)|, so that τ = C0 + p∗(D′). Then the sheaf
OX1(2T1 − p∗1(2D′ −B)) on X1 restricts to Σ to the sheaf

OΣ(2τ−p∗(2D′−B)) ∼= OX(2(C0+p∗D′)−p∗(2D′−B)) ∼= OX(2C0+p∗B) = OX(A).

Since µ−(E1) = 2µ−(E) + 2d > 4q, X1 is projectively normal by Corollary 3.2.
Hence, if

(5.8) |2T1 − p∗1(2D′ −B)| → |2τ − p∗(2D′ −B)| is surjective,

we can proceed as in the proof of Theorem B: we take an effective divisor R1 ∈
|p∗1(2D′ −B))| and we have

H0(X,OX(A)) ∼= H0(Ps, IR1(2H1))
H0(Σ, IΣ(2H1))

,

where H1 denotes a hyperplane of Ps ⊂ PN , and again it is straightforward to
compute a set of generators of IX .

Assumption (5.8) can be translated into numerical conditions:

Proposition 5.2. The restriction map |2T1 − p∗1(2D′ −B)| → |2τ − p∗(2D′ −B)|
is surjective if one of the following conditions are satisfied:

(5.9)





h1(OC(B)) = h1(OC(D + B)⊗ L−2) = h1(OC(D + B)⊗ L−1) = 0
h1(OC(B)⊗ L−2) = h1(OC(B)⊗ L−1) = h1(OC(B)) = 0
2µ−(E) + deg(B) > 2q − 2 + 2e

,

where L−i denotes the i-th tensor power of L∗.

Proof. Recall that Σ ∈| T1 − p∗1(OC(2D)) |. Therefore H1(X1, IΣ(2T1 − p∗1(2D′ −
B)) = H1(X1,OΣ(T1− p∗1(OC(2D−B)⊗L2))) ∼= H1(C, E1⊗OC(B− 2D)⊗L−2)
and the surjectivity follows from the vanishing of H1(C, E1⊗OC(B− 2D)⊗L−2).

By tensorizing the exact sequences (5.5) and (5.6) with OC(B − 2D)⊗L−2 and
by using suitable tensorizations of the sequence 0 → OC → E → L → 0 we get the
first two conditions.

Alternatively, one can again work with µ−(E). By Lemma 1.12 of [Bu], it is
enough that µ−(E1 ⊗OC(B − 2D)⊗ L−2) > 2q − 2, i.e., the third condition. ¤
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6. Some new embeddings for ruled surfaces

In previous sections we considered some very ample line bundles A over some
geometrically ruled surfaces X = P(E) and we used our algorithm to compute a set
of generators of the ideals of the embeddings of X by |A|. In this last section we
consider, on some ruled surfaces X, some linear systems |L| whose very ampleness
is unknown and we investigate their very ampleness by using our algorithm. In this
way, when |L| is very ample, we get some new embeddings of X.

Let us consider the list of ruled surfaces presented in §3 of [Li]. There the author
uses Reider’s method to investigate the very ampleness of some linear systems on
ruled surfaces X which could give rise to embedded surfaces with low sectional
genus: namely, g(X) ≤ 7. Obviously Reider’s method does not work in every case
and there are many candidate pairs (X,L) such that the very ampleness of |L| is
not proved by the author. These are the pairs in column D of the list in §3 of [Li].

When g(X) = 7 some of the pairs were excluded in [B-L] (in particular, the case
number (12)), but, up to now, there is still a lot of open cases. Here we consider
only some of them: cases (9), (10), (11) and the two ones in (13), to show that our
algorithm can be used to prove very ampleness of linear systems. The part of the
list in §3 of [Li] describing these cases is the following:

g d h0(L) q |L| e t

(9) 7 18, . . . , 10 12, . . . , 6 1 3C0 + 3f −∑t
1 pi 0 1 ≤ t ≤ 8

(10) 7 16, . . . , 10 10, . . . , 6 1 4C0 −
∑t

1 pi −1 2 ≤ t ≤ 6
(11) 7 15, . . . , 10 9, . . . , 6 1 5C0 −

∑t
1 pi −1 1 ≤ t ≤ 5

(13) 7 16, . . . , 10 9, . . . , 6 2 2C0 + 2f −∑t
1 pi −2 2 ≤ t ≤ 6

(13′) 7 16, . . . , 10 9, . . . , 6 2 2C0 + 3f −∑t
1 pi −1 1 ≤ t ≤ 6

Let E be any rank 2 vector bundle over a smooth curve C of genus q with
deg(E) = deg(L) = −e. Let X be P(E) as usual, and let us consider any divisor
L0 ≡ aC0 + bf obtained from the previous table by omitting

∑t
1 pi. In [Li] it is

proved that L0 is always very ample and embeds X as a surface of degree equal
to the maximal value of d in the table, with the exception of case (13) for which
condition (0.14) of [Li] is requested.

