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6. 1961-1990 high-resolution  

solar radiation climatologies for Italy 
 

 

 

 
 

6.1 The role of the solar radiation in the Earth’s energy budget  
 

The solar energy is the primary energy source for Earth. It drives the atmospheric 

and oceanic circulations. In fact, the Sun provides 99.8% of the energy used for all natural 

processes (the rest is mainly geothermic energy, Dickinson et al., 1980) and approximately 

1.779 x 1011 MW is the energy per second directly or indirectly used by the biosphere (Iqbal, 

1893). Furthermore, the solar radiation drives the Earth’s climate and slight variations in 

the activity of the Sun (for example in the number of sunspots in the 11-year Sun cycle) 

may be responsible for global warming or global cooling. The seasonal cycle of the Earth is 

caused by the angle (23.5°) between the Earth’s spin axis and the normal to its orbit. That 

is why, in the Northern Hemisphere, summer is much warmer than winter and the poles 

are colder than the tropics. The revolving orbit of the Earth around the Sun is an ellipse 

and it leads to a different energy budget between January and July (7% in favor of January, 

Zaksek et al., 2005). 

 

The solar radiation travels through the universe without losing energy until it 

reaches the upper border of our atmosphere (Brooks, 1952). Then it experiences the various 

filtering and multi-scattering processes in the Earth’s atmosphere; aerosols, water vapor, 

dust, smoke and clouds reduce the solar intensity that reaches the ground surface (Coops et 

al., 2000).  

The solar spectrum can be divided into short-wave and long-wave radiation; the 

short-wave is split up into direct, diffuse and reflected components and when a body (e.g., 

a cloud) absorbs shortwave solar radiation, it emits as long-wave solar radiation. 

 

The global net radiation received by a surface rules many processes. These include 

the evapotranspiration, the sensible heat flux (i.e. the enthalpy) and the photosynthesis, 

the snowmelt, the plant life biological cycles, the macro-scale and the micro-scale 

processes as the air/soil heating, the turbulence layers mixing, winds, the hydrological 
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processes such as the water balance, and the energy budgets (particularly important for 

the architecture of buildings). In literature, it is easy to find many scientific applications of 

solar radiation models (e.g., Dubayah 1994; Pinker et al., 1995; Varley et al., 1996; Gueymard, 

2001; Wong et al., 2001). 

 

 
 

Fig. 158: The solar radiation spectrum outside atmosphere and at sea level 
 (http://usr-lazio.artov.rm.cnr.it/concluse/scienza2001/modulo-snaturali/dimenno/irraggiamento.htm) 

 

 

 

 

6.2 The global solar radiation components: direct, diffuse and 

reflected radiation 

 

A complete solar model should evaluate the global radiation and its components, 

that are direct, diffuse and reflected radiation.  

Direct radiation depends basically on the angle between sunrays and the normal to 

the ground surface (the solar angle of incidence), the solar declination angle, and the solar 

azimuth angle (Pierce et al., 2005). It also depends on the transmissivity of the atmosphere, 

and on the optical depth of the atmosphere (Coops et al., 2000, Muneer et al., 2000; Pons et al., 

2008).  

Diffuse radiation depends especially on turbidity (turbidity factor is often used as the 

Linke’s factor), the sky view factor (Pierce et al., 2005), and on the optical depth. It also 

depends on the wavelength of the sunbeams (Coops et al., 2000), the cloud density and 
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type, elevation (Kondratyev et al., 1970; Bitanja et al., 1996) and on the unobstructed part of 

the overlying atmosphere (Dubayah, 1994). 

Reflected radiation is a shortwave radiation and depends on the obstructed part of 

the overlying atmosphere (Dubayah et al., 1995), the terrain slopes, the foreground albedo 

and in most cases, in solar models.  The reflected radiation is neglected (Coops et al., 2000; 

Pons et al., 2008), even though it could be important in iced or snow-covered regions, as for 

very low Sun height angle (reflection by aerosols and other molecules because of the long 

optical path).  

 

The direct component is by far the most important one in clear sky days, but in partly 

or totally cloudy days, the diffuse part is not negligible. Indeed in some cases, diffuse 

radiation is greater than direct radiation (Coops et al., 2000). Generally, on clear sky days, 

the global radiation at the Earth’s surface depends mainly on the direct radiation, and only 

16% of the total radiation is diffuse in the visible solar spectrum between green and red 

(Dubayah, 1992).  

The diffuse component becomes increasingly important in mountain regions, 

because an area can be shaded by obstacles and mountains and may never receive direct 

radiation in winter months, depending on the Sun’s inclination, on month, on slopes of the 

surroundings mountains and so on. It is very important to account for the topographic 

shading. This phenomenon, and the different insolation on slopes with different 

exposures, can lead to dramatic errors in an experimental solar model. Wilson et al., (1970) 

found differences up to 10 °C for north-facing surfaces versus south-facing surfaces in soil 

(a few centimeters below the surface) temperatures. Dixon (1986) found differences up to 

12 °C for maximum temperatures for areas shaded by woods versus bare ground areas.  In 

some cases a south-facing slope can receive up to three times the solar global radiation in 

winter in the Northern Hemisphere in contrast to a north-facing one (Klein et al., 1977). For 

more details see Fu et al. (2002). 

In mountain regions, even the reflected radiation can play a role (especially in bare 

areas, over glaciers or snow-covered regions). 

 

Thus, on clear days, the direct radiation dominates, especially in flat areas. The 

diffuse component depends only on the turbidity of the atmosphere, whereas in regions 

with a complex topography, the diffuse radiation plays a significant role.  On cloudy days, 

cloudiness can reduce to 100% (usually the reduction is smaller than 30% for clear days, 

see Gautam et al., (2002)) the direct radiation, so it is fundamental to quantify not only the 
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direct radiation but also the diffuse radiation and the reflected radiation that reaches the 

ground. 

 

 
 

Fig. 159: The components of incoming solar irradiance: (A) direct irradiance; (B) diffuse sky irradiance; (C) 
irradiance reflected by nearby terrain (α is the solar elevation angle, β is the solar azimuth) (Antonic, 1998). 

 

 

 

 

6.3 How to construct a solar model: different approaches  
 

Let us briefly describe the most common approaches used in scientific literature to 

construct a solar radiation model. We divide them into main categories: models based on 

radiation measurements, and models based on theoretical calculations and 

approximations (subdivided into clear sky models and real atmosphere models). 

 
6.3.1  Models based on radiation data from ground stations or satellites  
 

If radiation data (global radiation data or single radiation component data) are 

available, a spatialization model can be used to obtain solar radiation gridded 

climatologies, see e.g. Pons et al. (2008). The most used spatialization model for solar 

radiation is kriging, see Chapter 3. If only global radiation data are available, theoretical 

decomposition models that use global radiation to obtain diffuse and direct radiations can 

be used (Gates, 1980). 
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Such radiation data can be obtained from station records (pyranometers or 

pyrheliometers for sunshine duration or radiation measurements, human observations for 

cloudiness, Dubayah, 1992; Dubayah, 1994) or satellite remote sensing data (Gupta et al., 

1999). Pyranometer records show a main problem: they are usually sparse and sited far 

from areas in total or partial shadow. Thus they can only be used to model the radiation 

for horizontal surfaces.  On the other hand, there is a general skepticism about satellite 

data for climate studies because of their low degree of reliability, aside from the fact that it 

is hardly possible to create high-resolution models using only satellite records.  In fact, 

they are frequently used to get low-resolution maps only (Petrarca et al., 2000; HELIOSAT 

model, Cano et al., 1986). 

 

The main difference in quality between solar radiation models is caused by the 

availability of meteorological values and weather information; Zaksek et al., (2005), for 

example, evaluating the importance of the various proxies that can be used for a solar 

radiation model. The slope and facet parameters are extremely important, the 

meteorological data are very important, the quality of the DEM is quite important, and the 

astronomical parameters can be roughly approximated in a physical model for quasi-

global radiation.  

 

 

 

6.3.2  When radiation data are not available: clear sky solar models 
 

When no measured radiation data are available, as in the most cases, the solar 

radiation models are based on theoretical calculations only and can be distinguished 

between clear sky models and a real atmosphere model.  

We define “clear sky” as a completely cloudless sky in a clear atmosphere that does 

not filter or scatter solar radiation. If the atmosphere is non-interacting, the global solar 

radiation received by a surface on the Earth is exactly the same that a surface on the upper 

limit of the atmosphere with the same inclination receives (the so-called exo-atmospheric 

radiation), because no attenuation occurs. 

This type of model is based on geometric and astronomic parameters for the Sun’s 

position to the Earth’s Surface at any time of the year for any geographical coordinates, on 

complex calculations related to the topographical shading that the real Earth’s rugged 

terrain causes. Some authors use pre-packed GIS tools for calculations about shading, such 
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as OMBRA, INSOLDIA (Pons et al., 2008), HILLSHADE, MOD-SHADOWS (Kumar et al., 

1997). 

By means of mathematical formulas and approximations, clear sky models provide 

direct radiation and reflected radiation values for every grid point of a DEM for every 

month or day. They provide radiation values for flat surfaces or sloped surfaces and they 

include encoded tools that account for shadowing parameters. 

Such models cannot be used as information for other climatic variables that describes 

real atmosphere conditions, but they are used in engineering, especially for photovoltaic 

energy applications (Suri et al., 2004). 

 

 

 

6.3.3 When radiation data are not available: real atmosphere solar 

models 

 

The solar radiation is filtered by the atmosphere before reaching the Earth’s surface; 

the atmosphere scatters the radiation (air molecules, aerosols, pollutants), absorbs the 

radiation (ozone, water vapor, oxygen, carbon dioxide and so on) or both processes can 

occur simultaneously (in clouds, for example, Jacovides (1997)). In real atmosphere 

conditions, the solar radiation is split up into direct and diffuse radiation. They both 

contribute to the reflected component, where the ground albedo is high and the sky view 

is obstructed by surrounding surfaces. 

Because of the scattering properties of the atmospheric molecules, the diffuse 

radiation is usually considered as isotropic and not changing during the day in solar 

radiation models (Kondratyev et al., 1970; Antonic, 1998; Chung et al., 2004a). However, this 

is an approximation (a very good approximation for a solar radiation model), because, 

actually, the diffuse radiation is anisotropic (Allen et al., 2006).  
The solar radiation models for real atmosphere also deal with astronomical quantities 

and orographic parameters such as solar radiation models for clear sky conditions. 

 

When no radiation data are available, we can divide solar radiation models for real 

atmosphere into: parametric models that need atmospheric quantities from data (Dubayah, 

1992; Gueymard, 2001), models based on sunshine duration or cloudiness data (70-85% of 

variance related to insolation can be explained studying sunshine duration; 50% of 

variance using cloudiness, see Bennett, (1969)), solar spectral irradiance models (Gueymard, 
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2001), and downloadable ready to use GIS solar models (even though they are rarely 

implemented with real atmosphere features). 

 

All the listed models provide final global radiation results by means of empirical 

formulas, theoretical considerations, approximations and gridding techniques (Angstrom, 

1924; Muneer, 1999; Page et al., 2001). 
 

 

• Parametric models 
 

Parametric models model the global solar radiation and its components starting from 

a scattering-absorption point of view. This approach requires a detailed description of the 

atmospheric layers and composition. The principal disadvantage lies in the need of a great 

number of physical and chemical parameters that are rarely available or that are available 

only at a local-scale. 

Such models can be divided into two categories: the first deals with the filtering 

properties of the single atmospheric components and these models threat direct and 

diffuse radiation separately (Pinker et al., 1985; Wong et al., 2001; Wang et al., 2006a), and the 

latter deals with a special turbidity factor (Linke’s factor or Angstrom’s coefficient), with 

the optical air mass and with pressure corrections with elevation (Jacovides, 1997; Rigollier 

et al., 2000). Some authors use simpler model based only on the optical air mass and on the 

water vapor absorption of the radiation (e.g., Revfeim, 1997).  

In parametric models which deal with the filtering properties of the single 

atmospheric components, the atmospheric attenuation of the direct solar radiation is 

usually evaluated using the Lambert Beer’s equation (see next paragraphs for details). In 

such models, the diffuse component is evaluated by taking into account the Rayleigh’s 

scattering after the first passage of the radiation through the atmosphere, the aerosol 

scattering after the first passage of the radiation through the atmosphere, the multiple 

reflection and scattering processes between the sky and the ground. For a horizontal 

surface, the Rayleigh and the aerosol scatterings for the diffuse radiation depend on the 

solar zenith angle, the transmittance parameters, and on a “forward scattering” function.  

The multiple scattering depends on the solar elevation, the ground albedo and on the 

cloudless sky albedo (Wong et al., 2001, Ranzi et al., 1995). 

 

The second type of parametric models describe the atmospheric transmittance using 

two special coefficients: the Linke’s turbidity factor (indicated with TL; Linke, 1922) and the 
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Angstrom’s coefficient (indicated with β; Angstrom, 1964);  they correct the optical air mass 

for elevation, refraction of the solar radiation and for pressure (Kasten et al., 1989). 

 

The Linke’s factor depends especially on air mass, water vapor, gases and aerosol 

(Rigollier et al., 2000) and represents the number of clean dry atmosphere necessary to 

produce the same attenuation of the real atmosphere.  The average value for Europe is 3.5, 

but it varies locally. The attenuation increases with TL because a higher turbidity means a 

higher scattering and absorption processes. TL depends on the air mass (indicated with m) 

that is not available everywhere, hence this problem is often moved around imposing a 

constant value of m = 2 for calculating TL (Kasten et al., 1989) or it is derived inversely from 

beam pyrheliometric measurements (Jacovides, 1997) and local data (Kasten et al., 1984). The 

Linke’s factor is the ratio between total optical depth and Rayleigh’s optical depth: TL = 0 

means a non-attenuating atmosphere, TL = 1 means a pure Rayleigh’s atmosphere with no 

aerosols and only molecular scattering, TL = 3-4 means a quite turbid atmosphere, TL = 6 

means a very dirty and polluted atmosphere. 

The Angstrom’s coefficient quantifies the scattering effects of the aerosols and it 

varies from 0 (very clear atmosphere) to 0.4 (very dirty atmosphere) (Jacovides, 1997). 

The combined used of the Linke’s factor and the Angstrom’s coefficient accounts for 

the attenuation of direct and diffuse radiation in a real atmosphere and for the diffraction 

and refraction effects (Page et al., 2001). The Linke’s turbidity factor is also used in GIS 

tools as r.sun and in the European Solar Radiation Atlas (ESRA: Beyer et al., 1997; Rigollier 

et al., 2000; Page et al., 2001). 

The Angstrom’s coefficient is rarely used as an independent quantity in literature 

(Jacovides, 1997), but it is used to obtain a Linke’s turbidity modified factor that accounts 

best for the aerosols and depends even on the Angstrom’s coefficient (Valko, 1961). Other 

authors (e.g., Jacovides, 1997) calculate the Angstrom’s coefficient from Linke’s factor 

obtained from pyrheliometric measurements and divide the atmosphere in rather dry, 

medium humid and very wet conditions, depending on the water vapor content.  

 

 

• Spectral solar irradiance models 
 

Spectral solar irradiance models are widespread in literature and are applied in 

climate studies, in engineering projects, in biology and so on (Nann et al., 1992); these 

models can be made of sophisticated rigorous codes (LOWTRAN, MODTRAN: Anderson et 

al., 1995) or approximated transmittance parametric formulas. In the first case, the 
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atmosphere is considered as a set of vertical layers. In the second case the atmosphere is 

described with a set of parameters related to the single components (SPECTRAL2: Leckner 

et al., 1978; Bird et al., 1984; Nann et al, 1992). 

 

 

• Decomposition models: from sunshine duration to radiation values 
 

A very dense dataset of direct and diffuse radiation measurements (by 

pyranometers) is available in some regions only (i.e. East Anglia). On the other side, there 

is a high number of sunshine duration records worldwide and these records are spatially 

denser and temporally longer than the solar radiation series (Revfeim, 1997).  

The basic idea is to correlate the so-called Clearness Index with the fraction of the 

solar radiation received by the surface in terms of the so-called Sun Hours Ratio 

(Angstrom, 1924). The Clearness Index (usually indicated with Kt) is the ratio between the 

global radiation really received by a surface and the hypothetical global radiation received 

by the same surface on a clear sky day. To be precise, a slightly different one substitutes 

this definition, where the hypothetical global radiation is substituted by the exo-

atmospheric value (i.e. the solar radiation at the upper limit of the atmosphere, Martínez-

Lozano et al., 1984).  Thus it considers the atmosphere as optical transparent to solar 

radiation on “perfect clear sky days”. The Sun Hours Ratio is the ratio between the 

number of hours of sunlight received and the maximum number of hours of sunlight 

receivable (that is, from sunrise to sunset, varying for each day of the year) by a horizontal 

surface. It is often indicated with Rs or with S/S0 (Gueymard, 2001; see next paragraphs for 

details). 

 

The Angstrom’s formula (see the next paragraphs) and its variants (Angstrom, 1924; 

Martínez-Lozano et al., 1984) permits to calculate the Clearness Index from the Sun Hours 

Ratio with a linear regression model. Consequently, from sunshine duration records, 

global radiation can be obtained.  

In literature, many empirically improved calculations of Kt from Rs can be found. 

Rietveld (1978) and Akinoglu et al. (1990) used polynomial regression models. Ampratwum 

(1999) used a logarithmic model. Revfeim (1981) included atmospheric transmissivity 

parameters in the formula. McArthur et al. (1981) defined site-independent coefficients in 

the LR. Iqbal (1983) used also latitude as a independent variable other than Rs. Gopinathan 

(1995) used also latitude and altitude as independent variables, and other authors used 

also daily temperature range as independent variable and so on. 
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Furthermore, Suhercke (2000) revised the Angstrom’s formula and introduced some 

considerations that theoretically hypothesize a non-linear correlation between the 

clearness index and the Sun Hours Ratio. 

Some authors reviewed the various models on the Angstrom’s formula. The accepted 

idea is that every model could be valid; the choice strictly depends on the geographical 

area of interest (Ampratwum, 1999). Decomposition models are site-dependent models and 

the coefficients of the regressions are usually valid only for those single regions 

specifically studied, but some special cases hold good worldwide (Gopinathan, 1995; 

Roderick, 1999). 

 

Hypothetically, the diffuse fraction should increase as the clearness index decreases, 

because on an overcast day, the clouds play a leading role for the diffuse radiation. The 

diffuse fraction depends on the optical properties of the atmosphere, on volcanic eruptions 

(Garrison, 1995), on global transport of dust or sand (Moulin et al., 1997), but clouds 

dominate and in particular the cloud thickness, the cloud height and the cloud type 

(Roderick, 1999). The surface albedo could be neglected because it influences the reflected 

part of solar radiation more. The Northern Hemisphere has a higher diffuse fraction than 

the Southern Hemisphere because of the higher portion of emerged lands and the higher 

population density and industrialization that cause a higher aerosol and pollutants 

concentrations (enhancing the scattering of the solar radiation, Roderick (1999)). 

Decomposition models are able to quantify the diffuse radiation component without 

diffuse radiation data (Iqbal, 1983;Spitters et al., 1986). In decomposition models, the diffuse 

fraction of the global radiation received by a surface (or the diffuse index) is indicated 

with Kd or Kdif and it is usually obtained as a function of the Clearness Index (Gopinathan, 

1995). See the next paragraphs for details. 

Some authors obtain the diffuse fraction by means of thresholds models. Depending 

on the Clearness Index value, they use different functions (based on the Clearness Index 

itself) to derive the diffuse fraction of radiation.  This is the case in Rodderick (1999) for 

Australia, in Jin et al. (2004) for China, in Orgill et al. (1977), Erbs et al. (1982), Olyphant 

(1984), Reindtl et al. (1990) for USA and Canada, for Norway by Olseth et al. (1986) and so 

on. 

In a review paper, Wong et al. (2001) states that each model can be suitable or not 

suitable, depending on the data availability, the time-scale frequency of data (a longer 

period is preferred because the weather conditions are averaged, so the statistical 

fluctuations in the results are less important), the geographical region and the weather 
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conditions. The Gopinathan’s model is often pointed out as the most reliable one and, as 

we can see in the next paragraphs, we applied it in our solar radiation model for Italy. 

 

A different decomposition approach derives the diffuse fraction from cloudiness data 

(Kasten et al., 1980; Muneer et al., 1997; Muneer et al., 2000), but this could be dangerous 

because the cloudiness data are “measured” according to human-eye observations. That 

means a deep subjectivity of the cloud cover interprets in a yes-no binary system. These 

data are usually in okta (number of overcast parts in the sky divided into eight sections) 

but they can also be found in tenths.  

In our opinion, it would be preferable to use cloudiness data only as a posteriori 

comparison of the diffuse fraction results, if sunshine duration data are available for the 

same stations. Cloud cover can only explain 50% of the solar radiation variance, whilst 

sunshine duration can explain the variance of the solar radiation up to 85% (Bennett, 1969). 

 

Once the diffuse and the direct components are derived, the reflected and the global 

radiation can be easily inferred (see the next paragraphs). 

 

 

 

6.3.4  Solar radiation models as GIS models ready-to-use  
 

Ready to use GIS (GIS means Geographic Information System) tools are mostly 

implemented in the GRASS GIS software (http://grass.itc.it/). Geostatistical models have 

advantages and disadvantages. On one side, they are ready to be downloaded, they are 

based on codes that calculate astronomical, geographical, shading parameters and in some 

cases they are connected with database that are daily or monthly updated. On the other 

side, they are usually not free, they use rough approximations in order to shorten the time 

to get results, they are sometimes adapted or converted form meteorological models, they 

are low-resolution models and the topography is rarely accounted for with a high degree 

of precision. 

 

Here we only cite some examples: Solar Analyst 1.0 (Arcview TM software, http://www. 

esri.com/software/arcview/index.html), Solar Flux (Fu et al., 2000), r.sun (ArcGIS tool used for 

the European Solar Radiation Solar Atlas, ESRA; Suri et al., 2004) and so on. Such models 

are conceptually similar; they mainly differ in the different geometric approximations 

used to evaluate the topographic shading. These models all produce rasters of direct and 
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diffuse (reflected is often neglected because the surface albedo at local scale is rarely 

available because of the lack of albedo grids) radiation without using real datasets, but a 

priori theoretical calculations only, thus they let the validation to the users. In literature, 

many authors do not rely on using this ready to use GIS models (e.g., Zaksek et al. (2005)).  