On the other hand, the author is not able to decide if the linear subsystems
|L| = |L0 −

∑t
1 pi| are very ample too. Note that this is equivalent to prove that

the projections of X, embedded by |L0|, from t suitable points p1, . . . , pt of X are
smooth for the values of t in the above table. Thanks to our algorithm, we are
able to check this smoothness at least for random choices of X and of the points
p1, . . . , pt. In this way we give many examples of pairs (X,L) as in the previous
table where |L| is very ample, proving the existence of new embedded surfaces with
sectional genus g = 7.

Our strategy will be the following: for any considered case, firstly we give a set
of generators of the ideal of a random surface X embedded by |L0|, then we choose
t random points on X, we determine the ideal of the projected surface X̂ from these
points and we check whether X̂ is smooth or not.

Proposition 6.1. According to our notation, there exist surfaces X = P(E) such
that, for generic points p1, . . . , pt of X, the linear systems |L| in the following table



22 ALBERTO ALZATI AND FABIO TONOLI

are very ample:

(6.1)

g d h0(L) q |L| e t

(9) 7 18− t 12− t 1 3C0 + 3f −∑t
1 pi 0 1 ≤ t ≤ 5

(10) 7 16− t 10− t 1 4C0 −
∑t

1 pi −1 2 ≤ t ≤ 3
(11) 7 15− t 9− t 1 5C0 −

∑t
1 pi −1 1 ≤ t ≤ 2

(13) 7 16− t 9− t 2 2C0 + 2f −∑t
1 pi −2 t = 2

(13′) 7 16− t 9− t 2 2C0 + 3f −∑t
1 pi −1 1 ≤ t ≤ 2

Remark 6.2. At least experimentally, no new smooth surface is expected for values
of t higher than the ones in table (6.1). Indeed, the projections of a random pair
(X,L0) in table (6.1) from t random points is singular for these higher values of t.

Proof. Firstly we need a technique to pick random points on a ruled surface X
embedded by |L0| = |L +

∑t
1 pi|. We adopt the following procedure for choosing

a random point on X. The intersection of a fiber f over a random point of C
with a random hyperplane consists of k points. We then compute the primary
decomposition of their ideal: if in the primary decomposition there is an ideal
corresponding to a single point, i.e., separated from the other k−1 ones, we choose
this ideal, otherwise we change the choice of the random hyperplane.

Let C denote the base curve C and let f be the map from the scroll X ′ to X,
where X ′ is the embedding of P(E) by the linear system |C0 + p∗(D)|, (see the
proof of Theorem B for the definitions of D and f). Then the following function
chooses a random point on X:

randomPointOnS = (C,f) -> (

p=randomPoint(C);

p’=pullbackIdeal(p);

p’’=pullback(p’,f);

isSinglePoint:=false;

Z:=source f;

while not isSinglePoint do (

hypsection:=p’’+ideal random(Z^1,Z^{-1});

pt:=(decompose hypsection)#0;

isSinglePoint=(degree pt==1););

pt);

This procedure works without problems only over finite fields, otherwise we have
the problem of separating the points of the intersection of a hyperplane and a fiber.

Therefore, we prove Proposition 6.1 in two steps. The first step is to construct
an example of (X,L) over a finite field, by using our algorithm. The second one
is to ensure the existence of a lift (X,L) of (X,L) in characteristic 0; this will be
done in lemma 6.3. From now on in this proof, we will omit the overline to denote
objects constructed over a finite field, using again the notation introduced so far.

By [Li], we know that L0 is very ample on X. We use our algorithm to compute
a model of (X,L0). Examples of case (9) of the table can be obtained as follows:

(9) – fix a generic smooth plane elliptic curve C;
– define a rank 2 vector bundle E over C as an extension

0 → OC → E → L → 0

with deg(E) = deg(L) = 0 (note that µ−(E) = 0);
– to define L choose an effective divisor B of degree 3, put D = B

(so that all conditions to use the constructive proof of Thm. B are
satisfied) and choose another effective divisor D′ of degree 3 so that
L = D′ −D;
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– according to our algorithm, construct H0
∗ (C,E⊗OC(D)) as an exten-

sion in Ext1(I∗D′ , I
∗
D) and compute a set of generators of IX′ ;

– compute (a set of generators of) the ideal of kD −B = 3D −B = 2D
and the ideal of (X,L0) ⊂ P11.