 

The majority of these packages are implemented as clear sky models but in some 

cases they rely on real atmosphere conditions. The most detailed GIS tool on solar 

radiation is probably the PVGIS (Photovoltaic GIS, http://sunbird.jrc.it/pvgis/) created by 

JRC (Joint Research Centre of the European Commission, http://ec.europa.eu/dgs/jrc/index. 

cfm). It uses the Linke’s factor, WDRC (World Radiation Data Center of WMO, World 

Meteorological Organization, http://wrdc.mgo.rssi.ru/) station, satellite global radiation data, 

astronomic quantities, high-resolution topography and shading calculations (by M.Suri 

and T.Hudd, http://sunbird.jrc.it/pvgis/solrad/index.htm). 

 

 

 

 

6.3.5  Other methods used to obtain a solar radiation model 

 
• Inverse model: from temperature data to global radiation 
 

If no radiation data are available, but mean monthly minimum and maximum 

temperatures are at disposal, such data can be used to derive solar radiation components 

(this method should not be applied for daily calculations, (Erbs et al., 1982)). These inverse 

models (Coops et al., 2000) start from temperature extremes in order to obtain the 

atmospheric transmissivity. 

 

Bristow et al., (1994) used this technique and they performed a validation with a small 

set of diffuse and direct measurements. The model works satisfactorily for flat surfaces 

(error lower than 1%). However, it does not perform well for inclined slopes (the mean 

absolute error is approximately 10% and increases with increasing inclination of slopes, 

probably because in this case the reflected shortwave radiation, not considered in this 

model, plays a non-negligible role).  
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• The ASHRAE model 
 

The ASHRAE model (ASHRAE book, 1977) is a solar model widely used in 

engineering studies and in climate papers (Wong et al., 2001).  

This model is based on the atmospheric attenuation properties, on the Clearness 

Index and on the real pressure correction for optical depth of the atmosphere, but the 

Earth curvature is not considered in the calculations. A simplified version of this model 

neglects the reflected radiation in areas where the ground albedo is unknown. See 

ASHRAE (1977) for details. 

 

 

• The Varley’s model 
 

The Varley’s model is a hybrid model based on the optical properties of the 

atmosphere and the Clearness Index (Varley et al., 1996). The transmission factor of the 

atmosphere is used as a function of the Clearness Index itself by means of empirical local 

coefficients. Thus this approach cannot be reproduced globally. This is the opposite 

limitation that most solar radiation models are not able to overcome, i.e. the non 

reproducibility of global-scale solar models to small areas (Antonic, 1998). 

 

 

 

 

 

6.4 1961-1990 high resolution solar radiation model for Italy  

 
6.4.1  Motivations and methodology  
 

We supposed that the final statistical errors of our temperature model for 1961-1990 

for Italy would improve if we model the global solar radiation received by every single 

grid cell (using the USGS GTOPO30 digital elevation model) and if we use this quantity as 

an independent variable. Temperature is supposed to be correlated with solar radiation, 

especially with global radiation, and it is well known that climate models would benefit 

from radiation budget parameterization, for example, 5% for a 1,000-km monthly scale 

(Leith, 1973) and much more for a 1 km2 monthly scale. At last, many authors have already 

created solar radiation models in order to use solar radiation as a variable for other models 
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(e.g., Ninyerola et al., 2000; Fu et al., 2002) and in many cases they obtained a great 

improvement. 

 

Thus, we decided to create a solar radiation model for Italy, i.e. a mathematical 

model that is based on measured data, which uses astronomical parameters, considers the 

effects of topography and is able to define a global radiation value for each grid cell. Such 

a model accounts for spatial (topography and geographical variables as latitude and 

longitude) and temporal variations (the Sun’s position at every hour, day, month of the 

year) as suggested by Dozier (1981).  

 

Our idea was to combine sunshine duration and cloudiness quality-checked data 

with topographical high-resolution calculations, in order to get the first high-resolution 

solar radiation model based on station data for Italy.  

First, we collected 1961-1990 sunshine duration data, we quality checked and used 

them in order to calculate the Clearness Index and the diffuse fraction values that led us to 

obtain monthly diffuse radiation and direct radiation received by a flat surface. Second, 

from the direct radiation component, we empirically evaluated the turbidity Linke’s factor 

and we created low-resolution 1961-1990 turbidity maps for Italy. Third, we wrote 

algorithms based on astronomical parameters and orographic parameters (i.e. the shading 

factors) in order to calculate diffuse and direct radiation components for sloped surfaces 

using the USGS GTOPO30 DEM. Fourth, we derived albedo raster grids from GLC2000 

land cover maps and from tabled albedo parameters and we used them to calculate 

reflected radiation component for each grid cell. Fifth, we summed up direct, diffuse and 

reflected radiations in order to obtain hi-res global solar radiation grids for Italy related to 

1961-1990 period. Sixth, we used the albedo values to get absorbed radiation grids. 

The lack of solar radiation models for Italy (the only available solar models for Italy 

are GIS models as r.sun by Suri et al. (2004) which have a low spatial resolution, or satellite-

derived maps of solar radiation as by Petrarca et al. (2000), or very low resolution models 

for global and diffuse radiation by Lavagnini et al. (1990), Lavagnini et al. (1991)) convinced 

us to refine the methodology as to obtain a solar radiation model that can be even adjusted 

for energetic and photovoltaic applications. In the end, we used such global radiation 

grids in temperature climatologies (see Chapter 4). 

 

As we can see in the next paragraphs, we used a quality checked but not 

homogenized 1961-1990 sunshine duration dataset. In the future, we plan on realising a 
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solar radiation model that will be based on a homogenized larger dataset, which includes 

station data from different time intervals opportunely converted to 1961-1990 by means of 

gridded anomalies. 

Other developments will be the construction of solar radiation models based on 

cloudiness data or global radiation data. Such models could be used as a validation test for 

our model based on sunshine duration data (eventually homogenized). 

 

 

 

6.4.2 Data search: global radiation, cloudiness and sunshine duration data 

 
• Global radiation data 
 

First, we searched for global radiation data, but we found no time series but 33 

monthly normals on the website of the Aeronautica Militare Italiana (http://clima.meteoam. 

it/), 2 monthly normals on the 1966-1975 ESRA Vol. 1 (European Solar Radiation Atlas, 

Kasten et al., 1984) and no time series. We also found, in the DBT-ENEA database 

(http://clisun. casaccia.enea.it/), 738 1994-1998 monthly normals, but these data were derived 

from satellite observations and we did not accept satellite data. 

 

Out of the 35 station data normals, only 24 have 30 years of data in our 1961-1990 

reference period, thus we concluded that this dataset was not suitable to implement high- 

resolution solar radiation grids. 

 

 

• Cloudiness data 
 

Second, we searched for cloudiness data and we obtained: 47 series from Air Force 

(35 of these cloudiness series were homogenized and used in Maugeri et al. (2001)), 148 

monthly normals in the DBT_ENEA database (Petrarca et al., 1999) and 29 normals from the 

SCIA-APAT website (http://www.scia.sinanet.apat.it/) labeled as UGM-ENAV (Ente 

Nazionale di Assistenza al Volo).  

 

153 out of these 224 records are related to our 1961-1990 reference period and the 

others could be converted into 1961-1990 normals by means of cloudiness anomalies grids 

in Maugeri et al., (2001). Nevertheless we decided to use sunshine duration data instead of 
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cloudiness data because the latter ones are more subjected to human errors and because 

sunshine duration records are usually better correlated with solar radiation than 

cloudiness (see Chapter 6.3). 

 

 

• Sunshine duration data 
 

As time series we found: 

- monthly series from the SCIA-APAT dataset (http://www.scia.sinanet.apat.it/) subdivided 

into: 121 from UCEA, 49 from ENAV (Ente Nazionale di Assistenza al Volo), 51 from 

regional ARPAs (especially for Friuli Venezia Giulia and Marche): 221 stations; 

- monthly series from the European Solar Radiation Atlas (vol. 1, Kasten et al., 1984): 2 

stations;  

- daily series from MIPAF (Ministero delle Politiche Agricole e Forestali, http://www. 

politicheagricole.it/default.html): 39 stations. 

 

As monthly normals we found: 

- monthly normals from Meteo France (http://france.meteofrance.com/): 5 stations; 

- monthly normals from Meteo Swiss (http://www.meteoswiss.admin.ch/web/en/weather.html): 

15 stations;  

- monthly normals from ARSO (Agencijea Republike Slovenije za okolje (http://www.arso 

.gov.si/): 1 station; 

- monthly normals from monographic books (Vercelli: Cat Berro et al., 2005; Aosta: Cat 

Berro et al., 2003): 2 stations; 

- monthly normals from ZAMG (http://www.zamg.ac.at/): 7 stations; 

 

We collected a database of 292 sunshine duration records for the Italian region and 

its surroundings. After a first quality check on geographic position, elevation and 

duplicated stations, we obtained a database of 236 stations. 

 

A second quality check procedure was based on data and we accepted: 

- records with at least 20 years of data in 1961-1990 period: 

      -  a year was considered valid only if all monthly data were available; 

      - a month was considered valid only if a record had more than 25 daily data (23 for 

February). 
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In case of two or more stations located very close with the same name, we chose the 

stations with the highest number of valid years in 1961-1990 period and fully-reported 

metadata. 
 

After this second check, our 1961-1990 sunshine duration dataset was made of 54 

stations. Let us show the 1961-1990 sunshine duration dataset distribution for Italy. 
 
 

 
 

Fig. 160: Sunshine radiation 1961-90 station distribution for Italy 
 

From fig. 160, it can be seen that such a station distribution is not dense enough to 

represent the average 1961-1990 spatial distribution for sunshine duration in Italy. Even if 

the 30-year average condition of the atmosphere (i.e. clouds, fog, pollution and so on) can 

be described with a lower resolution than precipitation or temperature. 

 

We decided to expand our dataset by including data not related to 1961-1990, but 

some introducing commentaries are necessary. We could not expand our 1961-1990 

sunshine duration dataset by converting our dataset to 1961-1990 with a gridded anomaly 

approach as for temperature and precipitation datasets. This is because we did not have a 

secular homogenized sunshine duration database as Spain does (Sanchez-Lorenzo et al., 

2007) which can be used to create monthly anomaly grids. Unfortunately, the longest 

complete series are relative to 1956-1996 period and only 4 series are relative to 1951-2006, 

thus it was not possible to create anomaly grids for time series of sunshine duration. 

It is well demonstrated that sunshine duration, as solar radiation, is not constant 

through decades. Solar radiation secular records show a “global early brightening” period 
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approximately between 1940 and 1950, a “global dimming” period approximately between 

1950 and 1980 and a “global late brightening” period approximately after 1980 (De Bruin et 

al., 1995; Gilgen et al., 1998; Wild et al., 2005; Ohmura, 2006; Sanchez-Lorenzo et al., 2007; Wild, 

2009).  

In the following picture we show the global radiation trend for Stockholm, where the 

brightening and dimming periods can be easily recognized. 
 

 
Fig. 161: Solar radiation time series of Stockholm: brightening and are evident (Wild, 2009) 

 

Furthermore, solar radiation and sunshine duration are subjected to great volcanic 

explosions such as El Chicon (Mexico, Heimo et al., 1989) in 1982, Pinatubo (Philippines, 

Molineaux et al., 1996) in 1991, and Mount Redoubt (Alaska, USA) in 1966. Thus sunshine 

duration data not related to our 30-year reference period should be handled with care. 

In the following picture we show the solar radiation transmission from the Mauna 

Loa observatory. The volcanic eruptions and explosions greatly reduce the solar 

transmission and, moreover, they usually cool the global temperature. 
 

 
Fig. 162: Solar Radiation Transmission in % from Mauna Loa Observatory: after two massive volcanic 

eruptions, El Chicon and Pinatubo, solar radiation transmission dramatically decreased (NOAA website) 
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We decided to expand the Italian sunshine duration dataset used in this work by 

including every station with at least 10 valid years in the 1951-2007 period. Then we cross-

checked them with the three nearest surrounding stations belonging to the 54 stations 

relative to 1961-1990. We accepted a station only if every month differs from the 

corresponding month (average of the 3 nearest stations), in absolute value, less than 10%. 

In this way, we obtained a new denser dataset made of 158 stations; we rejected 78 stations 

out of 236. 

 

In figure 163 we show the enlarged 1961-1990 sunshine duration dataset distribution 

for Italy. 

 

 
 

Fig. 163: Sunshine radiation 1961-1990 station distribution for Italy from the enlarged dataset. 
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6.4.3  From sunshine duration to relative sunshine duration 

 
• The Sun hours ratio 
 

Sunshine duration data are expressed in hours, that is, for example, 5.4 h. In order to 

avoid the latitudinal effects and in order to consider the different astronomical parameters 

for any month, we need the relative sunshine duration that is defined as: 

 

                                                                           
0S

S
Rs =

                                                     
(124) 

 

Where S is the number of Sun hours measured by, for example, a Campbell-Stokes 

sunshine recorder, S0 is the day length (i.e. the number of hours from sunrise to sunset) 

and RS is often called the Sun Hours Ratio. 

 

We used a fundamental hypothesis: the sunshine duration data come from stations 

located on a flat surface and far from shading obstacles as mountains, hills or walls. This is 

usually true for stations because the WMO recommends placing them under the cited 

conditions.  

 

 

• The day length 
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Fig. 164: Number of Sun hours for Vetta d’Italia and Punta Sottile (Lampedusa) vs. number of Julian day 
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The theoretical duration of the day (see fig. 164, where we show the theoretical 

duration of the day for Vetta d’Italia and for Punta Sottile during the year), the so-called 

day length, is the number of Sun hours that a point would receive between sunrise and 

sunset, if there were no clouds and no shading. It can be used to calculate the Sun Hours 

Ratio. 

 

Following Allen et al. (2006), the day length (hours) can be calculated as: 

 

                                                             15
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(125) 

 

Where wss is the sunset hour angle (see next paragraphs for details). 

 

Let us show the hours of daylight for any latitude and any day of the year. 

 

 
 

Fig. 165: Number of Sun hours for the globe (Wikipedia, 2010) 

 

The day is longer in winter for lower latitudes in the Northern Hemisphere, while it 

is longer for higher latitudes in summer. At the equinoxes the theoretical duration is 12 

hours everywhere. 
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• The sunrise angle and the sunset angle 
 

Following Allen et al. (2006), the sunset hour angle (wss) is measured in degrees and 

can be defined as: 

 

                                                  ( )δφ tantanarccos −=ssw

                                    
(126)

    
 

 

Where φ is the latitude (in radians), δ is the solar declination angle (in radians, see 

next paragraphs for details). 

 

Equation (126) can be used to derive the time of sunset for any solar declination and 

latitude in terms of local solar time when sunrise actually occurs.  

 

Similarly, we can define a sunrise equation that quantifies the sunrise hour angle 

(wsr, degrees): 

 

                                                          ( )δφ tantanarccos −−=srw                                                 (127) 

 

The sunset hour angle is positive and the sunrise hour angle is negative because the 

hour angle is the angular displacement of the sun east or west of the local meridian.  This 

is due to rotation of the Earth on its axis at 15° per hour: morning is negative and afternoon 

is positive. Of course, the hour angle is null at solar noon. See next paragraph for details 

on the hour angle equation. 

It should be emphasized that in some cases, no sunrise and no sunset occur. In fact, 

following Xiaofeng et al. (1996), if (φ + δ) < 0° no sunrise occurs, whilst if (- φ + δ + 90°) < 0° 

no sunset occurs. Because of the dependence on latitude (φ or λ) and solar declination, 

these values vary not only daily but even from one grid point to another (Wang et al. 2005), 

although no sunrise or no sunset situations never occur for Italy in flat surfaces, if we 

exclude shading effects. 

 

The real sunrise takes place when the upper part of the Sun’s disk is over the 

horizon; an observer on the Earth sees the upper border of the Sun’s disk with an angle of 

0.83° when the Sun’s center is on the line of the horizon. Thus the real sunrise takes place 

approximately 2 minutes earlier than predicted by the above formulas at the Equator, and 
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the difference increases going to the Poles and at Italy’s latitudes; the gap is approximately 

5 minutes. 

 

Also, the atmospheric refraction should be taken into account.  When we see the Sun 

over the horizon, its real position is just under the horizon because light is refracted by air. 

We will deal with refraction corrections later when we describe how to model the solar 

radiation for sloped surfaces. We did not consider the atmospheric refraction to calculate 

the day length. 

 

 

 

• The hour angle and the equation of time 
 

The hour angle of a point on the Earth's surface is the angle through which the Earth 

would turn to bring the meridian of the point directly under the Sun. The Earth is rotating, 

so this angular displacement represents time. In observing the Sun from Earth, the solar 

hour angle is an expression of time, expressed in angular measurement, most usually 

degrees, from the solar noon. 

 

According to Meeus (1998), we can define the solar hour angle (h, degrees) as: 

 

                                             
TCLonGMTh hourfractional ++°⋅−= 15)00.12(

                                   
(128)

             
 

Where GMTfractional hour is the fractional hour expressed in Greenwich Mean Time (e.g., 

12:15 GMT is 12.25 in fractional hour) that can be seen as the Italian Standard Time minus 

one hour; Lon is Longitude (in radians), TC is the time correction. 

 

The solar hour angle must be calculated related to GMT (Greenwich Mean Time), 

that is a good approximation of the Universal Time (UT) which in turn depends on the 

sidereal time. In Italy, the clock marks GMT+1 and we call this time the Italian Standard 

Time (IST) that is the synchronized time for Italy. This is different from the real Local Time 

(LT) that varies from one geographical point to another. Thus, in Italy we have to subtract 

one hour from the clock time in order to get the universal time. 
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Time correction can be defined as: 

 

)2sin(340475.2)2cos(837378.0)sin(837877.1)cos(107029.0004297.0 ggggTC ⋅−⋅−⋅−⋅+= (129)
            

 

 

Where g is the fractional year (degrees). 

 

The fractional year (degrees) can be defined as: 
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The time correction is related to the equation of time: it is the difference between 

apparent solar time and mean solar time, both taken at a given place (or at another place 

with the same geographical longitude) at the same real time (Burington, 1949). 

 

The equation of time varies over the course of a year, in a way that is almost exactly 

reproduced from one year to the next. Apparent time, and the sundial, can be ahead (fast) 

by as much as 16 min 33 sec (around 3 November), or behind (slow) by as much as 14 min  

6 sec (around 12 February). 4 minutes correspond to 1°. 

 

 

Fig.166: Time-shift (in minutes) during a year from the equation of time. 
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The equation of time results mainly from two different superposed astronomical 

causes, each causing a different non-uniformity in the apparent daily motion of the Sun 

relative to the stars, and contributing a part of the effect: the obliquity of the ecliptic (the 

plane of the Earth's annual orbital motion around the Sun), which is inclined by about 

23.45° relative to the plane of the Earth's equator and the eccentricity and elliptical form of 

the Earth's orbit around the Sun. The equation of time is also the east or west component 

of the analemma, a curve representing the angular offset of the Sun from its mean position 

on the celestial sphere as viewed from Earth. The equation of time was historically used to 

set clocks. 

Let us go back to the hour angle: at solar noon, at the observer's longitude on Earth, 

the hour angle is 0° with the time before solar noon expressed as negative degrees, and the 

local time after solar noon expressed as positive degrees. The solar noon can be seen as the 

moment when the Sun crosses the meridian in “apparent solar time” and the apparent 

solar time is based on the apparent solar day, which is the interval between two successive 

returns of the Sun to the local meridian. The solar noon can also be described as the 

moment when the Sun appears the highest in the sky, compared to its positions during the 

rest of the day. It occurs when the Sun is transiting the celestial meridian, that is an 

imaginary great circle on the celestial sphere (it passes through the North point on the 

horizon, through the celestial pole, up to the zenith, through the South point on the 

horizon, and through the nadir, and it is perpendicular to the local horizon). 

 

 

• The solar declination angle 
 

Another important astronomic parameter that must be used to calculate the day 

length is the solar declination. Following Bristow et al. (1994) it is expressed in degrees (or 

in radians) and can be defined as: 

 

                                                        

( )
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(131)

     

 

Where dn is the number of Julian day (dn = 1 for January 1st, dn = 365 for December 

31st). 
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The declination of the Sun (δ) is the angle between the sunrays and the plane of the 

Earth’s Equator, it varies during the seasons and its period is one year. The absolute 

maximum values (δ = 23.45°) happen at the solstices; the absolute minimum values (δ = 0°) 

happen at the equinoxes. A more refined expression based on a three order cosine and sine 

series can be found in literature (Hartmann, 1994), but the solar declination values are 

approximately the same. The solar declination angle depends only on the Julian day, it 

does not vary with latitude, thus at Rome, the solar declination angle is the same as 

Naples in the same day. 

 

In the following picture, we show a graphic representation of the solar declination 

angle. 

 

 
 

Fig. 167: The solar declination angle (www.powerfromthesun.net) 

In the next page, in fig. 167, we show the variation of the solar declination angle 

during the year 
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Fig. 168: Daily values of the Solar Declination Angle (in centesimal degrees) 

 

 

 

• Calculation of the Sun Hours Ratio: an example 
 

In order to calculate the day length we need to calculate the solar declination. We 

decided to calculate the average value for each month, not the solar declination for the 15th 

day of any month as some authors do. 

 

Here there are the average monthly solar declination (in degrees): 

 

(deg) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Solar Declination -20.85 -13.33 -2.39 9.49 18.81 23.08 21.10 13.30 1.99 -9.85 -19.05 -23.10 
 

Tab. 38: Average monthly solar declination angle 

 
In the next page we show how we calculate the Sun Hours Ratio for, e.g., the station 

of Genova Sestri. 
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Genova Sestri (Longitude: 8.933 °E; Latitude: 44.404 °N; Elevation: 2 m) 

Provider: Italian Air Force 

Sunshine duration data: 1961-1990 monthly normals   

 

Average sunshine duration for January: 3.4 h 

 

Solar declination for January (see tab. 38) : -20.85° 

Sunrise hour angle for January (see equation 127) : -68.10° 

Sunset hour angle for January (see equation 126) : 68.10° 

Day length for January (see equation 125) : 9.08 h (9 hours and 5 minutes) 

 

Relative sunshine duration for January : 0.374 

 

We calculated the relative sunshine duration for any month for all the 158 stations in 

our dataset as we did for Genova Sestri. 

 

 

 

6.4.4  From relative sunshine duration to the Clearness Index 

 
• The Clearness Index 
 

The basic idea is to correlate the Clearness Index with the solar radiation received by 

the surface in terms of the Sun Hours Ratio (Angstrom, 1924). The Clearness Index is the 

ratio between the global radiation really received by a surface and the exo-atmospheric 

radiation received by the same surface on a clear-sky day and it is usually indicated with 

Kt (Gueymard, 2001). The Clearness Index intrinsically provides an estimation of the 

atmospheric conditions of the sky in the reference period, i.e. the cloudiness and the 

turbidity of the atmosphere itself. A Clearness Index of 0.5 means that only 50% of the sky 

is cloudless or free from pollution in the period under investigation. Consequently, only 

50% of the exo-atmospheric radiation reaches the surface; in a perfectly clear and non-

interacting atmosphere, the clearness index equals 1 and the surface receives the exo-

atmospheric radiation as the upper limit of the atmosphere does. 