Then we find t random points on (X,L0) by using the procedure explained above
and we compute the projection (X,L) of (X,L0) from the linear space spanned by
the t points.

Finally we check that (X,L) is smooth, by a partial application of the jacobian
criterion: if I is the ideal of the surface and J the jacobian matrix of the generators
of I, we compute just a few random minors of J and verify that the obtained ideal,
together with I, defines an empty projective variety.

The other cases are similar:
(10) – C is a smooth plane elliptic curve;

– deg(E) = deg(L) = 1, L = OC(P );
– deg(B) = 0, say B = OC ;
– µ−(E) = 1/2. We choose D effective of degree 2 and set D′ = L+D =

P + D;
– compute the ideal of 4D −B = 4D and the ideal of (X,L0) ⊂ P9.

(11) – C is a smooth plane elliptic curve;
– deg(E) = deg(L) = 1, L = OC(P )
– deg(B) = −1, say B = −R1;
– µ−(E) = 1/2. We choose D effective of degree 2 and set D′ = L + D

of degree 3;
– compute the ideal of 5D − B = 5D + R1 (11 fibers) and the ideal of

(X,L0) ⊂ P8.
(13) – C is a smooth space curve of genus 2 and degree 5;

– deg(E) = deg(L) = 2, L = OC(P1 + P2);
– deg(B) = 2, say B = R1 + R2;
– µ−(E) = 1. We choose D effective of degree 4 such that D − B is

effective, say D = R1 +R2 +R3 +R4, and set D′ = L+D of degree 6;
– compute the ideal of 2D−B = R1 + R2 + 2R3 + 2R4 and the ideal of

(X,L0) ⊂ P8.
(13′) – C is a smooth space curve of genus 2 and degree 5;

– deg(E) = deg(L) = 1, L = OC(P );
– deg(B) = 3, say B = R1 + R2 + R3.
– µ−(E) = 1/2. We choose D effective of degree 4 such that D − B is

effective, say D = R1 +R2 +R3 +R4, and set D′ = L+D of degree 5;
– compute the ideal of 2D − B = R1 + R2 + R3 + 2R4 and the ideal of

(X,L0) ⊂ P8.
¤

Lemma 6.3. Consider pairs of surfaces described according to table (6.1). Given
an example of smooth pair (X,L) defined over a finite field as in table (6.1), there
exists a smooth pair (X,L) defined in characteristic 0 of the same type as (X,L).

Proof. Consider the embedded curve C ⊂ Pm (m = 2, 3) used to the construct the
pair (X,L).

Claim: the generic curve C of genus 1 in P2 and of genus 2 in P3 can be obtained
as the degeneracy locus of a generic map ϕ of vector bundles defined over Spec Z.

The claim is obvious for g(C) = 1, where the map ϕ ∈ Hom(OP2(−3),OP2) is
given by the cubic equation of C.

For g(C) = 2, the map ϕ can be chosen in Hom(2OP3(−4),OP3(−2)⊕2OP3(−3)).
To show this, we illustrate a script for choosing a genus 2 curve at random as a
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space curve of degree 5. We construct C starting from its Hartshorne-Rao module
H1
∗ (IC). This is a standard method, (cf. for example [S-T, §1.2]). Consider the

exact sequence:
0 → IC → OP3 → OC → 0.

Suppose that the restriction map H0(P3,OP3(m)) → H0(C,OC(m)) has maximal
rank for each m ∈ Z. Then the Hilbert function of the Hartshorne-Rao module
H1
∗ (IC) is fixed. Moreover, the vector bundle G associated to the first syzygy

module of IC , determined by the exact sequence

0 ← IC ← ⊕OP3(−ai) ← G ← 0,

has only intermediate cohomology H2
∗ (G) = H1

∗ (IC). In our case g(C) = 2, then
H1
∗ (IC) = 0 and thus G is a direct sum of line bundles.