 



 213 

Following Black et al. (1954), the Clearness Index (Kt) can be related to relative 

sunshine duration as:  

 

                                                                 00 S
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t +==                                                    (132) 

 

Where HT is the total global radiation received from the surface, H0 is the exo-

atmospheric radiation, a and b are the coefficients of the linear regression model (see next 

paragraphs for details). 

 

The Angstrom’s formula and its modified versions such as equation (132) should not 

be used for solar zenith angles smaller than 5° because the refraction effects should not be 

neglected. The solar zenith angle is the angle between the direction to the Sun and the 

observer’s zenith (straight up direction) (Antonic, 1998), see the next paragraphs for 

details. 

 

From (133), the global radiation (HT) can be obtained as: 

 

                                                                     0HKH tt =

                                                               
(133)

   
 

 

Using equations (132) and (133), we can obtain the global radiation values for each 

station from the sunshine duration data, but the exo-atmospheric radiation (H0) and the 

two coefficients a and b must be calculated. 

 

Let us first explain how the exo-atmospheric radiation can be obtained. 

 

 

• The exo-atmospheric radiation  
 

The exo-atmospheric radiation is the solar incident radiation that reaches the upper 

limit of the atmosphere and it is equal to the so-called solar constant, multiplied for a 

correcting quantity, the eccentricity factor, due to the elliptical orbit of the Earth around 

the Sun. For a real surface on Earth, an angular factor must be introduced: the cosine of the 

solar angle of incidence, which is the angle between the sunrays and the normal to the 

ground surface.  
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The instantaneous exo-atmospheric radiation is measured in W/m2 and, following 

Pons et al. (2008), for a ground surface on Earth it can be defined as: 

 

                                                                
)cos(000 incEIH ϑ⋅⋅=

                                             
(134) 

 

Where I0 is the solar constant, E0 is the eccentricity factor and ϑinc is the angle between 

the vector of the sunrays and the normal vector to the surface. 

 

We need a monthly value, that is the daily integrated value for a day that represents 

the month, in MJ/m2 because global radiation data are usually expressed in MJ/m2. 

Consequently, we first need the instantaneous value and then we will integrate between 

sunrise and sunset. Here we introduce a conversion factor in order to obtain the 

instantaneous exo-atmospheric radiation in Mj/m2 for a ground surface on Earth. We can 

write: 
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Following Pons (1996), solar constant is equal to: 
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As it can be found in many papers (Pons 1996; Pons et al., 200;), 1,367 W/m2 is the 

value accepted and suggested by WMO (World Meteorological Organization) to be 

considered as constant.  

 

Because of the imperfect elliptical orbit of the Earth, the distance from the Sun (which 

is in one of the 2 foci of the ellipse) slightly varies during the year, thus it is necessary to 

introduce the eccentricity factor, that can be defined as: 
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Where d is the distance Sun-Earth,  d0 = 1.496 x 108 km is the average distance Sun-

Earth, θd is the “day angle” and the coefficients are a0 = 1.00011, a1 = 0.034221, a2 = 0.000719, 

b0 = 0, b1 = 0.00128, b2 = 0.000077. 

 

The eccentricity factor is not negligible because it reflects the fact that in January the 

Earth receives more solar radiation than in July and the difference is about 7%. The 

eccentricity factor is non-dimensional and it varies between 0.97 (when the Earth-Sun 

distance is at its minimum) and 1.03 (when the Earth-Sun distance is at its maximum). 

Some authors prefer to use the value of the eccentricity at the 15th day of each month, some 

others prefer to use twelve average monthly values (Wang et al., 2005; Pons et al., 2008; 

Allen et al., 2006) and we followed this last convention. 

 

Following Hartmann (1994), the day angle can be defined as: 
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Where dn is the Julian day of the year (see the former paragraphs). 

 

Eventually, if we need the daily average exo-atmospheric radiation in MJ/m2, we 

must integrate the cosine of the solar angle of incidence (by choosing the sunrise and the 

sunset hour angles as limits of integration).  We must also use the average monthly solar 

declination in the calculations (see tab. 38). 
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Let us show how to calculate the cosine of the solar angle of incidence. 

 

 

• The cosine of the solar angle of incidence 
 

The angle between the sunrays and the normal to the real surface varies with time 

because it depends on the solar position in the sky and the cosine of this angle is used to 
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describe this features (Kondratyev et al., 1970; Dubayah et al., 1997; Osozawa et al., 2002; Allen 

et al., 2006).  

 

 
 

Fig.169: the angle of incidence of the sunrays is the angle between the sunrays and the normal to the surface.   

 

The cosine of the solar angle of incidence can be defined as the scalar product 

between the perpendicular vector to the surface (n) and the solar vector (s): 

 

                                                                     snINC •=)cos(ϑ
                                                      

(140) 

 

Where n is the normal vector to the surface and s represents the direction of the 

sunrays. 

 

Following Xiaofeng et al., (1996) and Wang et al. (2006a), the scalar product between s 

and n can be defined as: 

 

( ) ( ) ( ) ++−= )cos()cos(coscoscos)sin()cos()sin()cos()sin()sin()cos( hsssINC φδαφδφδϑ
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(141) 

 

Where δ is the solar declination angle, φ is the latitude (in radians), s is the slope of 

the surface (0° horizontal, 90° vertical), α is the aspect of the surface (0° South, 90° West, -

90° East; 180° North), h is the hour angle (0° solar noon, < 0° morning, > 0° afternoon). 
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In some GIS tools (e.g., Solar Analyst 1.0) an equivalent formula based on the solar 

zenith angle is used, instead of the latitude and the solar declination (Xiaofeng et al., 1996; 

Dubayah et al., 1997; Antonic, 1998). 

 

In order to obtain the average monthly global radiation, we need to integrate the 

cosine of the solar angle of incidence. If we use the average monthly solar declination and 

we set up the sunrise and the sunset hour angles as limits of integration, we obtain the 

daily cosine of solar angle of incidence for the “average day of month”:  

 

Following Wang et al. (2006a) , we obtain: 
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(142)
  

Where h1  is the sunrise hour angle, h2 is the sunset hour angle. Starting from 

midnight, the sunrise also corresponds to the time when cosθINC becomes positive from 

negative, whereas the sunset corresponds to the time when cosθINC becomes negative from 

positive. 

 

For a horizontal surface, where our sunshine duration station data should be located, 

the slope angle is null, thus, the cosine of the solar angle of incidence for a flat surface is 

given by: 
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(143) 

 

Where ϑZ is the solar zenith angle. 

 

For a horizontal surface, the cosine of the solar angle of incidence equals the cosine of 

the solar zenith angle. In fact, for a horizontal surface, the normal vector n to the surface 

coincides with the zenith line from the observer to the up direction, hence the angle 

between n and s is exactly the zenith angle. 
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Similarly, the daily cosine of solar angle of incidence for a flat surface for the 

“average day of month” can be defined as:
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That can be equivalently written as: 
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Where we can use the sunset and sunrise hour angles calculated as in equations 

(126)-(127). 

 

 

• Other solar angles: zenith angle, elevation angle and azimuth angle 
 

The solar zenith angle is the angle between the direction to the Sun and the 

observer’s zenith (straight up direction); the solar zenith angle (Z or ϑZ, see fig. 170) is the 

complementary angle to the solar  elevation angle (E or γS, see fig. 170), thus the cosine of 

the solar zenith angle is equal to the sine of the solar elevation angle. This quantity does 

not account for the slope and the aspect because the solar elevation angle is the angle 

between the direction of the sunrays and the idealized horizon. It varies spatially because 

of the latitude term and temporally because of the solar declination and the hour angle 

terms (Xiaofeng et al., 1996; Antonic, 1998; Corripio, 2003; Pierce et al., 2005).  

 

The solar elevation angle is given by: 

 

                                      ))sin()sin()cos()cos()(arcsin(cos φδφδγ ⋅+⋅⋅= hS                              (146) 

 

And the solar zenith angle is given by the complementary of the solar elevation angle: 

 

                                ))sin()sin()cos()cos()(arccos(cos φδφδϑ ⋅+⋅⋅= hZ                            (147) 
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The solar azimuth angle (A or ϑA, see fig. 170) is defined as the angle between the line 

from the observer to the Sun projected on the ground and the line from the observer due 

south. Generally, positive azimuth angles indicate the Sun is east of south, and negative 

azimuth angles indicate the Sun is west of south (Kumar et al., 1997). 

 

The solar azimuth angle is given by: 
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)cos(
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φδφδ
ϑ                     (148) 

 

The solar zenith angle, the solar elevation angle and the solar azimuth do not depend 

on the surface’s slope and aspect, thus their values for a sloped surface are just the values 

for the corresponding horizontal surface. In the following picture we show the solar zenith 

angle (Z), the solar elevation angle (E) and the solar azimuth angle (A). 

 

 

 
 

Fig. 170: Z is the solar zenith angle, E is the solar elevation angle, A is the solar azimuth angle 
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• Calculation of the monthly exo-atmospheric radiation: an example 
 

We calculated the monthly average exo-atmospheric radiation for the stations in our 

sunshine duration dataset. Here we show an example for January: 

 

Genova Sestri (Longitude: 8.933 °E; Latitude: 44.404 °N; Elevation: 2 m) 

 

Solar declination for January (see tab. 38) : -20.85° 

Sunrise hour angle for January (see equation 127) : -68.10° 

Sunrise hour angle for January (see equation 126) : 68.10° 

Daily integral of the cosine of the solar angle of incidence for January : 0.647 

Solar constant : 1,367 W/m2 

Eccentricity factor for January: 1.031 

 

According to equation (139), the exo-atmospheric radiation for January is: 12.544 MJ/m2 

 

 

 

6.4.5 Regression models for the Clearness Index vs. the Sun Hours Ratio 

 

In order to obtain the Clearness Index as in equation (132), the a and b coefficients of 

the regression must be calculated. We used two different approaches: the first one deals 

with calculating the coefficients from sunshine duration data and global radiation data, 

the second one deals with borrowing the coefficients from similar studies found in 

literature. We chose the best method by means of checking which approach best 

reproduces the data, making use of statistical techniques and statistical parameters (MAE). 

 

 

+ Calculation of the a and b coefficients from sunshine duration and 

global radiation data for Italy  

 

During the data search, we found, mainly from the Air Force dataset on the Air Force 

website, 33 stations with both sunshine duration and global radiation monthly normals 

related to the same period. We calculated the day length (S0) and the exo-atmospheric 

radiation (H0) for each station and we studied the Clearness Indexes versus the relative 

sunshine durations of the 33 stations by means of 12 different monthly LR models. 
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We found these coefficients: 

 

  a b R^2 (%) 

Jan 0.163 0.688 82 

Feb 0.165 0.706 73 

Mar 0.205 0.650 78 

Apr 0.179 0.715 82 

May 0.183 0.687 88 

Jun 0.181 0.677 88 

Jul 0.206 0.609 84 

Aug 0.222 0.577 84 

Sep 0.266 0.521 82 

Oct 0.215 0.602 89 

Nov 0.184 0.648 90 

Dec 0.165 0.666 80 

Year  0.181 0.688 89 

 

Tab. 39: Monthly a, b coefficients in KT vs. RS regressions 

 

The linear regression models provide good fits especially in summer and autumn 

(more than 80% of variance explained). 

 

For example in January, the Clearness Index for Italy can be determined as: 

 

                                                                   0

688.0163.0
S

S
K t +=

                                             
(149) 

 

Thus, in January, if the relative sunshine duration is equal to 1, the Clearness Index is 

equal to 0.85 (even if a sunshine recorder records sunrays, the sky could be partly overcast 

or some radiation does not reach the ground surface, thus the a + b sum should not equal 

1).  Whilst if the relative sunshine duration is null (fully overcast day), the Clearness Index 

is equal to 0.18 and this value is related to diffuse radiation. 

 

In July, the clearness index for Italy can be determined as: 

 

                                                                   0

609.0206.0
S

S
K t +=

                                             
(150) 
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Thus, in July, if the relative sunshine duration is equal to 1, the Clearness Index is 

equal to 0.81, whilst if the relative sunshine duration is null, the Clearness Index is equal to 

0.21. 

 

 

• Borrowing the a and b coefficients from scientific literature 
 

In scientific literature, many papers dealing with the Angstrom-Black’s formula (see 

equation (132)) can be found, here we list the 8 models we used with our sunshine 

duration data. 

 

- Andretta et. al (1982) used a database of 98 sunshine duration records (see also AMI, 

1970 and Guerrini, 1977) and found, for Italy: 

 

                                                                     
0

37.023.0
S

S
K t +=

                                                 
(151) 

 

This model considers only a single regression valid for every month and, even if it is 

commonly used in most cases, it should be underlined that the two numeric coefficients 

vary monthly and in some cases even between two different regions in the same country 

(Roderick, 1999). 

 

- Rietveld (1978) used a worldwide dataset and obtained:  

 

                    
                                                  0

62.018.0
S

S
K t +=                                                 (152)   

 

This model provides good estimations if S/S0 are smaller than 0.4. 

 

- Iqbal (1983) cited the so called Glover’s model and obtained:  

 

                    
                                                  0

52.0cos29.0
S

S
K t += φ                                          (153)   

 

This model is valid for latitudes (φ) lower than 60°. 
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- Gopinathan et al. (1985) used a global dataset and obtained:  
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                      (154)-(155)   

 

where he also used latitude (φ) and elevation (H, in km) as independent variables. 

 

At Italy’s latitude (e.g., 42 °N), at sea level (0 m), for a S/S0 of 0.5, the a coefficient is 

equal to 0.23 and the b coefficient is equal to 0.59. At the same conditions, if the elevation is 

1,500 m, the a coefficient is equal to 0.13 and the b coefficient is equal to 0.46. 

 

 

- Newland (1989) obtained:  
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S

S
K t ++=                                        (156)   

 

Where the logarithmic model provides good fits for S/S0 < 0.2 and for S/S0 > 0.6. 

 

 

- Akinoglu et al. (1990) used a worldwide dataset and obtained:  
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- Coppolino et al. (1994) used an Italian dataset and obtained:  
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=                                              (158)   

 

Where E is the solar elevation angle. 
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- Landsberg et al. (1997) used an Australian and Antarctic dataset and obtained:  

 

                    
                                      

           
0

5.023.0
S

S
K t +=                                                     (159)   

 

They compared this model with worldwide data and they concluded that equation 

(159) can be used not only for Australian data but also even worldwide. 

 

In literature, other approaches can be found, for example those that include 

atmospheric transmission parameters (Revfeim, 1981) or that define site-independent 

coefficients (McArthur et al., 1981), but the most used models are based on regression 

equations.  

 

On the other hand, Suhercke (2000) revised the Angstrom’s formula (equation (132)) 

and theoretically hypothesized that a non-linear correlation between the Clearness Index 

and the Sun Hours Ratio should be preferred, but this hypothesis is seldom accepted. 

 

A good statistical comparison between some of the cited models and others not 

reported in this paragraph, by using station data from 77 European stations, can be found 

in Soler (1990). 

 

 

 

• Calculation of the Clearness Index using the a and b coefficients from 

different approaches 

 

We applied the 8 models found in literature (and applicable to our data) and our 

model to the 33 station of the AMI that report real measured sunshine duration and real 

measured global radiation data. We calculated the modelled Clearness Indexes data by 

means of the real measured sunshine duration data and by means of the 9 different a and b 

coefficients found in literature and described in the former paragraph. Then we calculated 

the MAE between the modelled Clearness Indexes and the Clearness Indexes as calculated 

by using real measured sunshine duration data and real measured global radiation data. 
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Let us remember that our model provides 12 monthly sets of coefficients, whilst the 

models found in literature provide only one set coefficients for each month. 

 

Thus, we calculated the MAE as: 

 

                                                                     

measured

T

eledmo

T KKMAE −= δ                                      (160)   

Where the modeled Clearness Indexes were calculated, e.g., as in equation (159) and 

the “measured” Clearness Indexes were calculated as the ratio between HT (measured 

global radiation data) and H0 (calculated as in 149) for each of 33 stations. 

 

Here we show the monthly MAE obtained by using the different models. 

 

MAE on Kt Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year 

J.Spinoni 0.022 0.024 0.023 0.023 0.022 0.022 0.021 0.020 0.019 0.015 0.017 0.022 0.021 

Rietveld 0.025 0.034 0.046 0.053 0.045 0.042 0.027 0.024 0.033 0.030 0.024 0.022 0.034 

Andretta 0.062 0.086 0.107 0.124 0.129 0.136 0.141 0.134 0.131 0.113 0.077 0.055 0.108 

Glover 0.026 0.044 0.196 0.027 0.028 0.027 0.028 0.033 0.026 0.032 0.051 0.067 0.049 

Gopinathan 0.028 0.026 0.024 0.026 0.023 0.023 0.025 0.030 0.023 0.019 0.024 0.030 0.025 

Newland 0.104 0.107 0.122 0.124 0.111 0.102 0.080 0.076 0.092 0.096 0.103 0.100 0.101 

Akinoglu 0.022 0.028 0.038 0.046 0.043 0.044 0.037 0.031 0.034 0.027 0.019 0.023 0.033 

Coppolino 0.023 0.030 0.045 0.063 0.070 0.080 0.082 0.069 0.060 0.041 0.023 0.026 0.051 

Landsberg 0.026 0.036 0.050 0.062 0.059 0.060 0.053 0.048 0.053 0.044 0.027 0.024 0.045 
 

Tab. 40: Monthly MAE parameters for KT calculations 

 

As we can see in tab. 40, our model provides the best results along with Gopinathan’s 

model.  Rietveld’s model and Akinoglu’s model provide small MAE, but in spring they are 

quite high. Coppolino’s model and Landsberg’s model provide medium MAE, while 

Andretta’s model and Newland’s model provide the worst results if applied to our data. 

 

Because our model is based on monthly coefficients and because our model provides 

results comparable with Gopinathan’s model (that is by far the most used in literature),  

even if we based our estimations only on 33 stations, we finally decided to apply our 

model to all the 158 stations in the sunshine duration dataset and we calculated the 

monthly Clearness Indexes for each station. 
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In the end, we multiplied the monthly Clearness Indexes by the monthly exo-

atmospheric radiation values as in equation (134) and we obtained the monthly global 

radiation values in MJ/m2 for each of 158 stations in our dataset.  

 

In the next paragraph we show an example of such calculations. 

 

 

+ Calculation of the monthly global radiation for a station: an example 
 

Let us calculate the global radiation for an example station for January. 

 

Genova Sestri (Longitude: 8.933 °E; Latitude: 44.40 4°N; Elevation: 2 m) 

 

Average sunshine duration for January: 3.4 h 

Day length for January: 9.08 h 

Relative sunshine duration for January : 0.374 

 

Average exo-atmospheric radiation for January: 12.54 MJ/m2 

 

Clearness Index for January (Spinoni’s model): 0.451 

(Clearness index for January (Gopinathan’s model): 0.471)  

(Relative difference between the two models: approximately 4%) 

 

Average global daily radiation for January: 5.66 MJ/m2 

 

 

 

6.4.6 Decomposition models: global radiation split up into direct and 

diffuse components 

 
• From Clearness Index to diffuse radiation and direct radiation indexes 
 

The main problem to overcome in the creation of a solar model is probably the 

determination of the diffuse fraction of the radiation received by a surface because of the 

lack of diffuse radiation in situ measurements. Even where global radiation data were 
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available, we seldom found papers dealing with data on the beam and the diffuse 

components (Gopinathan et al., 1995; De Miguel et al., 2001; Wong et al., 2001). This 

separation can be obtained by means of the decomposition models (Iqbal, 1983; Spitters et 

al. 1986). In such models, from the Clearness Index and/or the sunshine duration data, we 

can derive the diffuse and direct radiation fractions. In some cases, a solar altitude 

correction may be added (De Miguel et al., 2001). 

For more details on the dependence of the diffuse fraction on atmospheric 

components, see Chapter 6.3.3. 

 

 

The diffuse radiation fraction of the global radiation received by a surface (or 

diffuse radiation index) is defined as: 

 

                       
                                                T

dif

dif
H

H
K =

                                                            
(161)   

 

Where Hdif is the diffuse radiation and HT is the global radiation received by the 

surface. 

 

The direct radiation fraction of the global radiation received by a surface (or direct  

radiation index) is defined as: 
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dir

dir
H

H
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(162)   

 

Where Hdir is the direct radiation and HT is the global radiation received by the 

surface. 

 

Dealing with station data, the reflected component of the global radiation can be 

neglected because stations are usually located over flat surfaces with very low albedo, so 

the reflected component is usually lower than 1%, and in this case we have: 

 

                                                                   
1=+ difdir KK

                                                            
(163)   
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The decomposition models are site-dependent models and the coefficients of the 

regressions are usually valid only for those single regions studied, but in some cases they 

are applicable worldwide (Gopinathan, 1988; Gopinathan et al., 1995; Roderick, 1999). 

Nevertheless, it should be reminded that the Northern Hemisphere has a higher diffuse 

fraction than the Southern Hemisphere. This is because of the higher portion of emerged 

lands, the higher population density and industrialization that causes higher aerosol and 

pollutant concentrations which enhance the scattering of the solar radiation (Roderick, 

1999). 

 

According to Page (1964), the diffuse radiation index can be calculated as: 

 

                                                                   
tdif KK 13.11−=

                                                          
(164)   

 

According to Iqbal (1983), the diffuse radiation index can be calculated as: 

 

                                                            
tdif KK 981.0958.0 −=

                                                       
(165)   

 

 

According to Gopinathan et al. (1985), the diffuse radiation index can be calculated as: 

 

                                                     0

53.03328.0878.0
S

S
KK tdif −−=

                                            
(166)   

 

Gopinathan et al. (1985) used 40 stations worldwide and compared 5 different models 

to the measured values, concluding that the best one has to take into account both the 

Clearness Index and the Sun Hours Ratio. Whilst including latitude would be useless and 

including the solar angle of declination would not improve significantly the statistical 

errors. 

 

Roderick (1999) used Australian and Antarctic station data and compared the results 

obtained with other results valid globally.  Roderick’s model is divided into three different 

regressions, according to three intervals for the Clearness Index. In the next page we show 

the main formula. 
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Where X0 and X1 are the thresholds for the Clearness Index and a, b, c, d, e, f are the 

coefficients of the three linear regressions. 

 

Usually, the coefficients a-f and the limits of the three intervals vary locally, with the 

exception of the Rodderick’s model, that is global-scale verified. We do not report the 

results because we did not use this model. Similar models can be found in literature, see 

Chapter 6.3.3 for more details. 