Under the further assumption that IC has minimal possible syzygies, i.e. IC has a
minimal resolution

0 ← IC ← OP3(−2)⊕ 2OP3(−3) ← 2OP3(−4) ← 0

so that the Betti numbers are the minimal possible ones, then G = 2OP3(−4),
C is the degeneracy locus of a map ϕ ∈ Hom(2OP3(−4), OP3(−2) ⊕ 2OP3(−3))
and a set of generators of IC can be obtained by computing the kernel of ϕt ∈
Hom(OP3(2)⊕ 2OP3(3), 2OP3(4)).

Therefore, if we consider curves of genus 2 and degree 5 in P3 with “maxi-
mal rank” and “minimal syzygies”, their Hilbert scheme has dimension equal to
dimGrass(2, 2h0(1))+dim Grass(1, 2h0(2)−2h0(1))−dim SL(2) = 12+11−3 = 20,
where h0(i) stands for h0(OP3(i)). But this dimension agrees with the one expected
by Brill-Noether theory and thus a generic curve can be obtained as described above.
This proves the claim.

Now, if in the example (X,L) we choose C as the degeneracy locus of a map ϕ
of vector bundles defined over Spec Z, then C lifts to characteristic 0, as wanted.

The next step to get a model of a surface (X,L) is the choice of the effective
divisors D and D

′
on C with L = OC(D

′ −D) and the choice of a rank 2 vector
bundle E in Ext1(OC(D

′
),OC(D)) ∼= H1(OC(D − D

′
)). The divisors D and D

′

lifts on C, and since h1(OC(D −D
′
)) is determined by Riemann-Roch because of

degree reasons, the dimension of Ext1(OC(D
′
),OC(D)) is constant over Spec Z

and also the bundle E lifts to a bundle E in characteristic 0. Hence we have proven
that the scroll X ′ lifts to characteristic zero.

Let L0 be the linear system obtained from L by omitting
∑t

1 pi. To get the
embedding (X,L0) we have to project X ′ (see the proof of Thm. B), and (X,L) is
a projection of (X,L0), so that both (X,L0) and (X,L) lift to characteristic zero.

For the smoothness, simply note that if (X,L) is smooth, then a fortiori (X,L)
is smooth as well. ¤

We show in details the script for case (9) (the other cases are similar). We start
by computing the ideal J of the scroll X ′:
K=ZZ/101

R=K[x_0..x_2]

C=ideal random(R^1,R^{-3})

codim (C+ideal jacobian C)

Ddual=randomPoints(C,3)

D’dual=randomPoints(C,3)

S=R/C

DSdual=substitute(Ddual,S);DS=Hom(DSdual,S);

D’Sdual=substitute(D’dual,S);D’S=Hom(D’Sdual,S);

M=randomExt(DS,DS)
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J=scrollIdeal(M)

Recall the divisor R = i∗p∗OC(kD −B) = i∗p∗OC(2D) in the proof of thm. B:
we have to compute the cubic polynomials contained in the ideal of R modulo the
the cubic polynomials contained in the ideal of X ′:
A=pullbackIdeal (Ddual^2);betti A

a3=super basis(3,A) --the linear system 3H-2D

j3=super basis(3,J);Q3=super basis(3, ideal a3/ideal j3)

Q3=matrix(T,entries Q3);betti Q3 --h0=12

The cubics in Q define the embedding of X by |L0| in P11:
Z=K[z_0..z_11];S’=T/J;f=map(S’,Z,substitute(Q,S’))

I=saturate ker f;dim I, degree I

o50 = (3,18)

betti I

o51 = generators: total: 1 38

0: 1 .

1: . 36

2: . 2

This surface is the surface X of degree 18 in P11 corresponding to case (9)
embedded by L0. Now, we project X from 5 random points of X and we control
that the projection is smooth:
p1=randomPointOnS(C,f);p2=randomPointOnS(C,f);p3=randomPointOnS(C,f);

p4=randomPointOnS(C,f);p5=randomPointOnS(C,f)

E=intersect(p1,p2,p3,p4,p5);L=super basis(1,E)

W=K[w_0..w_6];Z’=Z/I;g=map(Z’,W,substitute(L,Z’))

I’=saturate ker g;dim I’, degree I’

o83 = (3, 13)

betti I’

o116 = generators: total: 1 18

0: 1 .

1: . 1

2: . 17

codim (SI’=FewSmooth(I’,1,10))==7

o117 = true

Here, the function FewSmooth(I,a,n) computes n minors from the first a rows of
the corresponding jacobian matrix and n minors from the remaining rows.
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