 

Eventually, we decided to use the Gopinathan’s model because in literature it is often 

pointed as the most reliable one and we verified (see the former paragraphs) that the same 

author created a model for the Clearness Index that fits very satisfactorily to our sunshine 

duration data. 

Therefore we calculated the monthly diffuse fraction (using equation (166)) and 

consequently the monthly direct fraction of the global radiation (see equation (163)) for the 

158 stations of our dataset. Consequently, we obtained monthly direct radiation and 

diffuse radiation in MJ/m2 for the 158 stations. 

 

In the next paragraph we show an example of such calculations. 

 

 

• Calculation of the diffuse component and the direct component 

fractions of the global radiation: an example 

 

Let us calculate the diffuse and direct radiation fractions for a station for January: 

 

Genova Sestri (Longitude: 8.933 °E; Latitude: 44.404 °N; Elevation: 2 m) 

 

Relative sunshine duration for January : 0.374 

Clearness Index for January (Spinoni’s model): 0.451 
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Diffuse fraction for January (Gopinathan’s model): 0.506  

(Diffuse fraction for January (Page’s model): 0.490) 

(Diffuse fraction for January (Iqbal’s model): 0.516) 

 

Direct fraction for January: 0.494 

 

Diffuse radiation for January: 2.86 MJ/m2 

Direct Radiation for January: 2.80 MJ/m2 

 

 

 

6.4.7 1961-90 direct radiation and diffuse radiation high resolution grids 

for horizontal surfaces for Italy  

 

For each month, we used the direct and diffuse radiation values corresponding to the 

158 stations and we constructed high-resolution grids for Italy by means of an IDW 

spatialization model.  

 

As raster, we used coordinates from the original USGS GTOPO30 DEM (30-arc-second 

horizontal resolution) and as the radial weight we used a Gaussian weight that can be 

written as: 
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Where di(x,y) is the distance between a grid cell with a station and the grid cell to be 

modelled and cd is the coefficient that regulates the decrease of the weighting factor as: 

 

                                                      
)5.0ln(

2

d
cd −=          kmd 50=                                                  (169) 

 

Where wrad = 0.5 when a station is located at 50 km from the grid cell to be modelled, 

d  is the radial distance from the grid cell where the weight equals 0.5, i.e., if the station is 

at 50 km from the grid cell, its weight equals 0.5. 
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Each grid cell was modelled considering at least 5 stations and the search radius was 

set up to 250 km; elsewhere, the grid cell was not modelled. Then, we smoothed the 

resulting grids. We recalculated each grid cell value as the average of the cell itself and the 

surrounding 8 cells. Such a smoothing was performed in order to avoid discontinuities in 

areas with a low station density. 

It must be underlined that these are 1961-1990 high-resolution grids for horizontal 

surfaces because they are based on station data (1961-1990) and calculations related to flat 

surfaces.  Thus we did not use the DEM as an elevation raster, but only as a geographic 

raster. 

 

From now on we will separately discuss the three components of the solar radiation, 

i.e. the direct, the diffuse and the reflected, for real sloped surfaces. In the end, we will 

sum up the three components in order to obtain monthly high-resolution grids for global 

radiation. 

 

 

 

6.4.8 1961-90 high-resolution grids for direct radiation on sloped surfaces  

 
From the high-resolution grids for flat surfaces we had to derive high-resolution 

grids for real sloped surfaces. First, for each month, we used direct radiation grids for 

horizontal surfaces in order to empirically obtain grids of atmospheric turbidity for Italy. 

Second, we used a formulation based on a exponential model for the attenuation of the 

atmosphere, on the turbidity Linke’s factor, on the optical properties of the atmosphere, to 

calculate the direct radiation for a real attenuating atmosphere (see equation (170)). Third, 

we used the cosine of the solar angle of incidence to evaluate the direct radiation on real 

sloped surface. Fourth, we implemented an algorithm that considers the shading effect of 

the surrounding topography for each grid cell. 

 

Eventually, we obtained 1961-1990 high-resolution grids for direct solar radiation 

component that account for turbidity of the atmosphere, for the real orography and for 

shading. 
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• The direct radiation component in an attenuating real atmosphere 
 

According to Iqbal (1983), the average daily direct radiation component for a sloped 

surface in MJ/m2 is given by: 
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Where TL is the Linke’s turbidity factor, mA is the optical air mass, δR is the Rayleigh’s 

optical thickness (see the next paragraphs for definitions and formulations). TL(mA) is often 

replaced with TL(AM2) that is the Linke’s factor calculated with a fixed value for the 

optical air mass (mA = 2). 

 

The second part of the formula can be seen as the total attenuation of the 

atmosphere: 

 

                                             [ ])()(8662.0exp ARAAL mmmTT δ⋅⋅−=
                                 (171)            

 

Let us describe in details the quantities in equation (170). 

 

 

• The Rayleigh’s optical depth of the atmosphere 
 

The Rayleigh’s optical depth used in our solar radiation models is the evolution of 

the Kasten’s model (Kasten et al., 1980); many improvements were done  to get the model 

as in Rigollier et al. (2000) or in Jacovides (1997):
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Where δR is the vertical optical thickness of a Rayleigh’s atmosphere, that is a clear 

atmosphere with only permanent gases that scatter light and with no aerosols, no water 

vapor, no clouds; γS is the solar elevation angle (in degrees).
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The dependence on m4 is due to the Rayleigh scattering’s dependence, on the fourth 

power of the wavelength of the incoming radiation. The correction for low solar elevation 

angles is necessary: in fact, when the Sun is low at the horizon, the blue part of the light 

spectrum is scattered most and only the red part reaches the Earth’s surface. Without the 

dependence on air mass, for low solar angles, the radiation would be totally attenuated 

and this would provide unrealistic estimations. 

 

 

• The optical air mass corrected for elevation and pressure 
 

We can define the approximated optical air mass as: 

 

                                                
                 









=

Z

Am
ϑcos

1
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Where ϑZ is the solar zenith angle.
   

 

The relative optical path of the sunrays increases when the solar elevation angle 

decreases, thus the optical air mass should be corrected for elevation, for the refraction of 

the solar radiation and for pressure (Kasten et al., 1989); thus the formulation shown in 

equation (173) is too simplistic because it depends only on the solar zenith angle. 

 

Muneer et al. (2000) created a model based on hourly values of a clear sky and an 

overcast sky radiation that depends on the solar elevation, on the turbidity Linke’s factor 

and on the optical density of the atmosphere. This method is similar to the one used by 

Ineichen et al. (2002), where an optical mass formulation is used: 
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where γS is the solar elevation angle (in degrees). 

 

However, this approximation is not valid when the solar elevation is very low and it 

does not account for the different air pressure at different elevations. The atmospheric 

refraction takes place when the sunrays go through the atmospheric layers with different 
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densities that cause the sunrays to be deflected.  This effect is not negligible for low solar 

elevation angles. 

 

The air mass also can be corrected taking into account pressure: 
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 Where p0 is the atmospheric pressure at sea level at standard conditions and equals 

1,013.22 mbar.                    

 

 

According to Kasten et al. (1989), the air mass can be corrected taking into account the 

pressure correction and the so-called “paths directions” correction: 
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Where γS is the solar elevation angle and ϑZ is the solar zenith angle.    

 

 

The m value for solar elevation angles smaller than 20° is calculated using some 

approximations, that is an air density of 1.225 Kg/m3 and a constant refraction index for air 

(at 700 nm and 0 meters elevation). The m value at the horizon is still not good because it is 

underestimated, thus, according to Kasten et al. (1989) it can be recalculated using the 

“apparent elevation” as: 
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Where γSref is the solar elevation angle corrected for the apparent elevation.        
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The apparent elevation angle is defined as the elevation corrected by the refraction 

and is computed according to Rigollier et al. (2000):    
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Where: 
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The pressure can be corrected with the elevation correction as in Geiger et al. (2002): 
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Where 8,434.5 m is the scale height of the Rayleigh’s atmosphere near the Earth’s 

surface. 

 

With the refraction correction for solar elevation angle and the elevation correction 

for pressure, the optical air mass has its best formulation.  

 

 

 
• The turbidity Linke’s factor and the Angstrom’s coefficient 
 

The atmospheric transmission can be described with the help of the Linke’s turbidity 

factor. The Linke’s factor depends especially on the air mass, the water vapor, the gases 

and the aerosols (Rigollier et al., 2000) and represents the number of clean dry atmosphere 

necessary to produce the same attenuation of the real atmosphere. The average value for 

Europe is 3.5, but it varies locally; the attenuation increases with TL because a higher 

turbidity means higher scattering and absorption processes. TL depends on the air mass 

(indicated with m) that is not available everywhere, hence this problem is often moved 

around imposing a constant value of m = 2 for calculating TL (Kasten et al., 1989) or it is 
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derived inversely from beam pyrheliometric measurements (Ineichen et al., 2002; Jacovides, 

1997) or local data (Kasten et al., 1984, Dogniaux, 1976).  

The Linke’s factor can also be seen as the ratio between the total optical depth and 

the Rayleigh’s optical depth. TL = 0 means a non-attenuating atmosphere, TL = 1 means a 

pure Rayleigh’s atmosphere with no aerosols and only molecular scattering, TL= 3-4 means 

a quite turbid and non-windy atmosphere, TL = 6 means a very dirty and polluted 

atmosphere. 

The Linke’s turbidity factor is also used in GIS tools as r.sun and in the European 

Solar Radiation Atlas (ESRA: Beyer et al., 1997; Rigollier et al., 2000; Page et al., 2001). 

 

A similar turbidity’s coefficient is the Angstrom’s coefficient that quantifies the 

effects of the aerosols and varies from 0 (very clear atmosphere) to 0.4 (very dirty 

atmosphere) (see Jacovides (1997) for more details). 

 

The combined use of the Linke’s factor and Angstrom’s coefficient accounts for the 

attenuation of the direct and the diffuse radiation in a real atmosphere and for the 

diffraction and the refraction effects (Beyer et al., 1997). The Angstrom’s coefficient is rarely 

used as an independent quantity in literature (Jacovides, 1997), but it is often used to obtain 

a Linke’s turbidity modified factor that accounts best for the aerosol extinction and 

depends even on the Angstrom’s coefficient (e.g., Valko, 1961). Other authors (Jacovides, 

1997) calculate the Angstrom’s coefficient from the Linke’s factor obtained from 

pyrheliometric measurements and they divide the atmosphere in rather dry, medium 

humid and very wet conditions, depending on the water vapor content.  

 

 

• Empirical derivation of monthly Linke’s factor grids from 1961-1990 

high-resolution monthly direct radiation grids for flat surfaces  

 

First, we made some assumptions: the turbidity Linke’s factor has a high spatial 

coherence, thus a Linke’s factor low-resolution grid (one value for each 0.5° x 0.5° grid cell) 

would be enough. Furthermore, the Linke’s factor describes the turbidity of the 

atmosphere and it is not linked to the ground orography. Thus we can calculate the 

Linke’s factors using the direct radiation for horizontal surfaces and then we can use the 

same values when we calculate the direct radiation for real sloped surfaces. 
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In order to create high-resolution grids for real sloped surfaces, we first needed the 

turbidity Linke’s factor for Italy and we derived it empirically from the daily direct 

radiation for a flat surface for the “average day of month” (in Mj/m2), where we used the 

average monthly value of solar declination angle: 

 

    
[ ]









⋅⋅−⋅⋅

⋅

⋅
⋅= ∫ )(.)(8662.0exp)cos(

102

360024
600 ARAALZ

sunset

sunrise

dir mmmTdhIEH δϑ
π     (181)      

  

Where the cosine of the solar angle of incidence has been replaced by the cosine of 

the solar zenith angle.  

 

Let us define the conversion factor from W/m2 to MJ/m2: 
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In equation (179) we made the following steps: we calculated monthly Hdir for flat 

surfaces for each grid point of the DEM and we extracted monthly E0 and constant I0 from 

literature.  For any time interval and any point of the grid, we can calculate cosϑZ by 

equation (143), mA by equations (173)-(180), δR(mA) by equation (172); k is a constant. 

 

In order to create a low-resolution (0.5° x 0.5°) grid for the Linke’s factor, we first 

selected 193 grid points which represent Italy as in fig. 171. For each point and for every 

month, we used the corresponding direct radiation in Mj/m2 for a flat surface, the 

corresponding astronomic parameters (the day length, the solar declination angle, the 

solar elevation angle, the solar zenith angle, the eccentricity factor), the corresponding 

constraints (the solar constant and the conversion k factor) and the corresponding 

atmospheric parameters (the optical air mass and the Rayleigh’s optical density). This was 

in order to obtain a TL value for each grid cell and for each month.  

 

Eventually, we would be able to obtain 12 monthly 1961-1990 low-resolution grids 

for Italy for the Linke’s factor. 
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Fig. 171: low-resolution grid points for the turbidity Linke’s factor monthly grids. 
 

In order to obtain 12 monthly discrete grids for the Linke’s factor we wrote a Fortran 

code subdivided into many steps. We repeated the same procedure for each grid point 

(out of 193 grid points) and for every month. 

 

First step: we calculated the sunrise hour angle and the sunset hour angle and we 

subdivided the “day length” into 100 intervals. 

  

                                                               sssr wwInt −⋅=
100

1

                                              (183)      

 

Where wss and wsr must be expressed in radians. 

 

The limits of the first interval are h1 = wsr and h2 = h1 + Int, the limits of the second 

interval are h2 and h3 = h2 + Int , …, the limits of the 100th interval are h100 = h1 +( 99 · Int) and 

h101 = wss. 
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Second step: for each interval, we calculated the solar elevation angle (0° for sunrise 

and sunset, maximum for solar noon) and if it was smaller than 20° we recalculated it 

introducing the refraction correction. 

 

Third step: for each interval, if the solar elevation angle was smaller than 20°, we 

used equations (177)-(178)-(179) to calculate the optical air mass mA, whilst if the solar 

elevation angle was higher than 20° we used the second equation of equation (176). We 

did not account for the elevation correction of pressure because our sunshine duration 

stations were all below 2,000 m, with the exception of Plateau Rosa (approximately 3,400 

m) 

 

Fourth step: for each interval, if the optical air mass mA was higher than 20 (which 

corresponds to solar elevation angle lower than 1.9°) we used the first equation in (172) to 

calculate the Rayleigh’s optical density of the atmosphere, whilst if mA was lower than 20 

(which corresponds to solar elevation angle higher than 1.9°) we used the second equation 

in (172). 

 

Fifth step: for each interval we calculate the average value of the cosine of the solar 

angle of incidence (which corresponds to the solar zenith angle for flat surfaces). 

 

Sixth step: we chose the average turbidity Linke’s factor for Europe (TL = 3.5) and, for 

each interval we calculated the direct radiation received from the flat surface by means of 

the following formula showed, e.g., the 50th interval: 
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Where TL* = 0.8662·TL and where i is referred to the i-th interval (out of 100). 

 

Seventh step: we summed up all the direct radiation values of the 100 intervals and 

we obtained 12 (for each month) temporary direct radiation values for each grid point. 
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Eighth step: for each grid point and for each month, we compared the direct 

radiation value obtained by (184) with the direct radiation value obtained from: 

 

                                                               dirTdir KHH ⋅=
                                                         (186)    

 

Where we obtained HT from (133), using the Clearness Index values calculated by 

equation (132) and a, b coefficients as in tab. 39; where we obtained Kdir from equation 

(166). 

 

In other words, we compared the direct radiation values obtained by means of 

equations and models based on sunshine duration data (see Chapters 6.4.3, 6.4.4, 6.4.5) 

with the direct radiation values obtained by means of equation (181) of atmospheric 

attenuation using a Linke’s factor of 3.5.  

 

Consequently, we obtained: 
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Ninth step: the Fortran code replaced the random TL
* value with a set of discrete 

values for TL* that ranges from 0.100 to 15.000 (the step is 0.001) and estimated the TL* that 

minimizes ΔHdir. Such a value represents the 1961-1990 turbidity Linke’s factor for the 

considered grid cell and for the considered month.  

 

It is sufficient to repeat such an estimation for all the 193 grid points for all 12 months 

in order to get low-resolution monthly grids of TL for Italy in the reference period 1961-

1990 (that is the period related to the sunshine duration data used to obtain Hdir used in 

equation (186)). 

 

In the next page we show the low-resolution grids for January and July (1961-1990) 

for the turbidity Linke’s factor. Notice that we used, as many authors do, a TL value that 

includes the 0.8662 coefficient. i.e. a TL* value in the calculations and in figures 172-173. 
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Fig. 172: 1961-90 January grid for the turbidity Linke’s factor  
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Fig. 173: 1961-1990 July grid for the turbidity Linke’s factor  
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In winter, the turbidity Linke’s factor is the highest in the Po Plain due to fog, 

pollution and clouds. Whilst in summer is the highest over the Alps and is the lowest in 

the great islands. In fact, precipitations and clouds are more frequent in northern regions 

than in southern regions in summer. 

  

Tenth step: by means of a IDW spatialization model we obtained monthly high-

resolution grids from monthly low-resolution grids. We used the Gaussian weight of 

equation (168) and we set up a distance parameter of 50 km as in equation (169). We did 

not set a search radius because we had a regularly spaced grid. On the other hand, we 

considered 9 stations for each grid point in the weighting process. 

 

Eleventh step: we smoothed the 12 monthly high-resolution grids of the Linke’s 

factor with a 3 x 3 cells scheme. We substituted the grid cell value with the average value 

of the 8 surrounding cells and of the grid cell itself. 

 

Let us set TLok for the Linke’s factors obtained with this methods 

 

 

• Direct radiation on a sloped surface: the shading problem 
 

In order to obtain the high-resolution monthly grids for daily direct radiation on real 

sloped surfaces (in Mj/m2), we used the USGS GTOPO30 digital elevation model, from 

which we calculated, for each grid cell, a slope value and an aspect value. The basic 

formula is, for a certain grid cell: 
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Where TLok was calculated as discussed in the former paragraph; we replaced ϑZ (flat 

surfaces) with ϑinc (sloped surfaces). Let us notice that for a sloped surface, the sunset and 

the sunrise hour angles are the same angles calculated for a corresponding flat surface. 

 

Using the monthly high-resolution grids of the Linke’s factor, we can calculate the 

daily direct radiation for a sloped surface as in equations (183)-(184)-(185), just replacing 
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ϑZ with ϑinc in equation (181) and using, in this case, the elevation correction for pressure 

(equation (180)) because of the wide elevation range (0 – 4,810 m) of Italy. However, this 

procedure is not valid for a real sloped grid cell because a sloped surface does not receive 

direct radiation from sunrise to sunset. In fact, if a surface is west-facing, due to the fact 

that the Sun rises in the east, the surface will receive sunrays only after a certain time (that 

is, when the solar hour angle is higher than a certain value) that depends on the slope 

inclination, on the slope aspect of the surface, on the solar elevation angle and so on. 

A sloped surface could provide negative values of the cosine of the solar angle of 

incidence and this lead to negative direct radiation fraction that is not realistic; 

furthermore, this methodology does not account for the topography that surrounds the 

sloped grid cell and could shade the grid cell. 

 

Let us show how the surrounding topography can shade a grid cell as illustrated in 

Zaksek et al., 2005. 

 

 
 

 

Fig. 174: The angle between the sunrays vector and the normal vector to the ground surface is indicated as α: 
various angle of incidence correspond to different shading configurations. A) Exposed to the Sun; B) Partially 

insolated; C) Hill shade; D) Cast shade. (Zaksek et al., 2005)   

 

In fig. 174 the solar angle of incidence is indicated as α, that is: ϑinc = α.  

 

We can divide into: 
 

A) ϑinc < 90° and no shading topography (α1 ; no shading): the surface receives direct solar 

radiation ; 
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B) ϑinc = 90° (α2 ; border situation): the solar radiation is parallel to the surface: the direct 

radiation is a grazing radiation for the surface (no shading for our code) ; 

C) ϑinc > 90° (α3 ; hill-shading): the surface does not receive direct solar radiation but only 

diffuse and reflected radiation; 

D) ϑinc < 90° and shading topography (α4 ; cast shading): the surface does not receive direct 

solar radiation but only diffuse and reflected radiation . 

 

If situation B occurs, we approximated it as a no shading situation. 

 

We wrote a Fortran code that calculates, for each grid cell, for each month, the 

“possible” direct solar radiation for each interval and then it sums up the 100 values to get 

the daily direct solar radiation in Mj/m2.  

 

In any interval where cosϑinc < 0 (hill-shading), the direct radiation received by the 

grid cell is null, thus the Fortran code sets up cosϑinc = 0.  

 

In any interval where cosϑinc ≥ 0 (no shading or cast shading), the Fortran code 

calculates if cast-shading occurs or if the grid cell is directly irradiated. In case D, the direct 

radiation received by the grid cell is null, thus the Fortran code sets up cosϑinc = 0, in  case 

A, direct radiation can be calculated. 

 

Let us have a deeper look at how the Fortran code accounts for cosϑinc ≥ 0:  

- First, it selects a surrounding area of 400 km2 for each grid cell ; 

- Second, it calculates the solar azimuth angle for each interval (out of 100) ; 

- Third, it searches for the grid cell with the highest elevation on the azimuth 

direction (see fig. 170). 

- Fourth, if the grid cell under investigation is the highest one on the azimuth 

direction, the grid cell is not cast-shaded, thus the direct solar radiation received 

can be calculated ;  

- Fifth, if the grid cell under investigation is not the highest one, the Fortran code  

calculates the angle between the grid cell’s surface and the straight line from the 

grid cell to the top of the obstacle. If such an angle is smaller than the solar 

elevation angle (z3 < z0 in fig. 175), the grid cell is exposed to the direct radiation.  If 

such angle is higher than the solar elevation angle, the grid cell is in cast shade (z1 < 
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z0 in fig. 175); else if such angle equals the solar elevation angle (z2 = z0 in fig. 175), 

the grid cell is on the border situation between light and shadow. 

-  

 
 

Fig. 175: Representation of the cast shading: the grid cell “behind” the obstacle can be cast-shaded, partially 
insolated on the border situation or exposed to the Sun  (Zaksek et al., 2005). z0 is the solar elevation angle. 

 

Some authors use pre-packed GIS tools, such as OMBRA, INSOLDIA (Pons et al., 

2008), HILLSHADE, MOD-SHADOWS (Kumar et al., 1997), in order to account for shading 

effects, but these codes are usually too simplistic for high-resolution climatologies. 

 

In the end, for each grid cell and for each month, we have: 
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where (Hdir(TL
OK))i = 0 in any i-th interval where hill-shading or cast-shading occurs. 

 

We must underline that a resolution of 30-arc second is too low to capture in the best 

way the shading effects of the complex orography in a mountain environment. One or two 

orders of magnitude higher resolution would probably be better in order to create a very 

detailed model of the shading effects. 

  

 


